JP7095837B2 - Drying shrinkage reducing agent for hydraulically cured material, shrinkage reducing method for hydraulically cured material, and cured hydraulic material with low shrinkage - Google Patents

Drying shrinkage reducing agent for hydraulically cured material, shrinkage reducing method for hydraulically cured material, and cured hydraulic material with low shrinkage Download PDF

Info

Publication number
JP7095837B2
JP7095837B2 JP2018098452A JP2018098452A JP7095837B2 JP 7095837 B2 JP7095837 B2 JP 7095837B2 JP 2018098452 A JP2018098452 A JP 2018098452A JP 2018098452 A JP2018098452 A JP 2018098452A JP 7095837 B2 JP7095837 B2 JP 7095837B2
Authority
JP
Japan
Prior art keywords
shrinkage
cured
water
reducing agent
shrinkage reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018098452A
Other languages
Japanese (ja)
Other versions
JP2019202909A (en
Inventor
陽作 池尾
菜穂 ▲高▼柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2018098452A priority Critical patent/JP7095837B2/en
Publication of JP2019202909A publication Critical patent/JP2019202909A/en
Application granted granted Critical
Publication of JP7095837B2 publication Critical patent/JP7095837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本開示は、水硬性材料硬化体の乾燥収縮低減剤、水硬性材料硬化体の収縮低減方法及び低収縮性水硬性材料硬化体に関する。 The present disclosure relates to a drying shrinkage reducing agent for a cured water-hard material, a method for reducing shrinkage of the cured water-hard material, and a cured water-hard material having low shrinkage.

従来、水硬性材料としてのセメントと水とが混練されてなるセメント組成物、又は、さらに骨材を含むコンクリート組成物を硬化させて硬化体を得る場合、硬化後に気中に置かれた硬化体は、材齢を重ねるのに伴い、セメント組成物又はコンクリート組成物中の水分が蒸発し、これによって、硬化体に乾燥収縮が生じることがある。
モルタル、コンクリート等の水硬性材料を含む組成物の硬化後に得られた硬化体の乾燥による収縮(以下、「乾燥収縮」と称することがある)は、硬化体のひび割れを引き起こし、ひいては、土木、建築構造物の強度、耐久性等の低下を招く虞がある。
Conventionally, when a cement composition obtained by kneading cement and water as a water-hardening material or a concrete composition containing an aggregate is further cured to obtain a cured product, a cured product placed in the air after curing is obtained. As the material ages, the water content in the cement composition or concrete composition evaporates, which may cause the cured product to shrink due to drying.
Shrinkage due to drying of a cured product obtained after curing of a composition containing a water-hardening material such as mortar or concrete (hereinafter, may be referred to as "dry shrinkage") causes cracks in the cured product, and thus civil engineering, There is a risk of reducing the strength, durability, etc. of the building structure.

従来、水硬性材料硬化体(以下、単に「硬化体」と称することがある)の乾燥収縮低減方法としては、未硬化の水硬性材料組成物に乾燥収縮低減剤(以下、単に「収縮低減剤」と称することがある)を添加する方法が一般的であった。しかしながら、通常、水硬性材料に収縮低減剤を添加すると、硬化に関与する水硬性材料の含有比率が相対的に減少する。
収縮低減方法としては、例えば、ポリオキシアルキレン基を含む収縮低減剤をコンクリート組成物に添加する硬化体の収縮低減方法が提案されている(特許文献1参照)。しかし、既述の如く、収縮低減剤を水硬性材料に加えることによる相対的な水硬性材料の含有比率が低下する問題があり、収縮低減剤の使用量には限界がある。さらに、特許文献1に記載の収縮低減剤は、親水性であり、空気連行性があるため、水硬性材料の調製時において、空気量の調整が困難となることがある。
Conventionally, as a method for reducing the drying shrinkage of a hydraulically cured material (hereinafter, may be simply referred to as “cured body”), a drying shrinkage reducing agent (hereinafter, simply “shrinkage reducing agent” is used for an uncured hydraulic material composition. The method of adding) was common. However, usually, when a shrinkage reducing agent is added to a hydraulic material, the content ratio of the hydraulic material involved in curing is relatively reduced.
As a method for reducing shrinkage, for example, a method for reducing shrinkage of a cured product by adding a shrinkage reducing agent containing a polyoxyalkylene group to a concrete composition has been proposed (see Patent Document 1). However, as described above, there is a problem that the relative content ratio of the hydraulic material is lowered by adding the shrinkage reducing agent to the hydraulic material, and the amount of the shrinkage reducing agent used is limited. Further, since the shrinkage reducing agent described in Patent Document 1 is hydrophilic and has air entrainment property, it may be difficult to adjust the amount of air at the time of preparing a hydraulic material.

このため、硬化体の乾燥収縮を防止する方法として、水硬性材料の硬化体に、収縮低減剤を適用する方法が試みられている。
例えば、水硬性材料の硬化体に、尿素を含有する溶液を含浸させる収縮低減方法が提案されている(特許文献2参照)。尿素は水溶性が良好であり、材料自体が非揮発性であるため、特許文献2の方法では、硬化体の細孔内に浸み込んだ尿素が結晶化する際の膨張圧により乾燥収縮を抑制するものと考えられる。
Therefore, as a method of preventing the dried shrinkage of the cured product, a method of applying a shrinkage reducing agent to the cured product of a hydraulic material has been attempted.
For example, a method for reducing shrinkage has been proposed in which a cured product of a hydraulic material is impregnated with a solution containing urea (see Patent Document 2). Since urea has good water solubility and the material itself is non-volatile, in the method of Patent Document 2, drying shrinkage occurs due to the expansion pressure when urea permeated into the pores of the cured product crystallizes. It is thought to suppress it.

特開2003-171155号公報Japanese Patent Application Laid-Open No. 2003-171155 特許第6163243号公報Japanese Patent No. 6163243

しかしながら、特許文献2に記載される尿素を含む溶液による収縮低減効果には、なお改良の余地がある。さらに、尿素水溶液を硬化体に含浸させた場合、乾燥後に尿素の結晶が硬化体表面に析出することがあり、硬化体の外観が著しく損なわれる。さらに、親水性の尿素結晶の析出が生じることにより、硬化体の表面が親水化し、その後の硬化体の表面仕上げ、例えば、防水剤処理、表面剤の塗装、タイル張りなどが困難となり、表面処理性に劣る。 However, there is still room for improvement in the shrinkage reducing effect of the urea-containing solution described in Patent Document 2. Further, when the cured product is impregnated with an aqueous urea solution, urea crystals may precipitate on the surface of the cured product after drying, and the appearance of the cured product is significantly impaired. Further, the precipitation of hydrophilic urea crystals makes the surface of the cured product hydrophilic, which makes it difficult to finish the surface of the cured product, for example, waterproofing agent treatment, surface agent coating, and tileing. Inferior in sex.

本発明の一実施形態の課題は、水硬性材料硬化体に適用することで、水硬性材料硬化体の乾燥収縮が低減され、乾燥収縮に起因するひび割れが抑制される水硬性材料硬化体の収縮低減剤を提供することである。
本発明の別の実施形態の課題は、水硬性材料硬化体の乾燥収縮が効果的に低減され、乾燥収縮に起因する硬化体のひび割れが抑制される水硬性材料硬化体の収縮低減方法を提供することである。
本発明の別の実施形態の課題は、水硬性材料硬化体の乾燥収縮低減剤を含む、乾燥収縮及び乾燥収縮に起因するひび割れが抑制された低収縮性水硬性材料硬化体を提供することである。
The subject of one embodiment of the present invention is the shrinkage of the cured water-hard material, which is applied to the cured body of the water-hard material to reduce the drying shrinkage of the cured body of the water-hard material and suppress the cracking caused by the drying shrinkage. It is to provide a reducing agent.
An object of another embodiment of the present invention is to provide a method for reducing shrinkage of a cured water-hard material, which effectively reduces drying shrinkage of the cured water-hard material and suppresses cracking of the cured product due to drying shrinkage. It is to be.
An object of another embodiment of the present invention is to provide a low shrinkage water-hard material cured product containing a drying shrinkage reducing agent for a water-hard material cured product and suppressing cracks caused by drying shrinkage and drying shrinkage. be.

課題を解決するための手段は、以下の実施形態を含む。 Means for solving the problem include the following embodiments.

<1>尿素誘導体及び親水性アミン化合物からなる群より選択される少なくとも1種の化合物と、水と、を含有する水硬性材料硬化体の収縮低減剤。
尿素誘導体及び親水性アミン化合物からなる群より選択される少なくとも1種の化合物は、良好な水溶性を示し、水との親和性に優れる。このため、収縮低減剤は均一な組成物となり、水硬性材料硬化体のへの浸透性が良好であり、水硬性材料硬化体の収縮低減効果に優れる。
さらに、乾燥後における硬化体表面への上記化合物の結晶析出が生じず、硬化体の仕上げ処理も容易に行なえるという副次的効果をも有する。
<1> A shrinkage reducing agent for a cured water-hard material containing at least one compound selected from the group consisting of a urea derivative and a hydrophilic amine compound, and water.
At least one compound selected from the group consisting of urea derivatives and hydrophilic amine compounds exhibits good water solubility and excellent affinity with water. Therefore, the shrinkage reducing agent has a uniform composition, has good permeability to the hydraulically cured material, and is excellent in the shrinkage reducing effect of the hydraulically cured material.
Further, it has a secondary effect that the crystal precipitation of the above compound does not occur on the surface of the cured product after drying, and the finishing treatment of the cured product can be easily performed.

<2> 尿素誘導体及び親水性アミン化合物からなる群より選択される少なくとも1種の化合物は、下記式(I)で表される化合物、式(II)で表される化合物及び式(III)で表される化合物からなる群より選択される少なくとも1種の化合物である<1>に記載の水硬性材料硬化体の収縮低減剤。 <2> At least one compound selected from the group consisting of a urea derivative and a hydrophilic amine compound is a compound represented by the following formula (I), a compound represented by the formula (II) and a compound represented by the formula (III). The shrinkage reducing agent for a cured water-hard material according to <1>, which is at least one compound selected from the group consisting of the represented compounds.

Figure 0007095837000001
Figure 0007095837000001

式(I)において、R、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、アルキル基は置換基としてヒドロキシ基を有していてもよい。但し、R、R、R及びRのすべてが水素原子であることはない。
式(II)において、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、R、R及びRの全てが水素原子であることはない。
上記式(I)で表される化合物、式(II)で表される化合物及び式(III)で表される化合物からなる群より選択される少なくとも1種の化合物は、いずれも、水溶性であり、簡易に入手することができ、これら化合物を含む収縮低減剤は、硬化体の収縮低減効果がより良好となる。
In formula (I), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the alkyl group may have a hydroxy group as a substituent. .. However, not all of R 1 , R 2 , R 3 and R 4 are hydrogen atoms.
In formula (II), R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and not all of R 5 , R 6 and R 7 are hydrogen atoms. ..
At least one compound selected from the group consisting of the compound represented by the above formula (I), the compound represented by the formula (II) and the compound represented by the formula (III) is water-soluble. Yes, it can be easily obtained, and the shrinkage reducing agent containing these compounds has a better shrinkage reducing effect of the cured product.

<3> 下記式(I)で表される化合物、式(II)で表される化合物及び式(III)で表される化合物からなる群より選択される少なくとも1種の化合物と、水とを含有する水硬性材料硬化体の収縮低減剤を、水硬性材料硬化体の表面に適用する工程を含む、水硬性材料硬化体の収縮低減方法。 <3> At least one compound selected from the group consisting of the compound represented by the following formula (I), the compound represented by the formula (II) and the compound represented by the formula (III), and water. A method for reducing shrinkage of a cured water-hard material, which comprises a step of applying a shrinkage reducing agent for the cured water-hard material to the surface of the cured water-hard material.

Figure 0007095837000002
Figure 0007095837000002

式(I)において、R、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、アルキル基は置換基としてヒドロキシ基を有していてもよい。但し、R、R、R及びRのすべてが水素原子であることはない。
式(II)において、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、R、R及びRの全てが水素原子であることはない。
In formula (I), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the alkyl group may have a hydroxy group as a substituent. .. However, not all of R 1 , R 2 , R 3 and R 4 are hydrogen atoms.
In formula (II), R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and not all of R 5 , R 6 and R 7 are hydrogen atoms. ..

上記化合物を水硬性材料硬化体の表面に適用し、浸透させることで、収縮低減剤は硬化体の細孔に浸透して、細孔が収縮低減剤により充填される。このため、細孔の内部に親水性の化合物が充填される。さらに、経時により、細孔内部の水分が蒸発することで細孔の表面近傍に化合物由来の被膜が形成された状態となると考えられ、この現象が生じると、硬化体の乾燥収縮がより低減され、乾燥収縮に起因する硬化体の乾燥ひび割れが効果的に防止される。
本開示の収縮低減方法では、水硬性材料硬化体の形成後に収縮低減剤を適用するため、収縮低減剤が水硬性材料硬化体自体の強度に影響を与える懸念がない。従って、水硬性材料硬化体を得るための水硬性材料組成物の処方の自由度が高い。
By applying the above compound to the surface of the cured hydraulic material and allowing it to permeate, the shrinkage reducing agent permeates the pores of the cured body, and the pores are filled with the shrinkage reducing agent. Therefore, the inside of the pores is filled with the hydrophilic compound. Further, it is considered that a film derived from a compound is formed in the vicinity of the surface of the pores due to evaporation of water inside the pores over time, and when this phenomenon occurs, the drying shrinkage of the cured product is further reduced. , Dry cracking of the cured product due to drying shrinkage is effectively prevented.
In the shrinkage reducing method of the present disclosure, since the shrinkage reducing agent is applied after the formation of the hydraulic material cured product, there is no concern that the shrinkage reducing agent affects the strength of the hydraulic material cured product itself. Therefore, there is a high degree of freedom in prescribing the hydraulic material composition for obtaining the hydraulic material cured product.

<4> 水硬性材料の硬化物であり、少なくとも表面近傍に細孔を有する硬化体と、前記硬化体の表面近傍に有する細孔内に存在する下記式(I)で表される化合物、式(II)で表される化合物及び式(III)で表される化合物からなる群より選択される少なくとも1種の化合物と、を含む低収縮性水硬性材料硬化体。 <4> A cured product of a water-hard material having pores at least in the vicinity of the surface, and a compound represented by the following formula (I) existing in the pores in the vicinity of the surface of the cured product. A low shrinkage hydraulic material cured product containing at least one compound selected from the group consisting of the compound represented by (II) and the compound represented by formula (III).

Figure 0007095837000003
Figure 0007095837000003

式(I)において、R、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、アルキル基は置換基としてヒドロキシ基を有していてもよい。但し、R、R、R及びRのすべてが水素原子であることはない。
式(II)において、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、R、R及びRの全てが水素原子であることはない。
上記化合物の少なくとも1種が、硬化体の細孔に含まれ、細孔が収縮低減剤により充填されているため、水分の蒸発に起因する細孔の収縮及び細孔の収縮に伴う乾燥収縮が抑制された低収縮性の水硬性材料硬化体となる。
In formula (I), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the alkyl group may have a hydroxy group as a substituent. .. However, not all of R 1 , R 2 , R 3 and R 4 are hydrogen atoms.
In formula (II), R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and not all of R 5 , R 6 and R 7 are hydrogen atoms. ..
Since at least one of the above compounds is contained in the pores of the cured product and the pores are filled with the shrinkage reducing agent, the pores shrink due to the evaporation of water and the dry shrinkage due to the shrinkage of the pores occurs. It becomes a cured material of a hydraulically rigid material with suppressed low shrinkage.

本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
なお、本明細書では、以下、「尿素誘導体及び親水性アミン化合物からなる群より選択される少なくとも1種の化合物」を「特定含窒素化合物」と称することがある。
本明細書において、工程との文言は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても本工程の所期の目的が達成されれば、本用語に含まれる。
本明細書において、水硬性材料とは、水と混合して硬化し得る材料の総称である。例えば、水との水和反応で硬化するセメント組成物、セメント組成物にさらに細骨材を含むモルタル組成物、さらに細骨材と粗骨材とを含むコンクリート組成物、また、セメントを用いず、水とケイ酸アルカリとフライアッシュなどの石炭灰とを含有し、重合反応により硬化する、いわゆるジオポリマー組成物を包含する意味で用いられる。
In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the present specification, the amount of each component in the composition is the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. means.
In addition, in this specification, "at least one compound selected from the group consisting of a urea derivative and a hydrophilic amine compound" may be referred to as a "specific nitrogen-containing compound" below.
In the present specification, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of this process is achieved even if it cannot be clearly distinguished from other processes.
In the present specification, the hydraulic material is a general term for materials that can be mixed with water and cured. For example, a cement composition that hardens by a hydration reaction with water, a mortar composition that further contains fine aggregate in the cement composition, a concrete composition that further contains fine aggregate and coarse aggregate, and no cement is used. It is used to include a so-called geopolymer composition which contains water, alkali silicate and coal ash such as fly ash and is cured by a polymerization reaction.

本発明の一実施形態によれば、水硬性材料硬化体に適用することで、水硬性材料硬化体の乾燥収縮が低減され、乾燥収縮に起因するひび割れが抑制される水硬性材料硬化体の収縮低減剤を提供することができる。
本発明の別の実施形態によれば、水硬性材料硬化体の乾燥収縮が効果的に低減され、乾燥収縮に起因する硬化体のひび割れが抑制される水硬性材料硬化体の収縮低減方法を提供することができる。
本発明の別の実施形態によれば、水硬性材料硬化体の乾燥収縮低減剤を含む、乾燥収縮及び乾燥収縮に起因するひび割れが抑制された水硬性材料硬化体を提供することができる。
According to one embodiment of the present invention, when applied to a cured water-hard material, the shrinkage of the cured water-hard material is reduced, and cracks caused by the shrinkage of the water-hard material are suppressed. A reducing agent can be provided.
According to another embodiment of the present invention, there is provided a method for reducing shrinkage of a cured water-hard material, which effectively reduces the drying shrinkage of the cured water-hard material and suppresses cracking of the cured product due to the drying shrinkage. can do.
According to another embodiment of the present invention, it is possible to provide a hydraulic material cured product containing a drying shrinkage reducing agent for the hydraulic material cured product, in which cracks caused by drying shrinkage and drying shrinkage are suppressed.

実施例1~実施例3及び比較例1~比較例3の水硬性材料硬化体の、乾燥期間と乾燥収縮歪みとの関係を示すグラフである。3 is a graph showing the relationship between the drying period and the drying shrinkage strain of the hydraulically cured materials of Examples 1 to 3 and Comparative Examples 1 to 3.

<水硬性材料硬化体の収縮低減剤>
本開示の水硬性材料硬化体の収縮低減剤は、尿素誘導体及び親水性アミン化合物からなる群より選択される少なくとも1種の化合物(特定含窒素化合物)と、水と、を含有する。
<Shrinkage reducing agent for hardened hydraulic material>
The shrinkage reducing agent for the cured water-hard material of the present disclosure contains at least one compound (specific nitrogen-containing compound) selected from the group consisting of a urea derivative and a hydrophilic amine compound, and water.

特定含窒素化合物としては、下記式(I)で表される化合物、式(II)で表される化合物及び式(III)で表される化合物からなる群より選択される少なくとも1種の化合物を含むことが好ましい。 As the specific nitrogen-containing compound, at least one compound selected from the group consisting of the compound represented by the following formula (I), the compound represented by the formula (II) and the compound represented by the formula (III) is used. It is preferable to include it.

Figure 0007095837000004
Figure 0007095837000004

式(I)において、R、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、アルキル基は置換基としてヒドロキシ基を有していてもよい。但し、R、R、R及びRのすべてが水素原子であることはない。
式(II)において、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、R、R及びRの全てが水素原子であることはない。
In formula (I), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the alkyl group may have a hydroxy group as a substituent. .. However, not all of R 1 , R 2 , R 3 and R 4 are hydrogen atoms.
In formula (II), R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and not all of R 5 , R 6 and R 7 are hydrogen atoms. ..

本開示の水硬性材料硬化体の収縮低減剤及びその応用における作用は明確ではないが、以下のように考えている。
特定含窒素化合物は、水への溶解性に優れ、且つ、水溶液中においてイオンに分解することなく均一に溶解して存在する。
一方、水硬性材料硬化体の乾燥収縮は、前記硬化体中の細孔内に存在する液状成分が蒸発することによって引き起こされる。なかでも、硬化体の表面近傍における細孔においては、硬化体のより深い領域における細孔に比較して、乾燥収縮に及ぼす影響が大きい。
特定含窒素化合物は水に均一に溶解しやすい性質を持つ。このため、特定含窒素化合物を含む本開示の収縮低減剤は、水硬性材料硬化体の表面に適用された場合、硬化体の表面から、少なくとも表面近傍の細孔内に速やかに浸透し、特定含窒素化合物が水に溶解した水溶液の状態で細孔内に存在する。このため、水溶液による蒸気圧降下作用により、乾燥収縮の原因となる細孔内の液状成分の蒸発が抑制される。また、特定含窒素化合物は保水性及び水分蒸発抑制性に優れるため、蒸発抑制作用がより良好となる。
さらに、硬化体の細孔内に浸透した収縮低減剤は、空気に触れやすい表面側から乾燥し、内部に水溶液を保持したまま、表面近傍にて含水率が減少した領域において被膜が形成された如き状態となる。このため、細孔内のより深部に浸透した収縮低減剤の蒸発がより効果的に抑制される。また、これに起因して、特定含窒素化合物は、尿素を用いた場合とは異なり、表面に結晶が析出することなく、乾燥時における硬化体の細孔内の水分の急激な減少が抑制され、水分の急激な減少に起因する乾燥収縮が低減されるものと考えられる。
さらに、特定含窒素化合物の水溶液である収縮低減剤を適用することで、水硬性材料硬化体に水分が供給され、且つ、水分の蒸発が抑制される。従って、水硬性硬化体が、セメントを含む場合には、水和反応を促進して強度を向上させるという副次的な効果が得られ、乾燥収縮の低減と、ひび割れ防止性がさらに良好になると考えられる。
なお、本開示は、上記推定機構になんら制限されない。
Although the action of the shrinkage reducing agent for the hydraulically cured material of the present disclosure and its application is not clear, it is considered as follows.
The specific nitrogen-containing compound has excellent solubility in water and exists uniformly dissolved in an aqueous solution without being decomposed into ions.
On the other hand, the drying shrinkage of the hydraulically hardened material is caused by the evaporation of the liquid component existing in the pores in the cured body. In particular, the pores near the surface of the cured product have a greater effect on drying shrinkage than the pores in the deeper region of the cured product.
The specific nitrogen-containing compound has the property of being easily dissolved uniformly in water. Therefore, when the shrinkage reducing agent of the present disclosure containing a specific nitrogen-containing compound is applied to the surface of a water-hard material cured product, it rapidly permeates from the surface of the cured product into pores at least in the vicinity of the surface, and is specified. The nitrogen-containing compound exists in the pores in the form of an aqueous solution dissolved in water. Therefore, the vapor pressure lowering action of the aqueous solution suppresses the evaporation of the liquid component in the pores that causes drying shrinkage. Further, since the specific nitrogen-containing compound is excellent in water retention and water evaporation inhibitory property, the evaporation inhibitory action becomes better.
Furthermore, the shrinkage reducing agent that permeated into the pores of the cured product dried from the surface side that was easily exposed to air, and a film was formed in the region where the water content decreased near the surface while holding the aqueous solution inside. It will be in such a state. Therefore, the evaporation of the shrinkage reducing agent that has penetrated deeper into the pores is more effectively suppressed. Further, due to this, unlike the case where urea is used, the specific nitrogen-containing compound does not precipitate crystals on the surface, and the rapid decrease in the water content in the pores of the cured product during drying is suppressed. It is considered that the drying shrinkage caused by the rapid decrease in water content is reduced.
Further, by applying the shrinkage reducing agent which is an aqueous solution of the specific nitrogen-containing compound, water is supplied to the cured hydraulic material and the evaporation of water is suppressed. Therefore, when the hydraulically hardened body contains cement, a secondary effect of promoting the hydration reaction and improving the strength can be obtained, and the reduction of drying shrinkage and the crack prevention property are further improved. Conceivable.
The present disclosure is not limited to the above estimation mechanism.

(特定含窒素化合物)
本開示の収縮低減剤は、尿素誘導体及び親水性アミン化合物からなる群より選択される少なくとも1種の特定含窒素化合物を含有する。
特定含窒素化合物は、親水性であって、イオン性を有しない化合物であり、両性又は非イオン性の化合物であることが好ましい。特定含窒素化合物がイオン性を有しないことで、水と混合して得られる水溶液は、適度な表面張力を有し、水硬性材料硬化体への浸透性が良好となる。
特定含窒素化合物としては、尿素誘導体、親水性の2級アミン化合物、及び3級アミン化合物から選ばれる化合物が好ましく、なかでも、下記式(I)で表される化合物、式(II)で表される化合物及び式(III)で表される化合物からなる群より選択される少なくとも1種の化合物が好ましい。
(Specific nitrogen-containing compound)
The shrinkage reducing agent of the present disclosure contains at least one specific nitrogen-containing compound selected from the group consisting of urea derivatives and hydrophilic amine compounds.
The specific nitrogen-containing compound is a compound that is hydrophilic and does not have ionicity, and is preferably an amphoteric or nonionic compound. Since the specific nitrogen-containing compound does not have ionicity, the aqueous solution obtained by mixing with water has an appropriate surface tension and has good permeability to a cured water-hard material.
As the specific nitrogen-containing compound, a compound selected from a urea derivative, a hydrophilic secondary amine compound, and a tertiary amine compound is preferable, and among them, the compound represented by the following formula (I) and the formula (II) are represented. At least one compound selected from the group consisting of the compounds to be formulated and the compound represented by the formula (III) is preferable.

Figure 0007095837000005
Figure 0007095837000005

式(I)において、R、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、アルキル基は置換基としてヒドロキシ基を有していてもよい。但し、R、R、R及びRのすべてが水素原子であることはない。
式(II)において、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、R、R及びRの全てが水素原子であることはない。
以下、本開示における好ましい特定含窒素化合物について説明する。
In formula (I), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the alkyl group may have a hydroxy group as a substituent. .. However, not all of R 1 , R 2 , R 3 and R 4 are hydrogen atoms.
In formula (II), R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and not all of R 5 , R 6 and R 7 are hydrogen atoms. ..
Hereinafter, preferred specific nitrogen-containing compounds in the present disclosure will be described.

〔式(I)で示される化合物〕 [Compound represented by formula (I)]

Figure 0007095837000006
Figure 0007095837000006

上記式(I)で示される化合物は、尿素誘導体の一態様である。
式(I)中、R、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、アルキル基は置換基としてヒドロキシ基を有するヒドロキシアルキル基であってもよい。但し、R、R、R及びRのすべてが水素原子であることはない。式(I)で表される化合物のなかでも、R及びRがメチル基又はエチル基であり、且つ、R及びRが水素原子である化合物、R及びRがメチル基又はエチル基であり、且つ、R及びRが水素原子である化合物、R、R、R又はRのいずれか一つがメチル基又はエチル基であり、その他が水素原子である化合物が好ましい。
式(I)で表される化合物としては、例えば、1,3-ジメチル尿素(R及びRがメチル基であり、且つ、R及びRが水素原子)、1,3-ジエチル尿素(R及びRがエチル基であり、且つ、R及びRが水素原子)、1,1-ジメチル尿素(R及びRがメチル基であり、且つ、R及びRが水素原子である化合物)等が挙げられる。
The compound represented by the above formula (I) is one aspect of a urea derivative.
In formula (I), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the alkyl group is a hydroxyalkyl group having a hydroxy group as a substituent. You may. However, not all of R 1 , R 2 , R 3 and R 4 are hydrogen atoms. Among the compounds represented by the formula (I), R 1 and R 3 are methyl groups or ethyl groups, and R 2 and R 4 are hydrogen atoms, and R 1 and R 2 are methyl groups or. A compound that is an ethyl group and R 3 and R 4 are hydrogen atoms, a compound in which any one of R 1 , R 2 , R 3 or R 4 is a methyl group or an ethyl group and the other is a hydrogen atom. Is preferable.
Examples of the compound represented by the formula (I) include 1,3-dimethylurea (R 1 and R 3 are methyl groups and R 2 and R 4 are hydrogen atoms) and 1,3-diethyl urea. (R 1 and R 3 are ethyl groups and R 2 and R 4 are hydrogen atoms), 1,1-dimethylurea (R 1 and R 2 are methyl groups and R 3 and R 4 are hydrogen atoms). Compounds that are hydrogen atoms) and the like.

〔式(II)で示される化合物〕 [Compound represented by formula (II)]

Figure 0007095837000007
Figure 0007095837000007

上記式(II)で表される化合物は、親水性アミン化合物の一態様である。
式(II)において、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、R、R及びRの全てが水素原子であることはない。
なかでも、R、R及びRのうち少なくとも1つが炭素数1~3のアルキル基である化合物が好ましく、R、R及びRの全てが炭素数1~3のアルキル基である化合物がより好ましい。
、R及びRにおけるアルキル基としては、メチル基、及びエチル基から選ばれるアルキル基が好ましい。
The compound represented by the above formula (II) is one aspect of a hydrophilic amine compound.
In formula (II), R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and not all of R 5 , R 6 and R 7 are hydrogen atoms. ..
Of these, compounds in which at least one of R 5 , R 6 and R 7 is an alkyl group having 1 to 3 carbon atoms are preferable, and all of R 5 , R 6 and R 7 are alkyl groups having 1 to 3 carbon atoms. Certain compounds are more preferred.
As the alkyl group in R 5 , R 6 and R 7 , an alkyl group selected from a methyl group and an ethyl group is preferable.

〔式(III)で示される化合物〕 [Compound represented by formula (III)]

Figure 0007095837000008
Figure 0007095837000008

上記式(III)で示される化合物は、親水性アミン化合物の一態様であるヘキサメチレンテトラミンである。
ヘキサメチレンテトラミンは、水溶性が良好であり、収縮低減剤に用いることで、良好な収縮低減効果が得られる。
The compound represented by the above formula (III) is hexamethylenetetramine, which is one embodiment of the hydrophilic amine compound.
Hexamethylenetetramine has good water solubility, and when used as a shrinkage reducing agent, a good shrinkage reducing effect can be obtained.

本開示の収縮低減剤は、特定含窒素化合物を1種のみ含有してもよく、2種以上を併用してもよい。 The shrinkage reducing agent of the present disclosure may contain only one specific nitrogen-containing compound, or may contain two or more of them in combination.

(水)
本開示の収縮低減剤は、前記特定含窒素化合物に加え、水を含有する。即ち、収縮低減剤は、特定含窒素化合物の水溶液の態様をとる。
水には、特に制限はなく、水道水、精製水、イオン交換水、純水などのいずれも使用することができる。
なかでも、経済性の観点から、水道水を用いることが好ましい。
(water)
The shrinkage reducing agent of the present disclosure contains water in addition to the specified nitrogen-containing compound. That is, the shrinkage reducing agent takes the form of an aqueous solution of a specific nitrogen-containing compound.
The water is not particularly limited, and any of tap water, purified water, ion-exchanged water, pure water and the like can be used.
Above all, it is preferable to use tap water from the viewpoint of economy.

(特定含窒素化合物の含有量)
収縮低減剤における特定含窒素化合物の含有量には特に制限はないが、均一な水溶液を調製しやすいこと、及び、硬化体の細孔内において良好な保水性を維持できること、等の観点から、収縮低減剤における特定含窒素化合物の含有量は、収縮低減剤の全成分に対し、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。特定含窒素化合物は水溶性が良好であるため、含有量、即ち、水溶液の濃度が高くなるに従い、効果が高くなることが期待できる。
含有量の上限には特に制限はなく、均一に溶解し得る限り特に制限はないが、水溶液の安定性、作業性の観点から、60質量%以下とすることができる。
収縮低減剤における特定含窒素化合物の含有量が上記範囲であることで、硬化体細孔への浸透性がより良好となり、硬化体の収縮低減効果が十分に得られる。
(Content of specific nitrogen-containing compound)
The content of the specific nitrogen-containing compound in the shrinkage reducing agent is not particularly limited, but from the viewpoints of easy preparation of a uniform aqueous solution and maintenance of good water retention in the pores of the cured product. The content of the specific nitrogen-containing compound in the shrinkage reducing agent is preferably 10% by mass or more, more preferably 20% by mass or more, and more preferably 40% by mass or more with respect to all the components of the shrinkage reducing agent. Is even more preferable. Since the specific nitrogen-containing compound has good water solubility, it can be expected that the effect increases as the content, that is, the concentration of the aqueous solution increases.
The upper limit of the content is not particularly limited and is not particularly limited as long as it can be uniformly dissolved, but it can be 60% by mass or less from the viewpoint of stability and workability of the aqueous solution.
When the content of the specific nitrogen-containing compound in the shrinkage reducing agent is within the above range, the permeability to the pores of the cured product becomes better, and the shrinkage reducing effect of the cured product can be sufficiently obtained.

<水硬性材料硬化体の収縮低減方法>
本開示の水硬性材料硬化体の収縮低減方法は、下記式(I)で表される化合物、式(II)で表される化合物及び式(III)で表される化合物からなる群より選択される少なくとも1種の化合物と、水とを含有する水硬性材料硬化体の収縮低減剤を、水硬性材料硬化体の表面に適用する工程〔工程(A)〕を含む。
<Method of reducing shrinkage of hydraulically hardened material>
The method for reducing shrinkage of the cured water-hard material of the present disclosure is selected from the group consisting of the compound represented by the following formula (I), the compound represented by the formula (II) and the compound represented by the formula (III). A step [step (A)] of applying a shrinkage reducing agent for a cured water-hard material containing at least one compound and water to the surface of the cured water-hard material is included.

Figure 0007095837000009
Figure 0007095837000009

上記式(I)、式(II)及び式(III)は、既述の収縮低減剤において説明した式(I)、式(II)及び式(III)と同義であり、好ましい例も同様である。 The above formulas (I), (II) and (III) are synonymous with the formulas (I), (II) and (III) described in the above-mentioned shrinkage reducing agent, and the same applies to the preferred examples. be.

工程(A)では、既述の本開示の収縮低減剤を水硬性材料硬化体に適用する。収縮低減剤を水硬性材料硬化体に適用する方法は任意であり、公知の方法、例えば、収縮低減剤に硬化体を浸漬する方法、硬化体に収縮低減剤を塗布する方法、収縮低減剤を保持させた繊維塊などの多孔質体を硬化体表面に固定する方法、硬化体表面を樹脂パネルで覆う形で水槽を作製して、作製した水槽に溶液を注入し、浸透させる方法などが挙げられる。
なかでも、硬化体の細孔内に収縮低減剤が浸透し易いという観点からは、浸漬する方法が好ましい。
一方、硬化体に収縮低減剤を塗布する場合には、必要量を硬化体に適用する目的で、複数回に分けて塗布してもよい。収縮低減剤を複数回塗布する場合には、先に塗布した収縮低減剤が乾燥する前に繰り返し塗布することが効果の観点から好ましい。
収縮低減剤を塗布により硬化体に適用する場合の塗布法には特に制限はなく、刷毛またはローラーで塗布する方法、公知の塗布装置を用いて塗布する方法などが挙げられる。
In the step (A), the shrinkage reducing agent of the present disclosure described above is applied to the cured hydraulic material. The method of applying the shrinkage reducing agent to the cured body of the water-hard material is arbitrary, and a known method, for example, a method of immersing the cured body in the shrinkage reducing agent, a method of applying the shrinkage reducing agent to the cured body, or a shrinkage reducing agent can be used. There are methods such as fixing a porous body such as a retained fiber mass to the surface of the cured body, creating a water tank with the surface of the cured body covered with a resin panel, and injecting a solution into the prepared water tank to allow it to permeate. Be done.
Above all, the method of immersing is preferable from the viewpoint that the shrinkage reducing agent easily permeates into the pores of the cured product.
On the other hand, when the shrinkage reducing agent is applied to the cured product, it may be applied in a plurality of times for the purpose of applying the required amount to the cured product. When the shrinkage reducing agent is applied a plurality of times, it is preferable to repeatedly apply the shrinkage reducing agent before it dries from the viewpoint of the effect.
The coating method when the shrinkage reducing agent is applied to the cured product by coating is not particularly limited, and examples thereof include a method of coating with a brush or a roller, and a method of coating using a known coating device.

(その他の工程)
本開示の水硬性材料硬化体の収縮低減方法は、その他の工程を含むことができる。
その他の工程としては、工程(A)の後に行なうことができる工程、例えば、収縮低減剤を適用した水硬性材料硬化体を乾燥する工程、水硬性材料硬化体の表面をシートで被覆して養生する工程などが挙げられる。
(Other processes)
The method for reducing shrinkage of the hydraulically cured material of the present disclosure can include other steps.
Other steps include a step that can be performed after the step (A), for example, a step of drying the cured water-hard material to which a shrinkage reducing agent is applied, and covering the surface of the cured water-hard material with a sheet for curing. The process of doing this can be mentioned.

本開示の収縮低減剤を適用する水硬性材料硬化体には特に制限はなく、任意の水硬性材料硬化体に適用して収縮低減効果を得ることができる。
例えば、水硬性材料がセメントを含む場合には、セメントを含む組成物の硬化体に適用することで、硬化体の細孔が水を含む収縮低減剤により充填され、細孔の収縮が抑制され、且つ、収縮低減剤に含まれる水の作用により、セメントを含む硬化体の水和反応が促進され、強度がより向上するという副次的効果を得ることができる。
また、水硬性材料としてジオポリマー組成物を用いる場合、ジオポリマー組成物硬化体は、非晶質の縮重合体であり、内部に細孔を有することから、既述のセメントを含む組成物の硬化体におけるのと同様に、細孔に収縮低減剤が浸透し、細孔の内部を充填することで、収縮低減効果を得ることができる。
The cured hydraulic material to which the shrinkage reducing agent of the present disclosure is applied is not particularly limited, and the shrinkage reducing effect can be obtained by applying it to any cured hydraulic material.
For example, when the water-hardening material contains cement, by applying it to a cured product of a composition containing cement, the pores of the cured product are filled with a shrinkage reducing agent containing water, and shrinkage of the pores is suppressed. Moreover, due to the action of water contained in the shrinkage reducing agent, the hydration reaction of the cured product containing cement is promoted, and a secondary effect of further improving the strength can be obtained.
Further, when the geopolymer composition is used as the water-hardening material, the cured geopolymer composition is an amorphous shrink polymer and has pores inside, so that the composition containing the cement described above is contained. As in the case of the cured product, the shrinkage reducing agent permeates the pores and fills the inside of the pores, whereby the shrinkage reducing effect can be obtained.

<低収縮性水硬性材料硬化体>
本開示の低収縮性水硬性材料硬化体は、水硬性材料の硬化物であり、少なくとも表面近傍に細孔を有する硬化体と、前記硬化体の表面近傍に有する細孔内に存在する下記式(I)で表される化合物、式(II)で表される化合物及び式(III)で表される化合物からなる群より選択される少なくとも1種の化合物と、を含む。
水硬性材料硬化体には特に制限はなく、水と混合して硬化体を形成しうる材料を用いて得られた硬化体であれば特に制限はない。
一般に、水硬性材料の硬化物である水硬性材料硬化体は、反応硬化する過程にて少なくとも表面近傍に細孔が形成される。既述の本開示の製造方法は、収縮低減剤を水硬性材料硬化体に適用する工程(A)を含む。工程(A)にて、水硬性材料硬化体に適用された収縮低減剤は、硬化体に形成された細孔に硬化体表面から浸透する。従って、低収縮性水硬性材料硬化体においては、硬化体に形成された細孔のうち、少なくとも表面近傍に形成された細孔内には、浸透した収縮低減剤が存在し、細孔内に存在する収縮低減剤の機能により、既述の推定機構にて述べたように細孔に起因するひび割れが抑制される。
なお、硬化体の厚みにも依存するが、硬化体の表面近傍における細孔とは、硬化体の細孔への水の浸透性を考慮すれば、一般に、硬化体の表面(0mm)から深さ25mmまでの範囲に存在する細孔ということができる。
既述のように、硬化体形成用の水硬性材料としては、水との水和反応で硬化するセメント組成物、セメント組成物にさらに細骨材を含むモルタル組成物、さらに細骨材と粗骨材とを含むコンクリート組成物が挙げられる。さらに、水とケイ酸アルカリとフライアッシュなどの石炭灰(アルカリに活性のある非晶質粉体)とを含有し、重合反応により硬化する、いわゆるジオポリマー組成物を用いてもよい。
<Low shrinkage hydraulic material hardened body>
The cured product of the low shrinkage water-hard material of the present disclosure is a cured product of the water-hard material, and is present in a cured product having pores at least in the vicinity of the surface and the following formulas existing in the pores in the vicinity of the surface of the cured product. It contains at least one compound selected from the group consisting of the compound represented by (I), the compound represented by the formula (II) and the compound represented by the formula (III).
The hydraulically cured material is not particularly limited, and is not particularly limited as long as it is a cured product obtained by using a material that can be mixed with water to form a cured product.
In general, in a hydraulic material cured product which is a cured product of a hydraulic material, pores are formed at least in the vicinity of the surface in the process of reaction curing. The manufacturing method of the present disclosure described above includes a step (A) of applying a shrinkage reducing agent to a cured hydraulic material. In the step (A), the shrinkage reducing agent applied to the hardened hydraulic material permeates the pores formed in the hardened body from the surface of the hardened body. Therefore, in the low shrinkage hydraulic material hardened body, among the pores formed in the hardened body, the shrinkage reducing agent permeated exists in the pores formed at least near the surface, and the shrinkage reducing agent is present in the pores. Due to the function of the shrinkage reducing agent present, cracks caused by pores are suppressed as described in the estimation mechanism described above.
Although it depends on the thickness of the cured product, the pores near the surface of the cured product are generally deeper than the surface (0 mm) of the cured product, considering the permeability of water into the pores of the cured product. It can be said that the pores exist in a range of up to 25 mm.
As described above, as the water-hardening material for forming a hardened body, a cement composition that cures by a hydration reaction with water, a mortar composition in which the cement composition further contains fine aggregate, and further fine aggregate and coarse Examples thereof include a concrete composition containing an aggregate. Further, a so-called geopolymer composition containing water, alkali silicate and coal ash (amorphous powder active in alkali) such as fly ash and cured by a polymerization reaction may be used.

(セメント)
水硬性材料であるセメントには特に制限はなく、水硬性材料硬化体の使用目的に応じて、各種セメント類の中から、適宜選択することができる。
セメントとしては、早強ポルトランドセメント、普通ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、混合セメントすなわち、高炉セメント、フライアッシュセメント、シリカセメント、その他、エコセメント、白色ポルトランドセメント、高硫酸塩スラグセメント、アルミナセメント、石灰、セッコウなどが挙げられる。
(cement)
The cement which is a hydraulic material is not particularly limited, and can be appropriately selected from various cements according to the purpose of use of the hydraulic material cured product.
Examples of cement include early-strength Portland cement, ordinary Portland cement, moderate heat Portland cement, low heat Portland cement, sulfate-resistant Portland cement, mixed cement, that is, blast furnace cement, fly ash cement, silica cement, other eco-cement, and white Portland cement. , High sulfate slag cement, alumina cement, lime, sekkou and the like.

硬化体を形成しうる水硬性材料は、セメントと混和材との混合物を含む。セメントと混合して用いることができる混和材としては、高炉スラグ微粉末、フライアッシュ、シリカフューム、膨張材、高強度用混和材、石灰石微粉末、砕石粉、スラッジ粉、下水汚泥微粉末、シリカ質混和材、廃コンクリート微粉末などが挙げられる。これらのなかでも、アルカリに活性のある非晶質粉体である高炉スラグ微粉末、フライアッシュ、シリカフューム、石灰石微粉末、下水汚泥微粉末などは、水ガラス(ケイ酸ナトリウム水溶液)と併用することでジオポリマー組成物の成分ともなりうる。 Hydraulic materials that can form a cured product include a mixture of cement and admixture. As an admixture that can be mixed with cement, blast furnace slag fine powder, fly ash, silica fume, expansion material, admixture for high strength, limestone fine powder, crushed stone powder, sludge powder, sewage sludge fine powder, silica Examples include admixtures and fine powder of waste concrete. Among these, blast furnace slag fine powder, fly ash, silica fume, limestone fine powder, sewage sludge fine powder, etc., which are amorphous powders active in alkali, should be used in combination with water glass (sodium silicate aqueous solution). It can also be a component of a geopolymer composition.

水硬性材料硬化体における水硬性材料の含有量には特に制限はなく、水硬性材料硬化体の使用目的等を考慮して適宜選択される。
例えば、セメント硬化体を得る場合には、通常、セメント組成物中に、水硬性材料の総量として、270kg/m~650kg/m含有することができ、320kg/m~530kg/m含有することが好ましい。しかし、この例に制限されない。
The content of the hydraulic material in the cured product of the hydraulic material is not particularly limited, and is appropriately selected in consideration of the purpose of use of the cured material of the hydraulic material and the like.
For example, in the case of obtaining a hardened cement, usually, the total amount of the hydraulic material can be contained in the cement composition as 270 kg / m 3 to 650 kg / m 3 and 320 kg / m 3 to 530 kg / m 3 . It is preferable to contain it. However, it is not limited to this example.

水硬性材料硬化体の製造には、上記の水硬性材料の他、水、骨材、特定含窒素化合物以外の公知の添加剤を、効果を損なわない限りにおいて用いることができる。
公知の添加剤としては、例えば、減水剤、空気連行剤、増粘剤、消泡剤、硬化促進剤などが挙げられる。
In addition to the above hydraulic materials, known additives other than water, aggregates, and specific nitrogen-containing compounds can be used in the production of the cured hydraulic material as long as the effects are not impaired.
Known additives include, for example, water reducing agents, air entraining agents, thickeners, defoaming agents, curing accelerators and the like.

本開示の低収縮性水硬性材料硬化体において、少なくとも表面近傍に存在する細孔内に既述の本開示の収縮低減剤を含むことは、低収縮性水硬性材料硬化体を、硬化体の表面から一定の深さ毎に破砕して、得られた破砕物を水に含浸させ、水に溶け出した特定含窒素化合物を分析する操作を複数回繰り返して行うことで、確認することができる。
具体的には、硬化体を、例えば、5mm毎の深さで機械的に破砕し、破砕条件を調整して、粒径が0.5mm以上5mm以下の範囲の破砕物を得る。
得られた破砕物50gを秤量し、1000mLの三角フラスコに、破砕物50gと純水500mL(ミリリットル)とを投入し、振とう機にて6時間連続して振とうする。
振とうした後、破砕物に含まれる収縮低減剤が分散液中に溶出する。ろ過により、破砕物と液とを分離し、得られた液の水分を蒸発させて濃縮する。濃縮した液をラマン分光装置にて分析し、ラマンスペクトルのピークを確認することにより、硬化体の深さ5mmまでの領域に含まれる収縮低減剤における特定含窒素化合物を同定することができる。
上記操作を表面から5mm毎に複数回行うことで、それぞれの深さの領域に含まれる収縮低減剤の存在を確認することができ、さらに繰り返して行うと、ある深さ以上の操作によって得られた破砕物からの収縮低減剤の存在が確認されなくなる。
これらの操作により、収縮低減剤が表面近傍からある一定の深さ、即ち、硬化体の表面近傍における破砕物には、特定含窒素化合物が含まれることを確認し、硬化体の深部における破砕物には、特定含窒素化合物が含まれないことを確認することで、被検体である硬化体が、本開示の低収縮性水硬性材料硬化体であることが確認できる。
In the hardened material of the low shrinkage water-hard material of the present disclosure, the inclusion of the shrinkage reducing agent of the present disclosure described above in the pores existing at least in the vicinity of the surface makes the hardened material of the low shrinkage water-hard material of the hardened material of the present disclosure. It can be confirmed by crushing the crushed material at regular depths from the surface, impregnating the obtained crushed material with water, and repeating the operation of analyzing the specific nitrogen-containing compound dissolved in water multiple times. ..
Specifically, the cured product is mechanically crushed at a depth of, for example, every 5 mm, and the crushing conditions are adjusted to obtain a crushed product having a particle size in the range of 0.5 mm or more and 5 mm or less.
50 g of the obtained crushed material is weighed, 50 g of the crushed material and 500 mL (milliliter) of pure water are put into a 1000 mL Erlenmeyer flask, and the mixture is continuously shaken with a shaker for 6 hours.
After shaking, the shrinkage reducing agent contained in the crushed material elutes in the dispersion. By filtration, the crushed material and the liquid are separated, and the water content of the obtained liquid is evaporated and concentrated. By analyzing the concentrated liquid with a Raman spectroscope and confirming the peak of the Raman spectrum, it is possible to identify the specific nitrogen-containing compound in the shrinkage reducing agent contained in the region of the cured product up to a depth of 5 mm.
By performing the above operation multiple times every 5 mm from the surface, the presence of the shrinkage reducing agent contained in the region of each depth can be confirmed, and if it is repeated further, it can be obtained by an operation of a certain depth or more. The presence of the shrinkage reducing agent from the crushed material cannot be confirmed.
By these operations, it was confirmed that the shrinkage reducing agent contained a specific nitrogen-containing compound at a certain depth from the vicinity of the surface, that is, the crushed material near the surface of the cured product, and the crushed material in the deep part of the cured product. By confirming that the specific nitrogen-containing compound is not contained in the above, it can be confirmed that the cured product as the subject is the cured product of the low shrinkage water-hard material of the present disclosure.

即ち、水硬性材料に特定含窒素化合物を配合した場合には、水硬性材料硬化体の深さ方向に均一に特定含窒素化合物が存在するのに対し、本開示の製造方法により得られた低収縮性水硬性材料硬化体では、硬化体の表面近傍に特定含窒素化合物が多く存在する一方で、収縮低減剤が浸透し難い硬化体の深部では、特定含窒素化合物が検出されない。その結果、本開示の低収縮性水硬性材料硬化体と、特定含窒素化合物を含む水硬性材料の硬化体とを区別することができる。
なお、上記の操作例では、硬化体の破砕深さを5mmに設定したが、1回の操作における破砕物を得るための破砕深さは上記の例には限定されず、硬化体のサイズなどに応じて適宜選択することができる。例えば、厚みが30mm~100mm程度の硬化体では、1回の操作における破砕深さを5mm~7mmとすることができ、より厚い構造物、例えば、厚みが200mm以上の硬化体である場合には、1回の操作における破砕深さは10mm以上とすることができ、いずれも正確な確認を行うことができる。
That is, when the specific nitrogen-containing compound is blended with the water-hard material, the specific nitrogen-containing compound is uniformly present in the depth direction of the cured water-hard material, whereas the low value obtained by the production method of the present disclosure is used. In the cured body of shrinkable water-hard material, a large amount of the specific nitrogen-containing compound is present near the surface of the cured body, but the specific nitrogen-containing compound is not detected in the deep part of the cured body in which the shrinkage reducing agent is difficult to penetrate. As a result, it is possible to distinguish between the cured product of the low shrinkage hydraulic material of the present disclosure and the cured product of the hydraulic material containing the specific nitrogen-containing compound.
In the above operation example, the crushing depth of the cured product is set to 5 mm, but the crushing depth for obtaining the crushed material in one operation is not limited to the above example, and the size of the cured product and the like. It can be appropriately selected according to the above. For example, in the case of a cured product having a thickness of about 30 mm to 100 mm, the crushing depth in one operation can be set to 5 mm to 7 mm, and in the case of a thicker structure, for example, a cured product having a thickness of 200 mm or more. The crushing depth in one operation can be 10 mm or more, and accurate confirmation can be performed in each case.

本開示の低収縮性水硬性材料硬化体は、乾燥収縮及び乾燥収縮に起因するひび割れが低減されるため、構造材、外装材などの種々の用途に使用することができる。
また、低収縮性水硬性材料硬化体に含まれる収縮低減剤は、硬化体の、少なくとも表面近傍における細孔内に存在し、硬化体表面に析出して外観に影響を与えたり、表面の物性に影響を与えたりすることがない。
このため、本開示の低収縮性水硬性材料硬化体は後処理性が良好である。例えば、硬化体に防水処理等の後処理を行なうために表面に吸水防止剤等を塗布する際にも、特別な処置をすることなく塗布作業を行うことが可能である。また、硬化体表面に塗装を施したり、タイル張りを行なったりする場合にも、特別な前処理が不要であるという利点を有する。
The hardened material with low shrinkage of the present disclosure can be used for various purposes such as structural materials and exterior materials because cracks caused by drying shrinkage and drying shrinkage are reduced.
Further, the shrinkage reducing agent contained in the cured body of a low shrinkage hydraulic material is present in the pores of the cured body at least in the vicinity of the surface, and precipitates on the surface of the cured body to affect the appearance or the physical characteristics of the surface. Does not affect.
Therefore, the low shrinkage hydraulic material cured product of the present disclosure has good post-treatability. For example, when applying a water absorption inhibitor or the like to the surface of a cured body for post-treatment such as waterproofing, it is possible to perform the coating work without any special treatment. Further, when the surface of the cured body is painted or tiled, there is an advantage that no special pretreatment is required.

以下、具体例を挙げて本開示の収縮低減剤、水硬性材料硬化体の収縮低減方法及び低収縮性水硬性材料硬化体について詳細に説明するが、以下の実施例は、本開示における一態様を示すものである。本開示は、その主旨を逸脱しない限り種々の変型例が可能であり、以下の記載に限定されない。
なお、特に断らない限りにおいて、以下の「%」及び「部」は質量基準である。
Hereinafter, the shrinkage reducing agent of the present disclosure, the method of reducing shrinkage of the hydraulic material cured product, and the low shrinkage hydraulic material cured product will be described in detail with reference to specific examples, but the following examples are one embodiment of the present disclosure. Is shown. The present disclosure allows various variants as long as it does not deviate from the gist thereof, and is not limited to the following description.
Unless otherwise specified, the following "%" and "part" are based on mass.

〔実施例1~実施例3、比較例1~比較例3〕
以下に示す処方に従い、水硬性材料硬化体を調製し、得られた水硬性材料硬化体を用いて評価を行った。
[Example 1 to Example 3, Comparative Example 1 to Comparative Example 3]
A cured hydraulic material was prepared according to the formulation shown below, and the obtained cured hydraulic material was used for evaluation.

<水硬性材料硬化体の製造>
下記材料を用いて、細骨材としての砂を含む水硬性材料硬化体(セメントモルタル)を作製した。
下記材料を用いた水硬性材料組成物の配合は、水セメント比(W/C)を50%、砂セメント比(S/C)を2.5とした。
JIS R 5201(1997年)に定める方法で、水硬性材料硬化体を作製し、比較例1の硬化体(標準試験体)とした。
<Manufacturing of hardened hydraulic material>
Using the following materials, a cured hydraulic material (cement mortar) containing sand as a fine aggregate was prepared.
The composition of the hydraulic material composition using the following materials had a water-cement ratio (W / C) of 50% and a sand-cement ratio (S / C) of 2.5.
A hydraulically cured material was prepared by the method specified in JIS R 5201 (1997), and used as a cured product (standard test body) of Comparative Example 1.

(水硬性材料組成物の材料)
・水硬性材料:普通ポルトランドセメント(密度3.16g/cm、比表面積3280cm/g)
・細骨材:君津産山砂(絶乾密度2.57g/cm、表乾密度2.61g/cm、吸水率1.59%)
(Material of hydraulic material composition)
-Hydraulic material: Ordinary Portland cement (density 3.16 g / cm 3 , specific surface area 3280 cm 2 / g)
-Fine aggregate: Mountain sand from Kimitsu (absolute dry density 2.57 g / cm 3 , surface dry density 2.61 g / cm 3 , water absorption rate 1.59%)

<水硬性材料硬化体の評価>
(1.乾燥収縮及び圧縮強度)
得られた水硬性材料硬化体について、乾燥収縮及び圧縮強度を測定した。
水硬性材料硬化体の乾燥収縮の評価については、JIS A 1129-3(2010年)に規定する乾燥収縮歪みを測定することで行った。JIS A 1129-3(2010年)に準じて測定した乾燥収縮歪みが小さいほど、乾燥収縮が低減されていることを示す。
水硬性材料硬化体の圧縮強度はJIS R 5201(1997年)に定める強さ試験に準じて圧縮強さを測定し、硬化体の圧縮強度の指標とした。
実施例1~実施例3、比較例1~比較例3の圧縮強度は乾燥収縮を評価した試験体と同一条件での処理、保管された試験体を用いて測定した。
まず、標準試験体とした比較例1の乾燥収縮を、材齢1日で脱型し、その後、20℃60%の環境下で乾燥収縮測定を開始し、20℃60%の環境下における乾燥収縮測定を8週間継続し、8週後の乾燥収縮歪みを記録して評価した。
また、乾燥収縮を評価した試験体と同一条件での処理、保管した比較例1の硬化体の圧縮強度を材齢4週で測定し、硬化体の圧縮強度の指標とした。
<Evaluation of hydraulically cured material>
(1. Dry shrinkage and compressive strength)
The dried shrinkage and compressive strength of the obtained cured hydraulic material were measured.
The evaluation of the drying shrinkage of the cured water-hard material was carried out by measuring the drying shrinkage strain specified in JIS A 1129-3 (2010). The smaller the drying shrinkage strain measured according to JIS A 1129-3 (2010), the smaller the drying shrinkage.
The compressive strength of the cured water-hard material was measured according to the strength test specified in JIS R 5201 (1997) and used as an index of the compressive strength of the cured product.
The compressive strengths of Examples 1 to 3 and Comparative Examples 1 to 3 were measured using the test pieces treated and stored under the same conditions as the test pieces evaluated for drying shrinkage.
First, the drying shrinkage of Comparative Example 1 as a standard test piece was demolded at the age of 1 day, and then the drying shrinkage measurement was started in an environment of 20 ° C. and 60%, and drying in an environment of 20 ° C. and 60% was started. The shrinkage measurement was continued for 8 weeks, and the dry shrinkage strain after 8 weeks was recorded and evaluated.
Further, the compressive strength of the cured product of Comparative Example 1 treated and stored under the same conditions as the test body evaluated for drying shrinkage was measured at 4 weeks of age and used as an index of the compressive strength of the cured product.

-収縮低減剤の適用-
比較例1と同様の方法で作製した水硬性材料硬化体を、材齢1日で脱型し、その後、20℃60%の環境下で乾燥収縮測定を開始した。乾燥収縮測定開始2日後に、水硬性材料硬化体を、後述の実施例1~実施例3及び比較例2~比較例3に記載された本開示の収縮低減剤又は比較収縮低減剤に1時間浸漬して収縮低減剤を含浸した。その後、収縮低減剤で処理した試験体(低収縮性水硬性材料硬化体)を得て、得られた試験体を再び20℃60%の環境下で乾燥収縮測定を開始から8週間継続し、8週後の乾燥収縮歪みを測定した。結果を下記表1に示した。
乾燥収縮測定は、8週後も継続し、13週に至るまで行なった。実施例1~実施例3の低収縮性水硬性材料硬化体、及び比較例1~比較例3の水硬性材料硬化体の、乾燥期間と乾燥収縮歪みとの関係を、図1にグラフとして示す。なお、測定開始2日後に見られるグラフの変化は、収縮低減剤を含浸させたことに起因する変化である。
図1のグラフでは、既述の乾燥収縮歪みの測定を8週後も継続し、13週まで行なった結果を示した。
実施例1~実施例3、比較例2及び比較例3の圧縮強度については、乾燥収縮を評価した試験体と同一条件での処理、保管した硬化体を用いて材齢4週で測定した。結果を下記表1に示す。
-Application of shrinkage reducing agent-
The hydraulically cured material prepared by the same method as in Comparative Example 1 was demolded at the age of 1 day, and then the drying shrinkage measurement was started in an environment of 20 ° C. and 60%. Two days after the start of the dry shrinkage measurement, the hydraulically cured material was subjected to the shrinkage reducing agent or the comparative shrinkage reducing agent of the present disclosure described in Examples 1 to 3 and Comparative Examples 2 to 3 described later for 1 hour. It was soaked and impregnated with a shrinkage reducing agent. Then, a test piece treated with a shrinkage reducing agent (a cured body made of a low shrinkage water-hard material) was obtained, and the obtained test piece was again subjected to drying shrinkage measurement in an environment of 20 ° C. and 60% for 8 weeks from the start. The dry shrinkage strain after 8 weeks was measured. The results are shown in Table 1 below.
The dry shrinkage measurement was continued after 8 weeks and continued until 13 weeks. The relationship between the drying period and the drying shrinkage strain of the low shrinkage hydraulic material cured products of Examples 1 to 3 and the hydraulic material cured products of Comparative Examples 1 to 3 is shown as a graph in FIG. .. The change in the graph seen 2 days after the start of measurement is a change caused by impregnation with the shrinkage reducing agent.
In the graph of FIG. 1, the measurement of the dry shrinkage strain described above was continued even after 8 weeks, and the result of performing until 13 weeks was shown.
The compressive strengths of Examples 1 to 3, Comparative Example 2 and Comparative Example 3 were measured at 4 weeks of age using a cured product treated and stored under the same conditions as the test body evaluated for drying shrinkage. The results are shown in Table 1 below.

各収縮低減剤の組成を以下に示す。
(実施例1で用いた収縮低減剤)
・収縮低減剤(A-1):尿素誘導体(密度1.14g/cm、分子量88、式(I)で表される化合物であり、R及びRがメチル基であり、R及びRが水素であるジメチル尿素)の40%水溶液。
(実施例2で用いた収縮低減剤)
・収縮低減剤(A-2):無水ベタイン(密度1.00g/cm、分子量117、式(II)で表される化合物であり、R、R及びRがいずれもメチル基である化合物)の40%水溶液。
(実施例3で用いた収縮低減剤)
・収縮低減剤(A-3):ヘキサメチレンテトラミン(密度1.34g/cm、分子量140(式(III)で表される化合物)の40%水溶液。
The composition of each shrinkage reducing agent is shown below.
(Shrinkage reducing agent used in Example 1)
-Shrinkage reducing agent (A-1): Urea derivative (density 1.14 g / cm 3 , molecular weight 88, compound represented by the formula (I), R 1 and R 3 are methyl groups, R 2 and A 40% aqueous solution of dimethylurea (where R4 is hydrogen).
(Shrinkage reducing agent used in Example 2)
-Shrinkage reducing agent (A-2): Betaine anhydrous (density 1.00 g / cm 3 , molecular weight 117, a compound represented by the formula (II), and R 5 , R 6 and R 7 are all methyl groups. A 40% aqueous solution of a compound).
(Shrinkage reducing agent used in Example 3)
-Shrinkage reducing agent (A-3): A 40% aqueous solution of hexamethylenetetramine (density 1.34 g / cm 3 , molecular weight 140 (compound represented by the formula (III))).

(比較例2で用いた収縮低減剤)
・比較収縮低減剤(CA-1):尿素(密度1.32g/cm、分子量60)の40%水溶液。
(比較例3で用いた収縮低減剤)
試験体を、比較収縮低減剤(CA-2)としての水に浸漬した。
(Shrinkage reducing agent used in Comparative Example 2)
Comparative shrinkage reducing agent (CA-1): 40% aqueous solution of urea (density 1.32 g / cm 3 , molecular weight 60).
(Shrinkage reducing agent used in Comparative Example 3)
The test piece was immersed in water as a comparative shrinkage reducing agent (CA-2).

(2.外観評価)
乾燥収縮歪みを測定した試験体の外観を目視にて観察し、以下の基準で評価した。結果を表1に示す。
-外観評価基準-
A:比較例1の試験体と評価対象試験体との相違を目視で観察した結果、目視にて外観上の相違は認められない。
B:比較例1の試験体と評価対象試験体との相違を目視で観察した結果、評価対象試験体の外観に僅かな析出物が認められたが、実用上問題のないレベルである。
C:評価対象試験体の表面に結晶状の析出物が認められ、外観が著しく劣っていた。
(2. Appearance evaluation)
The appearance of the test piece on which the drying shrinkage strain was measured was visually observed and evaluated according to the following criteria. The results are shown in Table 1.
-Appearance evaluation criteria-
A: As a result of visually observing the difference between the test piece of Comparative Example 1 and the test piece to be evaluated, no difference in appearance is visually observed.
B: As a result of visually observing the difference between the test piece of Comparative Example 1 and the test piece to be evaluated, a slight precipitate was observed in the appearance of the test piece to be evaluated, but the level was not a problem in practical use.
C: Crystalline precipitates were observed on the surface of the test piece to be evaluated, and the appearance was significantly inferior.

Figure 0007095837000010
Figure 0007095837000010

表1の結果より、実施例1~実施例3の水硬性材料硬化体は、いずれも乾燥収縮歪みが小さく、材齢4週において、標準である比較例1の水硬性材料硬化体よりもさらに圧縮強度が向上したことがわかる。
他方、収縮低減剤を含有しない比較例1は、乾燥収縮歪みが大きく、各実施例及び水を含浸させた比較例3よりも、圧縮強度が低い傾向が見られた。
公知の収縮低減剤である尿素を含有する比較例2の水硬性材料硬化体は、標準試験体である比較例1よりも乾燥収縮歪みは小さく、ある程度の乾燥収縮低減効果を示した。しかし、実施例1~3の各硬化体に比較すると乾燥収縮歪みはより大きな値であった。また、圧縮強度は各実施例に対し、ほぼ同等ではあるが、硬化体表面における尿素結晶の析出が著しく、外観が非常に劣っていることがわかる。
上記各実施例のうち、実施例1で得た水硬性材料硬化体における深さ方向の特定含窒素化合物の存在を、既述の方法、即ち、硬化体の深さ5mm毎の破砕物の分析により確認した。その結果、深さ10mmまで、特定含窒素化合物の存在が確認され、深さ10mmを超えた硬化体の深部では特定含窒素化合物の存在が確認できなかった。このことから、本開示の製造方法により得られた低収縮性水硬性材料硬化体は、表面近傍の細孔内のみに収縮低減剤が存在し、硬化体の深部には存在しないことが確認された。従って、実施例1の硬化体では、硬化体の表面から細孔内に浸透した収縮低減剤によりひび割れが抑えられていると考えられる。
From the results shown in Table 1, the cured water-hard material of Examples 1 to 3 had a small dry shrinkage strain, and at 4 weeks of age, it was more than the standard cured water-hard material of Comparative Example 1. It can be seen that the compressive strength has improved.
On the other hand, Comparative Example 1 containing no shrinkage reducing agent had a large drying shrinkage strain, and tended to have lower compressive strength than Comparative Example 3 impregnated with each example and water.
The hydraulically cured material of Comparative Example 2 containing urea, which is a known shrinkage reducing agent, had a smaller drying shrinkage strain than Comparative Example 1 which was a standard test piece, and showed a certain degree of drying shrinkage reducing effect. However, the drying shrinkage strain was a larger value as compared with each of the cured products of Examples 1 to 3. Further, although the compressive strength is almost the same for each example, it can be seen that the precipitation of urea crystals on the surface of the cured product is remarkable and the appearance is very inferior.
Of the above Examples, the presence of the specific nitrogen-containing compound in the depth direction in the hydraulic material cured product obtained in Example 1 is analyzed by the method described above, that is, analysis of the crushed material at a depth of 5 mm of the cured product. Confirmed by. As a result, the presence of the specific nitrogen-containing compound was confirmed up to a depth of 10 mm, and the presence of the specific nitrogen-containing compound could not be confirmed in the deep part of the cured product exceeding the depth of 10 mm. From this, it was confirmed that in the low shrinkage hydraulic material cured product obtained by the production method of the present disclosure, the shrinkage reducing agent is present only in the pores near the surface and not in the deep part of the cured product. rice field. Therefore, in the cured product of Example 1, it is considered that cracks are suppressed by the shrinkage reducing agent that has penetrated into the pores from the surface of the cured product.

(3.表面処理性)
水硬性材料硬化体に、吸水防止剤による表面処理を行う際の評価を行なった。
即ち、得られた実施例1~実施例3及び比較例1~比較例3の水硬性材料硬化体を試験体とし、硬化体の表面に吸水防止剤(シランコートHS(菊水化学工業株式会社))を塗布する表面処理を行い、表面処理による硬化体表面の撥水性を評価した。
即ち、表面に水滴を落として接触角を測定する水接触角評価を行なった。
接触角の測定は接触角計(Drop Master DM-501、協和界面科学(株)製)を用いて行った。
比較例2の硬化体は、表面に尿素の結晶が付着していたため、尿素結晶が付着した状態で表面処理した場合と、予め尿素結晶を除去した後に表面処理した場合について実施した。尿素結晶の除去は、金属製のヘラを用いて行なった。
結果を下記表2に示す。
(3. Surface treatment)
An evaluation was made when surface-treating a hardened hydraulic material with a water absorption inhibitor.
That is, the obtained cured water-hardening materials of Examples 1 to 3 and Comparative Examples 1 to 3 were used as test bodies, and a water absorption inhibitor (silane coat HS (Kikusui Chemical Industry Co., Ltd.)) was applied to the surface of the cured body. ) Was applied, and the water repellency of the surface of the cured product by the surface treatment was evaluated.
That is, a water contact angle evaluation was performed in which water droplets were dropped on the surface and the contact angle was measured.
The contact angle was measured using a contact angle meter (Drop Master DM-501, manufactured by Kyowa Interface Science Co., Ltd.).
Since urea crystals were attached to the surface of the cured product of Comparative Example 2, the surface treatment was carried out with the urea crystals attached, and the surface treatment was carried out after removing the urea crystals in advance. The urea crystals were removed using a metal spatula.
The results are shown in Table 2 below.

Figure 0007095837000011
Figure 0007095837000011

実施例1~実施例3の硬化体は、未処理の標準試験体である比較例1及び水のみを含浸させた比較例3とほぼ同等の接触角を示し、表面処理により、高い吸水防止性(撥水性)が付与されたため、表面処理性が良好であることがわかる。
他方、尿素を含有する比較例2の硬化体は、尿素結晶が析出しているため、結晶除去処理を行なわなかった場合(表2における比較例2(a))は、吸水防止剤を塗布しても、表面に付着した結晶が吸水して全く撥水性を示さず、測定は不可であった。同じ比較例2の硬化体について、金属製のヘラにより結晶を掻き取る結晶除去処理を行った後、吸水防止剤を塗布した場合(表2における比較例2(b))においては、比較例1及び各実施例に対して、やや接触角が小さく、表面処理性は標準試験体である比較例1及び各実施例に対し低いことがわかる。
以上のことから、実施例1~実施例3の低収縮性水硬性材料硬化体は、防水処理である表面処理を行なった場合の表面処理性が、比較例2に対し、良好であることが確認された。
The cured products of Examples 1 to 3 show almost the same contact angle as Comparative Example 1 which is an untreated standard test body and Comparative Example 3 impregnated with water only, and have high water absorption prevention property by surface treatment. It can be seen that the surface treatment property is good because (water repellency) is imparted.
On the other hand, since urea crystals are precipitated in the cured product of Comparative Example 2 containing urea, when the crystal removal treatment is not performed (Comparative Example 2 (a) in Table 2), a water absorption inhibitor is applied. However, the crystals adhering to the surface absorbed water and showed no water repellency, so measurement was not possible. In the case where the cured product of Comparative Example 2 is subjected to a crystal removing treatment in which crystals are scraped off with a metal spatula and then a water absorption inhibitor is applied (Comparative Example 2 (b) in Table 2), Comparative Example 1 It can be seen that the contact angle is slightly smaller than that of each example, and the surface treatability is lower than that of Comparative Example 1 and each example, which are standard test specimens.
From the above, the low shrinkage hydraulic material cured products of Examples 1 to 3 have better surface treatment properties than Comparative Example 2 when the surface treatment, which is a waterproof treatment, is performed. confirmed.

Claims (3)

下記式(I)で表される化合物、式(II)で表される化合物及び式(III)で表される化合物からなる群より選択される尿素誘導体及び親水性アミン化合物からなる群より選択される少なくとも1種の化合物と、水と、を含有する水硬性材料硬化体の収縮低減剤であり、
前記収縮低減剤の全質量に対する前記尿素誘導体及び前記親水性アミン化合物からなる群より選択される少なくとも1種の化合物の含有量が、20質量%~60質量%であり、水硬性材料硬化体の表面に適用して用いられる水硬性材料硬化体の収縮低減剤。
Figure 0007095837000012



式(I)において、R、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、アルキル基は置換基としてヒドロキシ基を有していてもよい。但し、R、R、R及びRのすべてが水素原子であることはない。
式(II)において、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、R、R及びRの全てが水素原子であることはない。
Selected from the group consisting of urea derivatives and hydrophilic amine compounds selected from the group consisting of the compound represented by the following formula (I), the compound represented by the formula (II) and the compound represented by the formula (III). It is a shrinkage reducing agent for a cured product of a hydrophilic material containing at least one compound and water.
The content of at least one compound selected from the group consisting of the urea derivative and the hydrophilic amine compound with respect to the total mass of the shrinkage reducing agent is 20% by mass to 60% by mass, and the cured material is a water-hard material. A shrinkage reducing agent for a cured body of a water-hardening material used by applying it to the surface of .
Figure 0007095837000012



In formula (I), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the alkyl group may have a hydroxy group as a substituent. .. However, not all of R 1 , R 2 , R 3 and R 4 are hydrogen atoms.
In formula (II), R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and not all of R 5 , R 6 and R 7 are hydrogen atoms. ..
下記式(I)で表される化合物、式(II)で表される化合物及び式(III)で表される化合物からなる群より選択される少なくとも1種の化合物と、水とを含有する水硬性材料硬化体の収縮低減剤であり、前記収縮低減剤の全質量に対する前記化合物の含有量が、20質量%~60質量%である水硬性材料硬化体の収縮低減剤を、水硬性材料硬化体の表面に適用する工程を含む、水硬性材料硬化体の収縮低減方法。
Figure 0007095837000013


式(I)において、R、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、アルキル基は置換基としてヒドロキシ基を有していてもよい。但し、R、R、R及びRのすべてが水素原子であることはない。
式(II)において、R、R及びRはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を表し、R、R及びRの全てが水素原子であることはない。
Water containing at least one compound selected from the group consisting of a compound represented by the following formula (I), a compound represented by the formula (II) and a compound represented by the formula (III), and water. A shrinkage reducing agent for a hardened material, wherein the content of the compound with respect to the total mass of the shrinkage reducing agent is 20% by mass to 60% by mass. A method for reducing shrinkage of a cured water-hard material, which comprises a step of applying to the surface of the body.
Figure 0007095837000013


In formula (I), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the alkyl group may have a hydroxy group as a substituent. .. However, not all of R 1 , R 2 , R 3 and R 4 are hydrogen atoms.
In formula (II), R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and not all of R 5 , R 6 and R 7 are hydrogen atoms. ..
さらに、前記水硬性材料硬化体の表面に吸水防止剤を塗布する工程を含む、請求項に記載の水硬性材料硬化体の収縮低減方法。 The method for reducing shrinkage of a cured hydraulic material according to claim 2 , further comprising a step of applying a water absorption inhibitor to the surface of the cured hydraulic material.
JP2018098452A 2018-05-23 2018-05-23 Drying shrinkage reducing agent for hydraulically cured material, shrinkage reducing method for hydraulically cured material, and cured hydraulic material with low shrinkage Active JP7095837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018098452A JP7095837B2 (en) 2018-05-23 2018-05-23 Drying shrinkage reducing agent for hydraulically cured material, shrinkage reducing method for hydraulically cured material, and cured hydraulic material with low shrinkage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018098452A JP7095837B2 (en) 2018-05-23 2018-05-23 Drying shrinkage reducing agent for hydraulically cured material, shrinkage reducing method for hydraulically cured material, and cured hydraulic material with low shrinkage

Publications (2)

Publication Number Publication Date
JP2019202909A JP2019202909A (en) 2019-11-28
JP7095837B2 true JP7095837B2 (en) 2022-07-05

Family

ID=68726119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018098452A Active JP7095837B2 (en) 2018-05-23 2018-05-23 Drying shrinkage reducing agent for hydraulically cured material, shrinkage reducing method for hydraulically cured material, and cured hydraulic material with low shrinkage

Country Status (1)

Country Link
JP (1) JP7095837B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212632A (en) 2002-01-18 2003-07-30 Oriental Construction Co Ltd Cement-based grout composition
JP2006111683A (en) 2004-10-13 2006-04-27 Kao Corp Concrete surface finishing agent composition
JP2010037116A (en) 2008-07-31 2010-02-18 Flowric:Kk Shrinkage reducing agent for cement composition and cement composition
JP6163243B1 (en) 2016-09-30 2017-07-12 国立大学法人宇都宮大学 Method for reducing drying shrinkage of hardened cementitious material
JP2018008860A (en) 2016-07-15 2018-01-18 株式会社竹中工務店 Cement composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212632A (en) 2002-01-18 2003-07-30 Oriental Construction Co Ltd Cement-based grout composition
JP2006111683A (en) 2004-10-13 2006-04-27 Kao Corp Concrete surface finishing agent composition
JP2010037116A (en) 2008-07-31 2010-02-18 Flowric:Kk Shrinkage reducing agent for cement composition and cement composition
JP2018008860A (en) 2016-07-15 2018-01-18 株式会社竹中工務店 Cement composition
JP6163243B1 (en) 2016-09-30 2017-07-12 国立大学法人宇都宮大学 Method for reducing drying shrinkage of hardened cementitious material

Also Published As

Publication number Publication date
JP2019202909A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
KR101888165B1 (en) Underwater-curing cement mortar composition and repairing method of concrete structure therewith
KR101609697B1 (en) Cement mortar compositions un-split in water and repairing method of concrete structure therewith
KR102087707B1 (en) Method of repairing and reinforcing cross-section of concrete structure by self healing using calcium hydrate solution, eco-friendly nano bubble water of carbon dioxide and mortar composition for repairment
JP4708542B2 (en) Water-repellent composition and method for producing water-repellent substrate
KR101460498B1 (en) Compositions of self water absorbing type retentive and repair method for concrete structures using the same
EP1945589A1 (en) Use and method for reduction of corrosion
EP0777635A1 (en) Shrinkage reduction cement composition
KR102338230B1 (en) Non-shirinkage type polymer modified mortar composition and construction method for repairing and restoring the surface of concrete structures using the same
JPH0144673B2 (en)
EP3126308A1 (en) Quick-drying building material composition based on a mineral hybrid binder
JP5179919B2 (en) Sulfuric acid resistant cement composition and sulfuric acid resistant concrete
JP5155846B2 (en) Cement expansion material composition
CN111187021B (en) Fiber anticorrosion modification process, anticorrosion modified fiber and mildew-proof algae-proof concrete
JP7095837B2 (en) Drying shrinkage reducing agent for hydraulically cured material, shrinkage reducing method for hydraulically cured material, and cured hydraulic material with low shrinkage
JP2013107284A (en) Cured body and method for producing the same
JPH02307879A (en) Method for preventing deterioration of hardened cement
CN109053014B (en) Enhanced water-resistant agent special for gypsum
JP2015189628A (en) Method of producing crack-reduced cement product and crack-reduced cement product
WO2017214108A1 (en) Strength enhancing admixtures for hydraulic cements
JP6002432B2 (en) Sulfuric acid resistant grout composition and filling method using the same
KR20130059750A (en) Waterproofing cement composition and its manufacturing method
JP6778529B2 (en) Cement composition
JPH09194249A (en) Production of water-repellent ceramic building material
JPS5919079B2 (en) Manufacturing method of lightweight cellular concrete
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220609

R150 Certificate of patent or registration of utility model

Ref document number: 7095837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150