JP7090386B2 - Content rate measurement method and method for producing improved soil using this - Google Patents
Content rate measurement method and method for producing improved soil using this Download PDFInfo
- Publication number
- JP7090386B2 JP7090386B2 JP2019122817A JP2019122817A JP7090386B2 JP 7090386 B2 JP7090386 B2 JP 7090386B2 JP 2019122817 A JP2019122817 A JP 2019122817A JP 2019122817 A JP2019122817 A JP 2019122817A JP 7090386 B2 JP7090386 B2 JP 7090386B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- volcanic ash
- clay
- content
- content rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
本発明は、例えば、アロフェンを含有する火山灰質粗粒土の地盤改良工において、六価クロムが土壌環境基準を超過して溶出することを抑制するために、火山灰質粗粒土中のアロフェン等の含有率を求めるのに用いて好適な含有率測定方法、及びこれを用いた改良土の製造方法に関する。 In the present invention, for example, in the ground improvement work of volcanic ash coarse-grained soil containing allophane, allophane in the volcanic ash coarse-grained soil, etc. The present invention relates to a method for measuring a content suitable for use in determining the content of soil, and a method for producing improved soil using the method.
現地発生土あるいは現地(現位置)地盤(以下、「現地発生土等」という。)を利用する道路土工等では、所要の地盤強度を得るために固化材による現地発生土等の改良が行われる。固化材の成分は主にセメント組成物であり、微量であるが六価クロムを含有する。 For road earthwork that uses locally generated soil or locally (currently located) ground (hereinafter referred to as "locally generated soil, etc."), improvement of locally generated soil, etc. with solidifying material is carried out in order to obtain the required ground strength. .. The component of the solidifying material is mainly a cement composition, which contains a small amount of hexavalent chromium.
一般的な現地発生土等を対象にした地盤改良においては、固化材の硬化の過程で生成されるセメントの水和物に六価クロムが固定されるので、得られる改良土から六価クロムが土壌環境基準を超過して溶出することはない。 In general ground improvement for locally generated soil, hexavalent chromium is fixed to the hydrate of cement produced in the process of hardening of the solidifying material, so hexavalent chromium is obtained from the obtained improved soil. It does not elute in excess of soil environmental standards.
ところが、現地発生土等が火山灰質粗粒土の場合、改良土から六価クロムが溶出しやすくなる。これは、火山灰質粗粒土に含まれるアロフェンがセメントの水和反応を阻害してしまい、水和物が六価クロムを十分に固定できないことに起因すると考えられる。そのため、改良土から六価クロムが土壌環境基準を超過して溶出したり、改良土に必要な強度が発現しなかったりするなどの問題が生じる恐れがある。 However, when the locally generated soil is volcanic ash coarse-grained soil, hexavalent chromium is likely to elute from the improved soil. It is considered that this is because allophane contained in the coarse grain soil of volcanic ash inhibits the hydration reaction of cement, and the hydrate cannot sufficiently fix hexavalent chromium. Therefore, there is a risk that hexavalent chromium may elute from the improved soil in excess of the soil environmental standard, or the strength required for the improved soil may not be exhibited.
その対策として、現地発生土等に含まれるアロフェンを定量し、その定量結果に応じた量の生石灰を現地発生土等に添加する、といった改良を行うことが考えられる。 As a countermeasure, it is conceivable to quantify allophane contained in locally generated soil and add an amount of quicklime according to the quantification result to locally generated soil.
しかし、従来のアロフェンの定量方法として、酸-アルカリ交互溶解法や200℃加熱減量法などが知られているが(非特許文献1参照)、いずれの定量方法も、結果が得られるまでに多くの日数(前者では5~7日以上、後者でも4日以上)を要する上、試験機器を装備した室内試験環境が不可欠であり、殆どの場合、試験機関に依頼することになり、試験費用が高額化する。 However, although conventional methods for quantifying allophane, such as an acid-alkali alternating dissolution method and a 200 ° C. heating weight loss method (see Non-Patent Document 1), many of these quantification methods are required until results are obtained. It takes 5 to 7 days or more for the former and 4 days or more for the latter, and an indoor test environment equipped with test equipment is indispensable. Increase the price.
以上の問題は、アロフェンのみに由来するものではなく、アロフェン(非結晶の珪酸アルミニウム粘土鉱物)と同様に活性アルミニウムを含む非晶質成分(非晶質粘土鉱物)に起因するものである。 The above problem is not derived only from allophane, but is caused by an amorphous component (amorphous clay mineral) containing active aluminum as well as allophane (amorphous aluminum silicate clay mineral).
本発明は上述の事柄に留意してなされたもので、その目的は、活性アルミニウムを含むアロフェン等の特定成分の含有率を簡単かつ迅速に測定可能であり、ひいては六価クロム溶出の土壌環境基準の超過抑制の確実化にも資する含有率測定方法及びこれを用いた改良土の製造方法を提供することにある。 The present invention has been made in consideration of the above-mentioned matters, and an object thereof is to be able to easily and quickly measure the content of a specific component such as allophane including active aluminum, and by extension, the soil environmental standard for hexavalent chromium elution. It is an object of the present invention to provide a method for measuring the content rate, which also contributes to ensuring the suppression of excess soil, and a method for producing improved soil using the method.
上記目的を達成するために、本発明に係る含有率測定方法は、フェノールフタレイン紙に火山灰質粗粒土をこすり付けた後、フェノールフタレイン紙の外面に付着した該火山灰質粗粒土を払い落とし、該フェノールフタレイン紙において前記火山灰質粗粒土が残留する箇所に所定濃度のフッ化ナトリウム液を滴下し、該滴下を行った箇所の呈色状況を記録可能な色空間を用いて数値化し、この数値に基づいて活性アルミニウムを含む特定成分の粘土中含有率を求め、前記粘土中含有率に、前記火山灰質粗粒土に対する前記粘土の比率を乗じて、前記火山灰質粗粒土中の前記特定成分の含有率を算定する(請求項1)。 In order to achieve the above object, the content rate measuring method according to the present invention is to rub the volcanic ash coarse-grained soil on the phenol phthalaine paper and then remove the volcanic ash coarse-grained soil adhering to the outer surface of the phenol phthalaine paper. After wiping off, a predetermined concentration of sodium fluoride solution was dropped on the place where the volcanic ash coarse-grained soil remained on the phenol phthalaine paper, and the color development state of the place where the dropping was performed was recorded using a color space. It is quantified, and the content of the specific component containing active aluminum in the clay is determined based on this value, and the content in the clay is multiplied by the ratio of the clay to the coarse grain soil of the volcanic ash to obtain the coarse grain soil of the volcanic ash. The content of the specific component in the clay is calculated (claim 1).
一方、上記目的を達成するために、本発明に係る改良土の製造方法は、請求項1に記載の含有率測定方法により求めた前記含有率に基づいて、地盤改良に用いる前記火山灰質粗粒土に混合する改良材中の生石灰の添加割合、又は前記火山灰質粗粒土に混合する生石灰の添加割合を決定する(請求項2)。
On the other hand, in order to achieve the above object, the method for producing improved soil according to the present invention is based on the content rate obtained by the content rate measuring method according to
本願発明では、活性アルミニウムを含むアロフェン等の特定成分の含有率を簡単かつ迅速に測定可能であり、ひいては六価クロム溶出の土壌環境基準の超過抑制の確実化にも資する含有率測定方法及びこれを用いた改良土の製造方法が得られる。 In the present invention, the content rate of a specific component such as allophane containing active aluminum can be easily and quickly measured, and the content rate measuring method that contributes to ensuring the suppression of excess of the soil environmental standard for hexavalent chromium elution, and the like. A method for producing improved soil using the above can be obtained.
すなわち、本願の各請求項に係る発明の含有率測定方法では、比較的簡単に入手可能なフェノールフタレイン紙やフッ化ナトリウム液(NaF試薬)、撮影機器等を用いるのみであり、複雑な手順も不要であるので、簡易かつ短時間に特定成分の含有率を測定でき、しかもフェノールフタレイン紙等を携帯すれば、現地での測定も可能である。その上、上記従来のように採取した現地発生土等におけるアロフェンの定量を試験機関に依頼する場合、高額になりがちな試験費用を抑えるためにサンプル数(採取数)を絞ると、その少なさが試験結果のばらつきや信頼性の低下に結びつきかねないが、本発明の含有率測定方法では、上記のように試験機関に定量を依頼する必要はないから、測定結果のばらつきの解消や信頼性向上を図るために、サンプル数を増やすことも容易となる。 That is, in the method for measuring the content of the invention according to each claim of the present application, only a relatively easily available phenolphthalein paper, sodium fluoride solution (NaF reagent), an imaging device, or the like is used, which is a complicated procedure. Since it is not necessary, the content of a specific component can be measured easily and in a short time, and if a phenolphthalein paper or the like is carried, the measurement can be performed on-site. In addition, when requesting a testing institution to quantify allophen in locally generated soil collected as in the past, if the number of samples (number of samples) is reduced in order to reduce the test cost, which tends to be expensive, the number is small. However, in the content rate measuring method of the present invention, it is not necessary to ask the testing institution for quantification as described above, so that the variation in the measurement result and the reliability can be eliminated. It is also easy to increase the number of samples in order to improve.
また、火山灰質粗粒土において特定成分が含まれているのは粘土のみであり、フェノールフタレイン紙には粘土と粘土に覆われたシルトが付着し、NaF試薬の滴下によりフェノールフタレイン紙に残留した粘土の中から特定成分を含んだ粘土が、いわば発色により抽出されることになる。このように、フェノールフタレイン紙の付着物において粘土分の占める割合が高く、特定成分を含んだ粘土の割合(粗密)を正確に測定することができ、ひいては火山灰質粗粒土中の特定成分の含有率の算定結果も正確なものとなる。 In addition, only clay contains a specific component in volcanic ash coarse-grained soil, and clay and silt covered with clay adhere to phenolphthalein paper, and the dropping of NaF reagent causes the phenolphthalein paper to have a specific component. Clay containing a specific component is extracted from the remaining clay by, so to speak, coloring. In this way, the proportion of clay in the deposits of phenolphthalein paper is high, and the proportion of clay containing specific components (roughness) can be accurately measured, which in turn allows specific components in volcanic ash coarse-grained soil. The calculation result of the content rate of is also accurate.
請求項2に係る発明の改良土の製造方法は、改良土についての六価クロム溶出の土壌環境基準の超過抑制の確実化に資するものとなる。
The method for producing improved soil according to
本発明の実施の形態について図面を参照しながら以下に説明する。 Embodiments of the present invention will be described below with reference to the drawings.
本実施の形態に係る含有率測定方法は、以下の工程(1)~(3)において、火山灰質粗粒土(現地発生土等)中の粘土に含まれる特定成分の含有率(以下、粘土中含有率という)を求めた後、続く工程(4)において、この粘土中含有率に基づいて、火山灰質粗粒土に含まれる特定成分の含有率を算定する、というものである。ここで、特定成分とは、アロフェン等の活性アルミニウムを含む成分(非晶質粘土鉱物ないし非晶質成分)である。 The content rate measuring method according to the present embodiment is the content rate of specific components contained in clay in volcanic ash coarse-grained soil (locally generated soil, etc.) in the following steps (1) to (3) (hereinafter, clay). After obtaining the medium content), in the subsequent step (4), the content of the specific component contained in the volcanic ash coarse-grained soil is calculated based on the clay content. Here, the specific component is a component containing active aluminum such as allophane (amorphous clay mineral or amorphous component).
以下、各工程(1)~(4)について、詳述する。 Hereinafter, each step (1) to (4) will be described in detail.
(1)フェノールフタレイン紙に少量の火山灰質粗粒土を指先で強くこすり付けた後、フェノールフタレイン紙をはたいて該フェノールフタレイン紙の外面に付着した余分の火山灰質粗粒土を払い落とす。これにより、フェノールフタレイン紙(の表面やメッシュの隙間)に火山灰質粗粒土中の粘土(粘土と粘土に覆われたシルト)が付着して残った状態となる。 (1) After rubbing a small amount of volcanic ash coarse grain soil strongly on the phenolphthalein paper with a fingertip, tap the phenolphthalein paper to remove the excess volcanic ash coarse grain soil adhering to the outer surface of the phenolphthalein paper. To pay off. As a result, the clay (clay and silt covered with clay) in the volcanic ash coarse-grained soil adheres to and remains on the phenolphthalein paper (the surface of the paper and the gaps in the mesh).
本例では、フェノールフタレイン紙に、乾燥状態の粘土粒子を捕捉可能なろ紙を使用するのであり、具体的には、100~200メッシュ、目開きが149μm~74μmのろ紙を用いることが考えられる。なお、例えば乾燥状態の粘土粒子が通過可能で、これより粒径の大きな土粒子は通過不能な大きさの微細孔(目開き)を有するろ紙を用いるようにしてもよい。 In this example, a filter paper capable of capturing dried clay particles is used as the phenolphthalein paper. Specifically, it is conceivable to use a filter paper having a mesh size of 100 to 200 mesh and an opening of 149 μm to 74 μm. .. For example, a filter paper having fine pores (opening) having a size that allows dry clay particles to pass through and has a larger particle size than the clay particles may be used.
また、本例のフェノールフタレイン紙は、上記のろ紙に所定濃度のフェノールフタレイン溶液(例えばフェノールフタレイン1gをメタノール100mLに溶かしたもの)を含浸させ、乾燥して得られるものである。 The phenolphthalein paper of this example is obtained by impregnating the filter paper with a phenolphthalein solution having a predetermined concentration (for example, 1 g of phenolphthalein dissolved in 100 mL of methanol) and drying the paper.
(2)フェノールフタレイン紙において火山灰質粗粒土が残留する箇所に所定濃度のフッ化ナトリウム液を滴下する。 (2) A predetermined concentration of sodium fluoride solution is dropped on the phenolphthalein paper where the volcanic ash coarse-grained soil remains.
本例では、フッ化ナトリウム42gを水1Lに溶かし、1M溶液としたフッ化ナトリウム液(NaF試薬)を用いる。 In this example, a sodium fluoride solution (NaF reagent) in which 42 g of sodium fluoride is dissolved in 1 L of water to make a 1 M solution is used.
(3)所定時間経過後、フェノールフタレイン紙において前記滴下を行った箇所の呈色状況のRGB値を取得し、このRGB値に基づいて特定成分の粘土中含有率を求める。 (3) After a lapse of a predetermined time, the RGB value of the coloration state of the place where the dropping is performed on the phenolphthalein paper is acquired, and the content rate of the specific component in the clay is obtained based on this RGB value.
すなわち、フェノールフタレイン紙に残留した火山灰質粗粒土に多量の活性なアルミニウム(特定成分)がある場合、pHが上昇し、上記滴下を行った箇所(滴下箇所)が赤色に変わるのであり、その呈色の程度は活性アルミニウム(特定成分)を含んだ粘土粒子の多少で異なる。そして、本実施形態では、この呈色が安定した状態でRGB値を取得する目的で、上記滴下から所定時間(例えば3分)経過するまでフェノールフタレイン紙を放置する。 That is, when there is a large amount of active aluminum (specific component) in the volcanic ash coarse-grained soil remaining on the phenolphthalein paper, the pH rises and the place where the dropping is performed (dropping point) turns red. The degree of color development varies depending on the amount of clay particles containing active aluminum (specific component). Then, in the present embodiment, the phenolphthalein paper is left to stand until a predetermined time (for example, 3 minutes) has elapsed from the dropping, for the purpose of acquiring the RGB value in a state where the coloration is stable.
RGB値の取得は、フェノールフタレイン紙における上記滴下箇所の呈色状況をデジタルカメラ等の撮影機器を用いてデジタル撮影し、撮影画像中の滴下箇所に対応する領域からRGB値を取得(例えば呈色中心部の5点平均)することにより行う。 To acquire the RGB values, the color development status of the above-mentioned dripping points on the phenolphthalein paper is digitally photographed using a photographing device such as a digital camera, and the RGB values are acquired from the region corresponding to the dripping points in the photographed image (for example, presented). This is done by averaging 5 points in the center of the color.
そして、取得したRGB値を、予め統計解析から導出した粘土中含有率とRGB値との関係式に代入することで特定成分の粘土中含有率を求める。 Then, the acquired RGB value is substituted into the relational expression between the clay content and the RGB value derived in advance from the statistical analysis to obtain the clay content of the specific component.
ここで、上記関係式の導出は、特定成分の含有率を0%から100%まで10%間隔で異ならせた計11種類の模擬土を作成し、各模擬土につき、上記工程(1)及び(2)を実施し、3分後の呈色状況を撮影し、取得したRGB値と特定成分の含有率を用いて解析(重回帰分析)して、特定成分の含有率とRGB値との関係式を得た。その関係式を以下に示し、模擬土の特定成分含有率と、関係式から求めた特定成分含有率との関係を図1に示す。なお、図1中の11個の点は、既知の含有率(横軸:0%から100%まで10%間隔)に対応する、関係式から求めた模擬度の特定成分含有率をプロットしたものである。
特定成分含有率=-0.713×R値-0.607×G値-0.388×B値
+261.833
Here, in the derivation of the above relational expression, a total of 11 types of simulated soils in which the content of the specific component is different from 0% to 100% at 10% intervals are prepared, and for each simulated soil, the above steps (1) and (2) was carried out, the coloration situation after 3 minutes was photographed, and analysis (multiple regression analysis) was performed using the acquired RGB value and the content rate of the specific component, and the content rate of the specific component and the RGB value were obtained. I got the relational expression. The relational expression is shown below, and FIG. 1 shows the relationship between the specific component content of the simulated soil and the specific component content obtained from the relational expression. The 11 points in FIG. 1 are plots of the specific component content of the simulated degree obtained from the relational expression corresponding to the known content (horizontal axis: 10% interval from 0% to 100%). Is.
Specific component content = -0.713 x R value -0.607 x G value -0.388 x B value
+261.833
(4)上述の粘土中含有率に、火山灰質粗粒土に対する粘土の比率(粘土分率)を乗じて、火山灰質粗粒土中の特定成分の含有率を算定する。 (4) The above-mentioned clay content is multiplied by the ratio of clay to the volcanic ash coarse grain soil (clay fraction) to calculate the content of the specific component in the volcanic ash coarse grain soil.
ここで、火山灰質粗粒土に対する粘土の比率は、土の粒度試験によって得ることができる。 Here, the ratio of clay to volcanic ash coarse-grained soil can be obtained by a soil particle size test.
図2に、実際の火山灰質粗粒土(現地発生土等)についての特定成分含有率を、上記工程(1)~(4)からなる本実施形態の方法により求めた結果(上3段)と、従来試験方法(御殿場1~3:酸―アルカリ交互溶解法、阿蘇と姫路:200℃加熱減量法)で求めた結果(下3段)とを示す。また、両結果の関係図を図3に示す。この図3から、両結果に高い相関があることが理解できる。なお、図3中の5個の点は、従来試験方法の含有率(横軸)に対応する、関係式から求めた含有率をプロットしたものであり、R2 は5個の点の相関係数であって、0.8~1.0で強い相関があるといえる。 FIG. 2 shows the results of obtaining the specific component content of the actual volcanic ash coarse-grained soil (locally generated soil, etc.) by the method of the present embodiment consisting of the above steps (1) to (4) (upper three stages). And the results (lower 3 steps) obtained by the conventional test method (Gotemba 1-3: acid-alkali alternating dissolution method, Aso and Himeji: 200 ° C. heating weight loss method) are shown. The relationship between the two results is shown in FIG. From this FIG. 3, it can be understood that there is a high correlation between the two results. The five points in FIG. 3 are plots of the content rates obtained from the relational expression corresponding to the content rate (horizontal axis) of the conventional test method, and R 2 is the phase relationship of the five points. It is a number, and it can be said that there is a strong correlation between 0.8 and 1.0.
なお、本発明者は、照度や照明などの撮影条件の違いによる特定成分の含有率のばらつきを調査するため、蛍光灯下や窓際付近等の照度の異なる屋内3箇所、及び直射日光の当たらない建物等の日陰等の屋外3箇所で特定成分の粘土中含有率0%から100%までの10%間隔の発色状況に相当する評価用のカラーチャートをデジタル撮影し、画像データから得られたRGB値を基に撮影条件毎の粘土中含有率とRGB値との関係式を求めたところ、撮影条件毎に求めた特定成分の粘土中含有率のばらつきは実用上問題ない範囲に収まっており、撮影条件の影響は無視できる結果であることが判明した。 In addition, in order to investigate the variation in the content of specific components due to differences in shooting conditions such as illuminance and lighting, the present inventor has three indoor locations with different illuminance such as under fluorescent lights and near windows, and is not exposed to direct sunlight. RGB obtained from image data by digitally photographing a color chart for evaluation corresponding to the color development situation at 10% intervals from 0% to 100% in the clay content of a specific component at three outdoor locations such as in the shade of a building. When the relational expression between the clay content and the RGB value for each shooting condition was obtained based on the value, the variation in the clay content of the specific component obtained for each shooting condition was within the range where there was no practical problem. It turned out that the influence of the shooting conditions was negligible.
以上のように、本実施形態の含有率測定方法では、比較的簡単に入手可能なフェノールフタレイン紙やフッ化ナトリウム液(NaF試薬)、撮影機器等を用いるのみであり、複雑な手順も不要であるので、簡易かつ短時間に特定成分の含有率を測定でき、しかもフェノールフタレイン紙等を携帯すれば、現地での測定も可能であり、採取数の限定で生じる測定結果のばらつきを抑えるために対象土壌の複数箇所を現地で測定するといったことも可能となる。 As described above, the content rate measuring method of the present embodiment only uses a relatively easily available phenolphthalein paper, sodium fluoride solution (NaF reagent), imaging equipment, etc., and does not require a complicated procedure. Therefore, the content of a specific component can be measured easily and in a short time, and if a phenolphthalein paper or the like is carried, the measurement can be performed on-site, and the variation in measurement results caused by the limitation of the number of samples collected can be suppressed. Therefore, it is possible to measure multiple points of the target soil on site.
また、火山灰質粗粒土において特定成分が含まれているのは粘土のみであり、フェノールフタレイン紙には粘土と粘土に覆われたシルトが付着し、本実施形態(工程(1))において、NaF試薬の滴下によりフェノールフタレイン紙に残留した粘土の中から特定成分を含んだ粘土が、いわば発色により抽出されることになる。このように、フェノールフタレイン紙の付着物において粘土分の占める割合が高く、特定成分を含んだ粘土の割合(粗密)を正確に測定することができ、ひいては火山灰質粗粒土中の特定成分の含有率の算定結果も正確なものとなる。 Further, in the volcanic ash coarse-grained soil, only clay contains a specific component, and clay and silt covered with clay adhere to the phenolphthalein paper, and in the present embodiment (step (1)). , The clay containing a specific component is extracted from the clay remaining on the phenolphthalein paper by dropping the NaF reagent, so to speak, by color development. In this way, the proportion of clay in the deposits of phenolphthalein paper is high, and the proportion of clay containing specific components (roughness) can be accurately measured, which in turn allows specific components in volcanic ash coarse-grained soil. The calculation result of the content rate of is also accurate.
次に、本実施形態の改良土の製造方法は、上記含有率測定方法により求めた前記含有率に基づいて、地盤改良に用いる火山灰質粗粒土に混合する改良材中の生石灰の添加割合、又は火山灰質粗粒土に混合する生石灰の添加割合を決定する、というものである。 Next, in the method for producing the improved soil of the present embodiment, based on the content rate obtained by the above-mentioned content rate measuring method, the addition ratio of quicklime in the improved material to be mixed with the volcanic ash coarse-grained soil used for ground improvement, Alternatively, the ratio of quicklime to be mixed with the coarse grained soil of volcanic ash is determined.
すなわち、本発明者は、室内試験と現場試験により以下のことを確認している。
(A)セメント系固化材に生石灰を特定成分の量に応じて添加することで、六価クロムが土壌環境基準を超過して溶出することを抑制できる。
(B)六価クロム溶出量は、所要強度に必要なセメント系固化材の添加量とは関係がない。
(C)六価クロムの溶出抑制のため所定量の生石灰を添加した場合の一軸圧縮強度は、セメント系固化材の添加量と比例する。
That is, the present inventor has confirmed the following by laboratory tests and field tests.
(A) By adding quicklime to the cement-based solidifying material according to the amount of the specific component, it is possible to suppress the elution of hexavalent chromium exceeding the soil environmental standard.
(B) The amount of hexavalent chromium eluted has nothing to do with the amount of cement-based solidifying material added required for the required strength.
(C) The uniaxial compressive strength when a predetermined amount of quicklime is added to suppress the elution of hexavalent chromium is proportional to the amount of the cement-based solidifying material added.
(A)については、アロフェンの含有率が5%から5%刻みに20%まで調整した模擬土を作成し、これに、生石灰(CaO)の添加率を変えたセメント系固化剤を混合したときの六価クロムの溶出を調査した結果、確認することができた(図4参照)。 Regarding (A), when a simulated soil in which the allophane content was adjusted from 5% to 20% in 5% increments was prepared and mixed with a cement-based solidifying agent in which the addition rate of quicklime (CaO) was changed. As a result of investigating the elution of hexavalent chromium, it was confirmed (see FIG. 4).
(B)については、アロフェンの含有率が2%の土に、セメント系固化材を30kg/m3 、50kg/m3 、100kg/m3 、150kg/m3 添加し、かつ、各セメント系固化材における生石灰の添加率を変えた結果、セメント系固化材の添加量が増加しても六価クロムの溶出量は大きく変化しないこと、また、生石灰を2%以上添加すると六価クロムの溶出が定量下限値未満になることから、確認することができた(図5参照)。 Regarding (B), 30 kg / m 3 , 50 kg / m 3 , 100 kg / m 3 , 150 kg / m 3 of cement-based solidifying material was added to the soil having an allophane content of 2%, and each cement-based solidifying material was solidified. As a result of changing the addition rate of quicklime in the material, the elution amount of hexavalent chromium does not change significantly even if the amount of cement-based solidifying material added increases, and when 2% or more of quicklime is added, hexavalent chromium elution occurs. Since it was less than the lower limit of quantification, it could be confirmed (see FIG. 5).
(C)については、生石灰の添加率が2%の土に、セメント系固化材を30kg/m3 、50kg/m3 、100kg/m3 、150kg/m3 添加した結果、セメント系固化材の添加量に比例した一軸圧縮強度が得られたことから、確認することができた(図6参照)。 Regarding (C), as a result of adding 30 kg / m 3 , 50 kg / m 3 , 100 kg / m 3 , and 150 kg / m 3 of the cement-based solidifying material to the soil with the addition rate of quicklime of 2%, the cement-based solidifying material was added. It was confirmed that the uniaxial compressive strength was obtained in proportion to the amount of addition (see FIG. 6).
そこで、本実施形態の改良土の製造方法では、セメント系固化材の添加率にかかわらず、特定成分の含有率によって火山灰質粗粒土(現地発生土等)に対する生石灰の添加率を変えるのであり、具体的には、特定成分の含有率が5%(重量比)未満の場合には生石灰添加率を火山灰質粗粒土の2%(重量比)とし、5%以上10%(重量比)未満の場合には3%(重量比)、10%(重量比)以上15%(重量比)未満の場合には4%(重量比)、15%(重量比)以上20%(重量比)未満の場合には5%(重量比)、20%(重量比)以上25%(重量比)未満の場合には6%(重量比)とし、このように決められた量の生石灰に所定量のセメント系固化材を例えば工場でプレミックスして改良材を得た後、例えば現地でこの改良材を現地発生土等と上記重量比となるように混合し、改良土を得る。 Therefore, in the method for producing the improved soil of the present embodiment, the addition ratio of fresh lime to the volcanic ash coarse grain soil (locally generated soil, etc.) is changed depending on the content ratio of the specific component regardless of the addition ratio of the cement-based solidifying material. Specifically, when the content of the specific component is less than 5% (weight ratio), the addition rate of fresh lime is set to 2% (weight ratio) of the volcanic ash coarse grain soil, and 5% or more and 10% (weight ratio). If less than 3% (weight ratio), 10% (weight ratio) or more and less than 15% (weight ratio), 4% (weight ratio), 15% (weight ratio) or more and 20% (weight ratio) If it is less than 5% (weight ratio), if it is 20% (weight ratio) or more and less than 25% (weight ratio), it is 6% (weight ratio). After premixing the cement-based solidifying material of (1), for example, at a factory to obtain an improved material, for example, the improved material is mixed locally with locally generated soil or the like so as to have the above weight ratio to obtain the improved soil.
もちろん、このように改良材を先に製造してから現地発生土等と混合するものに限らず、例えば現地で現地発生土等に所定重量比の生石灰と所定量のセメント系固化材とを混合して改良土を製造するようにしてもよい。 Of course, it is not limited to those in which the improved material is first manufactured and then mixed with locally generated soil, etc. For example, quicklime with a predetermined weight ratio and a predetermined amount of cement-based solidifying material are mixed with locally generated soil, etc. May be used to produce improved soil.
以上のように行う改良土の製造方法は、改良土についての六価クロム溶出の土壌環境基準の超過抑制の確実化に資するものとなる。 The method for producing improved soil as described above contributes to ensuring the suppression of excess of the soil environmental standard for hexavalent chromium elution for improved soil.
なお、本発明は、上記の実施の形態に何ら限定されず、本発明の要旨を逸脱しない範囲において種々に変形して実施し得ることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be variously modified and implemented without departing from the gist of the present invention.
例えば、上記の実施の形態では、呈色状況を数値化する色空間としてRGBを用いたが、これに限らず、他のCMYK等の記録可能な色空間を用いて呈色状況を数値化しても本発明を実施し得ることは勿論である。 For example, in the above embodiment, RGB is used as a color space for quantifying the coloration situation, but the present invention is not limited to this, and the coloration situation is quantified using another recordable color space such as CMYK. Of course, the present invention can also be carried out.
Claims (2)
前記粘土中含有率に、前記火山灰質粗粒土に対する前記粘土の比率を乗じて、前記火山灰質粗粒土中の前記特定成分の含有率を算定する含有率測定方法。 After rubbing the volcanic ash coarse-grained soil on the phenolphthalein paper, the volcanic ash coarse-grained soil adhering to the outer surface of the phenolphthalein paper is wiped off, and the volcanic ash coarse-grained soil remains on the phenolphthalein paper. A predetermined concentration of sodium fluoride solution was dropped onto the site, and the color development status of the dropped site was quantified using a recordable color space. Based on this value, the specific component containing active aluminum was contained in the clay. Find the rate ,
A content rate measuring method for calculating the content rate of the specific component in the volcanic ash coarse grain soil by multiplying the clay content rate by the ratio of the clay to the volcanic ash coarse grain soil .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019122817A JP7090386B2 (en) | 2019-07-01 | 2019-07-01 | Content rate measurement method and method for producing improved soil using this |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019122817A JP7090386B2 (en) | 2019-07-01 | 2019-07-01 | Content rate measurement method and method for producing improved soil using this |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021009067A JP2021009067A (en) | 2021-01-28 |
JP7090386B2 true JP7090386B2 (en) | 2022-06-24 |
Family
ID=74199921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019122817A Active JP7090386B2 (en) | 2019-07-01 | 2019-07-01 | Content rate measurement method and method for producing improved soil using this |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7090386B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001153805A (en) | 1999-11-25 | 2001-06-08 | Kanagawa Acad Of Sci & Technol | Method of optimizing color variation of optode by digitization |
JP2001232338A (en) | 2000-02-23 | 2001-08-28 | Tokuyama Corp | Method for preventing elution |
JP2007248224A (en) | 2006-03-15 | 2007-09-27 | Asahi Glass Co Ltd | Analyzing method of crystal particle of sodium hydrogencarbonate |
JP2016188524A (en) | 2015-03-30 | 2016-11-04 | 住友大阪セメント株式会社 | Method of producing improved soil, method of producing cement composition and method of designing proportion of improved soil ingredient |
WO2017187282A1 (en) | 2016-04-25 | 2017-11-02 | Indian Council Of Agricultural Research | Portable soil testing kit for agricultural and horticultural crops |
-
2019
- 2019-07-01 JP JP2019122817A patent/JP7090386B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001153805A (en) | 1999-11-25 | 2001-06-08 | Kanagawa Acad Of Sci & Technol | Method of optimizing color variation of optode by digitization |
JP2001232338A (en) | 2000-02-23 | 2001-08-28 | Tokuyama Corp | Method for preventing elution |
JP2007248224A (en) | 2006-03-15 | 2007-09-27 | Asahi Glass Co Ltd | Analyzing method of crystal particle of sodium hydrogencarbonate |
JP2016188524A (en) | 2015-03-30 | 2016-11-04 | 住友大阪セメント株式会社 | Method of producing improved soil, method of producing cement composition and method of designing proportion of improved soil ingredient |
WO2017187282A1 (en) | 2016-04-25 | 2017-11-02 | Indian Council Of Agricultural Research | Portable soil testing kit for agricultural and horticultural crops |
Non-Patent Citations (2)
Title |
---|
佐藤 厚子,北海道に分布する火山灰土の簡易判定法について,北海道開発土木研究所月報,2003年01月,No.596,p.19-22 |
土壌診断マニュアル~土壌測定診断室における分析法~ 改訂版 Ver.2,山口県農林総合技術センター,2016年06月02日,p.27 |
Also Published As
Publication number | Publication date |
---|---|
JP2021009067A (en) | 2021-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Casadio et al. | Evaluation of binder/aggregate ratios in archaeological lime mortars with carbonate aggregate: a comparative assessment of chemical, mechanical and microscopic approaches | |
Zhang et al. | Investigation of the shape, size, angularity and surface texture properties of coarse aggregates | |
JP6755068B2 (en) | Quantitative analysis method for multi-component mixed cement and manufacturing control system for multi-component mixed cement | |
Shi et al. | Physicochemical properties of dirt-resistant cool white coatings for building energy efficiency | |
Aktas et al. | Impact of surface waterproofing on the performance of brick masonry through the moisture exposure life-cycle | |
JP6673686B2 (en) | Mortar panel for salt damage diagnosis of concrete structure and salt damage diagnosis method using the same | |
Gay et al. | Local study of the corrosion kinetics of hardened Portland cement under acid attack | |
JP7090386B2 (en) | Content rate measurement method and method for producing improved soil using this | |
JP4777937B2 (en) | Concrete deterioration judgment method | |
Falchi et al. | The behaviour of water-repellent mortars with regards to salt crystallization: from mortar specimens to masonry/render systems | |
Zhang et al. | Real‐time monitoring of carbonation of hardened cement pastes using Raman microscopy | |
Ghedini et al. | Chemical− thermal quantitative methodology for carbon speciation in damage layers on building surfaces | |
Sassoni et al. | Phosphate treatments for stone conservation: 3-year field study in the Royal Palace of Versailles (France) | |
Zendri et al. | A review of common NDTs in the monitoring and preservation of historical architectural surfaces | |
CN104634690A (en) | Method for determining cement content of building mortar | |
Sjöstedt et al. | Modelling of pH and inorganic aluminium after termination of liming in 3000 Swedish lakes | |
JP2011141185A (en) | Mixing ratio estimation method of two kinds of powders contained in hydraulic powder | |
Zhu et al. | Using soil surface gray level to determine surface soil water content | |
Zeng et al. | Kinetics of low radioactive wastewater imbibition and radionuclides sorption in partially saturated ternary-binder mortar | |
Volumetrik | Calcium content of lime mortars from 19th century church ruins in the Philippines using volumetric analysis | |
Grazzini et al. | Digital image correlation applied to lime-based mortars: Shrinkage tests for durability evaluations in restoration works | |
Behravan et al. | Changes in the rate of ion penetration of alternative cementitious materials with time | |
JP2001004619A (en) | Estimation method for bentonite mixing ratio | |
Ruiz‐Ripoll et al. | Digital imaging methodology for measuring early shrinkage cracking in concrete | |
Loke et al. | Determining the characteristics of historical mortars of the castle of good hope (1666-1679) and Robben Island (1700-1800) by cost-effective methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220613 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7090386 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |