JP2006136874A - Circulation type sewage purification method - Google Patents

Circulation type sewage purification method Download PDF

Info

Publication number
JP2006136874A
JP2006136874A JP2005299944A JP2005299944A JP2006136874A JP 2006136874 A JP2006136874 A JP 2006136874A JP 2005299944 A JP2005299944 A JP 2005299944A JP 2005299944 A JP2005299944 A JP 2005299944A JP 2006136874 A JP2006136874 A JP 2006136874A
Authority
JP
Japan
Prior art keywords
photocatalyst
sewage
porous body
purification method
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005299944A
Other languages
Japanese (ja)
Inventor
Kazuyuki Takami
和之 高見
Toshimasa Matsunaga
年正 松永
Kayano Sunada
香矢乃 砂田
Yoko Miyama
陽子 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Kanagawa Prefecture
Ube Exsymo Co Ltd
Original Assignee
Kanagawa Academy of Science and Technology
Kanagawa Prefecture
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, Kanagawa Prefecture, Ube Nitto Kasei Co Ltd filed Critical Kanagawa Academy of Science and Technology
Priority to JP2005299944A priority Critical patent/JP2006136874A/en
Publication of JP2006136874A publication Critical patent/JP2006136874A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sewage purification method using sunlight, which can maximally use photocatalytic reactions, is simple and low cost, and does not require a wide space. <P>SOLUTION: In the circulation type sewage purification method, sewage is supplied to the upper end of a tabular photocatalyst-carrying porous body disposed so as to receive sunlight in a state declined at an angle (θ) of ≥10° to the ground, the sewage is dropped from a dropping port installed at the upper end of the porous body at a flow rate of K(1-cosθ) per one dropping port (K is the maximum value of water feed rate per one dropping port when dropping the sewage from the upper end of the dropping port in a state vertically erecting the porous body) and recovered from the lower end of the porous body, and the recovered sewage is supplied to the upper end of the porous body repeatedly. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、循環型汚水浄化方法に関する。さらに詳しくは、本発明は、平板状光触媒担持多孔体を用い、太陽光を利用して、各種汚水、例えば農薬廃液や、養液栽培における廃液などを効果的に浄化処理する循環型汚水浄化方法に関するものである。   The present invention relates to a circulating sewage purification method. More specifically, the present invention relates to a circulating sewage purification method that uses a flat photocatalyst-supported porous body and effectively purifies various sewage, for example, agricultural chemical effluents and waste liquids in hydroponics, using sunlight. It is about.

光触媒材料(以下、単に光触媒と称することがある。)は、そのバンドギャップ以上のエネルギーの光を照射すると、励起されて伝導帯に電子が生じ、かつ価電子帯に正孔が生じる。そして、生成した電子は表面酸素を還元してスーパーオキサイドアニオン(・O2-)を生成させると共に、正孔は表面水酸基を酸化して水酸ラジカル(・OH)を生成し、これらの反応性活性酸素種が強い酸化分解機能を発揮し、光触媒の表面に付着している有機物質を高効率で分解することが知られている。
このような光触媒の機能を応用して、例えば脱臭、防汚、抗菌、殺菌、さらには廃水中や廃ガス中の環境汚染上の問題となっている各種物質の分解・除去などが検討されている。
When a photocatalytic material (hereinafter sometimes simply referred to as a photocatalyst) is irradiated with light having energy higher than its band gap, it is excited to generate electrons in the conduction band and holes in the valence band. The generated electrons reduce surface oxygen to generate superoxide anions (• O 2− ), and holes oxidize surface hydroxyl groups to generate hydroxyl radicals (• OH). It is known that active oxygen species exert a strong oxidative decomposition function and decompose organic substances adhering to the surface of the photocatalyst with high efficiency.
By applying such photocatalytic functions, for example, deodorization, antifouling, antibacterial, sterilization, and decomposition / removal of various substances that cause environmental pollution in wastewater and waste gas are being studied. Yes.

また、光触媒のもう1つの機能として、該光触媒が光励起されると、光触媒表面は、水との接触角が10度以下となる超親水化を発現することも知られている(例えば、特許文献1参照)。このような光触媒の超親水化機能を応用して、例えば高速道路の防音壁やトンネル内照明、街路灯などに対する自動車の排ガスに含まれる煤などによる汚染防止用に、あるいは自動車のボディーコートやサイドミラー用フィルム、防曇性、セルフクリーニング性窓ガラス用などに光触媒を用いることが検討されている。   Further, as another function of the photocatalyst, it is also known that when the photocatalyst is photoexcited, the surface of the photocatalyst develops superhydrophilicity with a contact angle with water of 10 degrees or less (for example, Patent Documents). 1). Applying such a superhydrophilic function of the photocatalyst, for example, for preventing pollution caused by soot contained in the exhaust gas of an automobile for a soundproof wall of a highway, lighting in a tunnel, street light, etc., or for an automobile body coat or side The use of photocatalysts for mirror films, antifogging and self-cleaning window glass has been studied.

このような光触媒としては、これまで種々の半導体的特性を有する化合物、例えば二酸化チタン、酸化鉄、酸化タングステン、酸化亜鉛などの金属酸化物、硫化カドミウムや硫化亜鉛などの金属硫化物などが知られているが、これらの中で、二酸化チタン、特にアナターゼ型二酸化チタンは実用的な光触媒として有用である。この二酸化チタンは、太陽光などの日常光に含まれる紫外線領域の特定波長の光を吸収することによって優れた光触媒活性を示す。   As such photocatalysts, compounds having various semiconductor characteristics such as metal oxides such as titanium dioxide, iron oxide, tungsten oxide and zinc oxide, and metal sulfides such as cadmium sulfide and zinc sulfide have been known. However, among these, titanium dioxide, particularly anatase titanium dioxide, is useful as a practical photocatalyst. This titanium dioxide exhibits excellent photocatalytic activity by absorbing light of a specific wavelength in the ultraviolet region contained in daily light such as sunlight.

光触媒の用途の一つとして、前述したように廃水中の環境汚染上の問題となっている各種物質を分解・除去処理することが試みられており、例えば光透過性を有する耐熱性繊維からなる織布の耐熱性繊維自体に酸化チタンの被膜を形成してなる光触媒を用い、液中の有害物質を処理する技術が提案されている(例えば、特許文献2参照)。また、酸化チタン光触媒を用い、太陽光を利用して、水稲種子消毒後の廃液を処理する技術(例えば、特許文献3参照)や、有機質培地を用いた培養液循環式養液栽培における廃液の処理技術(例えば、特許文献3、4参照)などが提案されている。   As one of the uses of the photocatalyst, as described above, it has been attempted to decompose and remove various substances that are a problem of environmental pollution in wastewater, and is made of, for example, a heat-resistant fiber having light permeability. There has been proposed a technique for treating harmful substances in a liquid using a photocatalyst formed by forming a titanium oxide film on a heat-resistant fiber itself of a woven fabric (see, for example, Patent Document 2). In addition, using a titanium oxide photocatalyst and utilizing sunlight, a technique for treating the waste liquid after paddy rice seed disinfection (see, for example, Patent Document 3), and the waste liquid in culture medium circulation type hydroponic cultivation using an organic medium Processing techniques (see, for example, Patent Documents 3 and 4) have been proposed.

しかしながら、このような光触媒反応を利用した、水溶液中に残存する有機物の効率的な分解は一般に困難である。光触媒体に被処理汚水を接触させ、そこに紫外光を照射すれば分解反応は生じるが、この場合、分解反応を決定付ける因子は、光触媒反応ではなく、分解すべき物質の光触媒体への輸送過程と吸着過程にあることが多い。   However, it is generally difficult to efficiently decompose organic substances remaining in an aqueous solution using such a photocatalytic reaction. The decomposition reaction occurs when the wastewater to be treated is brought into contact with the photocatalyst body and irradiated with ultraviolet light. In this case, the factor that determines the decomposition reaction is not the photocatalytic reaction, but the transport of the substance to be decomposed to the photocatalyst body. Often in the process and adsorption process.

また、光触媒体表面で生じる現象として、有機物を分解する酸化反応のみが注目を集めているが、同時に還元反応も生じている。この2つの反応は対をなしており、一方が滞ると反応速度が低下することが知られている。特に弱い還元力しかもたない還元反応が両方の反応を停滞させる場合がある。気相分子の酸化分解においては、空気中の酸素が犠牲的還元剤の役割を果たすが、水中での反応では、微量の溶存酸素に頼ることになり、活性が著しく低下する。   In addition, as a phenomenon that occurs on the surface of the photocatalyst, only an oxidation reaction that decomposes an organic substance is attracting attention, but a reduction reaction is also occurring at the same time. These two reactions are paired, and it is known that the reaction rate decreases when one of the reactions is delayed. In particular, a reduction reaction having only weak reducing power may cause both reactions to stagnate. In the oxidative decomposition of gas phase molecules, oxygen in the air plays the role of a sacrificial reducing agent, but in the reaction in water, it depends on a very small amount of dissolved oxygen, and the activity is significantly reduced.

さらに、光触媒材料を表面積の大きな透明構造体に担持させて利用することが多いが、このような構造体に光を照射した場合に、表面積の多さから光が散乱してしまう量も多くなり、その結果、素材自体の透明性に無関係に、紫外光が構造体内部まで浸透せず、光触媒量に見合う活性が発現しないという問題もある。
前記したように、光触媒反応を利用した汚水の浄化技術について、種々の提案がなされているが、上記したような観点を全て考慮した、光触媒反応を最大限に利用できる汚水浄化技術は、これまで存在しないので実状であった。
In addition, the photocatalyst material is often used by supporting it on a transparent structure having a large surface area, but when such a structure is irradiated with light, the amount of light scattered increases due to the large surface area. As a result, regardless of the transparency of the material itself, there is a problem that ultraviolet light does not penetrate into the structure and the activity corresponding to the amount of photocatalyst is not exhibited.
As described above, various proposals have been made for sewage purification technology using photocatalytic reaction. However, sewage purification technology that can fully utilize the photocatalytic reaction in consideration of all the above-mentioned viewpoints has been proposed so far. It didn't exist and was real.

国際特許公開96/29375号公報International Patent Publication No. 96/29375 特開平7−96202号公報JP-A-7-96202 特開2004−82095号公報JP 2004-82095 A 特開平9−327246号公報Japanese Patent Laid-Open No. 9-327246

本発明は、このような事情のもとで、紫外光が内部まで浸透できる構造体を用い、かつ被分解物質の光触媒担持体への輸送・吸着効率が良好であると共に、水中でも効率よく酸素の犠牲的還元を促すことが可能であって、光触媒反応を最大限利用することができる上、簡易で安価であり、広いスペースを必要とせず、太陽光を利用した効果的な汚水浄化方法を提供することを目的とするものである。   Under such circumstances, the present invention uses a structure capable of penetrating ultraviolet light to the inside, and has good transport / adsorption efficiency of the substance to be decomposed to the photocatalyst carrier, and also efficiently in water. It is possible to promote the sacrificial reduction of water, to make the most of photocatalytic reaction, and to provide an effective sewage purification method using sunlight, which is simple and inexpensive, does not require a large space. It is intended to provide.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特に特定の性状を有する平板状光触媒担持多孔体を用い、地面に対してある値以上の角度に傾けた状態で太陽光が均一に当たるように設置し、この上端部に設けた複数の滴下口から、1滴下口当たり、ある値以下の滴下流速で被処理汚水を滴下し、該光触媒担持多孔体の下部端面から回収し、再びこの多孔体の上端部に供給する循環型浄化方法により、その目的を達成し得ることを見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive research to achieve the above object, the present inventors have used a flat photocatalyst-supported porous body having a specific property, and in particular, the sun is tilted at an angle of a certain value or more with respect to the ground. Installed so that light hits uniformly, from the plurality of dripping ports provided at the upper end portion, to-be-treated sewage is dropped at a dripping flow rate of a certain value or less per one dripping port, and recovered from the lower end surface of the photocatalyst-supporting porous body. The inventors have found that the object can be achieved by the circulation type purification method supplied again to the upper end of the porous body, and have completed the present invention based on this finding.

すなわち、本発明は、
(1) 地面に対して10°以上の角度に傾けた状態で太陽光が当たるように設置された平板状光触媒担持多孔体の上端部に、被処理汚水を供給し、前記光触媒担持多孔体の上端部に幅方向に設けた複数の滴下口から、1滴下口当たり、式(I)
That is, the present invention
(1) To-be-processed sewage is supplied to the upper end part of the flat photocatalyst carrying porous body installed so that sunlight may hit in the state inclined at 10 degrees or more with respect to the ground, From a plurality of dripping ports provided in the width direction at the upper end, per dripping port, the formula (I)

≦K(1−cosθ) …(I) F R ≦ K (1-cosθ ) ... (I)

[式中、Fは被処理汚水の1滴下口当たりの滴下流速、θは光触媒担持多孔体の地面に対する角度、Kは光触媒担持多孔体を垂直に立て、その上端部に設けられた滴下口から、被処理汚水を供給した際に、1滴下口当たりの給水速度の最大値を示す。]
の関係を満たす流速Fで滴下して、当該光触媒担持多孔体内を通過させたのち、その下部端面から回収し、当該光触媒担持多孔体の上端部に繰り返し供給することを特徴とする循環型汚水浄化方法、
(2)前記複数の滴下口が3〜10cmの間隔で設けられている上記(1)に記載の循環型汚水浄化方法、
(3) 平板状光触媒担持多孔体が、多孔質セラミックスあるいは無機繊維からなる織布または不織布を含み、かつ蒸留水の保水率が500〜3000質量%、吸上げ高さが12mm以上の無機多孔体の少なくとも太陽光が当たる側の表面に、光触媒材料と無機接着成分および/または吸着剤とを含む塗膜を有し、該塗膜中の光触媒材料の体積分率が30〜90%、光触媒材料の担持量が8〜20g/m、平滑面に設けられた前記塗膜の水接触角が60°以下であり、厚さが12mm未満の平板形状を有するものである上記(1)または(2)項に記載の循環型汚水浄化方法、
(4) 無機接着成分が、アモルファス型チタニアバインダーである上記(3)項に記載の循環型汚水浄化方法、
(5) 吸着剤および/または無機接着成分が、等電点のpHが9.0以上である固体塩基性を有し、酸性の汚水成分を選択的に分解・除去する上記(3)または(4)項に記載の循環型汚水浄化方法、
(6) 吸着剤および/または無機接着成分が、等電点のpHが9.0以上である固体塩基性を有し、界面活性剤で乳化された疎水性の汚水成分を選択的に分解・除去する上記(3)または(4)項に記載の循環型汚水浄化方法、
(7) 吸着剤が、平均粒径が100nm以下で結晶形態がベーマイト状のアルミナであり、前記無機多孔体の表面に設けられた塗膜中の吸着剤の体積分率が、10〜45%である、上記(5)または(6)に記載の循環型汚水浄化方法、
(8) 吸着剤および/または無機接着成分が、等電点のpHが3.0以下である固体酸性を有し、塩基性の汚水成分を選択的に分解・除去する上記(3)または(4)項に記載の循環型汚水浄化方法、
(9) 平滑面に設けられた塗膜の水接触角が40〜60°であって、疎水性の汚水成分を選択的に分解・除去する上記(1)ないし(4)項のいずれか1項に記載の循環型汚水浄化方法、
(10)疎水性の汚水成分を吸着する吸着剤が活性炭であって、該活性炭は、10nm以上の細孔径を有する細孔の容積の和の割合が全細孔容積の19%以上であり、平均粒径が10μm以下であって、前記無機多孔体の表面に設けられた塗膜中の吸着剤の体積分率が、5〜60%である上記(9)に記載の循環型汚水浄化方法、および
(11) 厚さ12mm未満の平板状光触媒担持多孔体が、該光触媒担持多孔体の太陽光が当たる側とは反対面に、無機繊維または有機繊維からなる強度98N/cm以上の織布を積層し、2層構造として用いられる上記(3)ないし(10)項のいずれか1項に記載の循環型汚水浄化方法、
を提供するものである。
[ Wherein FR is the dropping flow rate per dropping port of the treated sewage, θ is the angle of the photocatalyst-carrying porous body with respect to the ground, and K is the photocatalyst-carrying porous body standing vertically and from the dripping port provided at the upper end thereof. When the sewage to be treated is supplied, the maximum value of the water supply speed per dropping port is shown. ]
Recycling sewage dropwise at a satisfy the relationship flow rate F R, after passed through the photocatalyst carrying porous body was recovered from the bottom end face, characterized in that it repeatedly supplied to the upper part of the photocatalyst-carrying porous body Purification method,
(2) The circulating sewage purification method according to (1), wherein the plurality of dripping ports are provided at intervals of 3 to 10 cm,
(3) An inorganic porous body in which the plate-like photocatalyst-supported porous body includes a woven or non-woven fabric made of porous ceramics or inorganic fibers, has a water retention of 500 to 3000 mass%, and a suction height of 12 mm or more. Of the photocatalyst material and an inorganic adhesive component and / or an adsorbent on the surface that is exposed to sunlight, and a volume fraction of the photocatalyst material in the coat is 30 to 90%. support amount 8 to 20 g / m 2 of, and the water contact angle of the coating film provided on the smooth surface is 60 ° or less, thickness and has a flat plate shape than 12mm above (1) or ( (2) The circulating sewage purification method according to item 2)
(4) The circulating sewage purification method according to item (3), wherein the inorganic adhesive component is an amorphous type titania binder,
(5) The adsorbent and / or the inorganic adhesive component has a solid basicity with an isoelectric point of pH 9.0 or more, and selectively decomposes and removes acidic sewage components (3) or ( 4) the circulating sewage purification method according to item 4),
(6) Adsorbent and / or inorganic adhesive component has a solid basicity with an isoelectric point of pH 9.0 or higher, and selectively decomposes hydrophobic sewage components emulsified with a surfactant. The circulating sewage purification method according to (3) or (4) above,
(7) The adsorbent is alumina having an average particle diameter of 100 nm or less and a crystal form of boehmite, and the volume fraction of the adsorbent in the coating film provided on the surface of the inorganic porous body is 10 to 45%. The circulating sewage purification method according to (5) or (6),
(8) The adsorbent and / or the inorganic adhesive component has a solid acidity having an isoelectric point of pH of 3.0 or less, and selectively decomposes and removes the basic sewage component (3) or ( 4) the circulating sewage purification method according to item 4),
(9) The water contact angle of the coating film provided on the smooth surface is 40 to 60 °, and any one of the above items (1) to (4), which selectively decomposes and removes hydrophobic sewage components Circulating sewage purification method according to item,
(10) The adsorbent that adsorbs hydrophobic sewage components is activated carbon, and the activated carbon has a ratio of the sum of the volumes of pores having a pore diameter of 10 nm or more of 19% or more of the total pore volume, The circulating sewage purification method according to (9), wherein the average particle diameter is 10 μm or less, and the volume fraction of the adsorbent in the coating film provided on the surface of the inorganic porous body is 5 to 60%. And (11) a woven fabric having a strength of 98 N / cm or more, comprising a flat photocatalyst-carrying porous body having a thickness of less than 12 mm, made of inorganic fibers or organic fibers on the opposite side of the photocatalyst-carrying porous body from the side on which sunlight strikes. The circulating sewage purification method according to any one of the above (3) to (10), which is used as a two-layer structure,
Is to provide.

本発明によれば、紫外光が内部まで浸透できる平板状光触媒担持多孔体を用い、かつ被分解物質の光触媒担持多孔体への輸送・吸着効率が良好であると共に、水中でも効率よく酸素の犠牲的還元を促すことが可能であって、光触媒反応を最大限利用することができる上、簡易で安価であり、広いスペースを必要とせず、太陽光を利用した効果的な循環型汚水浄化方法を提供することができる。   According to the present invention, a plate-like photocatalyst-supported porous body that allows ultraviolet light to penetrate to the inside is used, and the efficiency of transporting and adsorbing a substance to be decomposed to the photocatalyst-supported porous body is good, and oxygen is sacrificed efficiently even in water. An effective circulation-type sewage purification method using sunlight, which is capable of maximizing the use of photocatalytic reactions, is simple and inexpensive, does not require a large space, Can be provided.

本発明の循環型汚水浄化方法は、光触媒担持多孔体を用い、太陽光を利用して光触媒反応により汚水を浄化する方法であって、その際、光触媒反応を最大限に利用し、汚水中の被処理物質を効果的に分解・除去するために、以下に示すことが行われる。
本発明において用いられる光触媒担持多孔体は、汚水が内部まで行き渡るように流路を設定すると共に、紫外光および空気が内部まで到達しやすいように流路を設定することが肝要である。
The circulating sewage purification method of the present invention is a method of purifying sewage by photocatalytic reaction using sunlight using a photocatalyst-supporting porous body, and at that time, utilizing the photocatalytic reaction to the maximum, In order to effectively decompose and remove the material to be treated, the following is performed.
In the photocatalyst-supporting porous material used in the present invention, it is important to set a flow path so that sewage can reach inside, and to set a flow path so that ultraviolet light and air can easily reach the inside.

したがって、本発明においては、当該光触媒担持多孔体(以下、単に光触媒体と称することがある)の上端部に幅方向に複数の被処理汚水滴下口を設け、これを地面に対して10°以上の角度に傾けた状態で、太陽光が均一に当たるように設置する。そして、当該光触媒体の上端部に設けられた複数の滴下口から、所定の流速で被処理汚水を滴下し、当該光触媒体に染み込ませる。染み込んだ汚水は自重によって当該光触媒体の内部を通過し、光触媒反応によって浄化処理された汚水は、当該光触媒体の下部端面から排水される。   Therefore, in the present invention, a plurality of treated sewage dripping openings are provided in the width direction at the upper end of the photocatalyst-supporting porous body (hereinafter sometimes simply referred to as a photocatalyst), and this is 10 ° or more with respect to the ground. Installed so that the sunlight hits uniformly while tilted at an angle of. And the to-be-processed sewage is dripped at the predetermined | prescribed flow velocity from the some dripping port provided in the upper end part of the said photocatalyst body, and the said photocatalyst body is made to soak. The soaked sewage passes through the inside of the photocatalyst by its own weight, and the sewage purified by the photocatalytic reaction is drained from the lower end face of the photocatalyst.

本発明の汚水浄化方法において、当該光触媒体の上端部に、幅方向に複数の被処理汚水滴下口を設けることにより、当該光触媒体に対して、満遍なく被処理汚水を染み込ませることができる。   In the sewage purification method of the present invention, the treated sewage can be uniformly infiltrated into the photocatalyst body by providing a plurality of treated sewage dripping ports in the width direction at the upper end of the photocatalyst body.

また、当該光触媒体を地面に対して10°以上の角度に傾けた状態で設置することにより、実用的な被処理汚水の供給速度を確保することができると共に、犠牲的還元剤として空気中の酸素を効果的に使用することができる。被処理汚水の供給速度および空気中の酸素の犠牲的還元剤としての使用などを考慮すると、当該光触媒体の地面に対する角度は45°以上が好ましく、特に60°以上が好ましい。   In addition, by installing the photocatalyst body at an angle of 10 ° or more with respect to the ground, it is possible to ensure a practical supply rate of treated wastewater, and as a sacrificial reducing agent in the air Oxygen can be used effectively. Considering the supply rate of the wastewater to be treated and the use of oxygen in the air as a sacrificial reducing agent, the angle of the photocatalyst with respect to the ground is preferably 45 ° or more, particularly preferably 60 ° or more.

本発明の汚水浄化方法においては、被処理汚水の供給速度を制御して、当該光触媒体が完全に浸水せず、湿らせた状態にすることが肝要である。したがって、本発明においては、当該光触媒体の上端部に設けられた複数の滴下口から、1滴下口当たり、式(I)   In the sewage purification method of the present invention, it is important to control the supply rate of the sewage to be treated so that the photocatalyst is not completely submerged and moistened. Therefore, in the present invention, from a plurality of dropping ports provided at the upper end portion of the photocatalyst body, per one dropping port, the formula (I)

≦K(1−cosθ) …(I) F R ≦ K (1-cosθ ) ... (I)

[式中、Fは被処理汚水の1滴下口当たりの滴下流速、θは光触媒担持多孔体の地面に対する角度、Kは光触媒担持多孔体を垂直に立て、その上端部に設けられた滴下口から、被処理汚水を供給した際に、1滴下口当たりの給水速度の最大値を示す。]の関係を満たす流速Fで被処理汚水を滴下する。 [ Wherein FR is the dropping flow rate per dropping port of the treated sewage, θ is the angle of the photocatalyst-carrying porous body with respect to the ground, and K is the photocatalyst-carrying porous body standing vertically and from the dripping port provided at the upper end thereof. When the sewage to be treated is supplied, the maximum value of the water supply speed per dropping port is shown. Added dropwise treated wastewater at a flow rate F R that satisfies the relationship.

この制御によって、当該光触媒体は、空気中の酸素を取り込みやすくなり、結果として酸素の犠牲的還元を促し、光触媒活性を低下しにくくすることができる。この滴下流速Fは、実用的な面から、K(1−cosθ)×(0.1〜1.0)の範囲が好ましく、K(1−cosθ)×(0.3〜0.7)の範囲が特に好ましい。 By this control, the photocatalyst body can easily take in oxygen in the air, and as a result, the sacrificial reduction of oxygen can be promoted and the photocatalytic activity can hardly be reduced. The dropping velocity F R from practical aspects, K (1-cosθ) is preferably in the range of × (0.1~1.0), K (1 -cosθ) × (0.3~0.7) The range of is particularly preferable.

なお、前記K値は、以下のようにして求めることができる。光触媒体をθ=90°の状態に設置して、滴下速度F=1.0ml/minで被処理汚水を滴下し、滴下した液体の容量に対する排出される溶液の濃度変化を測定する。次に段階的に滴下速度Fを増やしながら同様の測定を繰り返せば、F≧Kで、F=1.0ml/minの条件での濃度変化を再現しなくなる。これによってKを実験的に求めることができる。 The K value can be obtained as follows. The photocatalyst is placed in a state of θ = 90 °, the treated sewage is dropped at a dropping speed F R = 1.0 ml / min, and the change in the concentration of the discharged solution with respect to the volume of the dropped liquid is measured. Then by repeating the same measurement while increasing stepwise addition rate F R, in F RK, not to reproduce the density change in the conditions of F R = 1.0ml / min. Thus, K can be obtained experimentally.

被処理汚水の滴下速度は、例えば滴下口にバルブを備える方法、孔の空いた送水管に流量を制御して送水する方法、圧力や流量を制御してミクロ孔が無数にある多孔質チューブから被処理汚水をしみださせる方法などによって、コントロールすることができ、また、このような方法により、被処理汚水を、光触媒担持多孔体の上端部幅方向全体に亘って一定の流量で供給することが可能となる。滴下口にバルブを備える方法や孔の空いた送水管に流量を制御して送水する方法を用いる場合、各滴下口の間隔は3〜10cmであることが好ましく、3〜5cmであることがより好ましい。
当該光触媒体内を通過し、光触媒反応により浄化処理された汚水は、当該光触媒体の下部端面から回収し、当該光触媒体の上端部に繰り返し供給する。この循環操作は、汚水中の分解・除去すべき物質の含有量が所望値に達するまで行う。
The dripping speed of the wastewater to be treated is, for example, from a method of providing a valve at the dripping port, a method of feeding water by controlling the flow rate to a perforated water pipe, a porous tube having countless micropores by controlling pressure and flow rate, etc. It can be controlled by a method of exuding treated sewage, etc., and by such a method, the treated sewage can be supplied at a constant flow rate across the entire width of the upper end portion of the photocatalyst-supporting porous body. Is possible. When using a method of providing a valve at the dropping port or a method of feeding water by controlling the flow rate to a perforated water pipe, the interval between the dropping ports is preferably 3 to 10 cm, more preferably 3 to 5 cm. preferable.
The sewage that passes through the photocatalyst and is purified by the photocatalytic reaction is collected from the lower end surface of the photocatalyst and is repeatedly supplied to the upper end of the photocatalyst. This circulation operation is performed until the content of the substance to be decomposed / removed in the sewage reaches a desired value.

本発明の汚水浄化方法においては、光触媒担持多孔体(光触媒体)として、以下に示す性状を有するものを用いることにより、汚水中の被処理物質を効果的に分解・除去することができる。
当該光触媒体は、平板状であって、無機多孔体の少なくとも太陽光が当たる側の表面に、光触媒材料と無機接着成分および/または吸着剤とを含む塗膜(以下、光触媒層と称することがある)を設けてなる構造を有している。
In the sewage purification method of the present invention, by using a photocatalyst-supporting porous body (photocatalyst body) having the following properties, a substance to be treated in sewage can be effectively decomposed and removed.
The photocatalyst is a flat plate, and a coating film (hereinafter referred to as a photocatalyst layer) containing a photocatalyst material and an inorganic adhesive component and / or an adsorbent on the surface of the inorganic porous body that is exposed to sunlight. There is a structure provided.

前記無機多孔体は、蒸留水の保水率が500〜3000質量%になるような空隙を有することが好ましい。この保水率が上記の範囲にあれば、汚水と接触する表面積が十分に大きく、また汚水が無機多孔体内部を通過しやすい上、紫外光が該無機多孔体の内部に十分に行き届く。より好ましい保水率は500〜1500質量%である。   It is preferable that the said inorganic porous body has a space | gap so that the water retention rate of distilled water may be 500-3000 mass%. If the water retention rate is in the above range, the surface area in contact with the sewage is sufficiently large, the sewage easily passes through the inside of the inorganic porous body, and the ultraviolet light sufficiently reaches the inside of the inorganic porous body. A more preferable water retention rate is 500-1500 mass%.

また、蒸留水の吸上げ高さ(毛細管力)が12mm以上であることが好ましい。この吸上げ高さが12mm以上であれば、被処理汚水が光触媒体の内部に容易に浸透する。該吸上げ高さは50mm以上であることがより好ましい。該吸上げ高さの上限に特に制限はないが、通常200mm程度である。
前記蒸留水の保水率および吸上げ高さの測定法については、後で説明する。
Moreover, it is preferable that the suction height (capillary force) of distilled water is 12 mm or more. If this suction height is 12 mm or more, the treated sewage easily penetrates into the photocatalyst body. The suction height is more preferably 50 mm or more. Although there is no restriction | limiting in particular in the upper limit of this wicking height, Usually, it is about 200 mm.
The method for measuring the water retention rate and suction height of the distilled water will be described later.

このような無機多孔体を構成する材料としては、立体的な網目構造を有する多孔質セラミックス、無機繊維からなる織布や不織布の中から、適宜選択することができるが、経済的な観点から、ガラス繊維からなる織布や不織布が好適である。このガラス繊維からなる織布や不織布としては、汎用な方法で織られたシリカガラス長繊維織布や、ニードルパンチ法で作製されたシリカガラス短繊維交絡不織布などを例示することができる。   As a material constituting such an inorganic porous body, it can be appropriately selected from porous ceramics having a three-dimensional network structure, woven fabrics and nonwoven fabrics made of inorganic fibers, from an economic viewpoint, A woven fabric or a nonwoven fabric made of glass fiber is suitable. Examples of the woven fabric and nonwoven fabric made of glass fiber include silica glass long fiber woven fabric woven by a general method, silica glass short fiber entangled nonwoven fabric produced by a needle punch method, and the like.

当該光触媒体においては、前記無機多孔体の表面に、光触媒材料と無機接着成分および/または吸着剤とを含む塗膜(光触媒層)が設けられる。該塗膜中の光触媒材料の体積分率は、30〜90%の範囲にあることが好ましい。この体積分率が上記範囲にあれば、良好な光触媒活性を有すると共に、汚水中の被処理物質が光触媒材料の近傍に捕捉されやすい。該体積分率は、より好ましくは30〜70%である。
また、光触媒材料の担持量は、光触媒活性および経済性のバランスなどの面から、吸着剤の量に関係なく、8〜20g/mの範囲が好ましく、特に10〜15g/mの範囲が好ましい。
さらに、当該光触媒体の表面濡れ性は、平滑面、例えばスライドガラスなどの表面に設けられた前記塗膜の水接触角で60°以下が好ましい。この水接触角が60°以下であれば、当該光触媒体の内部まで汚水が浸透しやすい。
In the photocatalyst body, a coating film (photocatalyst layer) including a photocatalyst material and an inorganic adhesive component and / or an adsorbent is provided on the surface of the inorganic porous body. The volume fraction of the photocatalytic material in the coating film is preferably in the range of 30 to 90%. If this volume fraction is in the above range, it has a good photocatalytic activity and the substance to be treated in the sewage is easily trapped in the vicinity of the photocatalytic material. The volume fraction is more preferably 30 to 70%.
In addition, the amount of the photocatalytic material supported is preferably in the range of 8 to 20 g / m 2 , and more preferably in the range of 10 to 15 g / m 2 , regardless of the amount of adsorbent, from the viewpoint of the balance of photocatalytic activity and economy. preferable.
Further, the surface wettability of the photocatalyst is preferably 60 ° or less in terms of the water contact angle of the coating film provided on a smooth surface such as a slide glass. If the water contact angle is 60 ° or less, the sewage is likely to penetrate into the photocatalyst body.

当該平板状光触媒体の厚さは、12mm未満であることが好ましい。この厚さが12mm未満であれば、紫外光が光触媒体の深部まで到達しやすい。また、最低厚さは、無機多孔体の構造にもよるが、365nmの光の透過率が20%以下の厚さであればよい。
当該光触媒体における塗膜(光触媒層)を構成する光触媒材料としては、例えばアナターゼ型酸化チタンおよび/またはブルッカイト型酸化チタンなどを用いることができるが、平均粒径が1.0〜100nmのアナターゼ型酸化チタンの微粒子状物が好ましく、特に平均粒径1.0〜50nmのものが好ましい。上記平均粒子径は、レーザー光を利用した散乱法によって測定することができる。
The thickness of the flat photocatalyst is preferably less than 12 mm. If this thickness is less than 12 mm, the ultraviolet light easily reaches the deep part of the photocatalyst. The minimum thickness may be a thickness with which the transmittance of light at 365 nm is 20% or less, although it depends on the structure of the inorganic porous material.
As a photocatalyst material constituting the coating film (photocatalyst layer) in the photocatalyst body, for example, anatase type titanium oxide and / or brookite type titanium oxide can be used, and an anatase type having an average particle size of 1.0 to 100 nm. Titanium oxide fine particles are preferable, and those having an average particle diameter of 1.0 to 50 nm are particularly preferable. The average particle diameter can be measured by a scattering method using laser light.

また、前記酸化チタン粒子の内部および/またはその表面に、第二成分として、V、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Ag、PtおよびAuの中から選ばれる少なくとも1種の金属および/または金属化合物を含有させると、一層高い光触媒機能を有するため好ましい。前記の金属化合物としては、例えば、金属の酸化物、水酸化物、オキシ水酸化物、硫酸塩、ハロゲン化物、硝酸塩、さらには金属イオンなどが挙げられる。第二成分の含有量はその物質の種類に応じて適宜選定される。   Further, at least one selected from the group consisting of V, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Pt and Au as a second component inside and / or on the surface of the titanium oxide particles. It is preferable to include a seed metal and / or metal compound because it has a higher photocatalytic function. Examples of the metal compound include metal oxides, hydroxides, oxyhydroxides, sulfates, halides, nitrates, and metal ions. The content of the second component is appropriately selected according to the type of the substance.

このアナターゼ型酸化チタン粒子は、従来公知の方法によって製造することができるが、塗工液中に均質に分散させるために酸化チタンゾルの形態で用いるのが有利である。該酸化チタンゾルを製造するには、例えば粉末状のアナターゼ型酸化チタンを酸やアルカリの存在下で解こうさせてもよいし、粉砕によって粒子径を制御してもよい。また、硫酸チタンや塩化チタンを熱分解あるいは中和分解して得られる含水酸化チタンを物理的、化学的な方法で結晶子径、粒子径の制御を行ってもよい。さらにゾル液中での分散安定性を付与するために、分散安定剤を使用することができる。   The anatase-type titanium oxide particles can be produced by a conventionally known method, but it is advantageous to use the titanium oxide sol in the form of a titanium oxide sol in order to uniformly disperse it in the coating liquid. In order to produce the titanium oxide sol, for example, powdered anatase-type titanium oxide may be dissolved in the presence of acid or alkali, or the particle diameter may be controlled by pulverization. In addition, the hydrous or neutralized decomposition of titanium sulfate or titanium chloride may be used to control the crystallite size and particle size by physical and chemical methods. Furthermore, a dispersion stabilizer can be used to impart dispersion stability in the sol solution.

また、当該光触媒体における塗膜(光触媒層)を構成する吸着剤としては、例えばコロイダルシリカ、アルミナ、ジルコニア、非晶質チタニア、水酸化マグネシウム、活性炭などを用いることができる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Moreover, as an adsorbent which comprises the coating film (photocatalyst layer) in the said photocatalyst body, colloidal silica, an alumina, a zirconia, an amorphous titania, magnesium hydroxide, activated carbon etc. can be used, for example. These may be used individually by 1 type and may be used in combination of 2 or more type.

さらに、当該光触媒体における塗膜(光触媒層)を構成する無機接着成分としては、例えばシリカバインダー、アルミナバインダー、アモルファス型チタニアバインダーなどを用いることができる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中でアモルファス型チタニアバインダーが、耐水性に優れることから好ましい。
このアモルファス型チタニアバインダーは、チタンアルコキシドの加水分解・縮合によって製造することができる。
Furthermore, as an inorganic adhesive component which comprises the coating film (photocatalyst layer) in the said photocatalyst body, a silica binder, an alumina binder, an amorphous type titania binder etc. can be used, for example. These may be used alone or in combination of two or more. Among them, an amorphous titania binder is preferable because of its excellent water resistance.
This amorphous titania binder can be produced by hydrolysis and condensation of titanium alkoxide.

前記チタンアルコキシドとしては、アルコキシル基の炭素数が1〜4のチタンテトラアルコキシドが好ましく用いられる。このチタンテトラアルコキシドにおいては、4つのアルコキシル基は、たがいに同一でも異なっていてもよいが、入手の容易さなどの点から、同一のものが好ましく用いられる。該チタンテトラアルコキシドの例としては、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラ−n−プロポキシド、チタンテトライソプロポキシド、チタンテトラ−n−ブトキシド、チタンテトライソブトキシド、チタンテトラ−sec−ブトキシドおよびチタンテトラ−tert−ブトキシドなどが挙げられる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   As the titanium alkoxide, titanium tetraalkoxide having 1 to 4 carbon atoms in the alkoxyl group is preferably used. In this titanium tetraalkoxide, the four alkoxyl groups may be the same or different, but the same one is preferably used from the viewpoint of availability. Examples of the titanium tetraalkoxide include titanium tetramethoxide, titanium tetraethoxide, titanium tetra-n-propoxide, titanium tetraisopropoxide, titanium tetra-n-butoxide, titanium tetraisobutoxide, titanium tetra-sec- Examples include butoxide and titanium tetra-tert-butoxide. These may be used individually by 1 type and may be used in combination of 2 or more type.

前記チタンアルコキシドを加水分解・縮合させてアモルファス型チタニアバインダーを形成させるが、この加水分解・縮合反応は、適当な有機溶剤中において、例えばチタンテトラアルコキシドに対して、好ましくは0.5〜4倍モル、より好ましくは1〜3倍モルの水を用い、塩酸、硫酸、硝酸などの無機酸の存在下、通常0〜70℃、好ましくは20〜50℃の範囲の温度において行うことができる。
このようにして、耐水性に優れるアモルファス型チタニアバインダーが得られる。
The titanium alkoxide is hydrolyzed / condensed to form an amorphous type titania binder. This hydrolysis / condensation reaction is preferably 0.5 to 4 times that of titanium tetraalkoxide in an appropriate organic solvent. The reaction can be carried out at a temperature of usually 0 to 70 ° C., preferably 20 to 50 ° C. in the presence of an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, etc.
In this way, an amorphous titania binder having excellent water resistance is obtained.

本発明において、光触媒担持多孔体(光触媒体)を作製するには、まず、光触媒塗工液を調製する。この光触媒塗工液の調製は、適当な溶媒中に、前記光触媒材料と吸着剤および/または無機接着成分とを分散させることにより、行うことができる。
このようにして得られた光触媒塗工液を、前記無機多孔体の少なくとも太陽光が当たる側の表面に塗工し、塗膜(光触媒層)を設けることにより、厚さ12mm未満の平板状光触媒担持多孔体(光触媒体)を作製することができる。
光触媒塗工液の塗工方法については特に制限はないが、例えば浸漬法などを用いることができる。
In the present invention, to produce a photocatalyst-supporting porous body (photocatalyst body), first, a photocatalyst coating solution is prepared. This photocatalyst coating solution can be prepared by dispersing the photocatalyst material and an adsorbent and / or an inorganic adhesive component in an appropriate solvent.
The photocatalyst coating liquid thus obtained is applied to at least the surface of the inorganic porous body that is exposed to sunlight, and a coating film (photocatalyst layer) is provided, whereby a flat photocatalyst having a thickness of less than 12 mm is provided. A supported porous body (photocatalyst body) can be produced.
Although there is no restriction | limiting in particular about the coating method of a photocatalyst coating liquid, For example, the immersion method etc. can be used.

本発明においては、厚さ12mm未満の平板状光触媒担持多孔体は、当該光触媒担持多孔体の太陽光が当たる側とは反対面に、無機繊維または有機繊維からなる強度98N/cm以上の織布を積層し、2層構造として用いることができる。このように2層構造にすることにより、汚水の浄化効率を保持したまま、光触媒担持多孔体の強度を飛躍的に向上させることができる。   In the present invention, the flat photocatalyst-supported porous body having a thickness of less than 12 mm is a woven fabric having a strength of 98 N / cm or more made of inorganic fibers or organic fibers on the opposite side of the photocatalyst-supported porous body from the side on which sunlight strikes. Can be used as a two-layer structure. By adopting the two-layer structure in this way, the strength of the photocatalyst-supporting porous body can be dramatically improved while maintaining the purification efficiency of sewage.

本発明の汚水浄化方法においては、吸着剤および/または無機接着成分として、等電点のpHが9.0以上である固体塩基性を有するものを用いることにより、酸性の汚水成分を選択的に分解・除去することができるし、界面活性剤で乳化された疎水性の汚水成分を選択的に分解・除去することができる。
また、吸着剤および/または無機接着成分として、等電点のpHが3.0以下である固体酸性を有するものを用いることにより、塩基性の汚水成分を選択的に分解・除去することができる。
In the sewage purification method of the present invention, an acidic sewage component is selectively used by using an adsorbent and / or an inorganic adhesive component having solid basicity with an isoelectric point of pH 9.0 or more. It can be decomposed and removed, and hydrophobic sewage components emulsified with a surfactant can be selectively decomposed and removed.
Further, by using an adsorbent and / or an inorganic adhesive component having a solid acidity with an isoelectric point of pH of 3.0 or less, basic sewage components can be selectively decomposed and removed. .

固体塩基性吸着剤としては、アルミナ、水酸化マグネシウムなどが挙げられ、固体塩基性無機接着成分としては、アルミナバインダーなどが挙げられる。一方、固体酸性吸着剤としては、コロイダルシリカなどが挙げられ、固体酸性無機接着成分としては、シリカバインダーなどが挙げられる。   Examples of the solid basic adsorbent include alumina and magnesium hydroxide, and examples of the solid basic inorganic adhesive component include an alumina binder. On the other hand, examples of the solid acidic adsorbent include colloidal silica, and examples of the solid acidic inorganic adhesive component include a silica binder.

固体塩基性吸着剤としてアルミナを用いる場合、平均粒径が100nm以下で結晶形態がベーマイト状のものを用いることが好ましく、無機多孔体の表面に設けられた塗膜中の吸着剤の体積分率を10〜45%にすることが好ましい。   When using alumina as the solid basic adsorbent, it is preferable to use a boehmite-like crystal having an average particle size of 100 nm or less, and the volume fraction of the adsorbent in the coating film provided on the surface of the inorganic porous body. Is preferably 10 to 45%.

水中で活性ラジカルはおよそ数ミクロン移動するため、光触媒材料と吸着剤は数ミクロン以下の範囲で均一に分散させなくてはならないが、アルミナの場合、二次凝集が懸念されるため、その二次凝集体のサイズが数ミクロン以下になるようにするには、その一次粒径の平均を100nm以下にする必要がある。平均粒径の下限は特に限定されないが、10nm以下は技術的にも経済的にも困難である。アルミナの平均粒径は、30〜90nmであることがより好ましい。 Since active radicals move about several microns in water, the photocatalytic material and the adsorbent must be uniformly dispersed within a few microns or less, but in the case of alumina, secondary agglomeration is a concern. In order for the size of the aggregate to be several microns or less, the average primary particle size must be 100 nm or less. The lower limit of the average particle diameter is not particularly limited, but 10 nm or less is technically and economically difficult. The average particle diameter of alumina is more preferably 30 to 90 nm.

また、無機多孔体の表面に設けられた塗膜中の吸着成分の体積分率は、10〜45%であることが好ましいが、酸性の汚水成分を含む被処理汚水の状態に応じて塗膜中のアルミナの体積分率を適宜調整することで、最適な汚水浄化処理を行うことができる。すなわち、汚水成分が主に酸性のものである場合には、無機多孔体の表面に設けられた塗膜中の吸着成分の体積分率を好ましくは10〜21%、より好ましくは12〜18%にすることで、汚水成分を効率的に分解、除去することができる。汚水成分の分解、除去状態は、分解速度定数が所定値以上であるか否かにより確認することができ、この分解速度定数は、例えば、産業廃液に微量に含まれている安息香酸類の代表例である安息香酸を用いた際、初期的な吸着が終了している循環試験開始後30時間〜60時間における安息香酸の濃度変化の傾き(ppm/h)に−10を乗ずることにより求めることができる。具体的には、200Lの産業廃液中に酸性の汚水成分として安息香酸が20ppm含まれており、これを2mW/mの光量条件で1週間で分解・除去する場合、上記分解速度定数は70(ppm/h)以上であることが求められるが、この分解速度定数は、例えば、試験開始30時間後および60時間後の循環液をそれぞれ少量採取して各分解対象物濃度を測定し、下記式により求めることができる。

Figure 2006136874
Further, the volume fraction of the adsorbing component in the coating film provided on the surface of the inorganic porous body is preferably 10 to 45%, but the coating film depends on the state of the treated sewage containing acidic sewage components. Optimum sewage purification treatment can be carried out by appropriately adjusting the volume fraction of the alumina inside. That is, when the sewage component is mainly acidic, the volume fraction of the adsorbed component in the coating film provided on the surface of the inorganic porous body is preferably 10 to 21%, more preferably 12 to 18%. By making it, wastewater components can be efficiently decomposed and removed. The state of decomposition and removal of sewage components can be confirmed by whether or not the decomposition rate constant is a predetermined value or more. This decomposition rate constant is a representative example of benzoic acids contained in trace amounts in industrial waste liquids, for example. When benzoic acid is used, it is obtained by multiplying the slope (ppm / h) of change in concentration of benzoic acid by 30 to 60 hours after the start of the circulation test in which the initial adsorption has been completed by -10. it can. Specifically, 20 ppm of benzoic acid as an acidic sewage component is contained in 200 L of industrial waste liquid, and when this is decomposed and removed in one week under a light amount condition of 2 mW / m 2 , the decomposition rate constant is 70 The decomposition rate constant is determined, for example, by measuring a concentration of each decomposition object by collecting a small amount of circulating fluid after 30 hours and 60 hours after the start of the test. It can be obtained by an expression.
Figure 2006136874

一方、汚水成分が主に酸性以外の有機物であって、少量の酸性の汚水成分が共存している場合には、塗膜中のアルミナの体積分率を好ましくは21〜45%より好ましくは25〜40%にすることで、酸性の汚水成分を効率的に吸着、分解、除去することができる。
通常、汚水成分として、酸性の汚水成分以外の有機物が多くなると、分解対象物を分解する速度は大幅に低下することが懸念される。しかし、アルミナの体積分率を前述の数値とすることで、汚水中の対象物質以外の有機物の存在量に依存せずに分解対象物(酸性の汚水成分)を選択的に分解・除去することができる。
On the other hand, when the sewage component is mainly an organic substance other than acidic and a small amount of acidic sewage component coexists, the volume fraction of alumina in the coating film is preferably 21 to 45%, more preferably 25. By setting it to -40%, acidic sewage components can be adsorbed, decomposed and removed efficiently.
Usually, when organic substances other than acidic sewage components increase as sewage components, there is a concern that the rate at which the decomposition target is decomposed significantly decreases. However, by setting the volume fraction of alumina to the above-mentioned value, the decomposition target (acid sewage component) can be selectively decomposed and removed without depending on the amount of organic substances other than the target substance in the sewage. Can do.

酸性の汚水成分の分解、除去状態は、分解速度定数が所定値以上であるか否かにより確認することができ、この分解速度定数は、例えば、酸性の汚水成分が安息香酸である場合、上記したと同様の方法により求めることができる。
この場合、例えば、前記と同様の条件で産業廃液中の安息香酸を分解・除去しようとすると、安息香酸の含有量が相対的に少なく、また、分取等の前処理を行うことなくそのまま処理できることから、安息香酸類を分解・除去するための時間的制約に比較的余裕が生じる。このため、汚水成分が主に酸性のものである場合に比べて分解速度定数の下限値を低く設定することができ、例えば産業廃液中の全有機炭素量が200、400、600、800(mg/L)である全ての試料において、安息香酸を用いた場合、分解速度定数が55(ppm/h)以上であればよい。
The decomposition and removal state of the acidic sewage component can be confirmed by whether or not the decomposition rate constant is a predetermined value or more. For example, when the acidic sewage component is benzoic acid, It can be obtained by the same method as described above.
In this case, for example, if the benzoic acid in the industrial waste liquid is decomposed / removed under the same conditions as described above, the content of benzoic acid is relatively low, and the benzoic acid is treated as it is without pretreatment such as fractionation. As a result, there is a comparative margin in time constraints for decomposing and removing benzoic acids. For this reason, the lower limit value of the decomposition rate constant can be set lower than when the sewage component is mainly acidic. For example, the total organic carbon amount in the industrial waste liquid is 200, 400, 600, 800 (mg / L), when benzoic acid is used, the decomposition rate constant should be 55 (ppm / h) or more.

さらに、光触媒体として、その塗膜が平滑面、例えばスライドガラスなどの表面に設けられた場合の水接触角が40〜60°であるものを用いることにより、疎水性の汚水成分を選択的に分解・除去することができる。   Furthermore, by using a photocatalyst having a water contact angle of 40 to 60 ° when the coating film is provided on a smooth surface such as a glass slide, a hydrophobic sewage component is selectively used. It can be disassembled and removed.

疎水性の汚水成分を含む汚水を処理する場合、吸着剤として活性炭を用いることができる。従来、活性炭を用いる場合には、細孔径はできるだけ小さくして表面積の大きいものが用いられていたが、本発明においては、従来とは逆に、細孔径が大きめであって、かつ塗液中で沈殿を生じない程度の平均粒径を有するものが好適に用いられる。このような活性炭としては、10nm以上の細孔径を有する細孔の容積の和が全細孔容積に対して19%以上であり((10nm以上の細孔径を有する細孔の容積の和/全細孔容積)×100が19%以上であり)、かつ平均粒径が10μm以下であるものが挙げられる。また、10nm以上の細孔径を有する細孔の容積の和の、全細孔容積に対する比率は、その上限が50%程度であることが好ましい。これは、細孔径が大きなものの比率が高くなると水中での濡れ性には寄与するが、表面積が小さくなり活性炭が本来の吸着能を失ってしまうためである。また、平均粒径に特に下限は無いが1μm以下は技術的も経済的にも困難である。   When treating sewage containing a hydrophobic sewage component, activated carbon can be used as an adsorbent. Conventionally, when using activated carbon, the one having a pore size as small as possible and a large surface area has been used, but in the present invention, contrary to the conventional method, the pore size is large and the coating solution is And those having an average particle size that does not cause precipitation are preferably used. As such activated carbon, the sum of the volumes of pores having a pore diameter of 10 nm or more is 19% or more of the total pore volume ((sum of volumes of pores having a pore diameter of 10 nm or more / total Pore volume) × 100 is 19% or more) and the average particle diameter is 10 μm or less. Moreover, it is preferable that the upper limit of the ratio of the total volume of pores having a pore diameter of 10 nm or more to the total pore volume is about 50%. This is because, when the ratio of those having a large pore diameter increases, it contributes to wettability in water, but the surface area decreases and activated carbon loses its original adsorption ability. Further, although there is no particular lower limit to the average particle diameter, it is difficult technically and economically if it is 1 μm or less.

上述したように、活性ラジカルは水中で数ミクロン移動するので、光触媒と吸着剤は数ミクロン以下の範囲で均一に分散させる必要がある。活性炭の場合、そのサイズは既に数ミクロンであるため、塗工液中の活性炭はほぼ単分散の状態でなくてはならないが、単分散性を確保するためには粒子の濡れ性を厳密に制御する必要性があり、そのため、細孔径のサイズは上述のように大きな制限を受ける。
上記活性炭を用いることにより活性炭の分散性が大きく改善されるため、本発明の光触媒体においては、光触媒活性を阻害しにくく、また塗膜(光触媒層)中の活性炭の体積分率が75%までは、光触媒による汚水成分の完全分解性を維持することができる。上記活性炭において、10nm以上の細孔径を有する細孔の容積の和の割合は、全細孔容積の20%以上であることがより好ましい。
As described above, since active radicals move several microns in water, it is necessary to uniformly disperse the photocatalyst and the adsorbent within a range of several microns or less. In the case of activated carbon, the size is already a few microns, so the activated carbon in the coating solution must be almost monodispersed, but the particle wettability is strictly controlled to ensure monodispersity. Therefore, the size of the pore diameter is greatly limited as described above.
Since the dispersibility of the activated carbon is greatly improved by using the activated carbon, in the photocatalyst of the present invention, it is difficult to inhibit the photocatalytic activity, and the volume fraction of the activated carbon in the coating film (photocatalyst layer) is up to 75%. Can maintain the complete degradability of the sewage component by the photocatalyst. In the activated carbon, the ratio of the sum of the volumes of pores having a pore diameter of 10 nm or more is more preferably 20% or more of the total pore volume.

また、吸着剤として活性炭を用いる場合、無機多孔体の表面に設けられた塗膜中の吸着剤の体積分率は、5〜60%であることが好ましいが、疎水性の汚水成分を含む被処理汚水の状態に応じて塗膜中の活性炭の体積分率を適宜調整することで、最適な汚水浄化処理を行うことができる。すなわち、汚水成分が主に疎水性のものである場合には、無機多孔体の表面に設けられた塗膜中の吸着剤の体積分率を好ましくは5〜35%、より好ましくは10〜25%にすることで、汚水成分を効率的に分解、除去することができる。汚水成分の分解、除去状態は、分解速度定数が所定値以上であるか否かにより確認することができ、この分解速度定数は、例えば、汚水成分がイプコナゾールである場合、イプコナゾールの初期的な吸着が終了している循環試験開始後30時間〜60時間におけるイプコナゾール濃度変化の傾き(ppm/h)に−10を乗ずることにより求めることができる。具体的には、200Lの農業廃液中に疎水性の汚水成分としてイプコナゾールが20ppm含まれており、これを2mW/mの光量条件で1週間で分解・除去する場合、上記分解速度定数は70(ppm/h)以上であることが求められるが、この分解速度定数は、例えば、試験開始30時間後および60時間後の循環液をそれぞれ少量採取して各分解対象物濃度を測定し、下記式により求めることができる。

Figure 2006136874
When activated carbon is used as the adsorbent, the volume fraction of the adsorbent in the coating film provided on the surface of the inorganic porous body is preferably 5 to 60%. Optimal sewage purification treatment can be performed by appropriately adjusting the volume fraction of the activated carbon in the coating film according to the state of the treated sewage. That is, when the sewage component is mainly hydrophobic, the volume fraction of the adsorbent in the coating film provided on the surface of the inorganic porous body is preferably 5-35%, more preferably 10-25. By setting the ratio to%, the sewage components can be efficiently decomposed and removed. The state of decomposition and removal of the sewage component can be confirmed by whether or not the decomposition rate constant is a predetermined value or more. For example, when the sewage component is ipconazole, the initial adsorption of ipconazole Can be obtained by multiplying the slope (ppm / h) of change in ipconazole concentration in 30 to 60 hours after the start of the circulation test by -10. Specifically, 20 ppm of ipconazole is contained as a hydrophobic sewage component in 200 L of agricultural waste liquid, and when this is decomposed and removed in one week under a light amount condition of 2 mW / m 2 , the decomposition rate constant is 70. The decomposition rate constant is determined, for example, by measuring a concentration of each decomposition object by collecting a small amount of circulating fluid after 30 hours and 60 hours after the start of the test. It can be obtained by an expression.
Figure 2006136874

一方、汚水成分が主に親水性有機物であって、少量の疎水性の汚水成分が共存している場合には、塗膜中の活性炭の体積分率を、好ましくは35〜60%、より好ましくは40〜50%にすることで、疎水性の汚水成分を効率的に吸着、分解、除去することができる。 On the other hand, when the sewage component is mainly a hydrophilic organic substance and a small amount of hydrophobic sewage component coexists, the volume fraction of activated carbon in the coating film is preferably 35 to 60%, more preferably By adjusting the content to 40 to 50%, hydrophobic sewage components can be efficiently adsorbed, decomposed and removed.

通常、汚水成分として、疎水性の汚水成分以外の親水性有機物が多くなると、分解対象物を分解する速度は大幅に低下することが懸念される。しかし、活性炭の固形分濃度を前記濃度にすることで、汚水中の親水性有機物の存在量に依存せずに分解対象物(疎水性の汚水成分)を選択的に分解・除去することができる。
疎水性の汚水成分の分解、除去状態は、分解速度定数が所定値以上であるか否かにより確認することができ、この分解速度定数は、例えば、疎水性の汚水成分がイプコナゾールである場合、上記したと同様の方法により求めることができる。
In general, when the amount of hydrophilic organic substances other than the hydrophobic sewage component increases as the sewage component, there is a concern that the rate of decomposing the decomposition target object is significantly reduced. However, by setting the solid content concentration of the activated carbon to the above-mentioned concentration, the decomposition target (hydrophobic sewage component) can be selectively decomposed and removed without depending on the abundance of the hydrophilic organic matter in the sewage. .
The decomposition and removal state of the hydrophobic sewage component can be confirmed by whether or not the decomposition rate constant is a predetermined value or more. For example, when the hydrophobic sewage component is ipconazole, It can be determined by the same method as described above.

この場合、例えば、前記と同様の条件で農業廃液中のイプコナゾールを分解・除去しようとすると、イプコナゾールの含有量が相対的に少なく、また、分取等の前処理を行うことなくそのまま処理できることから、イプコナゾールを分解・除去するための時間的制約に比較的余裕が生じる。このため、汚水成分が主に疎水性のものである場合に比べて分解速度定数の下限値を低く設定することができ、例えば農業廃液中の全有機炭素量が200、400、600、800(mg/L)である全ての試料において、イプコナゾール分解速度定数が55(ppm/h)以上であればよい。 In this case, for example, if it is attempted to decompose and remove ipconazole in the agricultural waste liquid under the same conditions as described above, the content of ipconazole is relatively small, and it can be directly processed without pretreatment such as fractionation. Therefore, there is a comparative margin in time constraints for decomposing and removing ipconazole. For this reason, compared with the case where a sewage component is mainly hydrophobic, the lower limit of a decomposition rate constant can be set low, for example, the total amount of organic carbon in agricultural waste liquid is 200, 400, 600, 800 ( In all the samples of mg / L), the ipconazole decomposition rate constant may be 55 (ppm / h) or more.

塗膜の接触角は、用いる吸着剤やバインダーの種類によって変化する。したがって、平滑面に設けられた塗膜の水接触角を40〜60°に制御するには、塗工液の調製の際に、吸着剤として疎水性コロイダルシリカを、無機接着成分としてチタニアバインダーを用いるのがよい。その混合比率は、吸着剤や接着成分の種類によって変化するため、調製した塗工液を用いて、例えばスライドガラス上に製膜し、水接触角を確認すればよい。   The contact angle of the coating film varies depending on the type of adsorbent and binder used. Therefore, in order to control the water contact angle of the coating film provided on the smooth surface to 40 to 60 °, hydrophobic colloidal silica is used as an adsorbent and titania binder is used as an inorganic adhesive component when preparing the coating liquid. It is good to use. Since the mixing ratio varies depending on the type of the adsorbent and the adhesive component, the water contact angle may be confirmed by forming a film on, for example, a slide glass using the prepared coating liquid.

図1は、本発明の循環型汚水浄化方法における基本的な配置図である。この図1で示されるように、本発明の汚水浄化方法においては、光軸と流液軸が垂直関係にあることと、光触媒体が完全に浸水せず、湿らせた程度であること(結果として空気中の酸素を取り込みやすいこと)が特徴となる。また、光源として太陽光を利用するために、光が光触媒体にまんべんなく当たるように、該光触媒体は平面であることが好ましいが、やや湾曲した構造であってもよい。
光触媒体への汚水の通水は重力を利用し、光触媒体の下端面から排出される処理水は、該光触媒体の上端部へ循環する。
FIG. 1 is a basic layout diagram in the circulating sewage purification method of the present invention. As shown in FIG. 1, in the sewage purification method of the present invention, the optical axis and the flow axis are in a vertical relationship, and the photocatalyst is not completely submerged and wetted (result). It is easy to take in oxygen in the air). Further, in order to use sunlight as a light source, the photocatalyst is preferably flat so that light uniformly strikes the photocatalyst, but may have a slightly curved structure.
The wastewater flowing into the photocatalyst body uses gravity, and the treated water discharged from the lower end surface of the photocatalyst body circulates to the upper end portion of the photocatalyst body.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各特性は、以下に示す方法に従って測定した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, each characteristic was measured in accordance with the method shown below.

(1)平滑面における塗膜の水接触角
スライドガラス表面に塗工液を塗布して、厚さ100〜300nmの塗膜を形成させ、温度25℃、湿度50%の条件下で水接触角測定器『G−1−1000』(エルマ販売(株))を用いて、水接触角を測定した。
(1) Water contact angle of the coating film on a smooth surface A coating liquid is applied to the surface of the slide glass to form a coating film having a thickness of 100 to 300 nm, and the water contact angle under conditions of a temperature of 25 ° C. and a humidity of 50%. The water contact angle was measured using a measuring instrument “G-1-1000” (Elma Sales Co., Ltd.).

(2)光触媒材料の担持量
塗工前後の無機多孔体質量の増加量と、塗工液の固形分中に含まれる光触媒材料の質量割合から算出した。
(2) Amount of supported photocatalytic material It was calculated from the amount of increase in the inorganic porous material mass before and after coating and the mass ratio of the photocatalytic material contained in the solid content of the coating liquid.

(3)光触媒材料の塗膜中の体積分率
質量および密度から求めた塗工液の固形分中に含まれる各成分の全体積に対する、光触媒材料の体積の割合を算出した。
(3) Volume fraction in the coating film of the photocatalytic material The ratio of the volume of the photocatalytic material to the total volume of each component contained in the solid content of the coating liquid obtained from the mass and density was calculated.

(4)被処理成分含有溶液の濃度
試料溶液(メチレンブルー)については、660nmの光の吸光度を測定し、予め作成しておいた濃度−吸光度の関係を示す検量線から、試料溶液中の被処理成分の濃度を求めた。
試料溶液(安息香酸)についてはクロマトグラフィー法にて分析し、該当するピーク面積と、予め作製しておいた濃度とピーク面積との関係を示す検量線から、試料溶液中の被処理成分の濃度を求めた。
試料溶液(イプコナゾール)については、逆層液クロマトグラフィー法にて分析し、該当するピーク面積を予め作製しておいた濃度とピーク面積の関係を示す検量線から、試料溶液中の被処理成分の濃度を求めた。
全有機炭素量(TOC)については、全有機炭素計『TOC−5000』(島津製作所(株))を用いて測定を行った。
(4) Concentration of solution containing component to be treated For the sample solution (methylene blue), the absorbance of light at 660 nm was measured, and the concentration of the solution to be treated in the sample solution was determined based on the calibration curve showing the concentration-absorbance relationship prepared in advance. The concentration of the component was determined.
The sample solution (benzoic acid) is analyzed by a chromatographic method, and the concentration of the component to be treated in the sample solution is determined from the corresponding peak area and a calibration curve indicating the relationship between the concentration and the peak area prepared in advance. Asked.
The sample solution (ipconazole) was analyzed by reversed layer liquid chromatography, and the corresponding peak area was determined in advance from the calibration curve showing the relationship between the concentration and the peak area. The concentration was determined.
The total organic carbon amount (TOC) was measured using a total organic carbon meter “TOC-5000” (Shimadzu Corporation).

(5)アルミナの平均粒径
レーザーゼータ電位計『ELS−8000』(大塚電子株式会社)にて測定した。
(5) Average particle diameter of alumina It measured with the laser zeta electrometer "ELS-8000" (Otsuka Electronics Co., Ltd.).

(6)活性炭の細孔径および細孔容積比
高精度比表面積/細孔分布測定装置『BELSORP28SA』(日本ベル(株))にて測定した。
(6) Pore diameter and pore volume ratio of activated carbon Measurement was performed with a high-precision specific surface area / pore distribution measuring apparatus “BELSORP28SA” (Nippon Bell Co., Ltd.).

(7)活性炭の平均粒径
レーザー回折式粒度分布測定装置『SALD−3000J』(島津製作所(株))にて測定した。
(7) Average particle diameter of activated carbon It measured with the laser diffraction type particle size distribution measuring apparatus "SALD-3000J" (Shimadzu Corporation).

実施例1
(1)光触媒塗工液の調製
光触媒酸化チタン(アナターゼ型酸化チタン、平均粒径20nm)と固体酸性無機接着成分であるシリカバインダーを含む光触媒塗工液[チタン工業(株)製、「PC−401」、固形分20質量%(チタニア/シリカ=4/6、質量比)]12gと、光触媒酸化チタン(アナターゼ型酸化チタン、平均粒径20nm)スラリー[チタン工業(株)製、「PC−203」、固形分20質量%]17gを、水472gに混合して塗工液を調製した。
この塗工液をスライドガラス表面(平滑面)に塗工した際の水接触角は30°であった。
(2)光触媒担持多孔体の作製
無機多孔体として、ニードルパンチ法で作製した保水率1000質量%、吸上げ高さ100mm、厚さ6mm、目付700g/m(繊維径7μm)の平板状のシリカガラス不織布を用いた。なお、シリカガラス不織布の保水率は、シリカガラス不織布を蒸留水に10分間浸漬した後、静かに引き上げてさらに10分間吊した状態で放置したときの、シリカガラス不織布の元の質量に対する質量増加量の割合を計算することにより求めた。また、吸上げ高さは、幅3cmの短冊状に裁断したシリカガラス不織布の下方2cmを蒸留水に浸漬させ、10分間保持したときの、シリカガラス不織布に吸い上げられた水面高さを吸上げ高さとした。このシリカガラス不織布に前記(1)で調製した光触媒塗工液を浸漬法で塗工して、光触媒酸化チタン15g/mとシリカ5g/mを担持した、光触媒酸化チタンとシリカとの合計量に対する光触媒酸化チタンの体積分率59%の光触媒担持多孔体を作製した。
(3)汚水浄化方法およびその浄化効果の評価
前記(2)で作製した光触媒担持多孔体を15cm×14cmサイズの平板状に裁断し、これを地面に対して45°に立てかけた状態に設置し、ブラックライトブルー(BLB)灯による1.0mW/cmの紫外光を照射角度45°で照射し続けた。
一方、当該光触媒担持多孔体の上端部に、幅(15cm)方向に4cm間隔で滴下口3個を設置し、20ppmのメチレンブルー(塩基性被分解物)水溶液2Lを3mL/minの流速で光触媒担持多孔体に滴下させた。光触媒担持多孔体の下端面から湧出した浄化液を2Lタンクに戻し、この操作を60時間継続した。
メチレンブルー水溶液の濃度変化は、吸光度法により定量した。浄化開始初期は、光触媒担持多孔体への吸着と、光触媒反応による浄化の両方の効果で、濃度が速く低下するが、12時間後に濃度の減少速度が一定になった。この際の分解速度は33mg/mであった。
なお、当該光触媒担持多孔体においては、前記式(I)におけるKは45mL/minであり、最大Fは13.2mL/minとなる。したがって、滴下口が3個設けられているので最大流量は39.6mL/minとなる。
Example 1
(1) Preparation of photocatalyst coating solution Photocatalyst coating solution containing photocatalytic titanium oxide (anatase type titanium oxide, average particle size 20 nm) and silica binder which is a solid acidic inorganic adhesive component [manufactured by Titanium Industry Co., Ltd., “PC- 401 ”, solid content 20 mass% (titania / silica = 4/6, mass ratio)] 12 g, and photocatalytic titanium oxide (anatase type titanium oxide, average particle size 20 nm) slurry [made by Titanium Industry Co., Ltd.,“ PC- 203 ", 20 mass% solid content] 17 g was mixed with 472 g of water to prepare a coating solution.
The water contact angle when this coating solution was applied to the slide glass surface (smooth surface) was 30 °.
(2) Production of photocatalyst-supporting porous body As an inorganic porous body, a flat plate shape having a water retention rate of 1000 mass%, a suction height of 100 mm, a thickness of 6 mm, and a basis weight of 700 g / m 2 (fiber diameter: 7 μm) produced by a needle punch method. A silica glass nonwoven fabric was used. In addition, the water retention of the silica glass nonwoven fabric is the amount of increase in mass relative to the original mass of the silica glass nonwoven fabric when the silica glass nonwoven fabric is immersed in distilled water for 10 minutes and then gently lifted and left standing for 10 minutes. It was calculated | required by calculating the ratio of. The suction height is the height of the water surface sucked up by the silica glass nonwoven fabric when 2 cm below the silica glass nonwoven fabric cut into a strip of 3 cm width is immersed in distilled water and held for 10 minutes. Say it. The total of photocatalyst titanium oxide and silica carrying the photocatalyst titanium oxide 15 g / m 2 and silica 5 g / m 2 by applying the photocatalyst coating liquid prepared in the above (1) to this silica glass nonwoven fabric by the dipping method. A photocatalyst-supporting porous material having a volume fraction of photocatalytic titanium oxide with respect to the amount of 59% was prepared.
(3) Sewage purification method and evaluation of the purification effect The photocatalyst-supported porous body produced in (2) above is cut into a 15 cm × 14 cm size flat plate and installed in a state of leaning against the ground at 45 °. Then, 1.0 mW / cm 2 of ultraviolet light from a black light blue (BLB) lamp was continuously irradiated at an irradiation angle of 45 °.
On the other hand, at the upper end of the photocatalyst-supporting porous body, three dropping ports are installed at intervals of 4 cm in the width (15 cm) direction, and 2 L of 20 ppm methylene blue (basic substance to be decomposed) aqueous solution is supported at a flow rate of 3 mL / min. It was dripped at the porous body. The purification liquid that had flowed out from the lower end surface of the photocatalyst-supporting porous body was returned to the 2 L tank, and this operation was continued for 60 hours.
The concentration change of the methylene blue aqueous solution was quantified by the absorbance method. In the initial stage of purification, the concentration decreased rapidly due to the effects of both adsorption to the photocatalyst-supporting porous material and purification by the photocatalytic reaction, but the concentration reduction rate became constant after 12 hours. The decomposition rate at this time was 33 mg / m 2 .
In the said photocatalyst-carrying porous material, K in formula (I) is a 45 mL / min, maximum F R becomes 13.2 mL / min. Therefore, since three dripping ports are provided, the maximum flow rate is 39.6 mL / min.

実施例2
光触媒酸化チタンとシリカとの合計量に対する光触媒酸化チタンの体積分率を種々変えた光触媒担持多孔体を、実施例1に準じて作製し、実施例1と同様にして汚水の浄化効果を調べた。
光触媒酸化チタンの体積分率と分解速度定数との関係を図2にグラフで示す。
なお、分解速度定数は、以下のようにして求めた値である。まず暗所下で、メチレンブルー色素の水溶液を一日間循環させて、メチレンブルー色素を光触媒体に吸着飽和させる。この時の色素濃度を初濃度とする。初濃度を20ppmに調整した後循環し続けた状態で、1.0mW/cmの紫外線強度でBLB灯による紫外光照射を行い、照射時間に対するメチレンブルー色素の被分解物濃度変化を調べ、得られたグラフの初期傾きから反応速度定数を求める。なお、メチレンブルー色素の濃度は、660nmの吸光度から容易に算出できる。
図2から分かるように、高光触媒活性を発揮するためには、光触媒酸化チタンの体積分率は30%以上であることが好ましく、より好ましくは40%以上である。
Example 2
Photocatalyst-supported porous bodies having various volume fractions of photocatalytic titanium oxide with respect to the total amount of photocatalytic titanium oxide and silica were produced according to Example 1, and the purification effect of sewage was examined in the same manner as in Example 1. .
FIG. 2 is a graph showing the relationship between the volume fraction of photocatalytic titanium oxide and the decomposition rate constant.
The decomposition rate constant is a value obtained as follows. First, in the dark, an aqueous solution of methylene blue dye is circulated for one day to adsorb and saturate the methylene blue dye on the photocatalyst. The dye density at this time is defined as the initial density. After adjusting the initial concentration to 20 ppm and continuing to circulate, UV light irradiation with a BLB lamp is performed with an ultraviolet intensity of 1.0 mW / cm 2 , and the change in the concentration of the methylene blue dye to be decomposed with respect to the irradiation time is obtained. The reaction rate constant is obtained from the initial slope of the graph. The concentration of methylene blue dye can be easily calculated from the absorbance at 660 nm.
As can be seen from FIG. 2, in order to exhibit high photocatalytic activity, the volume fraction of photocatalytic titanium oxide is preferably 30% or more, and more preferably 40% or more.

実施例3
シリカ担持量を30g/mに固定し、光触媒酸化チタンの担持量を種々変えた光触媒担持多孔体を、実施例1に準じて作製し、実施例1と同様にして汚水の浄化効果を調べた。
光触媒酸化チタンの担持量と分解速度定数との関係を、図3にグラフで示す。
図3から分かるように、光触媒活性は、光触媒酸化チタンの担持量が8g/m近辺で飽和し、それ以上では、該酸化チタンの担持量を増加しても、光触媒活性はほとんど変化しない。
Example 3
A photocatalyst-supported porous body with a silica support amount fixed at 30 g / m 2 and various photocatalyst titanium oxide support amounts was prepared according to Example 1, and the purification effect of sewage was examined in the same manner as in Example 1. It was.
FIG. 3 is a graph showing the relationship between the amount of photocatalytic titanium oxide supported and the decomposition rate constant.
As can be seen from FIG. 3, the photocatalytic activity is saturated when the supported amount of photocatalytic titanium oxide is around 8 g / m 2 , and the photocatalytic activity hardly changes even when the supported amount of titanium oxide is increased.

実施例4〜6
実施例1で作製した15cm×14cmサイズの平板状光触媒担持多孔体を用い、地面に対して、それぞれ10°(実施例4)、30°(実施例5)および60°(実施例6)の角度で立てかけた状態に設置し、100ppmのメチレンブルー水溶液を、全て2mL/minで光触媒担持多孔体に滴下させた以外は、実施例1と同様な操作を行った。処理時間と処理液中のメチレンブルー濃度との関係を、図4にグラフで示す。
Examples 4-6
Using the plate-like photocatalyst-supported porous body having a size of 15 cm × 14 cm prepared in Example 1, 10 ° (Example 4), 30 ° (Example 5) and 60 ° (Example 6) with respect to the ground, respectively. The same operation as in Example 1 was carried out except that the 100 ppm methylene blue aqueous solution was dropped onto the photocatalyst-supported porous body at a rate of 2 mL / min. The relationship between the treatment time and the methylene blue concentration in the treatment solution is shown in a graph in FIG.

なお、式(I)から求めた最大Fおよびそれから算出される最大流量を以下に示す。
最大F(mL/min) 最大流量(mL/min)
実施例4 0.684 2.1
実施例5 6.03 18.1
実施例6 22.5 67.5
Incidentally, showing the maximum flow rate to be calculated from the maximum F R and it was determined from the formula (I) below.
Maximum F R (mL / min) maximum flow rate (mL / min)
Example 4 0.684 2.1
Example 5 6.03 18.1
Example 6 22.5 67.5

比較例1
実施例1で作製した15cm×14cmサイズの平板状光触媒担持多孔体を用い、地面に対して0°の角度で100ppmメチレンブルー水溶液20L中に浸漬し、BLB灯による紫外光を照射角度45°で照射を続けた。処理時間と処理液中のメチレンブルー濃度との関係を、図4にグラフで示す。
図4から分かるように、光触媒担持多孔体を地面に対する角度0°、すなわち寝かせた状態では、光分解がゆっくり進むが、10°以上に傾ければ効果的に分解される。ただし、角度が低い場合は最大流量が小さいため、結果的に処理に時間がかかる。最大流量を考慮すれば60°以上の角度が好ましい。
Comparative Example 1
The plate-like photocatalyst-supported porous body having a size of 15 cm × 14 cm prepared in Example 1 was used, immersed in 20 L of 100 ppm methylene blue aqueous solution at an angle of 0 ° with respect to the ground, and irradiated with ultraviolet light from a BLB lamp at an irradiation angle of 45 °. Continued. The relationship between the treatment time and the methylene blue concentration in the treatment solution is shown in a graph in FIG.
As can be seen from FIG. 4, when the photocatalyst-supporting porous body is at an angle of 0 ° with respect to the ground, that is, in the state of being laid, photolysis proceeds slowly, but if it is tilted to 10 ° or more, it is effectively decomposed. However, when the angle is low, the maximum flow rate is small, and as a result, processing takes time. Considering the maximum flow rate, an angle of 60 ° or more is preferable.

実施例7
(1)光触媒塗工液の調製
光触媒酸化チタン(アナターゼ型酸化チタン、平均粒径20nm)スラリー[チタン工業(株)製、「PC−203」、固形分20質量%]11.6g、無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.5gを、エチルセルソルブと水の混合溶液(エチルセルソルブ/水=90/10、質量比)に混合して固形成分濃度0.8質量%の塗工液を調製した。
この塗工液をスライドガラス表面(平滑面)に塗工した際の水接触角は40°であった。
(2)光触媒担持多孔体の作製
ニードルパンチ法で作製したシリカガラス不織布に上記(1)で調製した光触媒塗工液を塗工して、光触媒酸化チタン15.0g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が70%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
上記(2)で作製した光触媒担持多孔体を15cm×14cmサイズの平板状に裁断し、これを地面に対して45°に立てかけた状態に設置し、ブラックライトブルー(BLB)灯による1.0mW/cmの紫外光を照射角度45°で照射し続けた。
一方、当該光触媒担持多孔体の上端部に、幅(15cm)方向に1cm間隔で滴下口14個を設置し、濃度20ppmの安息香酸(酸性被分解物)含有水溶液2Lを3mL/minの流速で光触媒担持多孔体に滴下した。光触媒担持多孔体の下端面から湧出した浄化液を2Lタンクに戻し、この操作を60時間継続した。試験開始後30時間〜60時間における安息香酸の分解定数は、後掲の表1に示すように59(ppm/h)であった。
Example 7
(1) Preparation of photocatalyst coating liquid Photocatalytic titanium oxide (anatase type titanium oxide, average particle size 20 nm) slurry [manufactured by Titanium Industry Co., Ltd., “PC-203”, solid content 20% by mass] 11.6 g, inorganic adhesion 8.5 g of amorphous titania binder (7.1% by mass of solid component) as a component is mixed with a mixed solution of ethyl cellosolve and water (ethyl cellosolve / water = 90/10, mass ratio) to obtain a solid component concentration of 0 An 8 mass% coating solution was prepared.
The water contact angle when this coating solution was applied to the slide glass surface (smooth surface) was 40 °.
(2) Production of photocatalyst-supporting porous material The silica glass nonwoven fabric produced by the needle punch method is coated with the photocatalyst coating liquid prepared in (1) above to carry 15.0 g / m 2 of photocatalytic titanium oxide, A photocatalyst-supporting porous body having a volume fraction of photocatalytic titanium oxide in the film of 70% was produced. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Sewage purification method and evaluation of the purification effect The photocatalyst-supporting porous material produced in (2) above is cut into a 15 cm × 14 cm size flat plate and installed in a state of leaning against the ground at 45 °. Then, 1.0 mW / cm 2 of ultraviolet light from a black light blue (BLB) lamp was continuously irradiated at an irradiation angle of 45 °.
On the other hand, at the upper end of the photocatalyst-supported porous body, 14 dropping ports were installed at 1 cm intervals in the width (15 cm) direction, and 2 L of benzoic acid (acid decomposed product) -containing aqueous solution having a concentration of 20 ppm was flowed at a flow rate of 3 mL / min. It was dripped at the photocatalyst carrying porous body. The purification liquid that had flowed out from the lower end surface of the photocatalyst-supporting porous body was returned to the 2 L tank, and this operation was continued for 60 hours. The decomposition constant of benzoic acid in 30 to 60 hours after the start of the test was 59 (ppm / h) as shown in Table 1 below.

実施例8
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.5gを9.7gとし、アルミナゾル(日産化学工業(株)製、「アルミナゾル
520」、固形分20質量%)1.7gを加えた以外は、実施例7(1)と同様にして固形成分濃度0.9質量%の塗工液を調製した。
(2)光触媒担持多孔体の作製
実施例7(2)と同様にして、ニードルパンチ法で作製したシリカガラス不織布に上記(1)で調製した塗工液を塗工して、光触媒酸化チタン15.0g/mとアルミナ(ベーマイト状結晶、平均粒径80nm)2.2g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が67%、アルミナの体積分率が11%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
(i)上記(2)で作製した光触媒担持多孔体を用いて、実施例7(3)と同様に試験したところ、試験開始後30時間〜60時間における安息香酸の分解定数Aは、表1に示すように70(ppm/h)であった。
Example 8
(1) Preparation of photocatalyst coating liquid Amorphous titania binder (solid component 7.1 mass%) 8.5 g as an inorganic adhesive component was changed to 9.7 g, and alumina sol (manufactured by Nissan Chemical Industries, Ltd., “Alumina sol 520”), A coating solution having a solid component concentration of 0.9% by mass was prepared in the same manner as in Example 7 (1) except that 1.7 g (solid content 20% by mass) was added.
(2) Production of photocatalyst-supporting porous material In the same manner as in Example 7 (2), the silica glass nonwoven fabric produced by the needle punch method was coated with the coating solution prepared in (1) above to produce photocatalytic titanium oxide 15 1.0 g / m 2 and alumina (boehmite-like crystal, average particle size 80 nm) 2.2 g / m 2 are supported, the volume fraction of photocatalytic titanium oxide in the coating film is 67%, and the volume fraction of alumina is 11%. A photocatalyst-supporting porous material was prepared. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Sewage purification method and evaluation of its purification effect (i) Using the photocatalyst-supporting porous material produced in (2) above, a test was conducted in the same manner as in Example 7 (3). The decomposition constant A of benzoic acid over time was 70 (ppm / h) as shown in Table 1.

実施例9
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.5gを10.4gとし、アルミナゾル(日産化学工業(株)製、「アルミナゾル
520」、固形分20質量%)2.8gを加えた以外は、実施例7(1)と同様にして固形成分濃度0.9質量%の塗工液を調製した。
(2)光触媒担持多孔体の作製
実施例7(2)と同様にして、ニードルパンチ法で作製したシリカガラス不織布に上記(1)で調製した塗工液を塗工して、光触媒酸化チタン15.0g/mとアルミナ(ベーマイト状結晶、平均粒径80nm)3.6g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が62%、アルミナの体積分率が16%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
上記(2)で作製した光触媒担持多孔体を用いて、実施例7(3)と同様に試験したところ、試験開始後30時間〜60時間における安息香酸の分解定数Aは、表1に示すように74(ppm/h)であった。
Example 9
(1) Preparation of photocatalyst coating liquid Amorphous titania binder (solid component 7.1% by mass) 8.5 g as an inorganic adhesive component was changed to 10.4 g, and alumina sol (manufactured by Nissan Chemical Industries, Ltd., “Alumina sol 520”), A coating liquid having a solid component concentration of 0.9 mass% was prepared in the same manner as in Example 7 (1) except that 2.8 g of a solid content of 20 mass% was added.
(2) Production of photocatalyst-supporting porous material In the same manner as in Example 7 (2), the silica glass nonwoven fabric produced by the needle punch method was coated with the coating solution prepared in (1) above to produce photocatalytic titanium oxide 15 1.0 g / m 2 and alumina (boehmite crystals, average particle size 80 nm) 3.6 g / m 2 are supported, the volume fraction of photocatalytic titanium oxide in the coating film is 62%, and the volume fraction of alumina is 16%. A photocatalyst-supporting porous material was prepared. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Evaluation of sewage purification method and its purification effect Using the photocatalyst-supported porous material prepared in (2) above, a test was conducted in the same manner as in Example 7 (3). The decomposition constant A of the acid was 74 (ppm / h) as shown in Table 1.

実施例10
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.5gを11.3gとし、アルミナゾル(日産化学工業(株)製、「アルミナゾル
520」、固形分20質量%)4.0gを加えた以外は、実施例7(1)と同様にして固形成分濃度1.0質量%の塗工液を調製した。
(2)光触媒担持多孔体の作製
実施例7(2)と同様にして、ニードルパンチ法で作製したシリカガラス不織布に上記(1)で調製した塗工液を塗工して、光触媒酸化チタン15.0g/mとアルミナ(ベーマイト状結晶、平均粒径80nm)3.6g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が57%、アルミナの体積分率が21%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
(i)上記(2)で作製した光触媒担持多孔体を用いて、実施例7(3)と同様に試験したところ、試験開始後30時間〜60時間における安息香酸の分解定数Aは、表1に示すように71(ppm/h)であった。
(ii)上記(2)で作製した光触媒担持多孔体を15cm×14cmサイズの平板状に裁断し、これを地面に対して45°に立てかけた状態に設置し、BLB灯による1.0mW/cmの紫外光を照射角度45°で照射し続けた。
当該光触媒担持多孔体の上端部に、幅(15cm)方向に1cm間隔で滴下口14個を設置し、全有機炭素量(TOC)がそれぞれ200、400、600、800mg/Lである、産業廃液(汚水成分が主に塩基性有機物であって、少量の酸性汚水成分が共存している試料)各2Lを3mL/minの流速で光触媒担持多孔体に滴下した。光触媒担持多孔体の下端面から湧出した浄化液を2Lタンクに戻し、この操作を60時間継続した。また廃液中の酸性分解対象物の安息香酸は20ppmであり、全有機炭素量は100mg/Lであり、全有機炭素量が変わってもこの分解対象物量は同一にした。試験開始後30時間および60時間における安息香酸濃度から算出した安息香酸の分解定数Bは、表1に示すように、TOC200(mg/L)の廃液が59(ppm/h)、TOC400(mg/L)の廃液が56(ppm/h)、TOC600(mg/L)の廃液が55(ppm/h)、TOC800(mg/L)の廃液が55(ppm/h)であった。
Example 10
(1) Preparation of photocatalyst coating liquid Amorphous titania binder (solid component 7.1 mass%) 8.5 g, which is an inorganic adhesive component, was changed to 11.3 g, and alumina sol (Nissan Chemical Industries, Ltd., “Alumina sol 520”), A coating liquid having a solid component concentration of 1.0% by mass was prepared in the same manner as in Example 7 (1) except that 4.0 g of 20% by mass was added.
(2) Production of photocatalyst-supporting porous material In the same manner as in Example 7 (2), the silica glass nonwoven fabric produced by the needle punch method was coated with the coating solution prepared in (1) above to produce photocatalytic titanium oxide 15 1.0 g / m 2 and alumina (boehmite-like crystal, average particle size 80 nm) 3.6 g / m 2 are supported, the volume fraction of photocatalytic titanium oxide in the coating film is 57%, and the volume fraction of alumina is 21%. A photocatalyst-supporting porous material was prepared. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Sewage purification method and evaluation of its purification effect (i) Using the photocatalyst-supporting porous material produced in (2) above, the test was conducted in the same manner as in Example 7 (3). The decomposition constant A of benzoic acid over time was 71 (ppm / h) as shown in Table 1.
(Ii) The photocatalyst-supported porous material produced in (2) above is cut into a 15 cm × 14 cm size flat plate, and is placed in a state of leaning at 45 ° with respect to the ground, and 1.0 mW / cm by a BLB lamp. No. 2 ultraviolet light was continuously irradiated at an irradiation angle of 45 °.
Industrial waste liquid in which 14 dropping ports are installed at 1 cm intervals in the width (15 cm) direction at the upper end of the photocatalyst-supporting porous body, and the total organic carbon content (TOC) is 200, 400, 600, and 800 mg / L, respectively. (Sample in which sewage components are mainly basic organic substances and a small amount of acidic sewage components coexist) 2 L of each was dropped onto the photocatalyst-supporting porous body at a flow rate of 3 mL / min. The purification liquid that had flowed out from the lower end surface of the photocatalyst-supporting porous body was returned to the 2 L tank, and this operation was continued for 60 hours. Moreover, the benzoic acid of the acidic decomposition target object in a waste liquid is 20 ppm, the total organic carbon amount is 100 mg / L, and even if the total organic carbon amount changed, this decomposition target object amount was made the same. As shown in Table 1, the decomposition constant B of benzoic acid calculated from the benzoic acid concentration at 30 hours and 60 hours after the start of the test was 59 (ppm / h) for the waste liquid of TOC200 (mg / L), TOC400 (mg / L). The waste liquid of L) was 56 (ppm / h), the waste liquid of TOC600 (mg / L) was 55 (ppm / h), and the waste liquid of TOC800 (mg / L) was 55 (ppm / h).

実施例11
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.5gを13.5gとし、アルミナゾル(日産化学工業(株)製、「アルミナゾル
520」、固形分20質量%)7.2gを加えた以外は、実施例7(1)と同様にして固形成分濃度1.2質量%の塗工液を調製した。
(2)光触媒担持多孔体の作製
実施例7(2)と同様にして、ニードルパンチ法で作製したシリカガラス不織布に上記(1)で調製した塗工液を塗工して、光触媒酸化チタン15.0g/mとアルミナ(ベーマイト状結晶、平均粒径80nm)9.3g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が47%、アルミナの体積分率が31%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
(i)上記(2)で作製した光触媒担持多孔体を用いて、実施例7(3)と同様に試験したところ、試験開始後30時間〜60時間における安息香酸の分解定数Aは、表1に示すように65(ppm/h)であった。
(ii)上記(2)で作製した光触媒担持多孔体を用いて、実施例10(3)(ii)と同様に試験したところ、試験開始後30時間〜60時間における安息香酸の分解定数Bは、表1に示すように、TOC200(mg/L)の廃液が65(ppm/h)、TOC400(mg/L)の廃液が63(ppm/h)、TOC600(mg/L)の廃液が60(ppm/h)、TOC800(mg/L)の廃液が58(ppm/h)であった。
Example 11
(1) Preparation of photocatalyst coating liquid Amorphous titania binder (solid component 7.1 mass%) 8.5 g, which is an inorganic adhesive component, is 13.5 g, and alumina sol (Nissan Chemical Industries, Ltd., “Alumina sol 520”), A coating solution having a solid component concentration of 1.2% by mass was prepared in the same manner as in Example 7 (1) except that 7.2 g of 20% by mass (solid content) was added.
(2) Production of photocatalyst-supporting porous material In the same manner as in Example 7 (2), the silica glass nonwoven fabric produced by the needle punch method was coated with the coating solution prepared in (1) above to produce photocatalytic titanium oxide 15 1.0 g / m 2 and alumina (boehmite-like crystal, average particle size 80 nm) 9.3 g / m 2 are supported, the volume fraction of photocatalytic titanium oxide in the coating film is 47%, and the volume fraction of alumina is 31%. A photocatalyst-supporting porous material was prepared. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Sewage purification method and evaluation of its purification effect (i) Using the photocatalyst-supporting porous material produced in (2) above, the test was conducted in the same manner as in Example 7 (3). The decomposition constant A of benzoic acid over time was 65 (ppm / h) as shown in Table 1.
(Ii) Using the photocatalyst-supported porous material prepared in (2) above, the same test as in Example 10 (3) (ii) was conducted. The decomposition constant B of benzoic acid at 30 to 60 hours after the start of the test was As shown in Table 1, the waste liquid of TOC200 (mg / L) is 65 (ppm / h), the waste liquid of TOC400 (mg / L) is 63 (ppm / h), and the waste liquid of TOC600 (mg / L) is 60 (Ppm / h), the waste liquid of TOC800 (mg / L) was 58 (ppm / h).

実施例12
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.5gを16.9gとし、アルミナゾル(日産化学工業(株)製、「アルミナゾル 520」、固形分20質量%)12.0gを加えた以外は、実施例7(1)と同様にして固形成分濃度1.5質量%の塗工液を調製した。
(2)光触媒担持多孔体の作製
実施例7(2)と同様にして、ニードルパンチ法で作製したシリカガラス不織布に上記(1)で調製した塗工液を塗工して、光触媒酸化チタン15.0g/mとアルミナ(ベーマイト状結晶、平均粒径80nm)15.5g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が37%、アルミナの体積分率が41%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
上記(2)で作製した光触媒担持多孔体を用いて、実施例10(3)(ii)と同様に試験したところ、試験開始後30時間〜60時間における安息香酸の分解定数Bは、表1に示すように、TOC200(mg/L)の廃液が60(ppm/h)、TOC400(mg/L)の廃液が58(ppm/h)、TOC600(mg/L)の廃液が58(ppm/h)、TOC800(mg/L)の廃液が55(ppm/h)であった。
Example 12
(1) Preparation of photocatalyst coating liquid Amorphous titania binder (solid component 7.1 mass%) 8.5 g, which is an inorganic adhesive component, was changed to 16.9 g, and alumina sol (Nissan Chemical Industry Co., Ltd., “Alumina sol 520”, A coating solution having a solid component concentration of 1.5% by mass was prepared in the same manner as in Example 7 (1) except that 12.0 g (solid content 20% by mass) was added.
(2) Production of photocatalyst-supporting porous material In the same manner as in Example 7 (2), the silica glass nonwoven fabric produced by the needle punch method was coated with the coating solution prepared in (1) above to produce photocatalytic titanium oxide 15 1.0 g / m 2 and alumina (boehmite-like crystal, average particle size 80 nm) 15.5 g / m 2 are supported, the volume fraction of photocatalytic titanium oxide in the coating film is 37%, and the volume fraction of alumina is 41%. A photocatalyst-supporting porous material was prepared. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Evaluation of sewage purification method and its purification effect Using the photocatalyst-supported porous material produced in (2) above, a test was conducted in the same manner as in Example 10 (3) (ii). As shown in Table 1, the decomposition constant B of benzoic acid over time is 60 (ppm / h) for waste liquid of TOC200 (mg / L), 58 (ppm / h) for waste liquid of TOC400 (mg / L), and TOC600. The waste liquid of (mg / L) was 58 (ppm / h), and the waste liquid of TOC800 (mg / L) was 55 (ppm / h).

Figure 2006136874
Figure 2006136874

実施例13
(1)光触媒塗工液の調製
光触媒酸化チタン(アナターゼ型酸化チタン、平均粒径20nm)スラリー[チタン工業(株)製、「PC−203」、固形分20質量%]11.59g、無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.45gを、エチルセルソルブと1−プロパノールと水の混合溶媒(エチルセルソルブ/1−プロパノール/水=45/45/10、質量比)中で混合して固形成分濃度0.75質量%の塗工液を調製した。
この塗工液をスライドガラス表面(平滑面)に塗工した際の水接触角は40°であった。
(2)光触媒担持多孔体の作製
上記(1)で調製した塗工液を実施例1に準じてシリカガラス不織布に塗工して、光触媒酸化チタン15g/mを担持し、塗膜中の光触媒酸化チタンの体積分率79%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
前記(2)で作製した光触媒担持多孔体を15cm×14cmサイズの平板状に裁断し、これを地面に対して45°に立てかけた状態に設置し、BLB灯による1.0mW/cmの紫外光を照射角度45°で照射し続けた。
一方、当該光触媒担持多孔体の上端部に、幅(15cm)方向に1cm間隔で滴下口14個を設置し、水稲種子消毒剤[クミアイ化学工業(株)製、テクリードCフロアブル]を水で500倍希釈した濃度20ppmのイプコナゾール(疎水性被分解物)含有液2Lを3mL/minの流速で光触媒担持多孔体に滴下した。光触媒担持多孔体の下端面から湧出した浄化液を2Lタンクに戻し、この操作を60時間継続した。試験開始後30時間〜60時間におけるイプコナゾールの分解定数は、後掲の表2に示すように66(ppm/h)であった。
Example 13
(1) Preparation of photocatalyst coating solution
Photocatalytic titanium oxide (anatase type titanium oxide, average particle size 20 nm) slurry [made by Titanium Industry Co., Ltd., “PC-203”, solid content 20 mass%] 11.59 g, amorphous titania binder (solid component) 7.1 mass%) 8.45 g was mixed in a mixed solvent of ethyl cellosolve, 1-propanol and water (ethyl cellosolve / 1-propanol / water = 45/45/10, mass ratio) to obtain a solid component. A coating solution having a concentration of 0.75% by mass was prepared.
The water contact angle when this coating solution was applied to the slide glass surface (smooth surface) was 40 °.
(2) Production of photocatalyst-supporting porous material The coating liquid prepared in (1) above was applied to a silica glass nonwoven fabric according to Example 1 to support photocatalytic titanium oxide 15 g / m 2, and A photocatalyst-supporting porous body having a volume fraction of 79% of photocatalytic titanium oxide was produced. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Sewage purification method and evaluation of the purification effect The photocatalyst-supported porous body produced in (2) above is cut into a 15 cm × 14 cm size flat plate and installed in a state of leaning against the ground at 45 °. Then, 1.0 mW / cm 2 ultraviolet light from a BLB lamp was continuously irradiated at an irradiation angle of 45 °.
On the other hand, 14 dripping ports were installed at the upper end of the photocatalyst-supporting porous body at intervals of 1 cm in the width (15 cm) direction, and paddy rice seed disinfectant [Kumiai Chemical Industry Co., Ltd., Techlead C Flowable] was used with 500 water. A 2 liter diluted solution of ipconazole (hydrophobic substance to be decomposed) having a concentration of 20 ppm was dropped onto the photocatalyst-supporting porous body at a flow rate of 3 mL / min. The purification liquid that had flowed out from the lower end surface of the photocatalyst-supporting porous body was returned to the 2 L tank, and this operation was continued for 60 hours. The degradation constant of ipconazole in 30 to 60 hours after the start of the test was 66 (ppm / h) as shown in Table 2 below.

実施例14
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.45gを8.56gとし、活性炭(フタムラ化学(株)製、「太閤活性炭SA−1000」、10nm以上の細孔径を有する細孔の容積の和が全細孔容積に対して20%以上、平均粒径が10μm)0.03gを加えた以外は、実施例13(1)と同様にして固形成分濃度0.76質量%の塗工液を調製した。上記活性炭の種類、細孔容積比、平均粒径および体積分率を表2に示す。
この塗工液をスライドガラス表面(平滑面)に塗工した際の水接触角は42°であった。
(2)光触媒担持多孔体の作製
上記(1)で調製した塗工液を実施例13(2)と同様にしてシリカガラス不織布に塗工して、光触媒酸化チタン15g/mと活性炭0.2g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が73%、活性炭の体積分率が5%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
上記(2)で作製した光触媒担持多孔体を用い、実施例13(3)と同様に試験したところ、試験開始後30時間〜60時間におけるイプコナゾールの分解定数Aは、表2に示すように71(ppm/h)であった。
Example 14
(1) Preparation of photocatalyst coating solution
8.45 g of amorphous titania binder (solid component 7.1% by mass), which is an inorganic adhesive component, is 8.56 g, and activated carbon (“Futamura Chemical Co., Ltd.,“ Dazai activated carbon SA-1000 ”) has a pore diameter of 10 nm or more. The solid component concentration was 0.76 mass in the same manner as in Example 13 (1) except that 0.03 g of the total pore volume was 20% or more with respect to the total pore volume and the average particle size was 10 μm). % Coating solution was prepared. Table 2 shows the types of the activated carbon, the pore volume ratio, the average particle diameter, and the volume fraction.
The water contact angle when this coating solution was applied to the slide glass surface (smooth surface) was 42 °.
(2) Production of photocatalyst-supporting porous body The coating liquid prepared in (1) above was applied to a silica glass nonwoven fabric in the same manner as in Example 13 (2), and photocatalytic titanium oxide 15 g / m 2 and activated carbon 0. A photocatalyst-carrying porous body carrying 2 g / m 2 and having a volume fraction of photocatalytic titanium oxide in the coating film of 73% and a volume fraction of activated carbon of 5% was produced. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Evaluation of sewage purification method and purification effect Using the photocatalyst-supported porous material prepared in (2) above, the same test as in Example 13 (3) was conducted. The decomposition constant A was 71 (ppm / h) as shown in Table 2.

実施例15
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.45gを8.78gとし、活性炭(「太閤活性炭SA−1000」)0.09gを加えた以外は、実施例13(1)と同様にして固形成分濃度0.78質量%の塗工液を調製した。上記活性炭の種類、細孔容積比、平均粒径および体積分率を表2に示す。
この塗工液をスライドガラス表面(平滑面)に塗工した際の水接触角は47°であった。
(2)光触媒担持多孔体の作製
上記(1)で調製した塗工液を実施例13(2)と同様にしてシリカガラス不織布に塗工して、光触媒酸化チタン15g/mと活性炭0.6g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が60%、活性炭の体積分率が21%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
上記(2)で作製した光触媒担持多孔体を用い、実施例13(3)と同様に試験したところ、試験開始後30時間〜60時間におけるイプコナゾールの分解定数Aは、表2に示すように74(ppm/h)であった。
Example 15
(1) Preparation of photocatalyst coating liquid Amorphous titania binder (solid component 7.1 mass%) 8.45 g, which is an inorganic adhesive component, is 8.78 g, and 0.09 g of activated carbon (“Dazai activated carbon SA-1000”) is added. A coating liquid having a solid component concentration of 0.78% by mass was prepared in the same manner as in Example 13 (1) except that. Table 2 shows the types of the activated carbon, the pore volume ratio, the average particle diameter, and the volume fraction.
The water contact angle when this coating solution was applied to the slide glass surface (smooth surface) was 47 °.
(2) Production of photocatalyst-supporting porous body The coating liquid prepared in (1) above was applied to a silica glass nonwoven fabric in the same manner as in Example 13 (2), and photocatalytic titanium oxide 15 g / m 2 and activated carbon 0. A photocatalyst-carrying porous body carrying 6 g / m 2 and having a volume fraction of photocatalytic titanium oxide in the coating film of 60% and a volume fraction of activated carbon of 21% was prepared. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Evaluation of sewage purification method and its purification effect Using the photocatalyst-supported porous material prepared in (2) above, a test was conducted in the same manner as in Example 13 (3). The decomposition constant A was 74 (ppm / h) as shown in Table 2.

実施例16
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.45gを9.69gとし、活性炭(「太閤活性炭SA−1000」)0.34gを加えた以外は、実施例13(1)と同様にして固形成分濃度0.86質量%の塗工液を調製した。上記活性炭の種類、細孔容積比、平均粒径を表2に示す。この塗工液をスライドガラス表面(平滑面)に塗工した際の水接触角は49°であった。
(2)光触媒担持多孔体の作製
上記(1)で調整した塗工液を実施例13(2)と同様にしてシリカガラス不織布に塗工して、光触媒酸化チタン15g/mと活性炭2.2g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が48%、活性炭の体積分率が35%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
(i)上記(2)で作製した光触媒担持多孔体を用いて、実施例13(3)と同様に試験したところ、試験開始後30時間〜60時間におけるイプコナゾールの分解定数Aは、表2に示すように70(ppm/h)であった。
(ii)一方、上記(2)で作製した光触媒担持多孔体を15cm×14cmサイズの平板状に裁断し、これを地面に対して45°に立てかけた状態に設置し、BLB灯による1.0mW/cmの紫外光を照射角度45°で照射し続けた。
当該光触媒担持多孔体の上端部に、幅(15cm)方向に1cm間隔で滴下口14個を設置し、全有機炭素量(TOC)がそれぞれ200、400、600、800mg/Lである、水稲種子消毒剤廃液(汚水成分が主に親水性有機物であって、少量の疎水性汚水成分が共存している試料)各2Lを3mL/minの流速で光触媒担持多孔体に滴下した。光触媒担持多孔体の下端面から湧出した浄化液を2Lタンクに戻し、この操作を60時間継続した。また廃液中の疎水性分解対象物はイプコナゾール、フェニトロチオン各10ppmであり、全有機炭素量では両方合わせて100mg/Lであり、全有機炭素量が変わってもこの分解対象物量は同一にした。試験開始後30時間および60時間におけるイプコナゾール濃度から算出したイプコナゾールの分解定数Bは、表2に示すように、TOC200(mg/L)の廃液が60(ppm/h)、TOC400(mg/L)の廃液が57(ppm/h)、TOC600(mg/L)の廃液が55(ppm/h)、TOC800(mg/L)の廃液が55(ppm/h)であった。
Example 16
(1) Preparation of photocatalyst coating liquid Amorphous titania binder (solid component 7.1% by mass) 8.45 g, which is an inorganic adhesive component, was changed to 9.69 g, and activated carbon (“Dazai activated carbon SA-1000”) 0.34 g was added. A coating solution having a solid component concentration of 0.86% by mass was prepared in the same manner as in Example 13 (1) except that. Table 2 shows the type of activated carbon, the pore volume ratio, and the average particle diameter. The water contact angle when this coating solution was applied to the slide glass surface (smooth surface) was 49 °.
(2) Production of photocatalyst-supporting porous body The coating liquid prepared in (1) above was applied to a silica glass nonwoven fabric in the same manner as in Example 13 (2), and photocatalytic titanium oxide 15 g / m 2 and activated carbon 2. A photocatalyst-carrying porous body carrying 2 g / m 2 and having a volume fraction of photocatalytic titanium oxide in the coating film of 48% and a volume fraction of activated carbon of 35% was prepared. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Sewage purification method and evaluation of its purification effect (i) Using the photocatalyst-supporting porous material produced in (2) above, a test was conducted in the same manner as in Example 13 (3). The degradation constant A of ipconazole over time was 70 (ppm / h) as shown in Table 2.
(Ii) On the other hand, the photocatalyst-supporting porous material produced in (2) above was cut into a flat plate of 15 cm × 14 cm size, placed in a state of leaning at 45 ° with respect to the ground, and 1.0 mW from a BLB lamp. / Cm 2 of ultraviolet light was continuously irradiated at an irradiation angle of 45 °.
Rice seeds with 14 dripping ports installed at 1 cm intervals in the width (15 cm) direction at the upper end of the photocatalyst-supporting porous body and having total organic carbon (TOC) of 200, 400, 600, and 800 mg / L, respectively. Disinfectant waste liquid (a sample in which sewage components are mainly hydrophilic organic substances and a small amount of hydrophobic sewage components coexist) was dropped into a photocatalyst-supporting porous body at a flow rate of 3 mL / min. The purification liquid that had flowed out from the lower end surface of the photocatalyst-supporting porous body was returned to the 2 L tank, and this operation was continued for 60 hours. The hydrophobic decomposition target in the waste liquid was 10 ppm each for ipconazole and fenitrothion, and the total organic carbon amount was 100 mg / L in total, and even if the total organic carbon amount changed, the decomposition target amount was the same. As shown in Table 2, the decomposition constant B of ipconazole calculated from the ipconazole concentration at 30 hours and 60 hours after the start of the test is 60 (ppm / h) for the waste liquid of TOC200 (mg / L), TOC400 (mg / L) Was 57 (ppm / h), TOC600 (mg / L) was 55 (ppm / h), and TOC800 (mg / L) was 55 (ppm / h).

実施例17
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.45gを10.4gとし、活性炭(「太閤活性炭SA−1000」)0.55gを加えた以外は、実施例13(1)と同様にして固形成分濃度0.92質量%の塗工液を調製した。上記活性炭の種類、細孔容積比、平均粒径および体積分率を表2に示す。
この塗工液をスライドガラス表面(平滑面)に塗工した際の水接触角は50°であった。
(2)光触媒担持多孔体の作製
上記(1)で調整した塗工液を実施例13(2)と同様にしてシリカガラス不織布に塗工して、光触媒酸化チタン15g/mと活性炭3.6g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が39%、活性炭の体積分率が47%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
(i)上記(2)で作製した光触媒担持多孔体を用いて、実施例13(3)と同様に試験したところ、試験開始後30時間〜60時間におけるイプコナゾールの分解定数Aは、表1に示すように67(ppm/h)であった。
(ii)前記(2)で作製した光触媒担持多孔体を用いて、実施例16(3)(ii)と同様に試験したところ、試験開始後30時間〜60時間におけるイプコナゾールの分解定数Bは、表2に示すように、TOC200(mg/L)の廃液が63(ppm/h)、TOC400(mg/L)の廃液が60(ppm/h)、TOC600(mg/L)の廃液が60(ppm/h)、TOC800(mg/L)の廃液が58(ppm/h)であった。
Example 17
(1) Preparation of photocatalyst coating solution
Example 13 (1) except that 8.45 g of amorphous titania binder (solid component 7.1% by mass), which is an inorganic adhesive component, was changed to 10.4 g, and 0.55 g of activated carbon (“Dazai activated carbon SA-1000”) was added. ) To prepare a coating solution having a solid component concentration of 0.92% by mass. Table 2 shows the types of the activated carbon, the pore volume ratio, the average particle diameter, and the volume fraction.
The water contact angle when this coating solution was applied to the slide glass surface (smooth surface) was 50 °.
(2) Production of photocatalyst-supporting porous body The coating liquid prepared in (1) above was applied to a silica glass nonwoven fabric in the same manner as in Example 13 (2), and photocatalytic titanium oxide 15 g / m 2 and activated carbon 3. A photocatalyst-supporting porous body carrying 6 g / m 2 and having a volume fraction of photocatalytic titanium oxide in the coating film of 39% and a volume fraction of activated carbon of 47% was prepared. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Sewage purification method and evaluation of its purification effect (i) Using the photocatalyst-supporting porous material produced in (2) above, a test was conducted in the same manner as in Example 13 (3). The degradation constant A of ipconazole over time was 67 (ppm / h) as shown in Table 1.
(Ii) When tested in the same manner as in Example 16 (3) (ii) using the photocatalyst-supported porous material prepared in (2) above, the decomposition constant B of ipconazole at 30 to 60 hours after the start of the test is As shown in Table 2, the waste liquid of TOC200 (mg / L) is 63 (ppm / h), the waste liquid of TOC400 (mg / L) is 60 (ppm / h), and the waste liquid of TOC600 (mg / L) is 60 ( ppm / h), the waste liquid of TOC800 (mg / L) was 58 (ppm / h).

実施例18
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.45gを11.27gとし、活性炭(「太閤活性炭SA−1000」)0.80gを加えた以外は、実施例13(1)と同様にして固形成分濃度1.00質量%の塗工液を調製した。上記活性炭の種類、細孔容積比、平均粒径および体積分率を表2に示す。
この塗工液をスライドガラス表面(平滑面)に塗工した際の水接触角は52°であった。
(2)光触媒担持多孔体の作製
上記(1)で調整した塗工液を実施例7(2)と同様にしてシリカガラス不織布に塗工して、光触媒酸化チタン15g/mと活性炭5.2g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が32%、活性炭の体積分率が55%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
上記(2)で作製した光触媒担持多孔体を用いて、実施例16(3)(ii)と同様に試験したところ、試験開始後30時間〜60時間におけるイプコナゾールの分解定数Bは、表2に示すように、TOC200(mg/L)の廃液が60(ppm/h)、TOC400(mg/L)の廃液が59(ppm/h)、TOC600(mg/L)の廃液が59(ppm/h)、TOC800(mg/L)の廃液が56(ppm/h)であった。
Example 18
(1) Preparation of photocatalyst coating liquid Amorphous titania binder (solid component 7.1% by mass) 8.45 g, which is an inorganic adhesive component, was changed to 11.27 g, and activated carbon (“Dazai activated carbon SA-1000”) 0.80 g was added. A coating liquid having a solid component concentration of 1.00% by mass was prepared in the same manner as in Example 13 (1) except that. Table 2 shows the types of the activated carbon, the pore volume ratio, the average particle diameter, and the volume fraction.
The water contact angle when this coating solution was applied to the slide glass surface (smooth surface) was 52 °.
(2) Production of photocatalyst-supporting porous body The coating liquid prepared in (1) above was applied to a silica glass nonwoven fabric in the same manner as in Example 7 (2), and photocatalytic titanium oxide 15 g / m 2 and activated carbon 5. A photocatalyst-carrying porous body carrying 2 g / m 2 and having a volume fraction of photocatalytic titanium oxide in the coating film of 32% and a volume fraction of activated carbon of 55% was prepared. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Evaluation of sewage purification method and purification effect Using the photocatalyst-supported porous material prepared in (2) above, the test was conducted in the same manner as in Example 16 (3) (ii). As shown in Table 2, the degradation constant B of ipconazole over time is 60 (ppm / h) for the waste liquid of TOC200 (mg / L), 59 (ppm / h) for the waste liquid of TOC400 (mg / L), and TOC600 ( The waste liquid of mg / L was 59 (ppm / h), and the waste liquid of TOC800 (mg / L) was 56 (ppm / h).

実施例19
(1)光触媒塗工液の調製
無機接着成分であるアモルファスチタニアバインダー(固形成分7.1質量%)8.45gを12.29gとし、活性炭(「太閤活性炭SA−1000」)1.09gを加えた以外は、実施例13(1)と同様にして固形成分濃度0.75質量%の塗工液を調製した。上記活性炭の種類、細孔容積比、平均粒径および体積分率を表2に示す。
この塗工液をスライドガラス表面(平滑面)に塗工した際の水接触角は58°であった。
(2)光触媒担持多孔体の作製
上記(1)で調整した塗工液を実施例13(2)と同様にしてシリカガラス織布に塗工して、光触媒酸化チタン15g/mと活性炭7.1g/mを担持し、塗膜中の光触媒酸化チタンの体積分率が26%、活性炭の担持率が62%の光触媒担持多孔体を作製した。該光触媒担持多孔体においては、式(I)におけるKは45mL/minであった。
(3)汚水浄化方法およびその浄化効果の評価
上記(2)で作製した光触媒担持多孔体を用いて、実施例16(3)(ii)と同様に試験したところ、試験開始後30時間〜60時間におけるイプコナゾールの分解定数Bは、表2に示すように、TOC200(mg/L)の廃液が54(ppm/h)、TOC400(mg/L)の廃液が56(ppm/h)、TOC600(mg/L)の廃液が54(ppm/h)、TOC800(mg/L)の廃液が50(ppm/h)であった。
Example 19
(1) Preparation of photocatalyst coating liquid Amorphous titania binder (solid component 7.1 mass%) 8.45 g, which is an inorganic adhesive component, is 12.29 g, and 1.09 g of activated carbon (“Dazai activated carbon SA-1000”) is added. A coating liquid having a solid component concentration of 0.75% by mass was prepared in the same manner as in Example 13 (1) except that. Table 2 shows the types of the activated carbon, the pore volume ratio, the average particle diameter, and the volume fraction.
The water contact angle when this coating solution was applied to the slide glass surface (smooth surface) was 58 °.
(2) Production of photocatalyst-supporting porous body The coating liquid prepared in (1) above was applied to a silica glass woven fabric in the same manner as in Example 13 (2) to produce photocatalytic titanium oxide 15 g / m 2 and activated carbon 7. A photocatalyst-carrying porous body carrying 1 g / m 2, having a photocatalytic titanium oxide volume fraction of 26% and an activated carbon carrying ratio of 62% in the coating film was prepared. In the photocatalyst-supporting porous material, K in the formula (I) was 45 mL / min.
(3) Evaluation of sewage purification method and purification effect Using the photocatalyst-supported porous material prepared in (2) above, a test was conducted in the same manner as in Example 16 (3) (ii). As shown in Table 2, the degradation constant B of ipconazole over time is 54 (ppm / h) for the waste liquid of TOC200 (mg / L), 56 (ppm / h) for the waste liquid of TOC400 (mg / L), and TOC600 ( The waste liquid of mg / L was 54 (ppm / h), and the waste liquid of TOC800 (mg / L) was 50 (ppm / h).

Figure 2006136874
Figure 2006136874

本発明の循環型汚水浄化方法は、光触媒反応を最大限利用することができる上、簡易で安価であり、広いスペースを必要とせず、太陽光を利用して、各種汚水、例えば農薬廃液や、養液栽培における廃液などを浄化処理するのに好適に用いられる。   The circulating sewage purification method of the present invention can make maximum use of the photocatalytic reaction, is simple and inexpensive, does not require a large space, uses sunlight, and various sewage, for example, agricultural chemical waste liquid, It is suitably used for purifying waste liquids and the like in hydroponics.

本発明の汚水浄化方法における基本的な配置図である。It is a basic layout in the sewage purification method of the present invention. 実施例2における、光触媒酸化チタンの体積分率と分解速度定数との関係を示すグラフである。It is a graph which shows the relationship between the volume fraction of photocatalytic titanium oxide in Example 2, and a decomposition rate constant. 実施例3における、光触媒酸化チタンの担持量と分解速度定数との関係を示すグラフである。6 is a graph showing the relationship between the amount of supported photocatalytic titanium oxide and the decomposition rate constant in Example 3. 実施例4〜6における、光触媒担持多孔体の傾き度と、メチレンブルー分解度との関係を示すグラフである。It is a graph which shows the relationship between the inclination degree of the photocatalyst carrying | support porous body in Examples 4-6, and a methylene blue decomposition degree.

Claims (11)

地面に対して10°以上の角度に傾けた状態で太陽光が当たるように設置された平板状光触媒担持多孔体の上端部に、被処理汚水を供給し、前記光触媒担持多孔体の上端部に幅方向に設けた複数の滴下口から、1滴下口当たり、式(I)
≦K(1−cosθ) …(I)
[式中、Fは被処理汚水の1滴下口当たりの滴下流速、θは光触媒担持多孔体の地面に対する角度、Kは光触媒担持多孔体を垂直に立て、その上端部に設けられた滴下口から、被処理汚水を供給した際に、1滴下口当たりの給水速度の最大値を示す。]
の関係を満たす流速Fで滴下して、当該光触媒担持多孔体内を通過させたのち、その下部端面から回収し、当該光触媒担持多孔体の上端部に繰り返し供給することを特徴とする循環型汚水浄化方法。
To-be-processed sewage is supplied to the upper end of the plate-like photocatalyst-supported porous body that is installed so that the sunlight hits it at an angle of 10 ° or more with respect to the ground, and the upper end of the photocatalyst-supported porous body is supplied. From a plurality of dripping ports provided in the width direction, per dripping port, the formula (I)
F R ≦ K (1-cosθ ) ... (I)
[ Wherein FR is the dropping flow rate per dropping port of the treated sewage, θ is the angle of the photocatalyst-carrying porous body with respect to the ground, and K is the photocatalyst-carrying porous body standing vertically and from the dropping port provided at the upper end thereof When the sewage to be treated is supplied, the maximum value of the water supply speed per dropping port is shown. ]
Recycling sewage dropwise at a satisfy the relationship flow rate F R, after passed through the photocatalyst carrying porous body was recovered from the bottom end face, characterized in that it repeatedly supplied to the upper part of the photocatalyst-carrying porous body Purification method.
前記複数の滴下口が3〜10cmの間隔で設けられている請求項1に記載の循環型汚水浄化方法。   The circulating sewage purification method according to claim 1, wherein the plurality of dripping ports are provided at intervals of 3 to 10 cm. 平板状光触媒担持多孔体が、多孔質セラミックスあるいは無機繊維からなる織布または不織布を含み、かつ蒸留水の保水率が500〜3000質量%、吸上げ高さが12mm以上の無機多孔体の少なくとも太陽光が当たる側の表面に、光触媒材料と無機接着成分および/または吸着剤とを含む塗膜を有し、該塗膜中の光触媒材料の体積分率が30〜90%、光触媒材料の担持量が8〜20g/m、平滑面に設けられた前記塗膜の水接触角が60°以下であり、厚さが12mm未満の平板形状を有するものである請求項1または2に記載の循環型汚水浄化方法。 The flat photocatalyst-supported porous body contains at least the sun of an inorganic porous body containing a woven or non-woven fabric made of porous ceramics or inorganic fibers, having a water retention of 500 to 3000 mass%, and a suction height of 12 mm or more. It has a coating film containing a photocatalyst material and an inorganic adhesive component and / or an adsorbent on the surface that is exposed to light, the volume fraction of the photocatalyst material in the coating film is 30 to 90%, and the supported amount of the photocatalyst material There 8 to 20 g / m 2, and a water contact angle of the coating film provided on the smooth surface is 60 ° or less, the circulation of claim 1 or 2 thickness and has a flat plate shape than 12mm Type wastewater purification method. 無機接着成分が、アモルファス型チタニアバインダーである請求項3に記載の循環型汚水浄化方法。   The circulating sewage purification method according to claim 3, wherein the inorganic adhesive component is an amorphous titania binder. 吸着剤および/または無機接着成分が、等電点のpHが9.0以上である固体塩基性を有し、酸性の汚水成分を選択的に分解・除去する請求項3または4に記載の循環型汚水浄化方法。   The circulation according to claim 3 or 4, wherein the adsorbent and / or the inorganic adhesive component has a solid basicity with an isoelectric point of pH 9.0 or more, and selectively decomposes and removes acidic sewage components. Type wastewater purification method. 吸着剤および/または無機接着成分が、等電点のpHが9.0以上である固体塩基性を有し、界面活性剤で乳化された疎水性の汚水成分を選択的に分解・除去する請求項3または4に記載の循環型汚水浄化方法。   The adsorbent and / or the inorganic adhesive component has a solid basicity with an isoelectric point pH of 9.0 or higher, and selectively decomposes and removes hydrophobic sewage components emulsified with a surfactant. Item 5. A circulating sewage purification method according to Item 3 or 4. 吸着剤が、平均粒径が100nm以下で結晶形態がベーマイト状のアルミナであり、前記無機多孔体の表面に設けられた塗膜中の吸着剤の体積分率が、10〜45%である、請求項5または6に記載の循環型汚水浄化方法。   The adsorbent is alumina having an average particle size of 100 nm or less and a crystal form of boehmite, and the volume fraction of the adsorbent in the coating film provided on the surface of the inorganic porous body is 10 to 45%. The circulating sewage purification method according to claim 5 or 6. 吸着剤および/または無機接着成分が、等電点のpHが3.0以下である固体酸性を有し、塩基性の汚水成分を選択的に分解・除去する請求項3または4に記載の循環型汚水浄化方法。   The circulation according to claim 3 or 4, wherein the adsorbent and / or the inorganic adhesive component has solid acidity having an isoelectric point of pH of 3.0 or less, and selectively decomposes and removes basic wastewater components. Type wastewater purification method. 平滑面に設けられた塗膜の水接触角が40〜60°であって、疎水性の汚水成分を選択的に分解・除去する請求項1ないし4のいずれか1項に記載の循環型汚水浄化方法。   The circulating sewage according to any one of claims 1 to 4, wherein a water contact angle of a coating film provided on a smooth surface is 40 to 60 °, and a hydrophobic sewage component is selectively decomposed and removed. Purification method. 疎水性の汚水成分を吸着する吸着剤が活性炭であって、該活性炭は、10nm以上の細孔径を有する細孔の容積の和の割合が全細孔容積の19%以上であり、平均粒径が10μm以下であって、前記無機多孔体の表面に設けられた塗膜中の吸着剤の体積分率が、5〜60%である請求項9に記載の循環型汚水浄化方法、 The adsorbent that adsorbs hydrophobic sewage components is activated carbon, and the activated carbon has a ratio of the sum of the volumes of pores having a pore diameter of 10 nm or more of 19% or more of the total pore volume, and the average particle diameter Is 10 μm or less, and the volume fraction of the adsorbent in the coating film provided on the surface of the inorganic porous body is 5 to 60%, The circulating sewage purification method according to claim 9, 厚さ12mm未満の平板状光触媒担持多孔体が、該光触媒担持多孔体の太陽光が当たる側とは反対面に、無機繊維または有機繊維からなる強度98N/cm以上の織布を積層し、2層構造として用いられる請求項3ないし10のいずれか1項に記載の循環型汚水浄化方法。
A plate-like photocatalyst-supporting porous body having a thickness of less than 12 mm is laminated with a woven fabric having an intensity of 98 N / cm or more made of inorganic fibers or organic fibers on the surface opposite to the side of the photocatalyst-supporting porous body that is exposed to sunlight. The circulating sewage purification method according to any one of claims 3 to 10, which is used as a layer structure.
JP2005299944A 2004-10-15 2005-10-14 Circulation type sewage purification method Withdrawn JP2006136874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299944A JP2006136874A (en) 2004-10-15 2005-10-14 Circulation type sewage purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004301758 2004-10-15
JP2005299944A JP2006136874A (en) 2004-10-15 2005-10-14 Circulation type sewage purification method

Publications (1)

Publication Number Publication Date
JP2006136874A true JP2006136874A (en) 2006-06-01

Family

ID=36618018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299944A Withdrawn JP2006136874A (en) 2004-10-15 2005-10-14 Circulation type sewage purification method

Country Status (1)

Country Link
JP (1) JP2006136874A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233635A (en) * 2008-03-28 2009-10-15 Ube Ind Ltd Method and apparatus for water purification
KR101754090B1 (en) * 2009-05-02 2017-07-05 하이닥 필테르테크닉 게엠베하 Filter device for purifying fluids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233635A (en) * 2008-03-28 2009-10-15 Ube Ind Ltd Method and apparatus for water purification
KR101754090B1 (en) * 2009-05-02 2017-07-05 하이닥 필테르테크닉 게엠베하 Filter device for purifying fluids

Similar Documents

Publication Publication Date Title
Gondal et al. Fabrication and wettability study of WO3 coated photocatalytic membrane for oil-water separation: a comparative study with ZnO coated membrane
US20030050196A1 (en) Photocatalyst compositions and methods for making the same
US20070193875A1 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
Kubo et al. Photocatalytic remote oxidation with various photocatalysts and enhancement of its activity
US20070149397A1 (en) Photocatalytic composite material, method for producing the same and application thereof
Paz Composite titanium dioxide photocatalysts and the" adsorb & shuttle" approach: a review
Kumar et al. Photodegradation of amaranth in aqueous solution catalyzed by immobilized nanoparticles of titanium dioxide
Mendret et al. Influence of solution pH on the performance of photocatalytic membranes during dead-end filtration
US6365007B1 (en) Photocatalysts for the degradation of organic pollutants
Sheikhsamany et al. Synthesis of novel HKUST-1-based SnO2 porous nanocomposite with the photocatalytic capability for degradation of metronidazole
Qourzal et al. Heterogeneous photocatalytic degradation of 4-nitrophenol on suspended titania surface in a dynamic photoreactor
CN110893341A (en) Photocatalyst dispersion liquid, photocatalyst composite material and photocatalyst device
CN109954488B (en) Photocatalyst-carrying substrate, method for producing same, and photocatalytic device
Tao et al. Development of a TiO2/AC composite photocatalyst by dry impregnation for the treatment of methanol in humid airstreams
Duan et al. Efficient and stable monolithic microreactor with Ag/AgCl photocatalysts coated on polydopamine modified melamine sponge for photocatalytic water purification
Ali et al. Degradation studies on paraquat and malathion using TiO2/ZnO based photocatalyst
CN204768261U (en) A photocatalytic filter for degrading mist
JP5090787B2 (en) Titanium oxide composite particle aqueous dispersion and production method thereof
JP3261959B2 (en) Photocatalytic material
JP5403584B2 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP2006136874A (en) Circulation type sewage purification method
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
Nasr-Esfahani et al. Alumina/TiO 2/hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air
CN110893342A (en) Photocatalyst composite material, method for producing photocatalyst composite material, and photocatalyst device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106