JP7095340B2 - Fuel cell electrode catalyst - Google Patents

Fuel cell electrode catalyst Download PDF

Info

Publication number
JP7095340B2
JP7095340B2 JP2018052307A JP2018052307A JP7095340B2 JP 7095340 B2 JP7095340 B2 JP 7095340B2 JP 2018052307 A JP2018052307 A JP 2018052307A JP 2018052307 A JP2018052307 A JP 2018052307A JP 7095340 B2 JP7095340 B2 JP 7095340B2
Authority
JP
Japan
Prior art keywords
platinum
fuel cell
composite oxide
rock salt
salt type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018052307A
Other languages
Japanese (ja)
Other versions
JP2019164938A (en
Inventor
雄二 上高
友 森本
昇 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2018052307A priority Critical patent/JP7095340B2/en
Publication of JP2019164938A publication Critical patent/JP2019164938A/en
Application granted granted Critical
Publication of JP7095340B2 publication Critical patent/JP7095340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池電極触媒に関し、さらに詳しくは、金属元素Mを含む層状岩塩型白金含有複合酸化物(MPtO2)を含む燃料電池電極触媒に関する。 The present invention relates to a fuel cell electrode catalyst, and more particularly to a fuel cell electrode catalyst containing a layered rock salt type platinum-containing composite oxide (MPtO 2 ) containing a metal element M.

固体高分子形燃料電池の触媒層には、通常、触媒粒子を担持した担体(電極触媒)と、固体高分子電解質(触媒層アイオノマ)との混合物が用いられている。また、触媒粒子には、通常、白金又は白金合金が用いられている。
一般に、触媒粒子の担持量が多くなるほど、電極触媒の性能は向上する。しかし、白金又は白金合金は高価であるため、白金の使用量が多くなるほど、燃料電池のコストが上昇する。燃料電池を低コスト化するためには、触媒層全体に含まれる白金量を低減する必要がある。また、燃料電池における白金使用量を低減するには、少ない白金量で高い性能を示す電極触媒が必要である。
For the catalyst layer of a polymer electrolyte fuel cell, a mixture of a carrier supporting catalyst particles (catalyst catalyst) and a solid polymer electrolyte (catalyst layer ionoma) is usually used. Further, platinum or a platinum alloy is usually used as the catalyst particles.
Generally, the larger the amount of catalyst particles supported, the better the performance of the electrode catalyst. However, since platinum or a platinum alloy is expensive, the cost of the fuel cell increases as the amount of platinum used increases. In order to reduce the cost of the fuel cell, it is necessary to reduce the amount of platinum contained in the entire catalyst layer. Further, in order to reduce the amount of platinum used in the fuel cell, an electrode catalyst that exhibits high performance with a small amount of platinum is required.

そこでこの問題を解決するために、従来から種々の提案がなされている。
例えば、非特許文献1には、MxPt34型(M=Li、Na、Mg、Ca、Zn、Cd、Co、及びNi)の白金金属酸化物(Platinum Metal Oxides)の合成方法が開示されている。
同文献には、LixPt34、CoxPt34、及びNixPt34は、高い酸素還元活性と、Pt34電極と同等のボルタンメトリック特性とを持つ点が記載されている。
Therefore, in order to solve this problem, various proposals have been made conventionally.
For example, Non-Patent Document 1 describes a method for synthesizing platinum metal oxides of M x Pt 3 O 4 type (M = Li, Na, Mg, Ca, Zn, Cd, Co, and Ni). It has been disclosed.
According to the same document, Li x Pt 3 O 4 , Co x Pt 3 O 4 , and Ni x Pt 3 O 4 have high oxygen reduction activity and voltanmetric properties equivalent to those of the Pt 3 O 4 electrode. Is described.

また、非特許文献2には、ニッケル-白金酸化物ブロンズ(NixPt34、x=0.4~0.5)の合成法及びその物性(サイクリックボルタンメトリー、X線回折、X線光電子分光(XPS)、X線吸収微細構造(XAFS))が開示されている。
同文献には、ニッケル-白金酸化物ブロンズは、熱酸中における溶解度が低く、メタル白金(metallic platinum)に近い触媒活性を示すため、カソード触媒として使用可能である点が記載されている。
In addition, Non-Patent Document 2 describes a method for synthesizing nickel-platinum oxide bronze (Ni x Pt 3 O 4 , x = 0.4 to 0.5) and its physical properties (cyclic voltammetry, X-ray diffraction, X-ray). Photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS)) are disclosed.
The document describes that nickel-platinum oxide bronze can be used as a cathode catalyst because it has low solubility in hot acids and exhibits catalytic activity close to that of metallic platinum.

燃料電池において、カソード用触媒には、一般に、白金が用いられている。また、白金は、一般に、カーボン担体表面に担持された状態で用いられている。しかし、白金は、高価であるため、燃料電池を低コスト化するために白金使用量の低減が求められている。 In a fuel cell, platinum is generally used as a catalyst for a cathode. Further, platinum is generally used in a state of being supported on the surface of a carbon carrier. However, since platinum is expensive, it is required to reduce the amount of platinum used in order to reduce the cost of the fuel cell.

一方、非特許文献1、2には、白金ブロンズをカソード用触媒として使用可能である点が記載されている。しかし、これらの文献においては、白金ブロンズ表面(すなわち、酸化物表面)のみの酸素還元及び水電解性能の評価(すなわち、メタル白金が生成しない0.6Vより高い電位での評価)が行われているだけであり、メタル化した表面の活性を評価していない。また、白金ブロンズ表面(酸化物表面)の酸素還元活性は、白金に比べて低い。そのため、車載用などの高い出力が求められるデバイスにおいて白金ブロンズを触媒として使用する場合、多量の触媒が必要となる。さらに、非特許文献1、2では、白金ブロンズの耐久性についても評価されていない。 On the other hand, Non-Patent Documents 1 and 2 describe that platinum bronze can be used as a catalyst for a cathode. However, in these documents, the oxygen reduction and water electrolysis performance of only the platinum bronze surface (that is, the oxide surface) is evaluated (that is, the evaluation at a potential higher than 0.6 V at which metal platinum is not produced). However, the activity of the metallized surface has not been evaluated. Further, the oxygen reduction activity of the platinum bronze surface (oxide surface) is lower than that of platinum. Therefore, when platinum bronze is used as a catalyst in a device such as an in-vehicle device that requires high output, a large amount of catalyst is required. Further, Non-Patent Documents 1 and 2 do not evaluate the durability of platinum bronze.

R.D.Shannon et al., Inorg. Chem., 21, 3372(1982)R.D. Shannon et al., Inorg. Chem., 21, 3372 (1982) D.A.Tryk et al., Proceeding of the Symposium on Electrode Materials and Processed for Energy Conversion and Strage, 408-417(1994)D.A.Tryk et al., Proceeding of the Symposium on Electrode Materials and Processed for Energy Conversion and Strage, 408-417 (1994)

本発明が解決しようとする課題は、層状岩塩型白金含有複合酸化物を含む新規な燃料電池電極触媒を提供することにある。
また、本発明が解決しようとする他の課題は、安価であり、かつ、耐久性に優れた燃料電池電極触媒を提供することにある。
An object to be solved by the present invention is to provide a novel fuel cell electrode catalyst containing a layered rock salt type platinum-containing composite oxide.
Another problem to be solved by the present invention is to provide a fuel cell electrode catalyst that is inexpensive and has excellent durability.

上記課題を解決するために本発明に係る燃料電池電極触媒は、以下の構成を備えていることを要旨とする。
(1)前記燃料電池電極触媒は、金属元素Mを含む層状岩塩型白金含有複合酸化物(MPtO2)を含む。
(2)前記金属元素Mは、Coからなる。
(3)前記層状岩塩型白金含有複合酸化物は、表面の一部がメタル白金層からなる。
(4)前記燃料電池電極触媒は、電気化学的有効比表面積(ECSA)÷BET比表面積×100(%)で定義される前記メタル白金層の被覆率が10%以上100%未満である。
In order to solve the above problems, the fuel cell electrode catalyst according to the present invention has the following configurations.
(1) The fuel cell electrode catalyst contains a layered rock salt type platinum-containing composite oxide (MPtO 2 ) containing a metal element M.
(2) The metal element M is composed of Co.
(3) The surface of the layered rock salt type platinum-containing composite oxide is partially composed of a metal platinum layer.
(4) In the fuel cell electrode catalyst, the coverage of the metal platinum layer defined by electrochemically effective specific surface area (ECSA) ÷ BET specific surface area × 100 (%) is 10% or more and less than 100%.

層状岩塩型白金複合酸化物は、電位サイクルの付与、あるいは、還元剤処理により、表層が還元され、部分的に白金メタル化する。メタル化した部分は、酸素還元活性、及び水素酸化活性を示す。また、層状岩塩型白金含有複合酸化物は、酸素発生活性を示す。そのため、層状岩塩型白金含有複合酸化物を燃料電池のアノードに用いた場合、アノード水素欠時に酸素発生反応が進行することで高電位にならず、カーボン担体の腐食が進行しない。さらに、層状岩塩型白金含有複合酸化物は、王水に溶けないため、強酸条件でも溶出せず、高い電位にさらされても劣化しない。
さらに、層状岩塩型白金含有複合酸化物は、組成がMPtO2であり、白金ブロンズ(MPt34)に比べて、式量当たりの白金含有量が低い。そのため、同じ大きさの微粒子を作製できた場合、白金使用量を低減することができる。
The surface layer of the layered rock salt type platinum composite oxide is reduced to platinum metal by applying a potential cycle or treating with a reducing agent. The metallized portion exhibits oxygen reduction activity and hydrogen oxidation activity. In addition, the layered rock salt type platinum-containing composite oxide exhibits oxygen-evolving activity. Therefore, when the layered rock salt type platinum-containing composite oxide is used as the anode of the fuel cell, the oxygen evolution reaction proceeds when the anode hydrogen is deficient, so that the potential does not become high and the corrosion of the carbon carrier does not proceed. Furthermore, since the layered rock salt type platinum-containing composite oxide is insoluble in aqua regia, it does not elute even under strong acid conditions and does not deteriorate even when exposed to a high potential.
Further, the layered rock salt type platinum-containing composite oxide has a composition of MPtO 2 , and has a lower platinum content per formula than platinum bronze (MPt 3 O 4 ). Therefore, if fine particles of the same size can be produced, the amount of platinum used can be reduced.

CoPtO2の結晶構造の模式図である。It is a schematic diagram of the crystal structure of CoPtO 2 . 王水処理前後の試料(実施例1)のXRDパターンである。It is an XRD pattern of a sample (Example 1) before and after aqua regia treatment. 単離後のCoPtO2(実施例1)のSEM像である。It is an SEM image of CoPtO 2 (Example 1) after isolation. CoPtO2(実施例1)、カーボンブラック(比較例1)、及びPtO2(比較例2)の電気伝導率である。The electrical conductivity of CoPtO 2 (Example 1), carbon black (Comparative Example 1), and PtO 2 (Comparative Example 2).

CoPtO2(実施例1)、及びPt/Vulcan(登録商標)(比較例3)のコンディショニング時のサイクリックボルタモグラムである。It is a cyclic voltammogram at the time of conditioning of CoPtO 2 (Example 1) and Pt / Vulcan (registered trademark) (Comparative Example 3). CoPtO2(実施例1)、及びCo-Ptブロンズ(比較例4)の酸素雰囲気でのサイクリックボルタモグラムである。It is a cyclic voltammogram in an oxygen atmosphere of CoPtO 2 (Example 1) and Co-Pt bronze (Comparative Example 4). CoPtO2(実施例1)、Co-Ptブロンズ(比較例4)、及びPt/Vulcan(登録商標)(比較例3)の電気化学的有効比表面積(ECSA)、重量活性(MA)、及び比活性(SA)である。Electrochemical effective specific surface area (ECSA), weight activity (MA), and ratio of CoPtO 2 (Example 1), Co-Pt bronze (Comparative Example 4), and Pt / Vulcan® (Comparative Example 3). It is active (SA). CoPtO2(実施例1)及びグラッシーカーボン(GC)の不活性雰囲気でのサイクリックボルタモグラムである。FIG. 2 is a cyclic voltammogram of CoPtO 2 (Example 1) and glassy carbon (GC) in an inert atmosphere.

以下、本発明の一実施の形態について詳細に説明する。
[1. 燃料電池電極触媒]
本発明に係る燃料電池電極触媒は、以下の構成を備えている。
(1)前記燃料電池電極触媒は、金属元素Mを含む層状岩塩型白金含有複合酸化物(MPtO2)を含む。
(2)前記金属元素Mは、Co、Mn、及びNiからなる群から選ばれるいずれか1種以上の元素からなる。
(3)前記層状岩塩型白金含有複合酸化物は、表面の一部がメタル白金層からなる。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Fuel cell electrode catalyst]
The fuel cell electrode catalyst according to the present invention has the following configurations.
(1) The fuel cell electrode catalyst contains a layered rock salt type platinum-containing composite oxide (MPtO 2 ) containing a metal element M.
(2) The metal element M is composed of any one or more elements selected from the group consisting of Co, Mn, and Ni.
(3) The surface of the layered rock salt type platinum-containing composite oxide is partially composed of a metal platinum layer.

[1.1. 層状岩塩型白金含有複合酸化物]
「層状岩塩型白金含有複合酸化物」とは、白金、酸素、及び、第三成分として金属元素Mのイオンを含む複合金属酸化物をいう。
層状岩塩型白金含有複合酸化物の組成式は、一般にMPtO2で表される。層状岩塩型白金含有複合酸化物の空間群はR3mであり、白金原子が3aサイト、酸素原子が8eサイト、金属元素Mが3bサイトに位置する。図1に、層状岩塩型白金含有複合酸化物の一種であるCoPtO2の結晶構造の模式図を示す。
[1.1. Layered rock salt type platinum-containing composite oxide]
The "layered rock salt type platinum-containing composite oxide" refers to a composite metal oxide containing platinum, oxygen, and ions of the metal element M as a third component.
The composition formula of the layered rock salt type platinum-containing composite oxide is generally represented by MPtO 2 . The space group of the layered rock salt type platinum-containing composite oxide is R3 m, and the platinum atom is located at the 3a site, the oxygen atom is located at the 8e site, and the metal element M is located at the 3b site. FIG. 1 shows a schematic diagram of the crystal structure of CoPtO 2 , which is a kind of layered rock salt type platinum-containing composite oxide.

本発明に係る燃料電池電極触媒は、層状岩塩型白金含有複合酸化物のみからなるものでも良く、あるいは、層状岩塩型白金含有複合酸化物を適切な担体(例えば、カーボン担体、導電性酸化物担体、金属担体)の表面に担持したものでも良い。さらに、層状岩塩型白金含有複合酸化物は、単独で用いても良く、あるいは、他の材料と併用しても良い。 The fuel cell electrode catalyst according to the present invention may consist only of a layered rock salt type platinum-containing composite oxide, or may use a layered rock salt type platinum-containing composite oxide as an appropriate carrier (for example, a carbon carrier or a conductive oxide carrier). , Metal carrier) may be supported on the surface. Further, the layered rock salt type platinum-containing composite oxide may be used alone or in combination with other materials.

[1.2. 金属元素M]
金属元素Mは、Co、Mn、又はNiからなる。層状岩塩型白金含有複合酸化物には、これらのいずれか1種の金属元素Mが含まれていても良く、あるいは、2種以上が含まれていても良い。金属元素Mは、特に、Coが好ましい。
これらの金属元素Mを含む層状岩塩型白金含有複合酸化物は、いずれも、表面の一部がメタル白金化することによって白金メタル並みの酸素還元活性を示す。また、アノード触媒、あるいは、水電解触媒としても使用することができる。
[1.2. Metal element M]
The metal element M is composed of Co, Mn, or Ni. The layered rock salt type platinum-containing composite oxide may contain any one of these metal elements M, or may contain two or more of them. Co is particularly preferable as the metal element M.
All of these layered rock salt type platinum-containing composite oxides containing the metal element M exhibit oxygen reduction activity comparable to that of platinum metal by partially platinumizing the surface. It can also be used as an anode catalyst or a water electrolysis catalyst.

[1.3. 表面状態]
合成直後のMPtO2の表面は、酸化物の状態になっていると考えられる。しかし、MPtO2を所定の条件下で処理すると、MPtO2が還元され、表面の一部がメタル白金層となる。但し、理由の詳細は不明であるが、長時間処理しても、MPtO2の表面全面がメタル白金層となることはない。
MPtO2の表面積に対するメタル白金層の面積の割合は、金属元素Mの種類や処理条件により異なる。メタル白金層の被覆率=電気化学的有効比表面積(ECSA)÷BET比表面積×100(%)と定義すると、被覆率は、10~40%、あるいは、それ以上となる。
[1.3. Surface condition]
The surface of MPtO 2 immediately after synthesis is considered to be in an oxide state. However, when MPtO 2 is treated under predetermined conditions, MPtO 2 is reduced and a part of the surface becomes a metal platinum layer. However, although the details of the reason are unknown, the entire surface of MPtO 2 does not become a metal platinum layer even after long-term treatment.
The ratio of the area of the metal platinum layer to the surface area of MPtO 2 varies depending on the type of the metal element M and the treatment conditions. If the coverage of the metal platinum layer is defined as = electrochemically effective specific surface area (ECSA) ÷ BET specific surface area × 100 (%), the coverage is 10 to 40% or more.

MPtO2の表面が還元されることにより生成するメタル白金層の厚みは、極めて薄い。そのため、MPtO2に対してX線回折測定を行った場合、白金に由来するピークは認められない。一方、XPS測定を行うと、メタル白金層の厚みを見積もることができる。 The thickness of the metal platinum layer formed by reducing the surface of MPtO 2 is extremely thin. Therefore, when X-ray diffraction measurement is performed on MPtO 2 , no peak derived from platinum is observed. On the other hand, when XPS measurement is performed, the thickness of the metal platinum layer can be estimated.

[1.4. 用途]
本発明に係る燃料電池電極触媒は、種々の燃料電池のカソード材料及びアノード材料の双方に使用することができる。本発明が適用可能な燃料電池としては、例えば、固体高分子形燃料電池、アルカリ形燃料電池、リン酸形燃料電池などがある。
[1.4. Use]
The fuel cell electrode catalyst according to the present invention can be used for both the cathode material and the anode material of various fuel cells. Examples of the fuel cell to which the present invention can be applied include a solid polymer fuel cell, an alkaline fuel cell, and a phosphoric acid fuel cell.

[2. 燃料電池電極触媒の製造方法]
[2.1. 層状岩塩型白金含有複合酸化物の製造]
層状岩塩型白金含有複合酸化物は、
(a)白金源に対して所定量の金属元素Mの原料を添加し、
(b)原料混合物を所定の条件下で固相反応させ、
(c)必要に応じて、得られた反応物から副生したメタル白金を除去する
ことにより得られる。
[2. Manufacturing method of fuel cell electrode catalyst]
[2.1. Production of layered rock salt type platinum-containing composite oxide]
The layered rock salt type platinum-containing composite oxide is
(A) A predetermined amount of the raw material of the metal element M is added to the platinum source, and the raw material is added.
(B) The raw material mixture is subjected to a solid phase reaction under predetermined conditions, and then subjected to a solid phase reaction.
(C) Obtained by removing metal platinum by-produced from the obtained reactant, if necessary.

[2.1.1. 配合工程]
まず、白金源に対して所定量の金属元素Mの原料(以下、「金属源」ともいう)を添加する(配合工程)。
白金源は、層状岩塩型白金含有複合酸化物を合成可能なものである限りにおいて、特に限定されない、白金源としては、例えば、
(a)酸化白金(PtO2)、
(b)白金の硝酸塩、クロロ錯体、アンミン塩、ヒドロキシ錯体
などがある。
[2.1.1. Blending process]
First, a predetermined amount of a raw material of the metal element M (hereinafter, also referred to as “metal source”) is added to the platinum source (blending step).
The platinum source is not particularly limited as long as it can synthesize a layered rock salt type platinum-containing composite oxide, and examples of the platinum source include, for example.
(A) Platinum oxide (PtO 2 ),
(B) Platinum nitrate, chloro complex, ammine salt, hydroxy complex and the like.

金属源は、層状岩塩型白金含有複合酸化物を合成可能なものである限りにおいて、特に限定されない。金属源としては、例えば、
(a)硝酸塩、フッ化物塩、塩化物塩、臭化物塩、ヨウ化物塩、炭酸塩、過塩素酸塩、リン酸塩、硫酸塩、ホウ酸塩などの無機アニオンとの塩、
(b)酢酸塩、シュウ酸塩、クエン酸塩などの有機アニオンとの塩、
などがある。
金属源の添加量は、目的とする層状岩塩型白金含有複合酸化物が得られるように、最適な添加量を選択する。
The metal source is not particularly limited as long as it can synthesize a layered rock salt type platinum-containing composite oxide. As a metal source, for example
(A) Salts with inorganic anions such as nitrates, fluoride salts, chloride salts, bromide salts, iodide salts, carbonates, perchlorates, phosphates, sulfates, borates, etc.
(B) Salts with organic anions such as acetates, oxalates and citrates,
and so on.
The optimum amount of the metal source to be added is selected so that the desired layered rock salt type platinum-containing composite oxide can be obtained.

[2.1.2. 反応工程]
次に、原料混合物を所定の条件下で固相反応させる(反応工程)。反応条件は、層状岩塩型白金含有複合酸化物の組成や原料の種類に応じて最適な条件を選択する。反応温度は、層状岩塩型白金含有複合酸化物の組成等にもよるが、通常、600~700℃である。反応時間は、通常、数分~数時間程度である。原料混合物を所定の条件下で熱処理すると、層状岩塩型白金含有複合酸化物が生成すると同時に、メタル白金が副生する。
[2.1.2. Reaction process]
Next, the raw material mixture is subjected to a solid phase reaction under predetermined conditions (reaction step). The optimum reaction conditions are selected according to the composition of the layered rock salt type platinum-containing composite oxide and the type of raw material. The reaction temperature is usually 600 to 700 ° C., although it depends on the composition of the layered rock salt type platinum-containing composite oxide and the like. The reaction time is usually about several minutes to several hours. When the raw material mixture is heat-treated under predetermined conditions, a layered rock salt type platinum-containing composite oxide is formed, and at the same time, metal platinum is produced as a by-product.

[2.1.3. 精製工程]
次に、必要に応じて、得られた反応物から副成したメタル白金を除去する(精製工程)。メタル白金の除去は、王水処理により行うのが好ましい。所定の条件下で王水処理を行うと、反応物から層状岩塩型白金含有複合酸化物を単離することができる。
[2.1.3. Purification process]
Next, if necessary, the metal platinum by-product is removed from the obtained reactant (purification step). The removal of metallic platinum is preferably carried out by aqua regia treatment. When aqua regia treatment is carried out under predetermined conditions, a layered rock salt type platinum-containing composite oxide can be isolated from the reaction product.

[2.2. 電極触媒の製造]
得られた層状岩塩型白金含有複合酸化物粉末は、単独で用いても良く、あるいは、他の材料と組み合わせて用いても良い。
また、層状岩塩型白金含有複合酸化物粉末は、適切な基材表面に塗布した状態で使用しても良く、あるいは、固化させた状態で使用しても良い。
[2.2. Manufacture of electrode catalyst]
The obtained layered rock salt type platinum-containing composite oxide powder may be used alone or in combination with other materials.
Further, the layered rock salt type platinum-containing composite oxide powder may be used in a state of being applied to an appropriate substrate surface, or may be used in a solidified state.

[3. 作用]
層状岩塩型白金複合酸化物は、電位サイクルの付与、あるいは、還元剤処理により、表層が還元され、部分的に白金メタル化する。メタル化した部分は、酸素還元活性、及び水素酸化活性を示す。また、層状岩塩型白金含有複合酸化物は、酸素発生活性を示す。そのため、層状岩塩型白金含有複合酸化物を燃料電池のアノードに用いた場合、アノード水素欠時に酸素発生反応が進行することで高電位にならず、カーボン担体の腐食が進行しない。さらに、層状岩塩型白金含有複合酸化物は、王水に溶けないため、強酸条件でも溶出せず、高い電位にさらされても劣化しない。
さらに、層状岩塩型白金含有複合酸化物は、組成がMPtO2であり、白金ブロンズ(MPt34)に比べて、式量当たりの白金含有量が低い。そのため、同じ大きさの微粒子を作製できた場合、白金使用量を低減することができる。
[3. Action]
The surface layer of the layered rock salt type platinum composite oxide is reduced to platinum metal by applying a potential cycle or treating with a reducing agent. The metallized portion exhibits oxygen reduction activity and hydrogen oxidation activity. In addition, the layered rock salt type platinum-containing composite oxide exhibits oxygen-evolving activity. Therefore, when the layered rock salt type platinum-containing composite oxide is used as the anode of the fuel cell, the oxygen evolution reaction proceeds when the anode hydrogen is deficient, so that the potential does not become high and the corrosion of the carbon carrier does not proceed. Furthermore, since the layered rock salt type platinum-containing composite oxide is insoluble in aqua regia, it does not elute even under strong acid conditions and does not deteriorate even when exposed to a high potential.
Further, the layered rock salt type platinum-containing composite oxide has a composition of MPtO 2 , and has a lower platinum content per formula than platinum bronze (MPt 3 O 4 ). Therefore, if fine particles of the same size can be produced, the amount of platinum used can be reduced.

層状岩塩型白金複合酸化物は、それ自身の酸素還元活性は低いが、電位サイクル処理や、ギ酸やアルコールなどの還元剤による化学処理を施すことにより、表面の一部が白金メタル化され、その部分が活性点となり、白金メタル並みの酸素還元活性を示す。このため、カソード触媒として使用することができる。
一方、水素雰囲気では水素酸化反応が進行するため、アノード触媒として使用することができる。また、層状岩塩型白金複合酸化物は、水電解(酸素発生)活性を示すため、アノードでの異常電位抑制効果がある。さらに、層状岩塩型白金複合酸化物は、燃料電池環境(電位変動及び高電位)に対して高い耐久性を示す。
The layered rock salt type platinum composite oxide has a low oxygen reduction activity by itself, but a part of its surface is platinum metallized by potential cycle treatment or chemical treatment with a reducing agent such as formic acid or alcohol. The portion becomes an active point and exhibits oxygen reducing activity comparable to that of platinum metal. Therefore, it can be used as a cathode catalyst.
On the other hand, since the hydrogen oxidation reaction proceeds in a hydrogen atmosphere, it can be used as an anode catalyst. Further, since the layered rock salt type platinum composite oxide exhibits water electrolysis (oxygen generation) activity, it has an effect of suppressing an abnormal potential at the anode. Furthermore, the layered rock salt type platinum composite oxide exhibits high durability against the fuel cell environment (potential fluctuation and high potential).

(実施例1、比較例1~4)
[1. 試料の作製]
[1.1. 実施例1]
硝酸白金(Pt(NO3)2)と硝酸コバルト(Co(NO3)2・6H2O)とをモル比で1:1になるように秤量し、乳鉢で混合した。
次に、混合物を、空気通気下(1L/min)、650℃で5時間熱処理した。さらに、得られた反応物(CoPtO2とメタル白金の混合物)を熱王水に30分間浸漬し、上澄み液を除去することでメタル白金を除去した。
(Example 1, Comparative Examples 1 to 4)
[1. Preparation of sample]
[1.1. Example 1]
Platinum nitrate (Pt (NO 3 ) 2 ) and cobalt nitrate (Co (NO 3 ) 2.6H 2 O ) were weighed in a molar ratio of 1: 1 and mixed in a mortar.
The mixture was then heat treated at 650 ° C. for 5 hours under air aeration (1 L / min). Further, the obtained reaction product (a mixture of CoPtO 2 and metal platinum) was immersed in hot aqua regia for 30 minutes, and the supernatant liquid was removed to remove the metal platinum.

[1.2. 比較例1~4]
比較として、
(a)カーボンブラック(BET比表面積:220m2/g)(比較例1)、
(b)PtO2粉末(BET比表面積:104±9m2/g)(比較例2)、
(c)Pt/Vulcan(登録商標)(COパルス比表面積:158m2/g)(比較例3)、及び、
(d)Co-Ptブロンズ(BET比表面積:18.8±0.4m2/g)(比較例4)
を試験に供した。
[1.2. Comparative Examples 1 to 4]
For comparison,
(A) Carbon black (BET specific surface area: 220 m 2 / g) (Comparative Example 1),
(B) PtO 2 powder (BET specific surface area: 104 ± 9 m 2 / g) (Comparative Example 2),
(C) Pt / Vulcan® (CO pulse specific surface area: 158 m 2 / g) (Comparative Example 3), and
(D) Co-Pt bronze (BET specific surface area: 18.8 ± 0.4 m 2 / g) (Comparative Example 4)
Was subjected to the test.

[2. 評価]
[2.1. 合成直後のCoPtO2のXRD測定及びSEM観察]
図2に、王水処理前後の試料(実施例1)のXRDパターンを示す。図2より、王水処理により白金メタルが除去され、CoPtO2が単離されたことが確認できる。
図3に、単離後のCoPtO2(実施例1)のSEM像を示す。図3より、CoPtO2は、100~200nm程度の板状であることが確認できる。
[2. evaluation]
[2.1. XRD measurement and SEM observation of CoPtO 2 immediately after synthesis]
FIG. 2 shows the XRD pattern of the sample (Example 1) before and after the aqua regia treatment. From FIG. 2, it can be confirmed that the platinum metal was removed by the aqua regia treatment and CoPtO 2 was isolated.
FIG. 3 shows an SEM image of CoPtO 2 (Example 1) after isolation. From FIG. 3, it can be confirmed that CoPtO 2 has a plate shape of about 100 to 200 nm.

[2.2. BET比表面積]
実施例1で得られたCoPtO2について、窒素吸着測定によりBET比表面積を求めた。得られたCoPtO2のBET比表面積は、15.2±0.9m2/gであった。
[2.2. BET specific surface area]
For CoPtO 2 obtained in Example 1, the BET specific surface area was determined by nitrogen adsorption measurement. The BET specific surface area of the obtained CoPtO 2 was 15.2 ± 0.9 m 2 / g.

[2.3. 電気伝導率]
各粉末を圧縮成形し、プレス圧を変えながら抵抗を測定した。得られた抵抗値から電気伝導率を算出した。図4に、CoPtO2(実施例1)、カーボンブラック(比較例1)、及びPtO2(比較例2)の電気伝導率を示す。図4より、CoPtO2は、カーボンブラック並みの電気伝導度を示すことがわかった。
[2.3. Electrical conductivity]
Each powder was compression molded and the resistance was measured while changing the press pressure. The electrical conductivity was calculated from the obtained resistance value. FIG. 4 shows the electrical conductivity of CoPtO 2 (Example 1), carbon black (Comparative Example 1), and PtO 2 (Comparative Example 2). From FIG. 4, it was found that CoPtO 2 exhibits electrical conductivity comparable to that of carbon black.

[2.4. 酸素還元活性、及び水電解活性の評価]
単離後のCoPtO2粉末をアセトンに分散させた後、グラッシーカーボン(GC)電極表面に塗布して乾燥させた。これを作用極として電気化学測定を行い、酸素還元(ORR)活性を評価した。参照極は可逆水素電極(RHE)、対極は金メッシュ、電解液は0.1Mの過塩素酸とし、液温は30℃とした。
[2.4. Evaluation of oxygen reduction activity and water electrolysis activity]
After the isolated CoPtO 2 powder was dispersed in acetone, it was applied to the surface of a glassy carbon (GC) electrode and dried. Using this as the working electrode, electrochemical measurement was performed to evaluate the oxygen reduction (ORR) activity. The reference electrode was a reversible hydrogen electrode (RHE), the counter electrode was a gold mesh, the electrolytic solution was 0.1 M perchloric acid, and the solution temperature was 30 ° C.

白金の有効表面積は、不活性雰囲気でのサイクリックボルタモグラムより、水素の吸着波の電気量と脱着波の電気量との平均から求めた。酸素還元活性は、酸素雰囲気で電極を400rpmで回転させながら評価し、0.9Vでの電流値を白金有効面積で規格化した値を活性の指標とした。比較試料には、白金担持カーボンの代表例として、Pt/Vulcan(登録商標)を用いた。 The effective surface area of platinum was determined from the average of the electric energy of the adsorption wave and the electric energy of the desorption wave of hydrogen from the cyclic voltammogram in an inert atmosphere. The oxygen reduction activity was evaluated while rotating the electrode at 400 rpm in an oxygen atmosphere, and the value obtained by normalizing the current value at 0.9 V with the platinum effective area was used as the activity index. As a representative example of platinum-supported carbon, Pt / Vulcan (registered trademark) was used as a comparative sample.

[2.4.1. コンディショニング時のサイクリックボルタモグラム]
電位サイクルによるコンディショニング(0.05~1.2V、500mV/sec、200cycle、Ar雰囲気)を実施した。図5に、CoPtO2(実施例1)、及びPt/Vulcan(登録商標)(比較例3)のコンディショニング時のサイクリックボルタモグラムを示す。
CoPtO2では、電位サイクルを繰り返すとメタル白金と同様の形状(水素吸脱着波及び白金の酸化還元波が見られる)のサイクリックボルタモグラムに変化した。これは、表面にメタル白金が生成したことを示している。CoPtO2のコンディショニング前のORR活性は小さかったが、コンディショニング後はPt/Vulcanと同様のボルタモグラムとなった。
[2.4.1. Cyclic Voltamogram at Conditioning]
Conditioning by potential cycle (0.05-1.2V, 500mV / sec, 200cycle, Ar atmosphere) was performed. FIG. 5 shows cyclic voltamograms of CoPtO 2 (Example 1) and Pt / Vulcan® (Comparative Example 3) during conditioning.
In CoPtO 2 , when the potential cycle was repeated, it changed to a cyclic voltamogram having the same shape as metal platinum (hydrogen adsorption / desorption wave and redox wave of platinum can be seen). This indicates that metal platinum was formed on the surface. The ORR activity of CoPtO 2 before conditioning was small, but after conditioning it became a voltammogram similar to Pt / Vulcan.

[2.4.2. 酸素雰囲気でのサイクリックボルタモグラム]
酸素雰囲気でのサイクリックボルタモグラム(0.05~1.0V、10mV/sec、1cycle、飽和酸素雰囲気)を実施した。なお、活性値は、アノード掃引時(0.05→1.0V)の0.9Vの電流値から求めた。図6に、CoPtO2(実施例1)、及びCo-Ptブロンズ(比較例4)の酸素雰囲気でのサイクリックボルタモグラムを示す。図6より、
(a)電位サイクルにより活性が向上すること、及び、
(b)その結果、Co-Ptブロンズと同等の活性を示すこと、
が分かる。
[2.4.2. Cyclic Voltamogram in Oxygen Atmosphere]
Cyclic voltamograms (0.05-1.0 V, 10 mV / sec, 1 cycle, saturated oxygen atmosphere) were performed in an oxygen atmosphere. The activity value was obtained from the current value of 0.9 V at the time of anode sweep (0.05 → 1.0 V). FIG. 6 shows cyclic voltammograms of CoPtO 2 (Example 1) and Co-Pt bronze (Comparative Example 4) in an oxygen atmosphere. From FIG. 6,
(A) The activity is improved by the potential cycle, and
(B) As a result, the activity equivalent to that of Co-Pt bronze is exhibited.
I understand.

[2.4.3. ECSA、MA、SA]
図7に、CoPtO2(実施例1)、Co-Ptブロンズ(比較例4)、及びPt/Vulcan(登録商標)(比較例3)の電気化学的有効比表面積(ECSA)、重量活性(MA)、及び比活性(SA)を示す。CoPtO2は、触媒としての粒子径が大きいため、ECSA及び重量活性(MA)はPt/Vulcanより小さいが、比活性(SA)はPt/Vulcanと同等であった。また、CoPtO2は、Co-Ptブロンズに比べて式量当たりのPt量が少ないにもかかわらず、Co-Ptブロンズとほぼ同等の特性を示した。
[2.4.3. ECSA, MA, SA]
FIG. 7 shows the electrochemically effective specific surface area (ECSA) and weight activity (MA) of CoPtO 2 (Example 1), Co-Pt bronze (Comparative Example 4), and Pt / Vulcan® (Comparative Example 3). ), And specific activity (SA). Since CoPtO 2 has a large particle size as a catalyst, ECSA and weight activity (MA) are smaller than Pt / Vulcan, but specific activity (SA) is equivalent to Pt / Vulcan. Further, CoPtO 2 showed almost the same characteristics as Co-Pt bronze, although the amount of Pt per formula amount was smaller than that of Co-Pt bronze.

[2.4.4. 不活性雰囲気でのサイクリックボルタモグラム]
不活性雰囲気でのサイクリックボルタモグラム(0.05~1.0V、50mV/sec、5cycle、Ar飽和雰囲気)を実施した。なお、ECSAは、5サイクル目のボルタモグラムの水素吸脱着域(0.05~0.4V)の電流値から求めた。図8に、CoPtO2(実施例1)及びグラッシーカーボン(GC)の不活性雰囲気でのサイクリックボルタモグラムを示す。高電位まで電位を掃引(0.05~1.7V、50mV/sec、Ar雰囲気)したところ、1.5Vから大きな電流が流れた。図8より、CoPtO2は、水電解酸素発生活性を示すことがわかった。
[2.4.4. Cyclic Voltamogram in an Inactive Atmosphere]
Cyclic voltamograms (0.05-1.0 V, 50 mV / sec, 5 cycle, Ar saturated atmosphere) were performed in an inert atmosphere. The ECSA was obtained from the current value in the hydrogen desorption region (0.05 to 0.4 V) of the voltammogram at the 5th cycle. FIG. 8 shows cyclic voltammograms of CoPtO 2 (Example 1) and glassy carbon (GC) in an inert atmosphere. When the potential was swept up to a high potential (0.05 to 1.7 V, 50 mV / sec, Ar atmosphere), a large current flowed from 1.5 V. From FIG. 8, it was found that CoPtO 2 exhibits water electrolytic oxygen generation activity.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.

本発明に係る燃料電池電極触媒は、固体高分子形燃料電池、アルカリ形燃料電池、リン酸形燃料電池などの燃料電池のアノード材料及びカソード材料として用いることができる。 The fuel cell electrode catalyst according to the present invention can be used as an anode material and a cathode material for fuel cells such as solid polymer fuel cells, alkaline fuel cells, and phosphoric acid fuel cells.

Claims (3)

以下の構成を備えた燃料電池電極触媒。
(1)前記燃料電池電極触媒は、金属元素Mを含む層状岩塩型白金含有複合酸化物(MPtO2)を含む。
(2)前記金属元素Mは、Coからなる。
(3)前記層状岩塩型白金含有複合酸化物は、表面の一部がメタル白金層からなる。
(4)前記燃料電池電極触媒は、電気化学的有効比表面積(ECSA)÷BET比表面積×100(%)で定義される前記メタル白金層の被覆率が10%以上100%未満である。
A fuel cell electrode catalyst having the following configurations.
(1) The fuel cell electrode catalyst contains a layered rock salt type platinum-containing composite oxide (MPtO 2 ) containing a metal element M.
(2) The metal element M is composed of Co.
(3) The surface of the layered rock salt type platinum-containing composite oxide is partially composed of a metal platinum layer.
(4) In the fuel cell electrode catalyst, the coverage of the metal platinum layer defined by electrochemically effective specific surface area (ECSA) ÷ BET specific surface area × 100 (%) is 10% or more and less than 100%.
カソード材料として用いられる請求項1に記載の燃料電池電極触媒。 The fuel cell electrode catalyst according to claim 1, which is used as a cathode material. アノード材料として用いられる請求項1に記載の燃料電池電極触媒。 The fuel cell electrode catalyst according to claim 1, which is used as an anode material.
JP2018052307A 2018-03-20 2018-03-20 Fuel cell electrode catalyst Active JP7095340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018052307A JP7095340B2 (en) 2018-03-20 2018-03-20 Fuel cell electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018052307A JP7095340B2 (en) 2018-03-20 2018-03-20 Fuel cell electrode catalyst

Publications (2)

Publication Number Publication Date
JP2019164938A JP2019164938A (en) 2019-09-26
JP7095340B2 true JP7095340B2 (en) 2022-07-05

Family

ID=68064412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052307A Active JP7095340B2 (en) 2018-03-20 2018-03-20 Fuel cell electrode catalyst

Country Status (1)

Country Link
JP (1) JP7095340B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134613A (en) 2004-11-02 2006-05-25 Canon Inc Electrode catalyst for solid polymer electrolyte fuel cell and fuel cell using it
JP2009129903A (en) 2007-11-20 2009-06-11 Samsung Electronics Co Ltd Electrocatalyst for fuel cell, and its manufacturing method, as well as fuel cell equipped with electrode containing this electrocatalyst
JP2010218923A (en) 2009-03-17 2010-09-30 Akita Univ Platinum oxide catalyst for fuel cell
JP2014130847A (en) 2009-04-23 2014-07-10 3M Innovative Properties Co Catalytic properties control by intermixed inorganic material
JP2017004957A (en) 2015-06-15 2017-01-05 国立研究開発法人物質・材料研究機構 Anode material for solid oxide type fuel battery, manufacturing method for the same and solid oxide type fuel battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134613A (en) 2004-11-02 2006-05-25 Canon Inc Electrode catalyst for solid polymer electrolyte fuel cell and fuel cell using it
JP2009129903A (en) 2007-11-20 2009-06-11 Samsung Electronics Co Ltd Electrocatalyst for fuel cell, and its manufacturing method, as well as fuel cell equipped with electrode containing this electrocatalyst
JP2010218923A (en) 2009-03-17 2010-09-30 Akita Univ Platinum oxide catalyst for fuel cell
JP2014130847A (en) 2009-04-23 2014-07-10 3M Innovative Properties Co Catalytic properties control by intermixed inorganic material
JP2017004957A (en) 2015-06-15 2017-01-05 国立研究開発法人物質・材料研究機構 Anode material for solid oxide type fuel battery, manufacturing method for the same and solid oxide type fuel battery

Also Published As

Publication number Publication date
JP2019164938A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
Park et al. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells
Pu et al. Anion-modulated platinum for high-performance multifunctional electrocatalysis toward HER, HOR, and ORR
Valim et al. Oxygen reduction reaction catalyzed by ɛ-MnO2: influence of the crystalline structure on the reaction mechanism
Ruiz-Camacho et al. Platinum deposited on TiO2-C and SnO2-C composites for methanol oxidation and oxygen reduction
JP5623680B1 (en) Tantalum-containing tin oxide for fuel cell electrode materials
KR101670929B1 (en) Catalytic materials and electrodes for oxygen evolution, and systems for electrochemical reaction
CN112005414A (en) Catalyst material for fuel cells or electrolysers and associated production method
JP6773067B2 (en) Fuel cell electrode catalyst
Almeida et al. Addition of iron oxide to Pt-based catalyst to enhance the catalytic activity of ethanol electrooxidation
Wang et al. Activity enhancement via borate incorporation into a NiFe (oxy) hydroxide catalyst for electrocatalytic oxygen evolution
KR20160128951A (en) Catalytic materials and electrodes for oxygen evolution, and systems for electrochemical reaction
Esquius et al. High entropy materials as emerging electrocatalysts for hydrogen production through low-temperature water electrolysis
EP3525272B1 (en) Catalyst for solid polymer fuel cell and method for producing the same
Pushkarev et al. Iridium catalyst supported on conductive titanium oxides for polymer electrolyte membrane electrolysis
Fujimoto et al. Cobalt-doped electrolytic manganese dioxide as an efficient bifunctional catalyst for oxygen evolution/reduction reactions
Ni et al. Suppressing the lattice oxygen diffusion via high-entropy oxide construction towards stabilized acidic water oxidation
Lüsi et al. Oxygen reduction reaction on PdM/C (M= Pb, Sn, Bi) alloy nanocatalysts
KR101932612B1 (en) Preparing method of nitrogen-iron doped porous carbon nanoparticle catalyst for oxygen reduction reaction
Rufino et al. The effect of methanol on the stability of Pt/C and Pt–RuOx/C catalysts
Palma et al. High catalytic activity for glycerol electrooxidation by binary Pd-based nanoparticles in alkaline media
JP7095340B2 (en) Fuel cell electrode catalyst
Liu et al. Efficient overall water-splitting enabled by tunable electronic states of vanadium-substituted P–Co3O4
Khater et al. Reduced graphene oxide-supported palladium oxide-MOx for improving the performance of air-cathode microbial fuel cells: influence of the Sn, Ce, Zn, and Fe precursors
Zhao et al. Materials Engineering toward Durable Ru-Based Electrocatalysts for Acidic Oxygen Evolution Reaction
JP6642473B2 (en) Anode for electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7095340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150