JP7092464B2 - Granular fiber spraying device and granular fiber spraying method - Google Patents

Granular fiber spraying device and granular fiber spraying method Download PDF

Info

Publication number
JP7092464B2
JP7092464B2 JP2017073217A JP2017073217A JP7092464B2 JP 7092464 B2 JP7092464 B2 JP 7092464B2 JP 2017073217 A JP2017073217 A JP 2017073217A JP 2017073217 A JP2017073217 A JP 2017073217A JP 7092464 B2 JP7092464 B2 JP 7092464B2
Authority
JP
Japan
Prior art keywords
granular
granular fiber
fiber
spraying
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017073217A
Other languages
Japanese (ja)
Other versions
JP2018172949A (en
Inventor
雄亮 杉野
徹 谷辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2017073217A priority Critical patent/JP7092464B2/en
Publication of JP2018172949A publication Critical patent/JP2018172949A/en
Application granted granted Critical
Publication of JP7092464B2 publication Critical patent/JP7092464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires

Landscapes

  • Building Environments (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)

Description

本発明は、粒状繊維吹付け装置に関する。詳しくは、粒状繊維吹付け時に発生する粉塵を抑制できる粒状繊維吹付け装置に関する。また、本発明は、粒状繊維吹付け方法に関する。詳しくは、粒状繊維吹付け時に発生する粉塵量が少ない粒状繊維吹付け方法に関する。 The present invention relates to a granular fiber spraying device. More specifically, the present invention relates to a granular fiber spraying device capable of suppressing dust generated during spraying of granular fibers. The present invention also relates to a method for spraying granular fibers. More specifically, the present invention relates to a method for spraying granular fibers in which the amount of dust generated during spraying the granular fibers is small.

耐火性、防火性、吸音性および/または断熱性などを付与する目的で、構造物表面にロックウールからなる繊維層を設けることが広く行われている。繊維層の形成には、粒状繊維(直径数mm~数cmの繊維塊)および水を主成分とする凝集材を用いた吹付工法が用いられることも多い。ロックウール吹付工法としては、乾式工法、湿式工法、半乾式工法が知られている。乾式工法は、予め、ロックウール粒状繊維とセメントとを乾式混合した乾燥混合物(乾式混合物、以下「ロックウール・セメント混綿」ということがある。)をノズルから吐出し、これと同時にノズルの周縁に配置した複数個の噴水口より圧力水を噴射し、両者を混合吹付ける工法である。この乾式工法は、嵩比重が0.2~0.3と軽量の被覆層を形成できるが、施工時にセメントやロックウールによる発塵が著しく、環境上の問題が指摘されている。湿式工法は、乾式工法の欠陥を改善する為になされたものである。この湿式工法は、主材のロックウール粒状繊維とセメントに界面活性剤と増粘剤を配合してなる吹付施工用被覆材を用い、これに水を加えたペーストを圧縮空気によりノズルから吹付ける方法である。この湿式工法は、浮遊粉塵の問題点は改善されたものの、形成される被覆層の嵩比重が0.4~0.6と重く、乾式工法に比べてコストが高いという問題が指摘されている。 It is widely practiced to provide a fiber layer made of rock wool on the surface of a structure for the purpose of imparting fire resistance, fire resistance, sound absorption and / or heat insulation. For the formation of the fiber layer, a spraying method using granular fibers (fiber lumps having a diameter of several mm to several cm) and an agglomerate containing water as a main component is often used. As the rock wool spraying method, a dry method, a wet method, and a semi-dry method are known. In the dry method, a dry mixture (dry mixture, hereinafter sometimes referred to as "rock wool / cement mixed cotton"), which is a dry mixture of rock wool granular fibers and cement, is discharged from the nozzle, and at the same time, on the periphery of the nozzle. This is a construction method in which pressure water is sprayed from a plurality of arranged fountain ports and both are mixed and sprayed. This dry method can form a lightweight covering layer with a bulk specific density of 0.2 to 0.3, but it has been pointed out that there is an environmental problem due to significant dust generation due to cement and rock wool during construction. The wet method is used to improve the defects of the dry method. This wet method uses a coating material for spraying, which is a mixture of rock wool granular fibers and cement, which are the main materials, with a surfactant and a thickener, and a paste containing water is sprayed from a nozzle using compressed air. The method. Although the problem of suspended dust has been improved in this wet method, it has been pointed out that the bulk specific density of the formed coating layer is as heavy as 0.4 to 0.6, and the cost is higher than that of the dry method. ..

半乾式工法は、予め、ロックウール粒状繊維とセメントとを混合しない工法である。半乾式工法において、ロックウール粒状繊維は、解繊機(解綿機)で解繊(解綿)・破砕され(細かく粒状(直径数mm~数cm程度の繊維塊)にされ)、ロータリーバルブ等により定量的に送り出され、エアブロアによりホース内を圧送され、吹付ノズルに供給される。セメントはスラリー槽で水と混合されてセメントスラリーとされた後、スラリーポンプにより搬送パイプを通って吹付ノズルに供給される。そのセメントスラリーは、吹付ノズルの周縁から噴射されるか、或いは吹付ノズルの中心軸付近から噴射され、ロックウールと合流・混合し、ロックウールとセメント水和物からなる繊維層が形成される。半乾式工法によれば、浮遊粉塵が減少し、乾式工法に近い嵩比重の被覆層が形成できる。このようなことから、半乾式工法がロックウール吹付工法の主流となっている。半乾式工法は乾式工法に比べて吹付け施工時に発生する粉塵量を少なくできるものの、吹付け装置をコンパクトなものにし難いという問題がある。吹付け装置をコンパクトなものにし易いのは、ロックウール・セメント混綿を用いる乾式工法である。また、ポリスチレンフォームや硬質ウレタンフォーム等の発泡樹脂系断熱材に、半乾式工法で厚み30mmでロックウールとセメント水和物からなる繊維層で被覆しても不燃性が不充分であり、半乾式工法で圧送するロックウールのみからなる粒状繊維をロックウール・セメント混綿に替えることで、厚み30mmに形成した繊維層で充分な不燃性が得られることが本発明者等の検討により分かった(例えば特許文献1参照。)。そこで、ロックウール・セメント混綿を吹付けノズルまで輸送するロックウール吹付工法、即ち、混綿を用いる乾式工法又は半乾式工法のロックウール吹付工法であっても吹付け施工時に発生する粉塵を抑制できる技術が望まれていた。 The semi-dry method is a method in which rock wool granular fibers and cement are not mixed in advance. In the semi-dry method, rock wool granular fibers are defibrated (cotton) and crushed (finely granulated (fiber lumps with a diameter of several mm to several cm)) using a defibrator (cotton defibrator), and rotary valves, etc. It is quantitatively sent out by the air blower, is pumped in the hose by the air blower, and is supplied to the spray nozzle. Cement is mixed with water in a slurry tank to form a cement slurry, and then supplied to a spray nozzle through a transport pipe by a slurry pump. The cement slurry is sprayed from the peripheral edge of the spray nozzle or sprayed from the vicinity of the central axis of the spray nozzle to merge and mix with rock wool to form a fiber layer composed of rock wool and cement hydrate. According to the semi-dry method, floating dust is reduced, and a coating layer having a bulk specific density close to that of the dry method can be formed. For this reason, the semi-dry method has become the mainstream of the rock wool spray method. The semi-dry method can reduce the amount of dust generated during spraying compared to the dry method, but has the problem that it is difficult to make the spraying device compact. It is a dry method using rock wool / cement mixed cotton that makes it easy to make the spraying device compact. In addition, even if a foamed resin-based heat insulating material such as polystyrene foam or hard urethane foam is covered with a fiber layer made of rock wool and cement hydrate with a thickness of 30 mm by a semi-dry method, the nonflammability is insufficient, and the semi-dry method is used. It has been found by the present inventors that sufficient nonflammability can be obtained in a fiber layer formed to a thickness of 30 mm by replacing granular fibers consisting only of rock wool pumped by the method with rock wool / cement mixed cotton (for example). See Patent Document 1). Therefore, even with the rock wool spraying method that transports rock wool / cement mixed cotton to the spray nozzle, that is, the rock wool spraying method that uses mixed cotton or the semi-dry method, it is a technique that can suppress dust generated during spraying. Was desired.

繊維質等と水硬性無機質接着剤等を配合した材料を通す導管の先端外周に空気と水を一度に噴射する噴射孔を複数備える吹付けノズルを用いる方法が提案されている(例えば特許文献2又は3参照。)。また、吹付けノズル前側に複数の給水ノズルを、該給水ノズルから出る加圧された水の噴流の軸が吹付けノズルから出る混綿の噴流の軸線上で交叉するように環状に配置する技術が提案されている(例えば特許文献4参照。)。 A method has been proposed in which a spray nozzle having a plurality of injection holes for injecting air and water at one time is used on the outer periphery of the tip of a conduit through which a material containing a fiber or the like and a water-hard inorganic adhesive is passed (for example, Patent Document 2). Or see 3.). In addition, there is a technique to arrange a plurality of water supply nozzles on the front side of the spray nozzle in a ring shape so that the axis of the jet of pressurized water discharged from the water supply nozzle intersects on the axis of the jet of mixed cotton discharged from the spray nozzle. It has been proposed (see, for example, Patent Document 4).

特開2014-141868号公報Japanese Unexamined Patent Publication No. 2014-141868 実公昭55-011961号公報Jikkensho 55-011961 Gazette 実用新案登録第2582028号公報Utility Model Registration No. 2582028 Gazette 実公昭49-000053号公報Jitsukosho 49-0000053 Gazette

本発明は、粒状繊維とセメントとを乾式混合した乾燥混合物(乾式混合物、以下「混綿」ということがある。)を吹付けノズルまで輸送し該吹付けノズルの吐出口より噴射した乾式混合物に、上記吐出口の外縁に配置した凝集材噴射ノズルより排出(噴射)される水を主要成分とする凝集材を合流混合させる吹付工法に用いたときに発生する粉塵が少ない粒状繊維吹付け装置を提供することを目的とする。 In the present invention, a dry mixture (dry mixture, hereinafter sometimes referred to as "blended cotton"), which is a dry mixture of granular fibers and cement, is transported to a spray nozzle and sprayed from the discharge port of the spray nozzle into the dry mixture. Provided is a granular fiber spraying device that generates less dust when used in a spraying method in which a coagulant whose main component is water discharged (sprayed) from a coagulant injection nozzle arranged at the outer edge of the discharge port is merged and mixed. The purpose is to do.

また、本発明は、粒状繊維吹付け時に発生する粉塵量を抑制できる粒状繊維吹付け方法、即ち、粒状繊維とセメントとの乾式混合物を吹付けノズルまで輸送し該吹付けノズルの吐出口より噴射した乾式混合物(混綿)に、上記吐出口の外縁に配置した凝集材噴霧ノズルより排出(噴射)される水を主要成分とする凝集材を合流混合させる粒状繊維吹付け方法において、発生する粉塵が少ない粒状繊維吹付け方法を提供することを目的とする。 Further, the present invention is a granular fiber spraying method capable of suppressing the amount of dust generated during spraying of granular fibers, that is, a dry mixture of granular fibers and cement is transported to a spray nozzle and sprayed from the discharge port of the spray nozzle. Dust generated in the granular fiber spraying method in which a coagulant containing water discharged (sprayed) from the coagulant spray nozzle arranged at the outer edge of the discharge port is merged and mixed with the dry mixture (blended cotton). It is an object of the present invention to provide a method of spraying a small amount of granular fibers.

本発明者は、前記課題解決のため鋭意検討した結果、粒状繊維の吹付けノズルを特定のノズルを特定の条件で用いることにより、上記課題を解決できることを見出し、本発明を完成させた。即ち、本発明は、以下の(1)又は(2)で表す粒状繊維吹付け装置、並びに()で表す粒状繊維吹付け方法である。
(1)粒状繊維吹付けノズル、粒状繊維輸送装置、凝集材輸送装置および空気圧送装置が備わり、
上記粒状繊維吹付けノズルが粒状繊維圧送管と該粒状繊維圧送管の吐出口の周囲に複数の凝集材噴射ノズルが備わり、当該粒状繊維圧送管の中心軸に対して凝集材噴射ノズルより排出される凝集材の中心軸がなす角度θが4~10°の範囲内であり、
上記凝集材噴射ノズルが、凝集材輸送装置と空気圧送装置に連通し、該空気圧送装置より凝集材噴射ノズルに圧送される圧縮空気の圧力が0.2~1MPaであり、
上記粒状繊維輸送装置により輸送され粒状繊維吹付けノズルより吐出される粒状繊維がセメントとの乾式混合物である、
粒状繊維輸送装置と粒状繊維圧送管が連通する粒状繊維吹付け装置。
(2)上記角度θが6~10°の範囲内である上記(1)の状繊維吹付け装置。
(3)記(1)又は(2)の粒状繊維吹付け装置により、粒状繊維圧送管の吐出口より吐出させた粒状繊維と、凝集材噴射ノズルより0.1~1MPaの圧縮空気とともに排出した凝集材とを合流混合させて構造物に吹付けることを特徴とし、上記粒状繊維がセメントとの乾式混合物である粒状繊維吹付け方法
As a result of diligent studies for solving the above-mentioned problems, the present inventor has found that the above-mentioned problems can be solved by using a nozzle for spraying granular fibers under specific conditions, and completed the present invention. That is, the present invention is the granular fiber spraying device represented by the following (1) or (2 ), and the granular fiber spraying method represented by ( 3 ).
(1) Equipped with a granular fiber spray nozzle, a granular fiber transport device, a coagulant transport device and a pneumatic feed device.
The granular fiber spraying nozzle is provided with a plurality of coagulant injection nozzles around the granular fiber pumping pipe and the discharge port of the granular fiber pumping pipe, and is discharged from the coagulant injection nozzle with respect to the central axis of the granular fiber pumping pipe. The angle θ formed by the central axis of the aggregate is within the range of 4 to 10 °.
The pressure of the compressed air that the agglomerate injection nozzle communicates with the agglomerate transport device and the air pressure feeding device and is pressure-fed from the air pressure feeding device to the agglomerating material injection nozzle is 0.2 to 1 MPa.
The granular fibers transported by the granular fiber transport device and discharged from the granular fiber spray nozzle are a dry mixture with cement.
A granular fiber spraying device in which a granular fiber transport device and a granular fiber pumping pipe communicate with each other.
(2) The fiber spraying device according to (1) above, wherein the angle θ is within the range of 6 to 10 °.
(3) The granular fiber discharged from the discharge port of the granular fiber pumping pipe by the granular fiber spraying device of the above (1) or (2) and the compressed air of 0.1 to 1 MPa are discharged from the agglomerate injection nozzle. A method for spraying granular fibers in which the above-mentioned granular fibers are a dry mixture with cement, which is characterized by merging and mixing with the aggregated materials and spraying them onto a structure .

本発明によれば、粒状繊維吹付け時に発生する粉塵量が少ない粒状繊維吹付け装置が得られる。本発明によれば、吹付けノズルまで輸送し該吹付けノズルの吐出口より噴射した乾式混合物に、上記吐出口の外縁に配置した凝集材噴射ノズルより排出(噴射)される水を主要成分とする凝集材を合流混合させる吹付工法に用いたときに発生する粉塵が少ない粒状繊維吹付け装置が得られる。 According to the present invention, it is possible to obtain a granular fiber spraying apparatus in which the amount of dust generated during the spraying of granular fibers is small. According to the present invention, the main component is water discharged (sprayed) from the agglomerate injection nozzle arranged on the outer edge of the discharge port to the dry mixture transported to the spray nozzle and sprayed from the discharge port of the spray nozzle. A granular fiber spraying device with less dust generated when used in a spraying method in which agglomerates to be mixed and mixed can be obtained.

また、本発明によれば、粒状繊維吹付け時に発生する粉塵量を抑制できる粒状繊維吹付け方法が得られる。本発明によれば、粒状繊維とセメントとの乾式混合物を吹付けノズルまで輸送し該吹付けノズルの吐出口より噴射した乾式混合物(混綿)に、上記吐出口の外縁に配置した凝集材噴霧ノズルより排出(噴射)される水を主要成分とする凝集材を合流混合させる粒状繊維吹付け方法において、発生する粉塵が少ない粒状繊維吹付け方法が得られる。 Further, according to the present invention, it is possible to obtain a granular fiber spraying method capable of suppressing the amount of dust generated when the granular fiber is sprayed. According to the present invention, a dry mixture of granular fibers and cement is transported to a spray nozzle, and the dry mixture (blended cotton) sprayed from the discharge port of the spray nozzle is provided with a flocculant spray nozzle arranged on the outer edge of the discharge port. In the granular fiber spraying method in which agglomerates containing more discharged (sprayed) water as a main component are merged and mixed, a granular fiber spraying method with less generated dust can be obtained.

本発明によれば、粒状繊維吹付け時に発生する粉塵量を抑制できるので、粒状繊維吹付け作業が行い易く、保護具の簡素化、清掃作業の軽減又は省略等が図られ、施工効率の向上も望める。 According to the present invention, since the amount of dust generated when spraying granular fibers can be suppressed, the work of spraying granular fibers can be easily performed, the protective equipment can be simplified, the cleaning work can be reduced or omitted, and the construction efficiency can be improved. You can also hope.

本発明の粒状繊維吹付け装置の一例の模式図である。It is a schematic diagram of an example of the granular fiber spraying apparatus of this invention. 粒状繊維吹付けノズルの一例の模式的な縦断面図である。It is a schematic vertical sectional view of an example of a granular fiber spraying nozzle.

本発明の粒状繊維吹付け装置は、粒状繊維吹付けノズル、粒状繊維輸送装置、凝集材輸送装置および空気圧送装置を具備し、
上記粒状繊維吹付けノズルが粒状繊維圧送管と該粒状繊維圧送管の吐出口の周囲に複数の凝集材噴霧ノズルが備わり、当該粒状繊維圧送管の中心軸に対して凝集材噴射ノズルより排出される凝集材の中心軸がなす角度θが1~30°の範囲内であり、
上記凝集材噴霧ノズルが、凝集材輸送装置と空気圧送装置に連通し、該空気圧送装置より凝集材噴霧ノズルに圧送される圧縮空気の圧力が0.1~2MPaであり、
粒状繊維輸送装置と粒状繊維圧送管が連通することを特徴とする。
The granular fiber spraying device of the present invention includes a granular fiber spraying nozzle, a granular fiber transport device, a flocculant transport device, and an air pressure feed device.
The granular fiber spraying nozzle is provided with a plurality of coagulant spray nozzles around the granular fiber pumping pipe and the discharge port of the granular fiber pumping pipe, and is discharged from the coagulant injection nozzle with respect to the central axis of the granular fiber pumping pipe. The angle θ formed by the central axis of the aggregate is within the range of 1 to 30 °.
The pressure of the compressed air that the coagulant spray nozzle communicates with the agglomerate transport device and the air pressure feeding device and is pressure-fed from the air pressure feeding device to the coagulant spray nozzle is 0.1 to 2 MPa.
It is characterized in that the granular fiber transport device and the granular fiber pumping pipe communicate with each other.

本発明において、粒状繊維とは、直径数mm~数cm程度の繊維塊、好ましくは直径5mm~5cmの繊維塊であり、その材質としては無機繊維、有機繊維及び無機繊維と有機繊維の混合物でもよく、好ましくは耐火性又は不燃性を得易いので無機繊維であり、より好ましくは鉱物繊維である。最も好ましくはロックウールである。本発明において、ロックウールは、溶融炉で溶融された岩石や高炉スラグ等を主体とする材料が、急冷されながら、繊維化された素材(鉱物繊維)である。例えば、高炉スラグを主体とする材料より製造されたスラグウールなども含まれる。前記ロックウールは、繊維化された鉱物繊維を集めただけの原綿を解綿機等で細かくした粒状ロックウールを好適に用いることができる。原綿を用いる場合は、輸送前に解綿機等で細かくして用いる。粒状ロックウールは、ロックウールの原綿を解砕、解綿、切断、分級(例えば、篩い分け)、造粒などの工程の一種又は二種以上の組み合わせにより得られる。斯かるロックウールが用いられた場合、熱がロックウールを被覆する下地に伝わり難い。本発明の粒状繊維としては、セメントとの乾式混合物が、形成する繊維層が耐火性又は不燃性を得易いことから好ましい。 In the present invention, the granular fiber is a fiber mass having a diameter of several mm to several cm, preferably a fiber mass having a diameter of 5 mm to 5 cm, and the material thereof may be an inorganic fiber, an organic fiber, or a mixture of an inorganic fiber and an organic fiber. It is often, preferably an inorganic fiber because it is easy to obtain fire resistance or nonflammability, and more preferably a mineral fiber. Most preferably rock wool. In the present invention, rock wool is a material (mineral fiber) in which a material mainly composed of rock or blast furnace slag melted in a melting furnace is rapidly cooled and fiberized. For example, slag wool manufactured from a material mainly composed of blast furnace slag is also included. As the rock wool, granular rock wool obtained by finely pulverizing raw cotton obtained by collecting fibrous mineral fibers with a decotching machine or the like can be preferably used. When raw cotton is used, it is finely divided with a cotton crusher or the like before transportation. Granular rock wool is obtained by one or a combination of two or more steps such as crushing, crushing, cutting, classifying (for example, sieving), and granulating raw cotton of rock wool. When such rock wool is used, heat is difficult to transfer to the base covering the rock wool. As the granular fiber of the present invention, a dry mixture with cement is preferable because the fiber layer to be formed easily obtains fire resistance or nonflammability.

本発明における凝集材としては、水、水溶液、無機質スラリー及び樹脂エマルション並びに無機質含有樹脂エマルション(樹脂含有無機質スラリー)が好適な例として挙げられ、より好ましい例としては水、水溶液、セメントスラリー及び合成樹脂エマルション(ポリマー)並びにセメント含有樹脂エマルション(樹脂含有セメントスラリー)が挙げられる。本発明に用いるセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、白色ポルトランドセメント等の各種ポルトランドセメント、エコセメント、アルミナセメント、フライアッシュセメントや高炉セメント等の混合セメント、超速硬セメント等の急硬性セメント等の水硬性セメントが挙げられる。また、本発明の凝集材に用いる樹脂エマルションとしては、スチレン・ブタジエン共重合体、クロロプレンゴム、アクリロニトリル・ブタジエン共重合体又はメチルメタクリレート・ブタジエン共重合体等の合成ゴム、天然ゴム、ポリエチレンやポリプロピレン等のポリオレフィン、ポリクロロピレン、ポリアクリル酸エステル、スチレン・アクリル共重合体、オールアクリル共重合体、ポリ酢酸ビニル、酢酸ビニル・アクリル共重合体、酢酸ビニル・アクリル酸エステル共重合体、変性酢酸ビニル、エチレン・酢酸ビニル共重合体、エチレン・酢酸ビニル・塩化ビニル共重合体、酢酸ビニルビニルバーサテート共重合体、アクリル・酢酸ビニル・ベオバ(t‐デカン酸ビニルの商品名)共重合体等の酢酸ビニル系樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、アルキド樹脂及びエポキシ樹脂等の合成樹脂、アスファルト及びゴムアスファルト等の瀝青質等のエマルションが挙げられる。 Suitable examples of the flocculant in the present invention include water, an aqueous solution, an inorganic slurry and a resin emulsion, and an inorganic-containing resin emulsion (resin-containing inorganic slurry), and more preferable examples are water, an aqueous solution, a cement slurry and a synthetic resin. Examples thereof include emulsions (polymers) and cement-containing resin emulsions (resin-containing cement slurrys). The cement used in the present invention includes various Portland cements such as ordinary Portland cement, early-strength Portland cement, and white Portland cement, eco-cement, alumina cement, mixed cement such as fly ash cement and blast furnace cement, and rapid hardness such as ultrafast hard cement. Examples thereof include water-hard cement such as cement. The resin emulsion used for the flocculant of the present invention includes synthetic rubber such as styrene / butadiene copolymer, chloroprene rubber, acrylonitrile / butadiene copolymer or methyl methacrylate / butadiene copolymer, natural rubber, polyethylene, polypropylene and the like. Polyolefin, polychloropyrene, polyacrylic acid ester, styrene / acrylic copolymer, all acrylic copolymer, polyvinyl acetate, vinyl acetate / acrylic copolymer, vinyl acetate / acrylic acid ester copolymer, modified vinyl acetate, Acetic acid such as ethylene / vinyl acetate copolymer, ethylene / vinyl acetate / vinyl chloride copolymer, vinyl acetate vinyl versatate copolymer, acrylic / vinyl acetate / beova (trade name of t-vinyl decanoate) copolymer, etc. Examples thereof include synthetic resins such as vinyl resins, unsaturated polyester resins, polyurethane resins, alkyd resins and epoxy resins, and bituminous emulsions such as asphalt and rubber asphalt.

本発明において粒状繊維吹付けノズルは、粒状繊維圧送管と該粒状繊維圧送管の吐出口の周囲(外縁)に複数の凝集材噴射ノズルが備わっている。粒状繊維圧送管は、粒状繊維輸送装置と連通している。この粒状繊維輸送装置は、粒状繊維用定量供給装置と、送風機(ブロア)と、材料圧送ホース(マテリアルホース)とを具備し、粒状繊維用定量供給装置としては解綿機を用いることもできる。この場合、解綿機は、パッキングにより圧縮されている粒状繊維を解しながら粒状繊維の圧送経路内に定量供給する。送風機(ブロア)と、粒状繊維用定量供給装置と、材料圧送ホース(マテリアルホース)と、粒状繊維吹付けノズルの粒状繊維圧送管は連通している。圧送経路内に定量供給された粒状繊維は、送風機(ブロア)より送られる空気により、材料圧送ホース内を通り、粒状繊維吹付けノズルの粒状繊維圧送管に送られ、該粒状繊維圧送管の先端部の吐出口より噴射される。 In the present invention, the granular fiber spraying nozzle is provided with a plurality of coagulant injection nozzles around (outer edge) the granular fiber pumping pipe and the discharge port of the granular fiber pumping pipe. The granular fiber pumping pipe communicates with the granular fiber transport device. This granular fiber transport device includes a fixed quantity supply device for granular fibers, a blower (blower), and a material pressure feeding hose (material hose), and a cotton crusher can also be used as the fixed quantity supply device for granular fibers. In this case, the unpacking machine quantitatively supplies the granular fibers compressed by packing into the pumping path of the granular fibers while unraveling them. The blower (blower), the fixed quantity supply device for granular fibers, the material pressure feeding hose (material hose), and the granular fiber pressure feeding pipe of the granular fiber blowing nozzle communicate with each other. The granular fibers quantitatively supplied in the pumping path are sent to the granular fiber pumping pipe of the granular fiber blowing nozzle through the material pumping hose by the air sent from the blower (blower), and the tip of the granular fiber pumping pipe. It is ejected from the discharge port of the part.

上記凝集材噴射ノズルは、粒状繊維圧送管の吐出口の周囲(外縁)に配置する。凝集材噴射ノズルの噴出孔の中心と、粒状繊維圧送管との距離は、粒状繊維圧送管の直径以内の距離とすることが好ましい。上記凝集材噴射ノズルの数は、2~20個が好ましく、より好ましくは3~8個である。凝集材噴射ノズルには、凝集材を噴射する噴射孔があり、この噴射孔と凝集材輸送装置と空気圧送装置に連通しており、凝集材輸送装置より圧送された凝集材が、空気圧送装置より圧送された圧縮空気とともに、凝集材噴射ノズルの噴射孔より噴射される。当該粒状繊維圧送管の中心軸に対して凝集材噴射ノズルより排出される凝集材の中心軸がなす角度θが1~30°の範囲内である必要がある。状繊維圧送管の先端部の吐出口より噴射される粒状繊維の流れの中心軸は粒状繊維圧送管の中心軸と一致する。また、凝集材噴射ノズルの噴射孔が直線の孔の場合は、噴射孔の中心軸と、凝集材噴射ノズルより排出される凝集材の中心軸は一致する。上記角度θが1~30°の範囲内であると、噴射された粒状繊維により発生する粉塵を、凝集材の噴流により、凝集材とともに粒状繊維に合流混合させることができ粉塵が低減しているものと思われる。上記角度θが1°未満の場合は粒状繊維と合流混合が不充分となり粉塵が低減されないものと思われる。また、上記角度θが30°を超える場合も粉塵が充分に低減しない。より好ましい上記角度θは、4~15°で、更に好ましくは6~10°とする。 The agglomerate injection nozzle is arranged around (outer edge) the discharge port of the granular fiber pumping pipe. The distance between the center of the ejection hole of the coagulant injection nozzle and the granular fiber pumping pipe is preferably within the diameter of the granular fiber pumping pipe. The number of the agglomerate injection nozzles is preferably 2 to 20, more preferably 3 to 8. The agglomerate injection nozzle has an injection hole for injecting the agglomerate, which communicates with the aggregating material transport device and the air pressure feeding device, and the agglomerating material pumped from the agglomerating material transporting device is an air pressure feeding device. Together with the more pressure-fed compressed air, it is injected from the injection hole of the coagulant injection nozzle. The angle θ formed by the central axis of the agglomerating material discharged from the agglomerating material injection nozzle with respect to the central axis of the granular fiber pumping pipe needs to be within the range of 1 to 30 °. The central axis of the flow of granular fibers ejected from the discharge port at the tip of the shaped fiber pumping tube coincides with the central axis of the granular fiber pumping tube. When the injection hole of the agglutinating material injection nozzle is a straight hole, the central axis of the injection hole coincides with the central axis of the agglomerating material discharged from the agglutinating material injection nozzle. When the angle θ is in the range of 1 to 30 °, the dust generated by the injected granular fibers can be merged and mixed with the granular fibers together with the agglomerating material by the jet of the agglomerating material, and the dust is reduced. It seems to be. When the angle θ is less than 1 °, it is considered that the merging and mixing with the granular fibers is insufficient and the dust is not reduced. Further, even when the angle θ exceeds 30 °, dust is not sufficiently reduced. The more preferable angle θ is 4 to 15 °, and more preferably 6 to 10 °.

また、空気圧送装置より凝集材噴射ノズルに圧送される圧縮空気の圧力が0.1~2MPaの範囲内であると粉塵の発生を抑制できるが、範囲を外れると粉塵が充分に低減しない。空気圧送装置より凝集材噴射ノズルに圧送される圧縮空気の圧力は、0.1~1.5MPaが好ましく、0.2~1.0MPaとすることがより好ましい。空気圧送装置としては、コンプレッサーが安定した圧力で連続して圧縮空気を圧送できることから好ましい。 Further, if the pressure of the compressed air pressure-fed from the air pressure feeding device to the flocculant injection nozzle is in the range of 0.1 to 2 MPa, the generation of dust can be suppressed, but if it is out of the range, the dust is not sufficiently reduced. The pressure of the compressed air pressure-fed from the air pressure feeding device to the flocculant injection nozzle is preferably 0.1 to 1.5 MPa, more preferably 0.2 to 1.0 MPa. The air pressure feeding device is preferable because the compressor can continuously pump compressed air at a stable pressure.

本発明の粒状繊維吹付け方法は、上記の粒状繊維吹付け装置により、粒状繊維圧送管の吐出口より噴射さた粒状繊維と、凝集材噴霧ノズルより0.1~2MPaの圧縮空気とともに噴射した凝集材とを合流混合させて構造物に吹付けることを特徴とする。 In the granular fiber spraying method of the present invention, the granular fiber sprayed from the discharge port of the granular fiber pumping pipe and the compressed air of 0.1 to 2 MPa from the coagulant spray nozzle are sprayed by the above-mentioned granular fiber spraying device. It is characterized by merging and mixing with an agglomerating material and spraying it onto a structure.

図1に本発明の粒状繊維吹付け装置の一例の模式図を示した。混綿11を解綿機10に投入し、解すとともに粒状繊維の圧送経路内に定量供給する。圧送経路内に入った粒状繊維は、ブロア12より経路内に送られる空気によりマテリアルホース9内を通り、粒状繊維吹付けノズル1の粒状繊維圧送管2内に送られ、吐出口3より射出(吐出)される。凝集材13が入った凝集材貯留槽8と吸引ホースで連通するポンプ7により凝集材用耐圧ホース内を通り、粒状繊維吹付けノズル1に凝集材13が圧送される。また、コンプレッサー6(空気圧送装置)により凝集材噴射ノズル14に圧縮空気が圧送される。圧縮空気と凝集材が粒状繊維吹付けノズル1の内部で合流し、凝集材噴射ノズル14の直線状の噴出孔15より噴射される。噴射された凝集材の噴流4と、吐出口3より射出された粒状繊維の噴流5が、吐出口3の先で合流混合し、構造物の表面に吹付けられ、繊維層を形成する。 FIG. 1 shows a schematic diagram of an example of the granular fiber spraying device of the present invention. The mixed cotton 11 is put into the thawing machine 10, thawing, and quantitatively supplied into the pumping path of the granular fibers. The granular fibers that have entered the pumping path pass through the material hose 9 by the air sent into the path from the blower 12, are sent into the granular fiber pumping pipe 2 of the granular fiber blowing nozzle 1, and are ejected from the discharge port 3 ( Discharge). The agglomerate 13 is pumped through the pressure-resistant hose for the agglomerate by a pump 7 communicating with the agglomerate storage tank 8 containing the agglomerate 13 and a suction hose to the granular fiber spray nozzle 1. Further, compressed air is pressure-fed to the flocculant injection nozzle 14 by the compressor 6 (pneumatic feeding device). The compressed air and the agglutinating material merge inside the granular fiber spraying nozzle 1 and are ejected from the linear ejection hole 15 of the agglutinating material injection nozzle 14. The jet 4 of the injected agglomerate and the jet 5 of the granular fibers ejected from the discharge port 3 merge and mix at the tip of the discharge port 3 and are sprayed onto the surface of the structure to form a fiber layer.

[実施例1]
粒状繊維圧送管の中心軸17に対して凝集材噴射ノズルより排出される凝集材の中心軸16、即ち、粒状繊維圧送管の中心軸と、凝集材噴射ノズル14の直線状の噴出孔15がなす角度θが10°の粒状繊維吹付けノズル(No.4の吹付けノズル、凝集材噴射ノズル14の数:8個)を用い、粒状繊維として粒状ロックウール(ロックウール粒状綿)60質量%と普通ポルトランドセメント40質量%とからなるロックウール・セメント混綿100質量部に対し、凝集材として水セメント比200%のセメントスラリー180質量部を合流混合させ垂直な壁に略直角に一定速度(1m/秒)で左右に振幅1mで粒状繊維吹付けノズル1を動かしながら吹付け、吹付け面から1.5mに配置した粉塵測定器を吹付け開始時刻の10秒後から1分間稼働させ、粉塵発生量(相対濃度)を測定した。このときの圧縮空気の空気圧は0.2MPa、凝集材の圧送圧も0.2MPaであった。
[Example 1]
The central axis 16 of the agglomerate discharged from the aggregating material injection nozzle with respect to the central axis 17 of the granular fiber pumping pipe, that is, the central axis of the granular fiber pumping pipe and the linear ejection hole 15 of the agglomerating material injection nozzle 14 Using a granular fiber spraying nozzle with an angle θ of 10 ° (No. 4 spraying nozzle, number of coagulant injection nozzles 14: 8), 60% by mass of granular rock wool (rock wool granular cotton) is used as the granular fiber. With 100 parts by mass of rock wool / cement mixed cotton consisting of 40% by mass of ordinary Portoland cement, 180 parts by mass of cement slurry with a water cement ratio of 200% as a coagulant is merged and mixed at a constant speed (1 m) at a substantially perpendicular angle to a vertical wall. / Second), spray while moving the granular fiber spray nozzle 1 with an amplitude of 1 m to the left and right, and operate the dust measuring instrument placed 1.5 m from the spray surface for 1 minute from 10 seconds after the spray start time to dust. The amount generated (relative concentration) was measured. At this time, the air pressure of the compressed air was 0.2 MPa, and the pressure of the agglomerating material was 0.2 MPa.

使用した材料、粒状繊維吹付けノズル、及び圧縮空気の圧力、並びに吹付け開始から20秒後及び60秒後における粉塵発生量の評価(粉塵抑制効果の評価)を表1に示した。 Table 1 shows the materials used, the pressure of the granular fiber spraying nozzle, and the compressed air, and the evaluation of the amount of dust generated 20 seconds and 60 seconds after the start of spraying (evaluation of the dust suppressing effect).

Figure 0007092464000001
Figure 0007092464000001

[実施例2]
圧縮空気の空気圧を1.0MPaとした以外は実施例1と同様に吹付けを行い、粉塵発生量を測定した。その結果を表1に示した。
[Example 2]
Spraying was performed in the same manner as in Example 1 except that the air pressure of the compressed air was 1.0 MPa, and the amount of dust generated was measured. The results are shown in Table 1.

[実施例3]
粒状繊維圧送管の中心軸に対して凝集材噴射ノズルより排出される凝集材の中心軸とがなす角度θ、即ち、粒状繊維圧送管の中心軸と、凝集材噴射ノズル14の直線状の噴出孔15がなす角度θが6°の粒状繊維吹付けノズル(No.3の吹付けノズル、凝集材噴射ノズル14の数:8個)を用いた以外は実施例1と同様に吹付けを行い、粉塵発生量を測定した。その結果を表1に示した。
[Example 3]
The angle θ formed by the central axis of the agglomerating material discharged from the agglomerating material injection nozzle with respect to the central axis of the granular fiber pumping pipe, that is, the linear ejection of the central axis of the granular fiber pumping pipe and the agglomerating material injection nozzle 14. Spraying was performed in the same manner as in Example 1 except that a granular fiber spraying nozzle (No. 3 spraying nozzle, number of agglomerating material spraying nozzles 14: 8) having an angle θ formed by the holes 15 of 6 ° was used. , The amount of dust generated was measured. The results are shown in Table 1.

[実施例4]
粒状繊維圧送管の中心軸に対して凝集材噴射ノズルより排出される凝集材の中心軸とがなす角度θ、即ち、粒状繊維圧送管の中心軸と、凝集材噴射ノズル14の直線状の噴出孔15がなす角度θが4°の粒状繊維吹付けノズル(No.2の吹付けノズル、凝集材噴射ノズル14の数:8個)を用いた以外は実施例1と同様に吹付けを行い、粉塵発生量を測定した。その結果を表1に示した。
[Example 4]
The angle θ formed by the central axis of the agglomerating material discharged from the agglomerating material injection nozzle with respect to the central axis of the granular fiber pumping pipe, that is, the linear ejection of the central axis of the granular fiber pumping pipe and the agglomerating material injection nozzle 14. Spraying was performed in the same manner as in Example 1 except that a granular fiber spraying nozzle (No. 2 spraying nozzle, number of agglomerating material spraying nozzles 14: 8) having an angle θ formed by the holes 15 of 4 ° was used. , The amount of dust generated was measured. The results are shown in Table 1.

[実施例5]
ロックウール・セメント混綿100質量部に対し、凝集材として水80質量部を合流混合させた以外は実施例1と同様に吹付けを行い、粉塵発生量を測定した。その結果を表1に示した。
[Example 5]
The amount of dust generated was measured by spraying 100 parts by mass of rock wool / cement mixed cotton in the same manner as in Example 1 except that 80 parts by mass of water was mixed and mixed as a coagulant. The results are shown in Table 1.

[比較例1]
粒状繊維圧送管の中心軸に対して凝集材噴射ノズルより排出される凝集材の中心軸とがなす角度θ、即ち、粒状繊維圧送管の中心軸と、凝集材噴射ノズル14の直線状の噴出孔15がなす角度θが0°の粒状繊維吹付けノズル(No.1の吹付けノズル、凝集材噴射ノズル14の数:8個)を用いた以外は実施例1と同様に吹付けを行い、粉塵発生量を測定した。その結果を表1に示した。
[Comparative Example 1]
The angle θ formed by the central axis of the agglomerating material discharged from the agglomerating material injection nozzle with respect to the central axis of the granular fiber pumping pipe, that is, the linear ejection of the central axis of the granular fiber pumping pipe and the agglomerating material injection nozzle 14. Spraying was performed in the same manner as in Example 1 except that a granular fiber spraying nozzle (No. 1 spraying nozzle, number of agglomerating material spraying nozzles 14: 8) having an angle θ formed by the holes 15 was used. , The amount of dust generated was measured. The results are shown in Table 1.

[比較例2]
圧縮空気の空気圧を0.0MPa、即ち、圧縮空気を用いなかった以外は実施例1と同様に吹付けを行い、粉塵発生量を測定した。その結果を表1に示した。
[Comparative Example 2]
The air pressure of the compressed air was 0.0 MPa, that is, spraying was performed in the same manner as in Example 1 except that the compressed air was not used, and the amount of dust generated was measured. The results are shown in Table 1.

[比較例3]
粒状繊維圧送管の中心軸に対して凝集材噴射ノズルより排出される凝集材の中心軸とがなす角度θ、即ち、粒状繊維圧送管の中心軸と、凝集材噴射ノズル14の直線状の噴出孔15がなす角度θが40°の粒状繊維吹付けノズル(No.5の吹付けノズル、凝集材噴射ノズル14の数:8個)を用いた以外は実施例1と同様に吹付けを行い、粉塵発生量を測定した。その結果を表1に示した。
[Comparative Example 3]
The angle θ formed by the central axis of the agglomerating material discharged from the agglomerating material injection nozzle with respect to the central axis of the granular fiber pumping pipe, that is, the linear ejection of the central axis of the granular fiber pumping pipe and the agglomerating material injection nozzle 14. Spraying was performed in the same manner as in Example 1 except that a granular fiber spraying nozzle (No. 5 spraying nozzle, number of agglomerating material spraying nozzles 14: 8) having an angle θ formed by the holes 15 of 40 ° was used. , The amount of dust generated was measured. The results are shown in Table 1.

[比較例4]
圧縮空気の空気圧を3.0MPaとした以外は実施例1と同様に吹付けを行い、粉塵発生量を測定した。その結果を表1に示した。
[Comparative Example 4]
Spraying was performed in the same manner as in Example 1 except that the air pressure of the compressed air was set to 3.0 MPa, and the amount of dust generated was measured. The results are shown in Table 1.

本発明の実施例に当たる試験水準のものは、何れも粉塵の発生が充分に抑制され、粉塵量が少なかった。特に、粒状繊維圧送管の中心軸に対して凝集材噴射ノズルより噴射・排出される凝集材の中心軸とがなす角度θ、即ち、粒状繊維圧送管の中心軸と、凝集材噴射ノズル14の直線状の噴出孔15がなす角度θが6°~10°の粒状繊維吹付けノズルを用い、圧縮空気の空気圧を0.2~1.0MPaとした水準は、特に粉塵の発生が少なく、比較例2に比べて粉塵量が60%以下に抑制されていた。 In all of the test-level products according to the examples of the present invention, the generation of dust was sufficiently suppressed and the amount of dust was small. In particular, the angle θ formed by the central axis of the aggregate material ejected and discharged from the aggregate material injection nozzle with respect to the central axis of the granular fiber pressure feed pipe, that is, the central axis of the granular fiber pressure feed pipe and the aggregate material injection nozzle 14. Using a granular fiber blowing nozzle with an angle θ formed by the linear ejection holes 15 of 6 ° to 10 ° and setting the air pressure of the compressed air to 0.2 to 1.0 MPa, the generation of dust is particularly small, and comparison is made. The amount of dust was suppressed to 60% or less as compared with Example 2.

本発明は、吹付けロックウール等に好適に用いることができ、粒状繊維、セメント水和物からなる繊維層を発生する粉塵を抑制しながら構築することができ、耐火被覆構造物、不燃構造物又は断熱性構造物の構築に好適に使用することができる。 INDUSTRIAL APPLICABILITY The present invention can be suitably used for sprayed rock wool and the like, and can be constructed while suppressing dust generated in a fiber layer composed of granular fibers and cement hydrate, and is a fire-resistant coated structure and a non-combustible structure. Alternatively, it can be suitably used for constructing a heat insulating structure.

1 粒状繊維吹付けノズル
2 粒状繊維圧送管
3 吐出口
4 凝集材の噴流
5 粒状繊維の噴流
6 コンプレッサー(空気圧送装置)
7 ポンプ
8 凝集材貯留槽
9 マテリアルホース
10 解綿機
11 混綿
12 ブロア
13 凝集材
14 凝集材噴射ノズル
15 噴出孔
16 凝集材噴射ノズルより排出される凝集材の中心軸
17 粒状繊維圧送管の中心軸
18 粒状繊維圧送管の中心軸と、凝集材噴射ノズルより排出される凝集材の中心軸とがなす角度θ
19 圧縮空気用耐圧ホース取り付け部
20 粒状繊維吹付け装置
21 凝集材用耐圧ホース取り付け部
22 交点
1 Granular fiber spray nozzle 2 Granular fiber pressure feeder 3 Discharge port 4 Aggregate jet 5 Granular fiber jet 6 Compressor (pneumatic feeder)
7 Pump 8 Coagulant storage tank 9 Material hose 10 Cotton crusher 11 Blended cotton 12 Blower 13 Coagulant 14 Coagulant injection nozzle 15 Ejection hole 16 Aggregate material ejected from the agglomerate injection nozzle Central axis 17 Center of granular fiber pumping pipe Shaft 18 Angle θ between the central axis of the granular fiber pumping pipe and the central axis of the agglomerating material discharged from the agglomerating material injection nozzle.
19 Pressure-resistant hose attachment part for compressed air 20 Granular fiber spraying device 21 Pressure-resistant hose attachment part for agglomerating material 22 Intersection

Claims (3)

粒状繊維吹付けノズル、粒状繊維輸送装置、凝集材輸送装置および空気圧送装置を具備し、
上記粒状繊維吹付けノズルが粒状繊維圧送管と該粒状繊維圧送管の吐出口の周囲に複数の凝集材噴射ノズルが備わり、当該粒状繊維圧送管の中心軸に対して凝集材噴射ノズルより排出される凝集材の中心軸がなす角度θが4~10°の範囲内であり、
上記凝集材噴射ノズルが、凝集材輸送装置と空気圧送装置に連通し、該空気圧送装置より凝集材噴射ノズルに圧送される圧縮空気の圧力が0.2~1MPaであり、
上記粒状繊維輸送装置により輸送され粒状繊維吹付けノズルより吐出される粒状繊維がセメントとの乾式混合物である、
粒状繊維輸送装置と粒状繊維圧送管が連通する粒状繊維吹付け装置。
Equipped with a granular fiber spray nozzle, a granular fiber transport device, a flocculant transport device, and a pneumatic feed device.
The granular fiber spraying nozzle is provided with a plurality of coagulant injection nozzles around the granular fiber pumping pipe and the discharge port of the granular fiber pumping pipe, and is discharged from the coagulant injection nozzle with respect to the central axis of the granular fiber pumping pipe. The angle θ formed by the central axis of the aggregate is within the range of 4 to 10 °.
The pressure of the compressed air that the agglomerate injection nozzle communicates with the agglomerate transport device and the air pressure feeding device and is pressure-fed from the air pressure feeding device to the agglomerating material injection nozzle is 0.2 to 1 MPa.
The granular fibers transported by the granular fiber transport device and discharged from the granular fiber spray nozzle are a dry mixture with cement.
A granular fiber spraying device in which a granular fiber transport device and a granular fiber pumping pipe communicate with each other.
上記角度θが6~10°の範囲内である請求項1記載の粒状繊維吹付け装置。 The granular fiber spraying apparatus according to claim 1, wherein the angle θ is in the range of 6 to 10 °. 求項1又は2に記載の粒状繊維吹付け装置により、粒状繊維圧送管の吐出口より吐出させた粒状繊維と、凝集材噴射ノズルより0.1~1MPaの圧縮空気とともに排出した凝集材とを合流混合させて構造物に吹付けることを特徴とし、上記粒状繊維がセメントとの乾式混合物である粒状繊維吹付け方法The granular fiber discharged from the discharge port of the granular fiber pumping pipe by the granular fiber spraying device according to claim 1 or 2, and the aggregate discharged with compressed air of 0.1 to 1 MPa from the aggregate injection nozzle. A method for spraying granular fibers, wherein the granular fibers are a dry mixture with cement, which is characterized by merging and mixing and spraying the fibers onto a structure .
JP2017073217A 2017-03-31 2017-03-31 Granular fiber spraying device and granular fiber spraying method Active JP7092464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017073217A JP7092464B2 (en) 2017-03-31 2017-03-31 Granular fiber spraying device and granular fiber spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017073217A JP7092464B2 (en) 2017-03-31 2017-03-31 Granular fiber spraying device and granular fiber spraying method

Publications (2)

Publication Number Publication Date
JP2018172949A JP2018172949A (en) 2018-11-08
JP7092464B2 true JP7092464B2 (en) 2022-06-28

Family

ID=64107285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017073217A Active JP7092464B2 (en) 2017-03-31 2017-03-31 Granular fiber spraying device and granular fiber spraying method

Country Status (1)

Country Link
JP (1) JP7092464B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7256002B2 (en) * 2017-12-19 2023-04-11 エーアンドエー工事株式会社 Construction method of noncombustible sprayed insulation
CN110152904B (en) * 2019-06-12 2024-07-09 薛德刚 System device and method for spraying aerogel, fiber and binder mixture
JP7457218B2 (en) 2020-03-19 2024-03-28 太平洋マテリアル株式会社 Method for spraying fiber composition
JP7457219B2 (en) 2020-03-19 2024-03-28 太平洋マテリアル株式会社 Method for spraying fiber composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060118038A1 (en) 2004-12-08 2006-06-08 Bowman David J Wall scrubber for blown insulation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829845B1 (en) * 1970-06-08 1973-09-13
JPS5476379U (en) * 1977-11-10 1979-05-30
JPS56110858U (en) * 1980-01-26 1981-08-27
JP3098211B2 (en) * 1997-09-30 2000-10-16 品川白煉瓦株式会社 Spraying equipment for irregular shaped refractory materials
JPH11226461A (en) * 1998-02-12 1999-08-24 Shinagawa Refract Co Ltd Monolithic refractory spraying device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060118038A1 (en) 2004-12-08 2006-06-08 Bowman David J Wall scrubber for blown insulation

Also Published As

Publication number Publication date
JP2018172949A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP7092464B2 (en) Granular fiber spraying device and granular fiber spraying method
JP7041667B2 (en) Continuous method for manufacturing fiber reinforced concrete panels
JP7038103B2 (en) Method for manufacturing fiber-reinforced cementum slurry using a multi-stage continuous mixer
CN203097909U (en) Integrated concrete spraying device
CN104453945A (en) Self-stirring wet type concrete sprayer
GB1579543A (en) Method for mixing a particulate solid material with a liquid material and a nozzle for use in said method
CN107583381A (en) Suitable for the foam dust inhibitor of industrial enterprise's setting
CN104549816B (en) Low-rebound rate and low-dust concrete nozzle device in anchor spray shoring engineering
JP6962703B2 (en) Granular fiber spraying nozzle, granular fiber spraying device and granular fiber spraying method
CN207554072U (en) Coal mine air cement slurries spraying equipment
JP6839589B2 (en) Granular fiber spraying nozzle, granular fiber spraying device and granular fiber spraying method
CN203383830U (en) Novel wet spraying machine for mine
JPH10328586A (en) Mixing and spraying method and mixing and spraying nozzle
JP7204094B2 (en) Device
JP3193697B2 (en) Short fibrous material pumping device and method for constructing slopes using short fibrous material pumping device
JP7086406B2 (en) Concrete spraying method and nozzle unit
CN211736409U (en) Novel spray nozzle structure of concrete spraying device
JP2005139798A (en) Rock wool spraying method and spraying device
JP6737619B2 (en) Rock wool spraying method and apparatus
EP0780528B1 (en) Spray apparatus for application of high build coatings/layers
JP7457219B2 (en) Method for spraying fiber composition
CN105775786A (en) Sprayed concrete material conveying and mixing system
JP7457218B2 (en) Method for spraying fiber composition
JP2022157869A (en) Fiber spraying device
JP2001310142A (en) Mixing and dispersing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220301

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220616

R150 Certificate of patent or registration of utility model

Ref document number: 7092464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150