JP7093264B2 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP7093264B2
JP7093264B2 JP2018151747A JP2018151747A JP7093264B2 JP 7093264 B2 JP7093264 B2 JP 7093264B2 JP 2018151747 A JP2018151747 A JP 2018151747A JP 2018151747 A JP2018151747 A JP 2018151747A JP 7093264 B2 JP7093264 B2 JP 7093264B2
Authority
JP
Japan
Prior art keywords
main body
accommodating portion
base material
cvd
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151747A
Other languages
Japanese (ja)
Other versions
JP2020026370A (en
Inventor
幸加 堀尾
敏樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2018151747A priority Critical patent/JP7093264B2/en
Publication of JP2020026370A publication Critical patent/JP2020026370A/en
Application granted granted Critical
Publication of JP7093264B2 publication Critical patent/JP7093264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、反応装置に関する。 The present invention relates to a reactor.

黒鉛は、高い耐熱性と、化学的安定性を備えているので、高温で使用する様々な反応装置に使用されている。 Graphite has high heat resistance and chemical stability, so it is used in various reactors used at high temperatures.

特許文献1には、単結晶SiCを液相で育成するための装置が記載されている。
具体的には、少なくとも炭素(C)原子を含む坩堝内の底部に種結晶となる炭化珪素(SiC)単結晶基板を配置し、このSiC単結晶基板の上面を覆うように坩堝内に二酸化珪素(SiO)粉末を充填するとともに、さらにその上部にSiO粉末とSiC粉末の混合粉末を充填した状態で、底部側が低温となるように上下の温度差を保ちながら不活性雰囲気中で加熱して両粉末を溶解させ、その融液中に上記SiC単結晶基板を所定時間に亘り浸漬保持させることにより、SiC単結晶基板の表面に単結晶を育成させる。
ここで、上記坩堝として、黒鉛製坩堝あるいはその内面にSiCもしくは焼結SiCのコーティング層を施した坩堝が望ましいことが記載されている。
Patent Document 1 describes an apparatus for growing a single crystal SiC in a liquid phase.
Specifically, a silicon carbide (SiC) single crystal substrate to be a seed crystal is placed at the bottom of the pit containing at least a carbon (C) atom, and silicon dioxide silicon dioxide is placed in the pit so as to cover the upper surface of the SiC single crystal substrate. In a state where (SiO 2 ) powder is filled and a mixed powder of SiO 2 powder and SiC powder is further filled in the upper part thereof, the mixture is heated in an inert atmosphere while keeping the temperature difference between the upper and lower sides so that the bottom side becomes low temperature. By dissolving both powders and immersing and holding the SiC single crystal substrate in the melt for a predetermined time, a single crystal is grown on the surface of the SiC single crystal substrate.
Here, it is described that as the above-mentioned crucible, a graphite crucible or a crucible having a coating layer of SiC or sintered SiC on the inner surface thereof is desirable.

特許文献2には、SiOガスの発生源を加熱する方法として黒鉛ルツボを用いることが記載されている。SiOガスは、Si粉とSiO粉との混合体、またはSiC粉とSiO粉との混合体、あるいは炭素粉とSiO粉との混合体、その他ケイ素化合物を1200~2300℃に加熱することにより発生させることができることが記載されている。 Patent Document 2 describes that a graphite crucible is used as a method for heating a source of SiO gas. The SiO gas heats a mixture of Si powder and SiO 2 powder, a mixture of SiC powder and SiO 2 powder, a mixture of carbon powder and SiO 2 powder, and other silicon compounds to 1200 to 2300 ° C. It is described that it can be generated by.

特開2000-256091号公報Japanese Unexamined Patent Publication No. 2000-256091 特開平1-104879号公報Japanese Unexamined Patent Publication No. 1-184779

上記に記載された発明では、黒鉛あるいは、SiCを被覆した黒鉛のルツボを用いて反応を行っているが、黒鉛は、Si、SiO及びこれらを加熱することにより発生する酸化性ガスとの反応性が高く、SiCの被覆は、わずかな酸素が存在する場合に酸化する。このため、Si、ケイ素化合物などの反応に使用するルツボは、ライフが短く頻繁に交換しなければならない。本発明は、上記課題を鑑み、ライフの長い反応装置を提供することを目的とする。 In the invention described above, the reaction is carried out using graphite or a graphite pot coated with SiC, and the graphite reacts with Si, SiO 2 , and an oxidizing gas generated by heating these. Highly reactive, the SiC coating oxidizes in the presence of a small amount of oxygen. Therefore, the crucible used for the reaction of Si, silicon compounds, etc. has a short life and must be replaced frequently. In view of the above problems, it is an object of the present invention to provide a reaction device having a long life.

上記課題を解決するため、本発明の反応装置は、酸化物系セラミックを含む原料粉を加熱する黒鉛基材からなる反応装置であって、上記黒鉛基材の表面にCVD-SiC被膜が形成され原料粉と接する収容部と、上記黒鉛基材の表面に熱分解炭素被膜が形成された本体部と、からなることを特徴とする。 In order to solve the above problems, the reaction device of the present invention is a reaction device made of a graphite base material that heats a raw material powder containing an oxide-based ceramic, and a CVD-SiC film is formed on the surface of the graphite base material. It is characterized by comprising an accommodating portion in contact with raw material powder and a main body portion in which a pyrolytic carbon film is formed on the surface of the graphite base material.

本発明の反応装置では、原料粉と接触する収容部では、黒鉛基材の表面にCVD-SiC被膜が形成されている。CVD-SiC被膜は緻密である上に酸化性ガスの濃度が高い場合に酸化性ガスとの反応性が低いため、黒鉛基材を十分に保護し侵食を防止することができる。
一方、本体部では、黒鉛基材の表面にCVD-SiC被膜に代わって熱分解炭素被膜が形成されている。原料粉を加熱することにより発生した酸化性ガスが雰囲気ガスにより希釈されると、CVD-SiC被膜が消耗しやすい環境となるが、本体部には、酸化性ガスの希薄な環境下において酸化性ガスとの反応性が低い熱分解炭素被膜が形成されているため、黒鉛基材を反応性ガスから充分に保護し、侵食を防止することができる。
すなわち、本発明の反応装置では、濃度が高い酸化性ガスと接触する収容部と濃度の低い酸化性ガスと接触する本体部の両方に、それぞれ最適な被膜が形成されているため、収容部及び本体部のいずれにおいても酸化性ガスとの反応による摩耗が進行しにくく、ライフが長い。
In the reaction apparatus of the present invention, a CVD-SiC film is formed on the surface of the graphite base material in the accommodating portion in contact with the raw material powder. Since the CVD-SiC film is dense and has low reactivity with the oxidizing gas when the concentration of the oxidizing gas is high, it can sufficiently protect the graphite base material and prevent erosion.
On the other hand, in the main body, a pyrolytic carbon film is formed on the surface of the graphite base material instead of the CVD-SiC film. When the oxidizing gas generated by heating the raw material powder is diluted with the atmospheric gas, the CVD-SiC film is easily consumed, but the main body is oxidative in an environment where the oxidizing gas is diluted. Since the thermally decomposed carbon film having low reactivity with the gas is formed, the graphite base material can be sufficiently protected from the reactive gas and erosion can be prevented.
That is, in the reaction apparatus of the present invention, an optimum film is formed on both the accommodating portion in contact with the high-concentration oxidizing gas and the main body portion in contact with the low-concentration oxidizing gas. Wearing due to the reaction with the oxidizing gas does not easily progress in any of the main bodies, and the life is long.

本発明の反応装置は、次の態様であることが好ましい。 The reactor of the present invention preferably has the following aspects.

(1)上記CVD-SiC被膜及び上記熱分解炭素被膜が同一の黒鉛基材に形成されており、上記収容部及び上記本体部が一体化している。 (1) The CVD-SiC film and the pyrolytic carbon film are formed on the same graphite base material, and the accommodating portion and the main body portion are integrated.

(2)上記CVD-SiC被膜及び上記熱分解炭素被膜が異なる黒鉛素材に形成されており、上記収容部及び上記本体部が一体化していない。 (2) The CVD-SiC film and the pyrolytic carbon film are formed of different graphite materials, and the accommodating portion and the main body portion are not integrated.

(3)上記収容部及び上記本体部は連結部材により連結されており、上記収容部及び上記本体部は、それぞれ上記連結部材に接合されている。 (3) The accommodating portion and the main body portion are connected by a connecting member, and the accommodating portion and the main body portion are each joined to the connecting member.

(4)上記連結部材は、反応装置の外側に配置される当て板と、反応装置の内側から挿入されるネジとからなる。 (4) The connecting member includes a backing plate arranged on the outside of the reaction device and a screw inserted from the inside of the reaction device.

(5)上記連結部材は、C/C複合材からなる。 (5) The connecting member is made of a C / C composite material.

本発明によれば、ライフの長い反応装置を提供することができる。 According to the present invention, it is possible to provide a reaction device having a long life.

図1は、本発明の反応装置の第一実施形態の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the first embodiment of the reaction apparatus of the present invention. 図2は、本発明の反応装置の第二実施形態の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of a second embodiment of the reaction apparatus of the present invention. 図3は、本発明の反応装置の第三実施形態の一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an example of a third embodiment of the reaction apparatus of the present invention. 図4は、本発明の反応装置の第四実施形態の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of a fourth embodiment of the reaction apparatus of the present invention. 図5は、本発明の反応装置の第五実施形態の一例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an example of a fifth embodiment of the reaction apparatus of the present invention. 図6(a)は、加熱試験前の製造例1に係る試験片の断面偏光顕微鏡(POMともいう)画像であり、図6(b)は、加熱試験後の製造例1に係る試験片の断面POM画像である。FIG. 6A is a cross-sectional polarizing microscope (also referred to as POM) image of the test piece according to Production Example 1 before the heating test, and FIG. 6B is a cross-sectional polarizing microscope (also referred to as POM) image of the test piece according to Production Example 1 after the heating test. It is a cross-sectional POM image. 図7(a)は、加熱試験前の製造例2に係る試験片の断面POM画像であり、図7(b)は、加熱試験後の製造例2に係る試験片の断面POM画像である。FIG. 7A is a cross-sectional POM image of the test piece according to Production Example 2 before the heating test, and FIG. 7B is a cross-sectional POM image of the test piece according to Production Example 2 after the heating test.

本発明の反応装置は、酸化物系セラミックを含む原料粉を加熱する黒鉛基材からなる反応装置であって、上記黒鉛基材の表面にCVD-SiC被膜が形成され原料粉と接する収容部と、上記黒鉛基材の表面に熱分解炭素被膜が形成された本体部と、からなることを特徴とする。 The reaction device of the present invention is a reaction device made of a graphite base material that heats a raw material powder containing an oxide-based ceramic, and has a storage portion in which a CVD-SiC film is formed on the surface of the graphite base material and is in contact with the raw material powder. It is characterized by comprising a main body portion in which a pyrolytic carbon film is formed on the surface of the graphite base material.

本発明の反応装置が加熱の対象とする酸化物系セラミックとしては、例えば、フェライト、シリカ、Si、SiC等が挙げられる。フェライトやシリカに対してSiやSiCを混合し加熱することで、酸化性ガスが発生し、黒鉛基材との反応を起こしやすい。
酸化物系セラミックの加熱により発生した酸化性ガスは、発生源である酸化物系セラミックの周囲(すなわち収容部)で濃度が高く、それ以外の部分では、雰囲気ガスに希釈されて濃度が低下する。
例えば、シリカを炭素、SiC又はSiと混合した混合体(原料粉)を加熱すると、下記式(1)~(3)に示すように、シリカが還元されてSiO、O、CO等の酸化性ガスが生成し、保護膜がなければ、多孔質である黒鉛基材の内面を少しずつ侵食する。
SiO+Si→2SiO (1)
SiO+C→SiC+O (2)
2SiO+SiC→3SiO+CO (3)
CVD-SiC被膜は、酸化性ガスの濃度が高い場合、表面にSiOの薄い被膜を形成し、黒鉛基材の侵食を防止することができる。しかしながら、酸化性ガスの濃度が低くなると表面にSiOの被膜を形成することができず、消耗するようになる。
一方、熱分解炭素被膜は、酸化性ガスの希薄な環境下で酸化性ガスとの反応性が低いため、黒鉛基材の侵食を防止することができる。
すなわち、本発明の反応装置では、濃度が高い酸化性ガスと接触する収容部と濃度の低い酸化性ガスと接触する本体部の両方に、それぞれ最適な被膜が形成されているため、収容部及び本体部のいずれにおいても酸化性ガスとの反応による摩耗が進行しにくく、ライフが長い。
Examples of the oxide-based ceramic to be heated by the reaction apparatus of the present invention include ferrite, silica, Si, SiC and the like. By mixing Si or SiC with ferrite or silica and heating it, an oxidizing gas is generated, and a reaction with a graphite substrate is likely to occur.
The oxidative gas generated by heating the oxide-based ceramic has a high concentration around the oxide-based ceramic that is the source (that is, the accommodating portion), and the other portion is diluted with the atmospheric gas to decrease the concentration. ..
For example, when a mixture (raw material powder) in which silica is mixed with carbon, SiC or Si is heated, silica is reduced and oxidation of SiO, O2 , CO and the like as shown in the following formulas (1) to (3). If sex gas is generated and there is no protective film, it gradually erodes the inner surface of the porous graphite substrate.
SiO 2 + Si → 2SiO (1)
SiO 2 + C → SiC + O 2 (2)
2SiO 2 + SiC → 3SiO + CO (3)
When the concentration of the oxidizing gas is high, the CVD-SiC film can form a thin film of SiO 2 on the surface and prevent erosion of the graphite base material. However, when the concentration of the oxidizing gas becomes low, the film of SiO 2 cannot be formed on the surface and the gas is consumed.
On the other hand, since the pyrolytic carbon film has low reactivity with the oxidizing gas in a dilute environment of the oxidizing gas, it is possible to prevent erosion of the graphite base material.
That is, in the reaction apparatus of the present invention, an optimum film is formed on both the accommodating portion in contact with the high-concentration oxidizing gas and the main body portion in contact with the low-concentration oxidizing gas. Wearing due to the reaction with the oxidizing gas does not easily progress in any of the main bodies, and the life is long.

本発明の反応装置の構成について、図1を参照しながら説明する。
図1は、本発明の反応装置の第一実施形態の一例を模式的に示す断面図である。
図1に示すように、反応装置1は、原料粉(図示しない)と接する収容部10と、本体部20とからなり、収容部10が本体部20の内部に収容されている。
収容部10では、黒鉛基材100の内側にCVD-SiC被膜11が形成されている。また、黒鉛基材100の外側には熱分解炭素被膜21が形成されている。
本体部20では、黒鉛基材101の内側に熱分解炭素被膜21が形成されている。
CVD-SiC被膜11が形成されている黒鉛基材100と熱分解炭素被膜21が形成されている黒鉛基材101は異なるため、収容部10と本体部20は一体化していない。
The configuration of the reaction apparatus of the present invention will be described with reference to FIG.
FIG. 1 is a cross-sectional view schematically showing an example of the first embodiment of the reaction apparatus of the present invention.
As shown in FIG. 1, the reaction device 1 includes an accommodating portion 10 in contact with raw material powder (not shown) and a main body portion 20, and the accommodating portion 10 is accommodated inside the main body portion 20.
In the accommodating portion 10, the CVD-SiC coating 11 is formed inside the graphite base material 100. Further, a pyrolytic carbon film 21 is formed on the outside of the graphite base material 100.
In the main body 20, a pyrolytic carbon film 21 is formed inside the graphite base material 101.
Since the graphite base material 100 on which the CVD-SiC coating 11 is formed and the graphite base material 101 on which the pyrolytic carbon film 21 is formed are different, the accommodating portion 10 and the main body portion 20 are not integrated.

CVD-SiC被膜及び熱分解炭素被膜は、同一の黒鉛基材に形成されていてもよく、異なる黒鉛基材に形成されていてもよい。
CVD-SiC被膜及び熱分解炭素被膜が同一の黒鉛基材に形成されていると、収容部及び本体部が一体化することとなる。一方、CVD-SiC被膜及び熱分解炭素被膜が異なる黒鉛基材に形成されていると、収容部及び本体部が一体化していない反応装置となる。
CVD-SiC被膜及び熱分解炭素被膜は、同一の黒鉛基材に形成されていると、収容部と本体部との間に隙間が存在しないため、隙間から反応装置の外側に漏れた酸化性ガスによって、反応装置の外面が侵食されることを抑制することができる。
The CVD-SiC coating and the pyrolytic carbon coating may be formed on the same graphite substrate or may be formed on different graphite substrates.
When the CVD-SiC coating and the pyrolytic carbon coating are formed on the same graphite base material, the accommodating portion and the main body portion are integrated. On the other hand, if the CVD-SiC coating and the pyrolytic carbon coating are formed on different graphite substrates, the reaction apparatus is such that the accommodating portion and the main body portion are not integrated.
When the CVD-SiC coating and the pyrolytic carbon coating are formed on the same graphite substrate, there is no gap between the accommodating portion and the main body portion, so that the oxidizing gas leaked from the gap to the outside of the reactor. This can prevent the outer surface of the reactor from being eroded.

CVD-SiC被膜及び熱分解炭素被膜が異なる黒鉛基材に形成されている場合、収容部となる黒鉛基材の上部に本体部となる黒鉛基材を組み合わせてもよいし、本体部となる黒鉛基材の内部に収容部となる黒鉛基材を収容してもよい。
CVD-SiC被膜及び熱分解炭素被膜が異なる黒鉛基材に形成されていると、本体部又は収容部のいずれか一方だけが破損した場合であっても、全体が破損することがない。
When the CVD-SiC film and the pyrolytic carbon film are formed on different graphite substrates, the graphite substrate as the main body may be combined with the graphite substrate as the main body on the upper part of the graphite substrate as the accommodating portion, or the graphite as the main body may be combined. A graphite base material to be an accommodating portion may be accommodated inside the base material.
When the CVD-SiC coating and the pyrolytic carbon coating are formed on different graphite substrates, even if only one of the main body portion and the accommodating portion is damaged, the whole is not damaged.

CVD-SiC被膜及び熱分解炭素被膜が異なる黒鉛基材に形成されている場合、収容部となる黒鉛基材と本体部となる黒鉛基材を、連結部材により連結してもよい。
連結部材の形状及び構成は特に限定されないが、収容部及び本体部がそれぞれ連結部材と接合していることが好ましく、例えば、反応装置の外側に配置される当て板と、反応装置の内側に配置されるネジからなる連結部材が挙げられる。
反応装置の外側に配置される当て板と反応装置の内側に配置されるネジとが、収容部又は本体部を介して螺合することによって、収容部と連結部材、又は、本体部と連結部材とを接合することができる。
また、連結部材の主要部品である当て板が反応装置の外側に配置されているので、本体部、収容部が一様に酸化性ガスと反応し、不均一な侵食を原因とする内部応力の発生を防止することができる。このためライフを長くすることができる。
When the CVD-SiC coating and the pyrolytic carbon coating are formed on different graphite substrates, the graphite substrate as the accommodating portion and the graphite substrate as the main body may be connected by a connecting member.
The shape and configuration of the connecting member are not particularly limited, but it is preferable that the accommodating portion and the main body portion are joined to the connecting member, respectively. Examples thereof include a connecting member made of a screw to be formed.
By screwing the backing plate arranged on the outside of the reaction device and the screw arranged on the inside of the reaction device via the accommodating portion or the main body portion, the accommodating portion and the connecting member or the main body portion and the connecting member are screwed together. Can be joined with.
In addition, since the backing plate, which is the main component of the connecting member, is arranged on the outside of the reaction device, the main body and the accommodating part uniformly react with the oxidizing gas, and the internal stress caused by non-uniform erosion is generated. It can be prevented from occurring. Therefore, the life can be extended.

連結部材を構成する材料は特に限定されないが、C/C複合材(炭素繊維強化炭素複合材料ともいう)であることが好ましい。
C/C複合材は破壊が一気に起こらないので、連結部材の侵食の状況を確認し、必要なタイミングで交換を実施することができる。
The material constituting the connecting member is not particularly limited, but is preferably a C / C composite material (also referred to as a carbon fiber reinforced carbon composite material).
Since the C / C composite material does not break at once, it is possible to check the erosion status of the connecting member and replace it at the required timing.

連結部材のうち、原料粉と接触する部分にCVD-SiC被膜を形成してもよい。
また、連結部材のうち、原料粉と接触しない部分に熱分解炭素被膜を形成してもよい。
A CVD-SiC film may be formed on a portion of the connecting member that comes into contact with the raw material powder.
Further, a pyrolytic carbon film may be formed on a portion of the connecting member that does not come into contact with the raw material powder.

収容部を構成する黒鉛基材と本体部を構成する黒鉛基材との連結部は、平面状であってもよいが、段差を有していてもよい。連結部に段差を設けることにより、原料粉より発生する酸化性ガスが連結部から漏れることを抑制することができる。 The connecting portion between the graphite base material constituting the accommodating portion and the graphite base material constituting the main body portion may be flat or may have a step. By providing a step in the connecting portion, it is possible to prevent the oxidizing gas generated from the raw material powder from leaking from the connecting portion.

収容部となる黒鉛基材、及び、本体部となる黒鉛基材はそれぞれ、2つ以上の黒鉛基材で構成されていてもよい。 The graphite base material serving as the accommodating portion and the graphite base material serving as the main body portion may each be composed of two or more graphite base materials.

本発明の反応装置において、収容部に形成されるCVD-SiC被膜の厚さは特に限定されないが、20~100μmであることが好ましい。
CVD-SiC被膜の厚さが20μm以上の場合、黒鉛基材に気孔があっても周囲に充分な厚さのCVD-SiC被膜を形成することができる。一方、CVD-SiC被膜の厚さが100μm以下の場合、黒鉛基材との熱膨張差による変形やクラックの影響を受けにくくすることができる。
In the reaction apparatus of the present invention, the thickness of the CVD-SiC coating formed on the accommodating portion is not particularly limited, but is preferably 20 to 100 μm.
When the thickness of the CVD-SiC coating is 20 μm or more, it is possible to form a CVD-SiC coating having a sufficient thickness in the periphery even if the graphite substrate has pores. On the other hand, when the thickness of the CVD-SiC film is 100 μm or less, it is possible to reduce the influence of deformation and cracks due to the difference in thermal expansion from the graphite substrate.

本発明の反応装置において、本体部に形成される熱分解炭素被膜の厚さは特に限定されないが、20~100μmであることが好ましい。
熱分解炭素被膜の厚さが20μm以上の場合、黒鉛基材に気孔があっても周囲に十分な厚さの熱分解被膜を形成することができる。一方、熱分解炭素被膜の厚さが100μm以下の場合、熱分解炭素被膜の層間剥離が起こりにくい。
黒鉛基材に熱分解炭素被膜を形成する方法としては、炭化水素ガスを原料としたCVD法等が挙げられる。
In the reaction apparatus of the present invention, the thickness of the pyrolytic carbon film formed on the main body is not particularly limited, but is preferably 20 to 100 μm.
When the thickness of the pyrolytic carbon film is 20 μm or more, it is possible to form a pyrolysis film having a sufficient thickness around the graphite substrate even if the graphite substrate has pores. On the other hand, when the thickness of the pyrolytic carbon film is 100 μm or less, delamination of the pyrolytic carbon film is unlikely to occur.
Examples of the method for forming a pyrolytic carbon film on a graphite substrate include a CVD method using a hydrocarbon gas as a raw material.

本発明の反応装置において、黒鉛基材の表面にCVD-SiC被膜と熱分解炭素被膜の両方が形成されていてもよい。
ただし、最表面にCVD-SiC被膜が形成されている部分を収容部とし、最表面に熱分解炭素被膜が形成されている部分を本体部とする。
In the reaction apparatus of the present invention, both a CVD-SiC coating and a pyrolytic carbon coating may be formed on the surface of the graphite base material.
However, the portion where the CVD-SiC film is formed on the outermost surface is used as the accommodating portion, and the portion where the pyrolytic carbon film is formed on the outermost surface is used as the main body portion.

本発明の反応装置のその他の実施形態についても説明する。 Other embodiments of the reactor of the present invention will also be described.

図2は、本発明の反応装置の第二実施形態の一例を模式的に示す断面図である。
図2に示すように、反応装置2は、原料粉(図示しない)と接する収容部10と、本体部20とからなり、収容部10が本体部20の内部に収容されている。
収容部10では、黒鉛基材100の表面全体にCVD-SiC被膜11が形成されている。
本体部20では、黒鉛基材101の内側に熱分解炭素被膜21が形成されている。
CVD-SiC被膜11が形成される黒鉛基材100と熱分解炭素被膜21が形成される黒鉛基材101は異なる黒鉛素材であるため、収容部10と本体部20は一体化していない。
FIG. 2 is a cross-sectional view schematically showing an example of a second embodiment of the reaction apparatus of the present invention.
As shown in FIG. 2, the reaction device 2 includes an accommodating portion 10 in contact with raw material powder (not shown) and a main body portion 20, and the accommodating portion 10 is accommodated inside the main body portion 20.
In the accommodating portion 10, the CVD-SiC coating 11 is formed on the entire surface of the graphite base material 100.
In the main body 20, a pyrolytic carbon film 21 is formed inside the graphite base material 101.
Since the graphite base material 100 on which the CVD-SiC film 11 is formed and the graphite base material 101 on which the pyrolytic carbon film 21 is formed are different graphite materials, the accommodating portion 10 and the main body portion 20 are not integrated.

図3は、本発明の反応装置の第三実施形態の一例を模式的に示す断面図である。
図3に示すように、反応装置3は、原料粉(図示しない)と接する収容部10と、本体部20とからなり、反応装置3の下部が収容部10、上部が本体部20となっている。
反応装置3では、収容部10を構成する黒鉛基材101と本体部20を構成する黒鉛基材101は同一である。黒鉛基材101の内側全体に熱分解炭素被膜21が形成されており、さらに、黒鉛基材101の下部(図3中の破線よりも下側の部分)の内側(熱分解炭素被膜21の表面)にCVD-SiC被膜11が形成されている。このことから、図3に示す反応装置では、黒鉛基材101の上部(図3中の破線よりも上側の部分)が本体部20を構成しており、黒鉛基材101の下部(図3中の破線よりも下側の部分)が収容部10を構成している。
CVD-SiC被膜11が形成される黒鉛基材101と熱分解炭素被膜21が形成される黒鉛基材101は同一であり、収容部10と本体部20は一体化している。
なお、反応装置の外側は、過酷な環境に曝されるわけではないので、黒鉛基材が露出していてもよく、CVD-SiC被膜や熱分解炭素被膜が形成されていてもよい。
FIG. 3 is a cross-sectional view schematically showing an example of a third embodiment of the reaction apparatus of the present invention.
As shown in FIG. 3, the reaction device 3 is composed of an accommodating portion 10 in contact with raw material powder (not shown) and a main body portion 20, and the lower portion of the reaction device 3 is the accommodating portion 10 and the upper portion is the main body portion 20. There is.
In the reaction apparatus 3, the graphite base material 101 constituting the accommodating portion 10 and the graphite base material 101 constituting the main body portion 20 are the same. The pyrolytic carbon film 21 is formed on the entire inside of the graphite base material 101, and further, the inside of the lower part of the graphite base material 101 (the part below the broken line in FIG. 3) (the surface of the pyrolytic carbon film 21). ), A CVD-SiC film 11 is formed. For this reason, in the reaction apparatus shown in FIG. 3, the upper portion of the graphite base material 101 (the portion above the broken line in FIG. 3) constitutes the main body portion 20, and the lower portion of the graphite base material 101 (in FIG. 3). The portion below the broken line of the above) constitutes the accommodating portion 10.
The graphite base material 101 on which the CVD-SiC film 11 is formed and the graphite base material 101 on which the pyrolytic carbon film 21 is formed are the same, and the accommodating portion 10 and the main body portion 20 are integrated.
Since the outside of the reactor is not exposed to a harsh environment, the graphite base material may be exposed, and a CVD-SiC film or a pyrolytic carbon film may be formed.

図4は、本発明の反応装置の第四実施形態の一例を模式的に示す断面図である。
図4に示すように、反応装置4は、原料粉(図示しない)と接する収容部10と、本体部20とからなり、反応装置4の下部が収容部10、上部が本体部20となっている。
収容部10では、黒鉛基材102の内側にCVD-SiC被膜11が形成されている。
本体部20では、黒鉛基材103の内側に熱分解炭素被膜21が形成されている。
CVD-SiC被膜11が形成される黒鉛基材102と熱分解炭素被膜21が形成される黒鉛基材103は異なるため、収容部10と本体部20は一体化していない。さらに、黒鉛基材102と黒鉛基材103の境界には段差が設けられている。
なお、反応装置の外側及び段差部は、過酷な環境に曝されるわけではないので、黒鉛基材が露出していてもよく、CVD-SiC被膜や熱分解炭素被膜が形成されていてもよい。
FIG. 4 is a cross-sectional view schematically showing an example of a fourth embodiment of the reaction apparatus of the present invention.
As shown in FIG. 4, the reactor 4 is composed of an accommodating portion 10 in contact with raw material powder (not shown) and a main body portion 20, and the lower portion of the reactor 4 is the accommodating portion 10 and the upper portion is the main body portion 20. There is.
In the accommodating portion 10, the CVD-SiC coating 11 is formed inside the graphite base material 102.
In the main body 20, a pyrolytic carbon film 21 is formed inside the graphite base material 103.
Since the graphite base material 102 on which the CVD-SiC film 11 is formed and the graphite base material 103 on which the pyrolytic carbon film 21 is formed are different, the accommodating portion 10 and the main body portion 20 are not integrated. Further, a step is provided at the boundary between the graphite base material 102 and the graphite base material 103.
Since the outside of the reactor and the stepped portion are not exposed to a harsh environment, the graphite base material may be exposed, and a CVD-SiC film or a pyrolytic carbon film may be formed. ..

図5は、本発明の反応装置の第五実施形態の一例を模式的に示す断面図である。
図5に示すように、反応装置5は、原料粉(図示しない)と接する収容部10と、本体部20とからなり、反応装置5の下部が収容部10、上部が本体部20となっている。
収容部10では、黒鉛基材102の表面にCVD-SiC被膜11が形成されている。
本体部20では、黒鉛基材103の表面に熱分解炭素被膜21が形成されている。
CVD-SiC被膜11が形成される黒鉛基材102と熱分解炭素被膜21が形成される黒鉛基材103は異なる黒鉛素材であるため、収容部10と本体部20は一体化していない。
収容部10を構成する黒鉛基材102と本体部20を構成する黒鉛基材103は、連結部材200により連結されており、連結部材200は、反応装置5の外側に配置される当て板210と、反応装置5の内側に配置されるネジ220からなる。さらに、連結部には段差が設けられている。
具体的には、反応装置の外側に配置される当て板210と反応装置の内側に配置されるネジ220とが、収容部10を介して螺合することにより、収容部10が連結部材200に接合されており、当て板210と反応装置の内側に配置されるネジ220とが、本体部20を介して螺合することにより、本体部20が連結部材200に接合されている。
なお、反応装置の外側及び段差部は、過酷な環境に曝されるわけではないので、黒鉛基材が露出していてもよく、CVD-SiC被膜や熱分解炭素被膜が形成されていてもよい。
FIG. 5 is a cross-sectional view schematically showing an example of a fifth embodiment of the reaction apparatus of the present invention.
As shown in FIG. 5, the reaction device 5 includes an accommodating portion 10 in contact with raw material powder (not shown) and a main body portion 20, and the lower portion of the reaction device 5 is the accommodating portion 10 and the upper portion is the main body portion 20. There is.
In the accommodating portion 10, the CVD-SiC coating 11 is formed on the surface of the graphite base material 102.
In the main body 20, a pyrolytic carbon film 21 is formed on the surface of the graphite base material 103.
Since the graphite base material 102 on which the CVD-SiC film 11 is formed and the graphite base material 103 on which the pyrolytic carbon film 21 is formed are different graphite materials, the accommodating portion 10 and the main body portion 20 are not integrated.
The graphite base material 102 constituting the accommodating portion 10 and the graphite base material 103 constituting the main body portion 20 are connected by a connecting member 200, and the connecting member 200 is connected to a backing plate 210 arranged outside the reaction device 5. , Consists of a screw 220 disposed inside the reactor 5. Further, the connecting portion is provided with a step.
Specifically, the backing plate 210 arranged on the outside of the reaction device and the screw 220 arranged on the inside of the reaction device are screwed together via the accommodating portion 10, so that the accommodating portion 10 is attached to the connecting member 200. The main body 20 is joined to the connecting member 200 by screwing the backing plate 210 and the screw 220 arranged inside the reaction device via the main body 20.
Since the outside of the reactor and the stepped portion are not exposed to a harsh environment, the graphite base material may be exposed, and a CVD-SiC film or a pyrolytic carbon film may be formed. ..

(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
(Example)
Hereinafter, examples in which the present invention is disclosed more specifically will be shown. The present invention is not limited to these examples.

(製造例1~2)
[試験片の作製]
黒鉛基材(縦25mm×横25mm×厚さ5mm)の表面に熱分解炭素被膜を形成して、本体部を模した試験片を作製した(製造例1)。
製造例1と同じ黒鉛基材の表面にCVD-SiC被膜を形成して、収容部を模した試験片を作製した(製造例2)。
(Manufacturing Examples 1 and 2)
[Preparation of test piece]
A pyrolytic carbon film was formed on the surface of a graphite base material (length 25 mm × width 25 mm × thickness 5 mm) to prepare a test piece imitating the main body (Production Example 1).
A CVD-SiC film was formed on the surface of the same graphite base material as in Production Example 1 to prepare a test piece imitating a housing portion (Production Example 2).

[酸化性ガスに対する耐食性の評価]
製造例1~2に係る試験片を酸化性ガス発生源となるSi及びSiOの混合体の上部に配置し、焼成炉を用いてアルゴン雰囲気下、1600℃で3時間加熱し、発生する酸化性ガスに暴露する加熱試験を行った。
加熱試験前後の熱分解炭素被膜及びCVD-SiC被膜の膜厚を、偏光顕微鏡を用いて10箇所で観察し、平均値を求めた。結果を表1、並びに、図6(a)、図6(b)、図7(a)及び図7(b)に示す。図6(a)は、加熱試験前の製造例1に係る試験片の断面POM画像であり、図6(b)は、加熱試験後の製造例1に係る試験片の断面POM画像であり、図7(a)は、加熱試験前の製造例2に係る試験片の断面POM画像であり、図7(b)は、加熱試験後の製造例2に係る試験片の断面POM画像である。
[Evaluation of corrosion resistance to oxidizing gas]
The test pieces according to Production Examples 1 and 2 are placed on the upper part of a mixture of Si and SiO 2 which are sources of oxidizing gas, and heated at 1600 ° C. for 3 hours in an argon atmosphere using a firing furnace to generate oxidation. A heating test was conducted to expose to sex gas.
The film thicknesses of the pyrolytic carbon film and the CVD-SiC film before and after the heating test were observed at 10 points using a polarizing microscope, and the average value was obtained. The results are shown in Table 1 and FIGS. 6 (a), 6 (b), 7 (a) and 7 (b). FIG. 6A is a cross-sectional POM image of the test piece according to Production Example 1 before the heating test, and FIG. 6B is a cross-sectional POM image of the test piece according to Production Example 1 after the heating test. FIG. 7A is a cross-sectional POM image of the test piece according to Production Example 2 before the heating test, and FIG. 7B is a cross-sectional POM image of the test piece according to Production Example 2 after the heating test.

Figure 0007093264000001
Figure 0007093264000001

表1並びに図6(a)、図6(b)、図7(a)及び図7(b)の結果より、熱分解炭素被膜を形成した黒鉛基材は、アルゴンガス雰囲気下で発生する酸化性ガスに対する耐食性が高いことがわかった。 From the results of Table 1 and FIGS. 6 (a), 6 (b), 7 (a) and 7 (b), the graphite substrate on which the pyrolytic carbon film was formed is oxidized generated in an argon gas atmosphere. It was found that the corrosion resistance to sex gas was high.

以上の結果より、濃度が高い酸化性ガスと接触する収容部にCVD-SiC被膜が形成されており、濃度の低い酸化性ガスと接触する本体部に熱分解炭素被膜が形成されている本発明の反応装置は、酸化性ガスに対する耐食性に優れており、ライフが長いと推察される。 From the above results, the present invention has a CVD-SiC film formed on the accommodating portion in contact with the high-concentration oxidizing gas and a pyrolytic carbon film formed on the main body portion in contact with the low-concentration oxidizing gas. The reactor is excellent in corrosion resistance to oxidizing gas, and it is presumed that it has a long life.

本発明の反応装置は、例えば、ケイ素含有化合物を焼成する際の焼成装置や、酸化性ガスを発生させるガス発生装置として用いることができる。 The reactor of the present invention can be used, for example, as a firing device for firing a silicon-containing compound or as a gas generating device for generating an oxidizing gas.

1、2、3、4、5 反応装置
10 収容部
11 CVD-SiC被膜
20 本体部
21 熱分解炭素被膜
100、101、102、103 黒鉛基材
200 連結部材
210 当て板
220 ネジ
1, 2, 3, 4, 5 Reaction device 10 Containment part 11 CVD-SiC coating 20 Main body 21 Pyrolytic carbon coating 100, 101, 102, 103 Graphite base material 200 Connecting member 210 Backing plate 220 Screw

Claims (6)

酸化物系セラミックを含む原料粉を加熱する黒鉛基材からなる反応装置であって、
前記黒鉛基材の表面にCVD-SiC被膜が形成され原料粉と接する収容部と、前記黒鉛基材の表面に熱分解炭素被膜が形成された本体部と、からなることを特徴とする反応装置。
A reaction device made of a graphite substrate that heats raw material powder containing oxide-based ceramics.
A reaction apparatus characterized by comprising an accommodating portion in which a CVD-SiC film is formed on the surface of the graphite substrate and in contact with raw material powder, and a main body portion in which a pyrolytic carbon film is formed on the surface of the graphite substrate. ..
前記CVD-SiC被膜及び前記熱分解炭素被膜が同一の黒鉛基材に形成されており、
前記収容部及び前記本体部が一体化している請求項1に記載の反応装置。
The CVD-SiC coating and the pyrolytic carbon coating are formed on the same graphite substrate.
The reactor according to claim 1, wherein the accommodating portion and the main body portion are integrated.
前記CVD-SiC被膜及び前記熱分解炭素被膜が異なる黒鉛素材に形成されており、
前記収容部及び前記本体部が一体化していない請求項1に記載の反応装置。
The CVD-SiC coating and the pyrolytic carbon coating are formed on different graphite materials.
The reactor according to claim 1, wherein the accommodating portion and the main body portion are not integrated.
前記収容部及び前記本体部は連結部材により連結されており、
前記収容部及び前記本体部は、それぞれ前記連結部材に接合されている請求項3に記載の反応装置。
The accommodating portion and the main body portion are connected by a connecting member.
The reaction device according to claim 3, wherein the accommodating portion and the main body portion are respectively joined to the connecting member.
前記連結部材は、反応装置の外側に配置される当て板と、反応装置の内側から挿入されるネジとからなる請求項4に記載の反応装置。 The reaction device according to claim 4, wherein the connecting member includes a backing plate arranged on the outside of the reaction device and a screw inserted from the inside of the reaction device. 前記連結部材は、C/C複合材からなる請求項5に記載の反応装置。
The reactor according to claim 5, wherein the connecting member is made of a C / C composite material.
JP2018151747A 2018-08-10 2018-08-10 Reactor Active JP7093264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018151747A JP7093264B2 (en) 2018-08-10 2018-08-10 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018151747A JP7093264B2 (en) 2018-08-10 2018-08-10 Reactor

Publications (2)

Publication Number Publication Date
JP2020026370A JP2020026370A (en) 2020-02-20
JP7093264B2 true JP7093264B2 (en) 2022-06-29

Family

ID=69621938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151747A Active JP7093264B2 (en) 2018-08-10 2018-08-10 Reactor

Country Status (1)

Country Link
JP (1) JP7093264B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256091A (en) 1999-03-05 2000-09-19 Nippon Pillar Packing Co Ltd LIQUID PHASE GROWTH METHOD FOR SINGLE CRYSTAL SiC
JP2000319080A (en) 1999-05-07 2000-11-21 Tokai Carbon Co Ltd Graphite member coated with silicon carbide
JP2000351689A (en) 1999-06-08 2000-12-19 Toyo Tanso Kk Carbon fiber-reinforced carbon composite material coated with pyrolyzed carbon and part for single crystal-pulling device
JP2005281085A (en) 2004-03-30 2005-10-13 Nippon Steel Corp Crucible made of graphite
WO2010113323A1 (en) 2009-04-03 2010-10-07 電気化学工業株式会社 Method of preventing breakage of carbon-made reaction container
WO2010113322A1 (en) 2009-04-03 2010-10-07 電気化学工業株式会社 Method of preventing breakage of reaction container consisting of carbon
JP2011051866A (en) 2009-09-04 2011-03-17 Toyo Tanso Kk Method for producing silicon carbide-coated carbon substrate, silicon carbide-coated carbon substrate, silicon carbide-carbon composite sintered compact, ceramic-coated silicon carbide-carbon composite sintered compact, and method for producing silicon carbide-carbon composite sintered compact
WO2016121642A1 (en) 2015-01-29 2016-08-04 イビデン株式会社 Sic-coated carbon composite material
JP2016204202A (en) 2015-04-22 2016-12-08 イビデン株式会社 Firing fixture, and method for producing firing fixture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782077A (en) * 1993-09-07 1995-03-28 Toyo Tanso Kk Graphite crucible for silicon single crystal pull-up apparatus
JPH1059795A (en) * 1996-08-20 1998-03-03 Toyo Tanso Kk Carbon fiber reinforced carbon composite material crucible for pulling up semiconductor single crystal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256091A (en) 1999-03-05 2000-09-19 Nippon Pillar Packing Co Ltd LIQUID PHASE GROWTH METHOD FOR SINGLE CRYSTAL SiC
JP2000319080A (en) 1999-05-07 2000-11-21 Tokai Carbon Co Ltd Graphite member coated with silicon carbide
JP2000351689A (en) 1999-06-08 2000-12-19 Toyo Tanso Kk Carbon fiber-reinforced carbon composite material coated with pyrolyzed carbon and part for single crystal-pulling device
JP2005281085A (en) 2004-03-30 2005-10-13 Nippon Steel Corp Crucible made of graphite
WO2010113323A1 (en) 2009-04-03 2010-10-07 電気化学工業株式会社 Method of preventing breakage of carbon-made reaction container
WO2010113322A1 (en) 2009-04-03 2010-10-07 電気化学工業株式会社 Method of preventing breakage of reaction container consisting of carbon
JP2011051866A (en) 2009-09-04 2011-03-17 Toyo Tanso Kk Method for producing silicon carbide-coated carbon substrate, silicon carbide-coated carbon substrate, silicon carbide-carbon composite sintered compact, ceramic-coated silicon carbide-carbon composite sintered compact, and method for producing silicon carbide-carbon composite sintered compact
WO2016121642A1 (en) 2015-01-29 2016-08-04 イビデン株式会社 Sic-coated carbon composite material
JP2016204202A (en) 2015-04-22 2016-12-08 イビデン株式会社 Firing fixture, and method for producing firing fixture

Also Published As

Publication number Publication date
JP2020026370A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
RU2494999C2 (en) Material having multilayer structure and intended for contact with liquid silicon
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
US9663374B2 (en) Situ grown SiC coatings on carbon materials
EP2548855A1 (en) Ceramic composite article having laminar ceramic matrix
Dawi et al. High temperature oxidation of SiC under helium with low-pressure oxygen. Part 3: β-SiC–SiC/PyC/SiC
US8980434B2 (en) Mo—Si—B—based coatings for ceramic base substrates
CN100564319C (en) Matrix material and manufacture method thereof
JP7093264B2 (en) Reactor
CN104487403B (en) Carbon material with thermal spraying coating
JP2009274905A (en) Crucible for melting silicon
Shimada et al. High‐Temperature Oxidation at 1500° and 1600° C of SiC/Graphite Coated with Sol–Gel‐Derived HfO2
Koh et al. Improvement in oxidation resistance of carbon by formation of a protective SiO2 layer on the surface
CN107074671B (en) Environmental resistant coating
JP2009049047A (en) Vapor-phase growth apparatus and vapor-phase growth method
JPH1072291A (en) Crucible for silicon single crystal pulling-up device
Luthra et al. Chemical Considerations in Carbon‐Fiber/Oxide‐Matrix Composites
TW200538584A (en) Corrosion-resistant member and process of producing the same
JP3220730B2 (en) Graphite wafer holding jig for atmospheric pressure CVD equipment
JP2965963B1 (en) Oxidation resistant material
JPS6045154B2 (en) fireproof material
JP3803148B2 (en) Method for recycling and using laminated member and laminated member used therefor
JP3484505B2 (en) Carbon material having a layer of pyrolysis products consisting of boron and carbon
JP4658523B2 (en) Oxidation-resistant composite material
JPH06163439A (en) Semiconductor diffusion oven boat and manufacture thereof
JPH0782077A (en) Graphite crucible for silicon single crystal pull-up apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220617

R150 Certificate of patent or registration of utility model

Ref document number: 7093264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150