JP7091547B1 - Iron core manufacturing method - Google Patents

Iron core manufacturing method Download PDF

Info

Publication number
JP7091547B1
JP7091547B1 JP2021200529A JP2021200529A JP7091547B1 JP 7091547 B1 JP7091547 B1 JP 7091547B1 JP 2021200529 A JP2021200529 A JP 2021200529A JP 2021200529 A JP2021200529 A JP 2021200529A JP 7091547 B1 JP7091547 B1 JP 7091547B1
Authority
JP
Japan
Prior art keywords
iron core
shape
core
iron
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021200529A
Other languages
Japanese (ja)
Other versions
JP2023086182A (en
Inventor
勝彦 山田
Original Assignee
山田 榮子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山田 榮子 filed Critical 山田 榮子
Priority to JP2021200529A priority Critical patent/JP7091547B1/en
Application granted granted Critical
Publication of JP7091547B1 publication Critical patent/JP7091547B1/en
Publication of JP2023086182A publication Critical patent/JP2023086182A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 電磁鉄心の経済的製造方法を提供する。【解決手段】 適用鋼種は量産容易な工業用純鉄とし、鉄心形状に対応して材料の圧延鋼材の形状を設定し、該圧延鋼材から鉄心と同等質量の素形材を切り出し、該素形材を1500℃以上1530℃以下に加熱して直ちに鉄心レプリカの金型に装入して密閉プレスする。1種の熱間加工であるが粒界が溶融していて低圧下力で金型の狭い空間まで圧入され所定形状の鉄心が成形される。一体物であるから誘導損は生ずるが磁気ヒステリシス損は高級電磁鋼板と大差ない。【選択図】図1PROBLEM TO BE SOLVED: To provide an economical method for manufacturing an electromagnetic iron core. SOLUTION: The applicable steel type is industrial pure iron which is easy to mass-produce, the shape of the rolled steel material of the material is set according to the shape of the iron core, and the raw material having the same mass as the iron core is cut out from the rolled steel material, and the raw shape is obtained. The material is heated to 1500 ° C. or higher and 1530 ° C. or lower, and immediately charged into a die of an iron core replica and hermetically pressed. Although it is a kind of hot working, the grain boundaries are melted and pressed into the narrow space of the mold by low pressure lower force to form an iron core of a predetermined shape. Since it is an integral product, induction loss occurs, but magnetic hysteresis loss is not much different from that of high-grade electrical steel sheets. [Selection diagram] Fig. 1

Description

本発明は、軟磁性材料の製造方法ならびにその材料を用いて電動機、変圧器、継電器等の電磁機器に使用される鉄心の製造方法に関している。 The present invention relates to a method for manufacturing a soft magnetic material and a method for manufacturing an iron core used in an electromagnetic device such as a motor, a transformer, a relay, etc. using the material.

電磁機器の鉄心は通常電磁鋼板を積層して構成される。電磁鋼板は極低炭素の珪素鋼の素材を適切な熱間圧延と熱処理により磁気的性質(透磁率の強化・残留磁気の最小化)の向上により磁気ヒステリシス損の最小化が、さらに絶縁性被膜処理により誘導損の最小化が図られている。
電磁鋼板が発明・製造されるまでは平炉によって工業用純鉄(アームコ鉄)を溶製し、該素材から鋼板に圧延後、絶縁被膜し、鉄心材料とされてきた。
The iron core of an electromagnetic device is usually composed of laminated electromagnetic steel sheets. For electromagnetic steel sheets, the magnetic properties (strengthening of magnetic permeability and minimization of residual magnetism) are improved by appropriate hot rolling and heat treatment of ultra-low carbon silicon steel material, and magnetic hysteresis loss is minimized. The treatment minimizes the induction loss.
Until the invention and manufacture of electrical steel sheets, industrial pure iron (armco iron) was melted in a flat furnace, rolled from the material to steel sheets, and then insulated to form an iron core material.

鉄心製造コストには材料としての高価格の電磁鋼板と、金型を使用して所定形状に打ち抜く加工コストと、打ち抜きに伴う材料歩留まり損が計上され、コスト低減に向かって種々の方法が開発されている。
特許文献1には、電磁鋼板よりも低価格の純鉄鉄粉を原料とし、所定形状の金型内で圧下して鉄心を構成することが記載されている。
電磁気的性能は積層電磁鋼板に劣るとしても正味稼働率が大きくない電磁機器に対してはエネルギー損は大きくはなく、総合的には有利になる。
High-priced electrical steel sheets as materials, processing costs for punching into a predetermined shape using a die, and material yield loss due to punching are recorded in the iron core manufacturing cost, and various methods have been developed to reduce costs. ing.
Patent Document 1 describes that a pure iron powder, which is cheaper than an electromagnetic steel sheet, is used as a raw material and is pressed down in a mold having a predetermined shape to form an iron core.
Even if the electromagnetic performance is inferior to that of the laminated electrical steel sheet, the energy loss is not large for the electromagnetic equipment whose net operating rate is not large, and it is advantageous overall.

問題は、圧粉鉄心の事例は多数あり、1回の一体成形も可能で、コスト有利だがプレスの能力や圧下圧力の浸透性から大型部材には無理があり製造可能寸法に限界がある。 The problem is that there are many cases of dust cores, and one-time integral molding is possible, which is cost-effective, but due to the press capacity and the permeability of the rolling pressure, large members are unreasonable and the manufacturable dimensions are limited.

特許文献2には、量産容易な工業用純鉄の製造方法が記載されている。本方法の場合、低炭素鋼の溶製において簡単な脱炭処理を付加するのみであって、材料費は粉体よりも一層低減される。さらに該純鉄を素材とした厚板・平鋼・棒鋼を適切な加工(切り出し、打ち抜き、冷間成形)によって一体物鉄心を製造することが示唆され、加工費低減も期待される。
圧粉鉄心同様電磁気性能が劣っても用途によっては総合コストで有利になる。なお直流機器では直流故に主鉄心にヒステリシス損・誘導損とも発生しない。
Patent Document 2 describes a method for producing pure iron for industrial use, which is easy to mass-produce. In the case of this method, only a simple decarburization treatment is added in the melting of low carbon steel, and the material cost is further reduced as compared with the powder. Furthermore, it is suggested that an integral iron core is manufactured by appropriate processing (cutting, punching, cold forming) of thick plates, flat steel, and steel bars made of pure iron, and it is expected that the processing cost will be reduced.
Even if the electromagnetic performance is inferior like the dust core, the total cost will be advantageous depending on the application. Since DC equipment is DC, neither hysteresis loss nor induction loss occurs in the main iron core.

問題点は、鉄心形状が単純で且つ寸法が大きくなければ塊状の材料から熱間又は冷間で1回のプレスにより成形することができるが、電動機の場合鉄心形状はかなり複雑であって一体成形は容易ではない。圧粉鉄心同様製造可能寸法も圧下力から制限される。個々の部材を一体成形して複数個の組立方式も考えられるが優位性が低下してくる。 The problem is that if the core shape is simple and the dimensions are not large, it can be molded from a massive material by one press hot or cold, but in the case of an electric motor, the core shape is quite complicated and integrally molded. Is not easy. As with the dust core, the manufacturable dimensions are limited by the rolling force. Although it is possible to consider a plurality of assembly methods in which individual members are integrally molded, the superiority is reduced.

複雑な形状をもつ部材を単純な工程で成形する方法について考察する。
1)プラモデルのインジェクションプロセスでは溶融樹脂を金型内に圧入する。隅々まで容易に充填される。
2)Mg合金のチクソモールディングでは材料を半溶融し、金型へ射出成形する。ケータイのケースが製造されている。Feでは事例が見当たらない。
3)溶融金属を鋳造する。実際大型の直流電動機の固定子が鋳造により製造されたこともある。中小型の製造には能率上の問題がある。
4)既述の熱間プレスによって成形する。単純小物の量産に適するが、複雑な形状には密閉金型を使用しても隅々まで充填するには困難があり、また大型部材に対しては圧粉成形同様不均一である。
Consider a method of molding a member having a complicated shape by a simple process.
1) In the plastic model injection process, the molten resin is press-fitted into the mold. Easy to fill every corner.
2) In thixomolding of Mg alloy, the material is semi-melted and injection molded into a mold. A mobile phone case is manufactured. No case is found in Fe.
3) Cast the molten metal. In fact, the stator of a large DC motor was sometimes manufactured by casting. There is an efficiency problem in small and medium-sized manufacturing.
4) Molding is performed by the hot pressing described above. It is suitable for mass production of simple small items, but it is difficult to fill every corner even if a closed mold is used for complicated shapes, and it is non-uniform for large members as well as powder molding.

5)成形ではないが半溶融鋼を加工する工程がある。棒線の突き合わせ溶接であって直接通電加熱により接触面が優先的に加熱され、半溶融になるとわずかな圧下力で接触部が流動・溶着し、盛り上がり、溶接がなされる。
半溶融部が塑性的に流れる際、液相部が抽出され固相部は残存する。固相部は低炭素になり、排出された液相部は高炭素になっていて機械的な偏析が発現する。当該高炭素部分を適切に除去すると伸線加工に耐えられる。
半溶融鋼の成形において上記偏析現象が発現しない加工条件が存在すると想像されるが現在見つけ出されていない。
5) There is a process of processing semi-molten steel, which is not molding. In the butt welding of rods, the contact surface is preferentially heated by direct energization heating, and when it becomes semi-molten, the contact portion flows and welds with a slight reduction force, and the contact portion rises and is welded.
When the semi-molten part flows plastically, the liquid phase part is extracted and the solid phase part remains. The solid phase portion becomes low carbon, and the discharged liquid phase portion becomes high carbon, and mechanical segregation occurs. If the high carbon part is properly removed, it can withstand wire drawing.
It is conceivable that there is a processing condition in which the above segregation phenomenon does not occur in the molding of semi-molten steel, but it has not been found at present.

公開特許公報2005-197594Published Patent Publication 2005-197594 特許第6910523Patent No. 6910523

鉄と鋼 Vol.82 (1996) No.12, p.35~p.40 山中ら、 連鋳鋳片の内部割れ機構Iron and Steel Vol.82 (1996) No.12, p.35 ~ p.40 Yamanaka et al., Internal cracking mechanism of continuously cast slabs

本願発明は、従来の電磁鋼板を積層して構成される電磁鉄心に対して、電磁性能は多少劣るとも製造コストにおいて大幅に有利な鉄心の製造を目的とし、そのため低コストの軟磁性材料の熱間圧延素材から複雑な形状又は大寸法の鉄心を成形する方法を提供することを解決すべき課題とする。 The present invention aims at manufacturing an iron core which is slightly inferior in electromagnetic performance to an electromagnetic steel core formed by laminating conventional magnetic steel sheets, but which is significantly advantageous in terms of manufacturing cost, and therefore heat of a low-cost soft magnetic material. It is a problem to be solved to provide a method for forming a core having a complicated shape or a large size from a rolled material.

第1の発明は、一体物の電磁鉄心を成形する方法であって、
化学成分が質量%において、C0.01%以下,Si0.01%以下,Mn0.5%以下,P0.03%以下,S0.03%以下,Oが0.05%以上1.3%以下、残部が不可避不純物とFeであり、鉄の純度が99.0%以上である工業用純鉄の圧延鋼材を材料とし、1回のプレス成形により所定形状の鉄心を製造するに当たり、上記成分の棒線状又は平状又は環状の素形材を1500℃以上1530℃以下に加熱して粒界溶融状態で直ちに該所定形状を内包する金型内に装入し、密閉プレスすることを特徴とする一体物鉄心の製造方法である。
The first invention is a method of forming an integral electromagnetic core.
When the chemical composition is mass%, C is 0.01% or less, Si is 0.01% or less, Mn is 0.5% or less, P is 0.03% or less, S is 0.03% or less, and O is 0.05% or more and 1.3% or less. When the iron core of a predetermined shape is manufactured by one press molding using rolled steel of industrial pure iron whose balance is unavoidable impurities and Fe and the purity of iron is 99.0% or more, a rod having the above components It is characterized in that a linear, flat or annular raw material is heated to 1500 ° C. or higher and 1530 ° C. or lower, immediately charged in a mold containing the predetermined shape in a state where the grain boundaries are melted, and sealed and pressed. This is a method for manufacturing an integral iron core.

第2の発明は、
1)内周に多数の磁極を持つ電動機の固定子に対しては素形材の形状を円筒とし、
2)外周に多数の磁極を持つ電動機の回転子に対しては素形材の形状を円柱とし、
3)2極回転子鉄心又は長方形断面の鉄心に対しては素形材の形状を長方形とすることを 特徴とする第1発明に記載した一体物鉄心の製造方法である。
The second invention is
1) For the stator of a motor that has a large number of magnetic poles on the inner circumference, the shape of the element shape is a cylinder.
2) For the rotor of a motor that has a large number of magnetic poles on the outer circumference, the shape of the element shape is a cylinder.
3) The method for manufacturing an integral core according to the first invention, wherein the shape of the raw material is rectangular with respect to the two-pole rotor core or the core having a rectangular cross section.

本願発明の第1の効果は、使用される圧延材料は量産普通鋼と同等の原料・工程で供給され、高級・高価な電磁鋼板を必要としない。
量産圧延材から素形材(所定鉄心質量に分断された圧延材)を経由して製品に到る成形歩留まりもほぼ100%に近く、鋼板打抜きの場合よりも数10%高く、材料費は圧倒的に有利である。
The first effect of the present invention is that the rolling material used is supplied with the same raw materials and processes as mass-produced ordinary steel, and does not require high-grade and expensive electromagnetic steel sheets.
The molding yield from mass-produced rolled material to the product via the raw material (rolled material divided into the specified core mass) is close to 100%, which is several tens of percent higher than that of punched steel sheet, and the material cost is overwhelming. It is advantageous in terms of.

素形材自体の加工コストは圧延鋼材を切断するだけ、又は単純な加工を付しただけであり、素形材から製品への加工も低圧下力熱間プレス1回であり、打抜き・積層よりも有利である。 The processing cost of the raw material itself is only by cutting the rolled steel material or by simply processing it, and the processing from the raw material to the product is also performed by one low pressure pressing hot pressing, from punching and laminating. Is also advantageous.

軟磁性材料として、本発明の工業用純鉄と電磁鋼板との磁気的性質を比較すると、前者は透磁率・残留磁化とも多少劣るが決定的ではない。本発明の特徴である超高温熱間加工が結晶粒を粗大化させ上記両性質を改良している。
電磁的性質である渦流起因の誘導損は致し方ないが、誘導損がある程度許容される用途には実用することができる。
Comparing the magnetic properties of the industrial pure iron of the present invention and the electrical steel sheet as a soft magnetic material, the former is slightly inferior in magnetic permeability and residual magnetization, but is not definitive. The ultra-high temperature hot working, which is a feature of the present invention, coarsens the crystal grains and improves both of the above properties.
Induction loss due to eddy current, which is an electromagnetic property, is unavoidable, but it can be put to practical use in applications where induction loss is tolerated to some extent.

直流電動機では通常固定子側は磁極が固定していてヒステリシス損及び誘導損は発生しない。回転子は固定磁場の中で運動するので誘導損が生ずる。
自動車には中小型の直流電動機が多数使用されている。稼働率は小さい。消費エネルギーが少ないので誘導損を無視しても差し支えない。本願発明の鉄心は実用に耐える。
In a DC motor, the magnetic poles are usually fixed on the stator side, and hysteresis loss and induction loss do not occur. Since the rotor moves in a fixed magnetic field, induction loss occurs.
Many small and medium-sized DC motors are used in automobiles. The utilization rate is small. Since the energy consumption is small, the induction loss can be ignored. The iron core of the present invention can withstand practical use.

鉄心を成形するプレスの必要圧下力は、加工温度が熱間であることから冷間プレスの数分の1であり、さらに融点直下の加工であるから通常の熱間変形抵抗よりも一層低い。寸法の大きい中型鉄心も容易に製造することができる。単純な形状では大型鉄心の製造も容易である。 The required rolling force of the press for forming the iron core is a fraction of that of the cold press because the processing temperature is hot, and is further lower than the normal hot deformation resistance because the processing is performed immediately below the melting point. Medium-sized iron cores with large dimensions can also be easily manufactured. With a simple shape, it is easy to manufacture a large iron core.

適用される鋼種は高酸素鉄であって耐食性に優れる。海水中においても黒錆化(表面にマグネタイト層を形成)し、耐食性に優れ、水中使用に有利である。 The applicable steel type is high oxygen iron and has excellent corrosion resistance. Even in seawater, it becomes black rust (a magnetite layer is formed on the surface), has excellent corrosion resistance, and is advantageous for use in water.

円筒状素形材を密閉金型に装入し、プレスして多極固定子鉄心を成形する方法を示す。A図は上から見た図、Bは縦断面図である。A method of charging a cylindrical raw material into a closed die and pressing it to form a multi-pole stator core is shown. FIG. A is a view seen from above, and FIG. B is a vertical sectional view. 円筒状素形材の成形方法を示す。The molding method of a cylindrical raw material is shown. 円柱状素形材を密閉金型に装入し、プレスして多極回転子鉄心を成形する方法を示す。A図は上から見た図、Bは縦断面図である。A method of charging a columnar element into a closed die and pressing it to form a multi-pole rotor core is shown. FIG. A is a view seen from above, and FIG. B is a vertical sectional view. Fe-C系状態図において、凝固開始からの冷却時において抗張力が発現する温度(ZST)、伸びが発現する温度(ZDT)を示す。In the Fe-C phase diagram, the temperature at which tensile strength develops (ZST) and the temperature at which elongation develops (ZDT) at the time of cooling from the start of solidification are shown. 突合せ溶接器を使用する超高温加工の実験方法を示す。An experimental method of ultra-high temperature machining using a butt welder is shown.

本発明の固定子鉄心成形方法を実施する装置と作業方法を図1に従って説明する。
密閉プレスするための外金型1は有底円筒状の内壁2を持つ。該内壁2は目的とする固定子6の外周となる。3は同心円柱状の中子であり、下部は円柱であるが上部には円柱壁面から内側へ磁極4を形成する溝5が設けられている。該該溝5の形状は固定子6(図中白抜き部分の形状)と同等になっている。
An apparatus and a working method for carrying out the stator core forming method of the present invention will be described with reference to FIG.
The outer die 1 for sealing pressing has a bottomed cylindrical inner wall 2. The inner wall 2 is the outer circumference of the target stator 6. Reference numeral 3 is a concentric columnar core, and the lower portion is a cylinder, but the upper portion is provided with a groove 5 forming a magnetic pole 4 inward from the wall surface of the cylinder. The shape of the groove 5 is the same as that of the stator 6 (the shape of the white portion in the figure).

固定子6と同一体積を持つ所定成分の円筒状の素形材7は事前に1500℃以上に加熱され、外金型1と中子3との間隙に形成された環状空間8に装入される。該環状空間8の底には環状の下金型9、上方には上金型10が設けられており、装入後上金型10が押し下げられ環状空間8の上面を閉じる。次いで下金型9が外金型1の底を貫通するピストン11によって押し上げられ、素形材7は密閉空間の中で押し込められて溝5に流入し、固定子6が形成される。次いで上金型10が退避し、下金型9は一層押上げ、固定子6を外金型1から取り出す。 The cylindrical element 7 having the same volume as the stator 6 and having a predetermined component is preheated to 1500 ° C. or higher, and is charged into the annular space 8 formed in the gap between the outer mold 1 and the core 3. To. An annular lower mold 9 is provided at the bottom of the annular space 8, and an upper mold 10 is provided above the annular space 8. After charging, the upper mold 10 is pushed down to close the upper surface of the annular space 8. Next, the lower mold 9 is pushed up by the piston 11 penetrating the bottom of the outer mold 1, the raw material 7 is pushed into the closed space and flows into the groove 5, and the stator 6 is formed. Next, the upper mold 10 is retracted, the lower mold 9 is pushed up further, and the stator 6 is taken out from the outer mold 1.

図2に従って円筒状素形材の準備方法を説明する。図中Aは適切な寸法の管材である。
Bは板材を巻き付けて管状に形成したものである。Cは棒線をコイル状に巻き付けて管状に形成したものである。後2者の場合、固定子鉄心への加工中に鍛接が進み一体となって管材と同様に使用することができる。
A method of preparing a cylindrical raw material will be described with reference to FIG. In the figure, A is a pipe material having appropriate dimensions.
B is formed by winding a plate material into a tubular shape. C is formed by winding a rod in a coil shape to form a tubular shape. In the case of the latter two, forge welding progresses during the processing to the stator core, and they can be used together like a pipe material.

図3に従って回転子鉄心を成形する方法を説明する。21は密閉プレスするための外金型であり、該外金型21の内側に目的とする回転子22と同一形状のレプリカ空間23(図中黒色部)が鋳造における砂鋳型のように彫り込まれている。該レプリカ空間23の下方には該空間と同軸に有底円筒状の装入空間24が設けられている。 A method of forming the rotor core will be described with reference to FIG. Reference numeral 21 is an outer die for sealing and pressing, and a replica space 23 (black part in the figure) having the same shape as the target rotor 22 is engraved inside the outer die 21 like a sand mold in casting. ing. Below the replica space 23, a bottomed cylindrical charging space 24 is provided coaxially with the space.

回転子空間と同一体積を持つ円柱状の素形材25は事前に1500℃以上に加熱され、装入空間24に装入される。該装入空間24の底には円盤状の下金型26、上方には円盤状の上金型27が設けられおり、装入後上金型27が押し下げられレプリカ空間23の上面を閉じる。次いで下金型26が外金型21の底を貫通するピストン28によって押し上げられ、素形材25は密閉空間の中で押し込められて磁極となる溝部に流入し、回転子22が形成される。次いで上金型27を退避し、下金型26を一層押上げ、回転子22を外金型21から取り出す。 The columnar raw material 25 having the same volume as the rotor space is preheated to 1500 ° C. or higher and charged into the charging space 24. A disk-shaped lower mold 26 is provided at the bottom of the charging space 24, and a disk-shaped upper mold 27 is provided above the charging space 24. After charging, the upper mold 27 is pushed down to close the upper surface of the replica space 23. Next, the lower mold 26 is pushed up by the piston 28 penetrating the bottom of the outer mold 21, and the raw material 25 is pushed into the closed space and flows into the groove portion which becomes the magnetic pole, and the rotor 22 is formed. Next, the upper mold 27 is retracted, the lower mold 26 is pushed up further, and the rotor 22 is taken out from the outer mold 21.

鉄心材料について説明する。
軟磁性材としてふさわしい条件は透磁率が大きいこと、残留磁化(保持力)が小さいこと、電気抵抗が大きいことである。前2者は磁気ヒステリシス損を、後者は誘導損を低減する。絶縁性被膜を持つ極低炭素高珪素鋼の電磁鋼板を使用する積層鉄心は最良である。磁気的性質の改良のため成分だけでなく結晶粒制御、電気的性質の改良のため絶縁被膜が付加されている。
The iron core material will be described.
Suitable conditions for a soft magnetic material are high magnetic permeability, low residual magnetization (holding force), and high electrical resistance. The former reduces the magnetic hysteresis loss, and the latter reduces the induction loss. Laminated iron cores using electrical steel sheets of ultra-low carbon high silicon steel with an insulating coating are the best. An insulating film is added to control not only the components but also the crystal grains to improve the magnetic properties and to improve the electrical properties.

上記鋼種が発明されるまではアームコ鉄と称する純鉄が鉄心材料として使用されていた。
本発明はその流れを引き継ぐ。上記鋼種の磁気的性質を純鉄と比較すると透磁率・残留磁化とも大差が無い。直流磁化ではヒステリシス損自体が発生しない。低稼働率の電磁機器では純鉄でも充分対応可能である。
本願発明では引用文献2に記載された鋼種を使用する。化学成分は質量%において、
Cは0.01%以下、Oは0.05%以上0.13%以下、Siは0.01%以下、Mnは0.5%以下、P及びSは0.03%以下、残部は不可避不純物とFeであり、Fe純度は99.0%以上とする。
本鋼種の特徴は、磁性特性だけでなく、Oの作用として腐蝕環境にあっても黒錆(マグネタイト)を形成して、以後の腐蝕を抑制することである。錆にくい鉄心となる。
Until the invention of the above steel grade, pure iron called armco iron was used as the core material.
The present invention inherits that trend. Comparing the magnetic properties of the above steel types with pure iron, there is no great difference in magnetic permeability and residual magnetization. No hysteresis loss itself occurs in DC magnetization. Pure iron is sufficient for low operating rate electromagnetic equipment.
In the present invention, the steel grade described in Cited Document 2 is used. The chemical composition is in mass%
C is 0.01% or less, O is 0.05% or more and 0.13% or less, Si is 0.01% or less, Mn is 0.5% or less, P and S are 0.03% or less, and the balance is inevitable. It is an impurity and Fe, and the Fe purity is 99.0% or more.
The characteristic of this steel grade is not only the magnetic property but also the action of O to form black rust (magnetite) even in a corroded environment and suppress the subsequent corrosion. It becomes a rust-resistant iron core.

加工温度について説明する。
通常の熱間鍛造や熱間プレスでは、多数の磁極を持つ固定子や回転子の一体物成形は困難であり、また寸法が大きいほど困難である。過大な加圧力を以てしても塑性流れが狭い空間に行き渡らない。
既述のように半溶融であれば密閉鋳型に圧入することができる。また線材の連結溶接も容易である。それぞれ熱間加工よりも遙かに小さい加圧力でなされる。
The processing temperature will be described.
In ordinary hot forging or hot pressing, it is difficult to integrally form a stator and a rotor having a large number of magnetic poles, and the larger the size, the more difficult it is. Even with excessive pressure, the plastic flow does not spread in a narrow space.
As described above, if it is semi-melted, it can be press-fitted into a closed mold. It is also easy to connect and weld the wires. Each is performed with a much smaller pressing force than hot working.

半溶融圧入方式の問題点を説明する。炭素鋼では液相線、固相線の間の温度で半溶融状態になる。当該状態で加圧すると容易に変形するが、低炭素の固相はほとんど移動せず、高炭素の液相が優先して流れ、機械的偏析が発生する。レモンを搾るようである。両相が均質状態で流れる理論的条件があるかも知れないが研究例が無い。鋼では半溶融圧入成形の事例が見当たらない理由となっている。 The problems of the semi-melt press-fitting method will be described. Carbon steel becomes semi-molten at the temperature between the liquid phase line and the solid phase line. When pressurized in this state, it is easily deformed, but the low carbon solid phase hardly moves, the high carbon liquid phase preferentially flows, and mechanical segregation occurs. It's like squeezing a lemon. There may be theoretical conditions in which both phases flow in a homogeneous state, but there are no studies. This is the reason why there are no examples of semi-melt press-fitting in steel.

本発明の成分ではほぼ純鉄であるから、
1)液相線・固相線間の温度幅は極めて狭い。
2)両相の成分差は極めて小さい。
従って偏析現象は縮小することができても作業温度範囲が狭く、応用困難とされる。
Since the component of the present invention is almost pure iron,
1) The temperature range between the liquid phase line and the solid phase line is extremely narrow.
2) The component difference between the two phases is extremely small.
Therefore, even if the segregation phenomenon can be reduced, the working temperature range is narrow and it is difficult to apply it.

引用文献3には、鋼の連続鋳造工程においてワレを防止するため、凝固過程における引張強さと伸びの挙動が詳細に研究されている。それによると、
1) 冷却途上において液相線・固相線間では引張強さも伸びも無く、引張作用は容易にワレを誘発する。
2) 凝固完了に近づくと伸びは無いが熱間強度に近い引張強さが発現する。当該温度をZST(Zero-Strength Temperature)とする。固相線温度よりも低い。
3) さらに冷却すると伸びも生ずる。当温度をZDT(Zero-Ductile Temperature)とする。
4) 両温度間で限界歪み(かなり小さい)を超えるとワレが発生する。限界歪みは実験から明確になった。
5) ZDT以下では熱間加工が可能である。
In Cited Document 3, the tensile strength and elongation behavior in the solidification process are studied in detail in order to prevent cracking in the continuous steel casting process. according to it,
1) There is no tensile strength or elongation between the liquid phase line and the solid phase line during cooling, and the tensile action easily induces cracking.
2) When the solidification is completed, there is no elongation, but a tensile strength close to the hot strength develops. The temperature is referred to as ZST (Zero-Strength Temperature). It is lower than the solidus temperature.
3) Further cooling causes elongation. This temperature is referred to as ZDT (Zero-Ductile Temperature).
4) If the limit strain (quite small) is exceeded between both temperatures, cracking will occur. The limit strain became clear from the experiment.
5) Hot working is possible below ZDT.

図4は上記文献に記されたデータを正確に引用し、ZST,ZDTをFe-C系状態図に重ねたものである。ZST(固相率0.8)ZDT(同0.99)の両線とも固相線の下方(低温側)に位置し、C量に対応して適正又は不適正な加工(歪み)領域が解る。
またZSTと固相線間は形状を保っていても強度も伸びも無いことが解る。
FIG. 4 accurately cites the data described in the above document and superimposes ZST and ZDT on the Fe—C system phase diagram. Both ZST (solid phase ratio 0.8) and ZDT (0.99) lines are located below the solid phase line (low temperature side), and appropriate or inappropriate processing (strain) regions correspond to the amount of C. I understand.
It can also be seen that there is no strength or elongation between ZST and the solid phase line even if the shape is maintained.

上記研究により冷却過程における強度と延伸性の発現については解明された。加熱過程では同等ではないにしても同様の現象が生ずると推測される。熱間加工では温度・時間とも過剰加熱領域に入ると、表面にワレが発生し易くなることは周知であり、粒界溶融に起因するとされている。 The above studies have elucidated the development of strength and stretchability during the cooling process. It is presumed that the same phenomenon occurs in the heating process, if not equivalent. It is well known that cracks are likely to occur on the surface of hot working when it enters the overheated region in both temperature and time, and it is said that it is caused by grain boundary melting.

伸びが無くても塑性加工は可能である。粘土の引張試験では容易に引きちぎれ、伸びが小さいことが解る。粘土の圧下ではワレを発生しながら容易に塑性流れとなり、一部は圧接してワレが消滅する。
ZST,ZDT間での塑性加工ではワレが併発するが加工は可能である。強度が発現しているので通常の熱間加工に近い変形抵抗を示すのでそれに抗する圧下力が必要となる。
文献では検討されていないがZST以上の加工では強度も伸びも無いのでワレは考慮外として、低圧下力で変形させることが可能と合理的に推測される。
Plastic working is possible even if there is no elongation. Tensile tests on clay show that it is easily torn off and has low elongation. Under the pressure of clay, it easily becomes a plastic flow while generating cracks, and a part of it is pressed and the cracks disappear.
In the plastic working between ZST and ZDT, cracks occur at the same time, but the working is possible. Since the strength is exhibited, the deformation resistance is close to that of normal hot working, so a rolling force to resist it is required.
Although it has not been examined in the literature, it is reasonably presumed that it is possible to deform it with a low-pressure lower force without considering cracking because there is no strength or elongation in processing above ZST.

本願発明に使用される材料である工業用純鉄は、融点・液相線温度・固相線温度が接近している。しかるに後述の低炭素鋼で発生した低変形抵抗の塑性変形は液相・固相の共存又は粒界が液相、粒内が固相の状態と推定される。一面では砂の流動化状態に類似すると想像される。
本願発明では当該状態を応用し、加工が不適切とされているZSTの上方(高温側)において塑性加工することを主旨としている。
ZSTは固相線直下にあり、純鉄の場合はは約1500℃である。該温度はC量,不純物P,S,不可避不純物等の残存量の影響を受ける。
The melting point, liquidus temperature, and solidus temperature of pure industrial iron, which is the material used in the present invention, are close to each other. However, it is presumed that the plastic deformation of the low deformation resistance generated in the low carbon steel described later is the coexistence of the liquid phase and the solid phase, or the state where the grain boundary is the liquid phase and the inside of the grain is the solid phase. On the one hand, it is supposed to resemble the fluidized state of sand.
In the present invention, this state is applied, and the main purpose is to perform plastic working above (high temperature side) of ZST, which is considered to be inappropriate.
ZST is directly below the solid phase line, and in the case of pure iron, it is about 1500 ° C. The temperature is affected by the amount of C, impurities P, S, residual amounts of unavoidable impurities and the like.

本願発明の加工温度の下限について説明する。
適切な加工温度はZST以上である。ZSTは図3から解るように固相線の約20℃下方にある。本願発明の鋼種の固相線は融点下方約20℃にある。従って融点下方約40℃と見なされる。
当該鋼種の固相線温度を概算する。Fe2元系合金の状態図から、融点降下は、
0.01%Cにより-4℃、0.5%Mnにより-3℃、0.03%Pにより-3℃、
0.03%Sにより-24℃、合算すると-34℃になる。即ち固相線温度は約1500℃となる。実際は影響が突出しているSはMnと結合し、作用の減殺がなされ、1510~1520℃と推定される。ZSTは1490~1500℃と推定される。これが特定温度として1500℃以上とした根拠である。
The lower limit of the processing temperature of the present invention will be described.
The appropriate processing temperature is ZST or higher. As can be seen from FIG. 3, ZST is about 20 ° C. below the solid phase line. The solid phase line of the steel grade of the present invention is at about 20 ° C. below the melting point. Therefore, it is considered to be about 40 ° C. below the melting point.
Approximate the solidus temperature of the steel type. From the phase diagram of the Fe binary alloy, the melting point depression is
-4 ° C with 0.01% C, -3 ° C with 0.5% Mn, -3 ° C with 0.03% P,
With 0.03% S, it becomes -24 ° C, and the total becomes -34 ° C. That is, the solid phase temperature is about 1500 ° C. In reality, S, which has a prominent effect, binds to Mn and diminishes its action, and is estimated to be 1510 to 1520 ° C. ZST is estimated to be 1490-1500 ° C. This is the reason why the specific temperature is 1500 ° C or higher.

上限温度は当然融点以下になる。融点を超えると単なる鋳造になる。融点は不純物量に依存し、約1530℃と算出される。 The upper limit temperature is naturally below the melting point. If it exceeds the melting point, it becomes a mere casting. The melting point depends on the amount of impurities and is calculated to be about 1530 ° C.

当然加工時にワレが容易に発生するが純鉄故にさらに粒界溶融故に接合も容易であり、加工中にワレと接合が併行する。接合の筋目が残存しても製品の性格上問題とはならない。
低変形抵抗であるから通常の熱間加工機(圧延機・鍛造・プレス)に比較して低動力で加工され、塑性流れは金型内の隅々まで容易に浸透する。
Naturally, cracking easily occurs during processing, but since it is pure iron, it is also easy to join because of grain boundary melting, and cracking and joining occur in parallel during processing. Even if the streaks of the joint remain, it does not pose a problem due to the nature of the product.
Since it has low deformation resistance, it is machined with lower power than ordinary hot working machines (rolling machines, forgings, presses), and the plastic flow easily penetrates into every corner of the die.

純鉄に近い低炭素鋼を代用し、加熱して固相線温度に接近すると熱間加工よりも低応力で容易に変形するかどうかの確認試験を行った。
鋼種は炭酸ガス溶接棒で、0.05%C、1.5%Si,1.0%Mn,0.01%P,0.01%Sである。各元素1%当たりの融点降下は、400℃、6℃、7℃、100℃、
800℃である。Sが最大要因となるがMnとの共存でほぼ無視される。当該鋼種の融点降下は約30℃になる。固相線温度は約1500℃と推定される。
本願発明の鋼種では0.01%Cが大きく作用し、降下は約10℃になる。固相線温度は1520~1530℃であろう。ZSTは固相線温度から約20℃低位にあるから、約1500℃以上で強度・伸びとも消滅すると推測される。実験鋼種ではそれ以下で軟化が生ずると推測される。
A low carbon steel close to pure iron was used as a substitute, and a confirmation test was conducted to see if it would be easily deformed with lower stress than hot working when heated and approached the solidus temperature.
The steel type is a carbon dioxide gas welding rod, which is 0.05% C, 1.5% Si, 1.0% Mn, 0.01% P, 0.01% S. The melting point depression per 1% of each element is 400 ° C, 6 ° C, 7 ° C, 100 ° C,
It is 800 ° C. S is the largest factor, but it is almost ignored due to coexistence with Mn. The melting point depression of the steel grade is about 30 ° C. The solidus temperature is estimated to be about 1500 ° C.
In the steel grade of the present invention, 0.01% C has a large effect, and the drop is about 10 ° C. The solidus temperature will be between 1520 and 1530 ° C. Since ZST is about 20 ° C lower than the solidus temperature, it is presumed that both strength and elongation disappear at about 1500 ° C or higher. It is presumed that softening occurs below that in the experimental steel grade.

既述の線材突き合わせ溶接を使用して低応力変形の可能性を再度検討した。
図5に示すように、溶接機は電源51と、二つの電極クランプ52,53と、該クランプの片側を他極のクランプ側に押しつける加圧装置54とから成る。突き合わせ溶接では通電により突き合わ部が急速に昇温し、部分溶融し、加圧による塑性流れを経て溶接されることが観察される。部分溶融しているので必要加圧力は大きくない。通常の空圧シリンダーで対処可能である。
上記鋼種の1本の線材55をクランプして通電すると突き合わせ同様、中央部が優先して昇温し、溶融落下せずバルジ56が発生した。バルジ56の外周にタテワレ(線軸方向)が生ずることもあった。実験鋼種に近い発明鋼種でもほぼ同様の挙動を示すものと見なせる。そうならない要因が見つからないからである。
ここで重要なことは、塑性流れが生ずる圧下力(=空圧シリンダーの加圧力)は通常の熱間変形抵抗と断面積との積に比較して圧倒的に小さいことである。本発明の低応力・高歪み加工の可能性が裏付けられる。
上記実験はMg合金のチクソモールディングとか非鉄合金の溶融鍛造法に似た現象と言える。
The possibility of low stress deformation was reexamined using the above-mentioned wire butt welding.
As shown in FIG. 5, the welding machine includes a power supply 51, two electrode clamps 52 and 53, and a pressurizing device 54 that presses one side of the clamp against the clamp side of the other pole. In butt welding, it is observed that the butt portion rapidly rises due to energization, partially melts, and is welded through a plastic flow due to pressure. Since it is partially melted, the required pressing force is not large. It can be dealt with with a normal pneumatic cylinder.
When one wire 55 of the above steel type was clamped and energized, the temperature of the central portion was preferentially raised in the same manner as in the case of abutting, and the bulge 56 was generated without melting and falling. Vertical warpage (in the linear axis direction) may occur on the outer periphery of the bulge 56. It can be considered that the invention steel grades close to the experimental steel grades show almost the same behavior. This is because we cannot find a factor that does not.
What is important here is that the rolling force generated by the plastic flow (= the pressing force of the pneumatic cylinder) is overwhelmingly smaller than the product of the normal hot deformation resistance and the cross-sectional area. The possibility of low stress and high strain machining of the present invention is supported.
The above experiment can be said to be a phenomenon similar to the thixomolding of Mg alloys or the melt forging method of non-iron alloys.

本願発明の鉄心の製造方法は低コストで容易に実施することができる。 The iron core manufacturing method of the present invention can be easily carried out at low cost.

1;外金型 2;内壁 3;中子 4;磁極 5;溝 6;固定子 7;素形材 8:環状空間 9:下金型 10;上金型 11;ピストン 21;外金型 22;回転子 23;レプリカ空間 24;装入空間 25;素形材 26;下金型 27;上金型 51;電源 52、53;電極クランプ 54;加圧装置 55;線材 56;バルジ 1; outer mold 2; inner wall 3; core 4; magnetic pole 5; groove 6; stator 7; element shape material 8: annular space 9: lower mold 10; upper mold 11; piston 21; outer mold 22 Rotator 23; Replica space 24; Charge space 25; Base material 26; Lower mold 27; Upper mold 51; Power supply 52, 53; Electrode clamp 54; Pressurizing device 55; Wire rod 56; Balge

Claims (2)

一体物の電磁鉄心を成形する方法であって、化学成分が質量%において、C0.01%以下,Si0.01%以下,Mn0.5%以下,P0.03%以下,S0.03%以下,Oが0.05%以上1.3%以下、残部が不可避不純物とFeであり、鉄の純度が99.0%以上である工業用純鉄の所定断面形状の圧延鋼材を材料とし、1回のプレス成形により所定形状の鉄心を製造するに当たり、該圧延鋼材から切り出した棒線状又は平状又は環状の素形材を固相線温度直下の1500℃以上及び1530℃以下の範囲に加熱して粒界溶融状態で直ちに該鉄心のレプリカ金型内に装入し、密閉プレスすることを特徴とする一体物鉄心の製造方法。 It is a method of forming an integral electromagnetic core, and the chemical composition is C 0.01% or less, Si 0.01% or less, Mn 0.5% or less, P 0.03% or less, S 0.03% or less in mass%. Once using rolled steel material with a predetermined cross-sectional shape of industrial pure iron having O of 0.05% or more and 1.3% or less, the balance being unavoidable impurities and Fe, and iron purity of 99.0% or more. In order to produce an iron core having a predetermined shape by the press forming of the above, a rod-shaped or flat-shaped or annular raw material cut out from the rolled steel material is heated to a range of 1500 ° C. or higher and 1530 ° C. or lower immediately below the solid phase line temperature . A method for manufacturing an integral iron core, which comprises immediately charging the iron core into a replica mold in a molten state and pressing the iron core in a sealed manner. 内周に多数の磁極を持つ電動機の固定子に対しては素形材の形状を円筒とし、外周に多数の磁極を持つ電動機の回転子に対しては素形材の形状を円柱とし、2極回転子鉄心又は長方形断面の鉄心に対しては素形材の形状を長方形とすることを特徴とする請求項1に記載した一体物鉄心の製造方法。 For the stator of the motor with many magnetic poles on the inner circumference, the shape of the base material is a cylinder, and for the rotor of the motor with many poles on the outer circumference, the shape of the base material is a cylinder. The method for manufacturing an integral core according to claim 1, wherein the shape of the raw material is rectangular with respect to the pole rotor core or the core having a rectangular cross section.
JP2021200529A 2021-12-10 2021-12-10 Iron core manufacturing method Active JP7091547B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021200529A JP7091547B1 (en) 2021-12-10 2021-12-10 Iron core manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021200529A JP7091547B1 (en) 2021-12-10 2021-12-10 Iron core manufacturing method

Publications (2)

Publication Number Publication Date
JP7091547B1 true JP7091547B1 (en) 2022-06-27
JP2023086182A JP2023086182A (en) 2023-06-22

Family

ID=82163670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021200529A Active JP7091547B1 (en) 2021-12-10 2021-12-10 Iron core manufacturing method

Country Status (1)

Country Link
JP (1) JP7091547B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610523B2 (en) * 1986-04-15 1994-02-09 株式会社平川鉄工所 Heat insulating device for boiler tube sheet by attaching ceramic board
JP2005088083A (en) * 2003-07-15 2005-04-07 Chunpyo Hong Manufacturing device of metal slurry in solid-liquid coexistent state
JP6910523B1 (en) * 2020-10-21 2021-07-28 山田 榮子 Manufacturing method of ultra-soft rolled steel that does not easily rust

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610523B2 (en) * 1986-04-15 1994-02-09 株式会社平川鉄工所 Heat insulating device for boiler tube sheet by attaching ceramic board
JP2005088083A (en) * 2003-07-15 2005-04-07 Chunpyo Hong Manufacturing device of metal slurry in solid-liquid coexistent state
JP6910523B1 (en) * 2020-10-21 2021-07-28 山田 榮子 Manufacturing method of ultra-soft rolled steel that does not easily rust

Also Published As

Publication number Publication date
JP2023086182A (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP6211184B2 (en) Magnetic steel sheet laminated core manufacturing method for reducing magnetic loss and improving strength, and laminated core manufactured thereby
CN113399861B (en) Copper-nickel-based welding wire for copper-steel transition layer melting-brazing and preparation method thereof
CA2958476A1 (en) Welding head for magnetic pulse welding of tubular profiles to a cylindrical inner member
KR20160049946A (en) Method to manufacture cooling block for hot stamping metallic pattern using three dimensional metal-print
CN106854725B (en) A kind of Ti2The preparation method of AlNb based alloy and its ingot casting
Shen et al. Effect of external constant magnetic field on weld nugget of resistance spot welded dual-phase steel DP590
JP7091547B1 (en) Iron core manufacturing method
CN106363151A (en) Method for preparing copper iron bimetal composite
CN104254961A (en) Motor rotor support and method for manufacturing same
CN100491558C (en) High-performance yttrium-base heavy rare earth copper alloy die material and preparation method thereof
CN110325313B (en) Resistance spot welding method
EP2000548B1 (en) Arc start material for electroslag remelting of superalloy and arc starting method employing the arc start material
WO2021182444A1 (en) Solid-phase spot-welding method and solid-phase spot-welding device
CN102019544B (en) Cast-welding and forging compounded forming method of super-huge type forge piece
JP2023154747A (en) Steel component hot press-forming method
JPS6139309A (en) Hollow material and manufacture thereof
CN1736634A (en) Production method of multiple layer metal surface composite billet using electroslag remelting
RU2376669C2 (en) Smelted magnetic medium on basis of soft magnetic alloy and manufacturing method from it of monolithic magnetic core of electrical machines
TWI271248B (en) Method of welding solenoids
RU2387524C1 (en) Vacuum diffusion welding method for multi-layered items made from heterogeneous stainless steels
JP4414950B2 (en) Metal billet for semi-molten casting and method for producing metal billet for semi-molten casting
CN116944239A (en) Efficient preparation method of Fe-Co-V alloy thin strip
JP3061581B2 (en) Fe-Cr-Co-based cylindrical magnet
JPS60125336A (en) Manufacture of clad steel
JPH01262059A (en) Production of light alloy joined disk wheel

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

R150 Certificate of patent or registration of utility model

Ref document number: 7091547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150