JP7089137B2 - Dam deposit downstream reduction method and system - Google Patents

Dam deposit downstream reduction method and system Download PDF

Info

Publication number
JP7089137B2
JP7089137B2 JP2018046249A JP2018046249A JP7089137B2 JP 7089137 B2 JP7089137 B2 JP 7089137B2 JP 2018046249 A JP2018046249 A JP 2018046249A JP 2018046249 A JP2018046249 A JP 2018046249A JP 7089137 B2 JP7089137 B2 JP 7089137B2
Authority
JP
Japan
Prior art keywords
dam
downstream
muddy water
turbidity
mud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018046249A
Other languages
Japanese (ja)
Other versions
JP2019157516A (en
Inventor
俊哉 武井
晋介 榊
和重 工藤
正和 廣瀬
英幸 浅田
麻成 峯松
秀樹 岩田
隆詞 濱崎
聡 新谷
貴一 金子
匡 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOSHIDA GUMI CO., LTD.
Toa Corp
Toray Engineering Co Ltd
Penta Ocean Construction Co Ltd
Honma Corp
Ohmoto Gumi Co Ltd
Aomi Construction Co Ltd
Original Assignee
YOSHIDA GUMI CO., LTD.
Toa Corp
Penta Ocean Construction Co Ltd
Toyo Construction Co Ltd
Honma Corp
Ohmoto Gumi Co Ltd
Aomi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOSHIDA GUMI CO., LTD., Toa Corp, Penta Ocean Construction Co Ltd, Toyo Construction Co Ltd, Honma Corp, Ohmoto Gumi Co Ltd, Aomi Construction Co Ltd filed Critical YOSHIDA GUMI CO., LTD.
Priority to JP2018046249A priority Critical patent/JP7089137B2/en
Publication of JP2019157516A publication Critical patent/JP2019157516A/en
Application granted granted Critical
Publication of JP7089137B2 publication Critical patent/JP7089137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Barrages (AREA)

Description

本発明は、ダムの貯水池の堆積物をダムの下流に供給するダム堆積物下流還元方法およびシステムに関するものである。 The present invention relates to a dam deposit downstream reduction method and system for supplying dam sediments to the downstream of the dam.

ダムの貯水池は、上流から流入した土砂が堆積することで、供用開始からの時間経過に伴い、貯水容量が減少してゆく。また、ダム上流域の河床が上昇し、洪水リスクの増大や下流域においては河床低下や海岸線の後退など、いろいろな悪影響が発生している。この対策として、近年、流砂系の「総合土砂管理」の考え方に基づき、ダムの土砂等の堆積物を除去することやダム下流に排出(以下、「供給」ともいう。)することが行われている。 The reservoir capacity of the dam's reservoir will decrease with the passage of time from the start of service due to the accumulation of sediment that has flowed in from the upstream. In addition, the riverbed in the upper reaches of the dam has risen, causing various adverse effects such as increased flood risk, lowering of the riverbed and retreat of the coastline in the lower reaches. As a countermeasure, in recent years, based on the concept of "comprehensive sediment management" of quicksand system, sediments such as sediment of the dam have been removed and discharged downstream of the dam (hereinafter, also referred to as "supply"). ing.

特開2002-294677号公報Japanese Patent Application Laid-Open No. 2002-294677 特開2001-164543号公報Japanese Unexamined Patent Publication No. 2001-164543 特開平10-118697号公報Japanese Unexamined Patent Publication No. 10-118697 特開2001-20318号公報Japanese Unexamined Patent Publication No. 2001-20318

上記総合土砂管理において、現在最も一般的な方法は、貯水池を浚渫し、浚渫土をダム下流までダンプトラックで運搬し仮置しておき、洪水時にダム下流へ供給する方法である。しかし、この置土工法の場合、シルトや粘土が過大に含まれた浚渫土をそのまま供給すると河川の長期濁水化の原因となり、河川環境上望ましくないため、シルト粘土分が10%以下の清浄な材料しか置土材として利用できない。 In the above-mentioned comprehensive sediment management, the most common method at present is to dredge a reservoir, transport the dredged soil to the downstream of the dam by a dump truck, temporarily store it, and supply it to the downstream of the dam in the event of a flood. However, in the case of this soil placement method, if dredged soil containing excessive silt or clay is supplied as it is, it causes long-term turbidity of the river, which is not desirable in terms of the river environment. Only materials can be used as silt materials.

また、洪水時のダム放流量が少ない状態で浚渫土についてフラッシング(流水で押し流すこと)を行った場合、河川内にシルト粘土分が残留し、魚類等に悪影響を及ぼすおそれがある。 In addition, if the dredged soil is flushed (flushed with running water) while the dam discharge rate during floods is small, silt clay may remain in the river and adversely affect fish and the like.

ダムに排砂ゲートが設置されているダム(宇奈月ダム・出し平ダム)の設置条件は、排砂のために水位が低下した場合、ダムの貯水位回復に時間を要すると発電や利水に大きな影響を与えるため、貯水容量に対して河川流量が充分に多いことが求められる。 The conditions for installing a dam (Unazuki Dam / Dashidaira Dam) where a sand removal gate is installed in the dam are large for power generation and water utilization if it takes time to restore the water storage level of the dam when the water level drops due to sand removal. In order to have an impact, it is required that the river flow is sufficiently large with respect to the water storage capacity.

特許文献1,2は、静水圧を利用した水中堆積物の流送・排出方法を提案する。しかし、これらの吸引方法や排砂バイパスはバイパストンネルやダムの改造など大規模な工事が必要となる。また、特許文献3は、ダムの長期濁水化を防止するためにスラリー状混合物をシルト粘土分と有機物とに分離し、シルト粘土分をダム水底に戻し有機物を分解処理することを提案するが、この方法は脱水処理と分解処理のコストがかさむ。 Patent Documents 1 and 2 propose a method for flowing and discharging underwater deposits using hydrostatic pressure. However, these suction methods and sand removal bypass require large-scale construction such as remodeling of bypass tunnels and dams. Further, Patent Document 3 proposes that the slurry-like mixture is separated into silt clay and organic matter in order to prevent long-term turbidity of the dam, and the silt clay is returned to the bottom of the dam to decompose the organic matter. This method is costly for dehydration and decomposition treatments.

特許文献4は、貯水池から浚渫した底泥による泥水を砂礫とシルト粘土分とに分級し、砂礫を下流の河川に戻し、シルト粘土分は、脱水処理等されてから、脱水汚泥として再処理される方法を提案する。しかし、シルト粘土分の処理は下流供給を目指したものではない。 In Patent Document 4, the mud from the bottom mud dredged from the reservoir is classified into gravel and silt clay, and the gravel is returned to the downstream river. The silt clay is dehydrated and then retreated as dehydrated sludge. Propose a method. However, the treatment of silt clay is not aimed at downstream supply.

本発明は、上述のような従来技術の問題に鑑み、ダムの貯水池の堆積物に含まれるシルト粘土分をダムの下流に供給しても下流の河川へ悪影響を及ぼさないダム堆積物下流還元方法およびシステムを提供することを目的とする。 In view of the above-mentioned problems of the prior art, the present invention is a method for reducing the downstream of dam sediments, which does not adversely affect the downstream rivers even if the silt clay contained in the sediments of the reservoir of the dam is supplied downstream of the dam. And the purpose is to provide the system.

上記目的を達成するためのダム堆積物下流還元方法は、ダムの貯水池の堆積物をダムの下流に供給するダム堆積物下流還元方法であって、平常時に貯水池から浚渫された堆積物を所定粒径以下のシルト粘土分と前記所定粒径を超えた砂とに分級し、前記分級されたシルト粘土分を排泥貯留部に送り、前記排泥貯留部で前記シルト粘土分を貯留し沈殿させ、洪水時に前記貯水池から前記排泥貯留部に給水し、前記沈殿したシルト粘土分を攪拌して泥水とし、ダムの放流量(m/秒)に基づいて前記泥水を前記ダムの下流に供給し、前記泥水の供給量(m /秒)は、前記放流量と、前記泥水の濁度と、前記ダムの下流における許容濁度とに基づいて決定されるものである。
The downstream reduction method of dam deposits for achieving the above objectives is a downstream reduction method of dam deposits in which the sediments of the reservoir of the dam are supplied to the downstream of the dam, and the sediments drenched from the reservoir in normal times are predetermined grains. The silt clay content below the diameter is classified into sand exceeding the predetermined particle size, the classified silt clay content is sent to the wastewater storage section, and the silt clay content is stored and settled in the wastewater storage section. During a flood, water is supplied from the reservoir to the wastewater storage section, the settled silt clay is stirred to form muddy water, and the muddy water is supplied downstream of the dam based on the discharge rate of the dam (m 3 / sec). The supply amount of the muddy water (m 3 / sec) is determined based on the discharge amount, the turbidity of the muddy water, and the allowable turbidity downstream of the dam .

このダム堆積物下流還元方法によれば、平常時にダムの貯水池を浚渫し、浚渫された堆積物をシルト粘土分と砂とに分級し、分級されたシルト粘土分を排泥貯留部で貯留し沈殿させておき、洪水の発生時に、排泥貯留部に給水しかつ沈殿したシルト粘土分を攪拌して泥水としてから、その泥水をダムの放流量(m3/秒)に基づいてダムの下流に供給するので、下流の河川内にシルト粘土分が残留しないような充分な放流量のときに泥水をダムの下流に供給することができる。このため、貯水池の堆積物のうちのシルト粘土分をダムの下流に供給しても河川への悪影響がない。 According to this downstream reduction method of dam sediments, the reservoir of the dam is drenched in normal times, the drowned sediments are classified into silt clay and sand, and the classified silt clay is stored in the wastewater reservoir. When a flood occurs, water is supplied to the wastewater reservoir and the settled silt clay is stirred to make muddy water, and then the muddy water is discharged downstream of the dam based on the discharge rate (m 3 / sec) of the dam. It is possible to supply muddy water to the downstream of the dam when the discharge rate is sufficient so that the silt clay content does not remain in the downstream river. Therefore, even if silt clay in the sediment of the reservoir is supplied to the downstream of the dam, there is no adverse effect on the river.

上記ダム堆積物下流還元方法において、前記分級された砂をダム下流置土とすることが好ましい。これにより、堆積物の分級により生じた砂を下流に供給し還元でき、また、シルト粘土分を含まないので河川の濁水化のおそれがない。なお、かかる砂は、骨材として有効利用することもできる。 In the method for reducing downstream of dam deposits, it is preferable to use the classified sand as soil downstream of the dam. As a result, the sand generated by the classification of the sediment can be supplied and reduced downstream, and since it does not contain silt clay, there is no risk of turbid water in the river. The sand can also be effectively used as an aggregate.

また、前記排泥貯留部における上澄みの余水を排出し濁水処理した後に前記貯水池に戻すことが好ましい。 Further, it is preferable to discharge the residual water of the supernatant in the waste mud storage portion, treat it with turbid water, and then return it to the reservoir.

また、前記泥水の供給を前記放流量が予め設定した所定値以上となった時に開始することが好ましい。 Further, it is preferable to start the supply of the muddy water when the discharge flow rate becomes equal to or higher than a preset predetermined value.

また、前記泥水の供給量(m3/秒)を前記放流量の増加に応じて増やし、前記泥水の供給を前記放流量の収束に合わせて停止することが好ましい。 Further, it is preferable to increase the supply amount of the muddy water (m 3 / sec) according to the increase of the discharge flow rate and stop the supply of the muddy water according to the convergence of the discharge flow rate.

また、前記泥水の供給量(m/秒)は、前記放流量と、前記泥水の濁度と、前記ダムの下流における許容濁度とに基づいて決定されることにより、シルト粘土分を含む泥水を下流に供給しても、下流の河川が許容濁度を超えることがない。
Further, the amount of the muddy water supplied (m 3 / sec) is determined based on the discharge amount, the turbidity of the muddy water, and the allowable turbidity downstream of the dam, and thus the silt clay content. Even if the muddy water containing silt is supplied downstream, the downstream river does not exceed the allowable turbidity.

上記目的を達成するためのダム堆積物下流還元システムは、ダムの貯水池の堆積物をダムの下流に供給するダム堆積物下流還元システムであって、貯水池から浚渫された堆積物を所定粒径以下のシルト粘土分と前記所定粒径を超えた砂とに分級する分級装置と、前記分級されたシルト粘土分を貯留し沈殿させる排泥貯留部と、前記排泥貯留部に沈殿したシルト粘土分を攪拌する攪拌装置と、前記貯水池から前記排泥貯留部に給水するポンプと、前記排泥貯留部における泥水の濁度を測定する第1の濁度計と、を備え、洪水時に前記排泥貯留部において前記ポンプにより給水されるとともに前記シルト粘土分が前記攪拌装置により攪拌されて泥水とされ、ダムの放流量(m/秒)に基づいて前記泥水を前記ダムの下流に供給するように構成され、前記泥水の供給量(m /秒)は、前記放流量と、前記第1の濁度計により測定された濁度と、前記ダムの下流における許容濁度とに基づいて制御される
The dam sediment downstream reduction system for achieving the above object is a dam sediment downstream reduction system that supplies the sediment of the dam reservoir to the downstream of the dam, and the sediment dredged from the reservoir is reduced to a predetermined particle size or less. The silt clay content of the above, a classification device for classifying into sand exceeding the predetermined particle size, a silt storage unit for storing and precipitating the classified silt clay content, and a silt clay content settled in the mud storage unit. It is equipped with a stirring device for stirring the silt, a pump for supplying water from the reservoir to the silt storage section, and a first turbidity meter for measuring the turbidity of the mud water in the mud storage section. Water is supplied by the pump in the reservoir, and the silt clay content is agitated by the stirrer to form muddy water, and the muddy water is supplied downstream of the dam based on the discharge rate (m 3 / sec) of the dam. The muddy water supply amount (m 3 / sec) is controlled based on the discharge rate, the turbidity measured by the first turbidity meter, and the allowable turbidity downstream of the dam. Will be done .

このダム堆積物下流還元システムによれば、平常時にダムの貯水池から浚渫された堆積物を分級装置でシルト粘土分と砂とに分級し、分級されたシルト粘土分を排泥貯留部で貯留し沈殿させておき、洪水の発生時に、貯水池からポンプで排泥貯留部に給水しかつ沈殿したシルト粘土分を攪拌装置で攪拌して泥水としてから、その泥水をダムの放流量(m3/秒)に基づいてダムの下流に供給するので、ダムの下流の河川内にシルト粘土分が残留しないような充分な放流量のときに泥水をダムの下流に供給することができる。このため、貯水池の堆積物のうちのシルト粘土分をダムの下流に供給しても河川への悪影響がない。 According to this dam sediment downstream reduction system, sediments drenched from the dam's reservoir are classified into silt clay and sand by a classifier, and the classified silt clay is stored in the wastewater reservoir. When a flood occurs, water is supplied from the reservoir to the wastewater reservoir by pumping, and the settled silt clay is stirred with a stirrer to make muddy water, and then the muddy water is discharged from the dam (m 3 / sec). ), So that muddy water can be supplied downstream of the dam when the discharge is sufficient so that silt clay does not remain in the river downstream of the dam. Therefore, even if silt clay in the sediment of the reservoir is supplied to the downstream of the dam, there is no adverse effect on the river.

上記ダム堆積物下流還元システムにおいて前記泥水の供給量(m/秒)は、前記放流量と、前記第1の濁度計により測定された濁度と、前記ダムの下流における許容濁度とに基づいて制御されることにより、シルト粘土分を含む泥水を下流に供給しても、下流の河川で許容濁度を超えることがない。
In the dam sediment downstream reduction system, the muddy water supply amount (m 3 / sec) is the discharge rate, the turbidity measured by the first turbidity meter, and the allowable turbidity downstream of the dam. By being controlled based on the above, even if muddy water containing silt clay is supplied downstream, the allowable turbidity is not exceeded in the downstream river.

また、前記貯水池からの給水量を制御する給水制御バルブと、前記排泥貯留部で攪拌された泥水を排出する際の排水量を制御する排水制御バルブと、前記排出される泥水の流量を測定する流量計と、をさらに備え、前記泥水の供給量の増減を前記給水制御バルブにより行い、前記泥水の供給量の微調整を前記流量計による測定結果に基づいて前記排水制御バルブにより行うことが好ましい。 Further, a water supply control valve that controls the amount of water supplied from the reservoir, a drainage control valve that controls the amount of drainage when the muddy water stirred in the wastewater storage unit is discharged, and a flow rate of the discharged muddy water are measured. It is preferable to further include a flow meter, increase or decrease the supply amount of the muddy water by the water supply control valve, and finely adjust the supply amount of the muddy water by the drainage control valve based on the measurement result by the flow meter. ..

また、前記排泥貯留部における上澄みの余水を濁水処理する濁水処理装置をさらに備えることが好ましい。 Further, it is preferable to further include a turbid water treatment device for treating the residual water of the supernatant in the waste mud storage portion.

前記攪拌装置は、鉛直方向に延びる支持軸に支持された攪拌部と、回転部と、を備え、前記回転部の回転により前記排泥貯留部と前記攪拌部とを相対的に回転させることで前記攪拌部が前記排泥貯留部のシルト粘土分を攪拌するように構成されることが好ましい。なお、排泥貯留部と攪拌部との相対的な回転に伴って、支持軸が攪拌部とともに下方に移動するように構成することが好ましい。 The stirring device includes a stirring portion supported by a support shaft extending in the vertical direction and a rotating portion, and the rotation of the rotating portion causes the wastewater storage portion and the stirring portion to be relatively rotated. It is preferable that the stirring portion is configured to stir the silt clay content of the waste waste storage portion. In addition, it is preferable to configure the support shaft to move downward together with the stirring portion with the relative rotation of the waste mud storage portion and the stirring portion.

また、前記攪拌装置は、前記排泥貯留部内を水平移動可能な移動部と、前記移動部から延びたアームと、前記アームの先端に設けられ略水平方向に延びる回転軸を中心に回転する攪拌部と、を備え、前記移動部の移動により前記攪拌部が回転しながら前記排泥貯留部のシルト粘土分を攪拌するように構成してもよい。 Further, the stirring device rotates around a moving portion that can move horizontally in the mud storage section, an arm extending from the moving section, and a rotation axis provided at the tip of the arm and extending in a substantially horizontal direction. A unit may be provided, and the stirring unit may be rotated by the movement of the moving unit to agitate the silt clay content of the mud storage unit.

また、前記排出される泥水の濁度を測定する濁度計をさらに備え、前記泥水の濁度の増減を前記濁度計による測定結果に基づいて前記攪拌装置の前記回転部または前記移動部の制御により行うことが好ましい。 Further, a turbidity meter for measuring the turbidity of the discharged muddy water is further provided, and the increase / decrease in the turbidity of the muddy water is measured by the turbidity meter of the rotating portion or the moving portion of the stirring device. It is preferable to carry out by control.

また、前記洪水の発生の判断に基づいて前記ポンプと前記攪拌装置とが自動的に作動し前記泥水の供給量が自動的に制御されるように構成することが好ましい。これにより、ダム堆積物下流還元システムを自動的に作動させ制御することができ、無人化自動運転が可能になる。なお、洪水発生の判断は、ダム上流地域の降水量データやダムの水位などに基づいてダム管理者によりなされるが、降水量データやダムの水位などの各種情報に基づいて自動的にポンプと攪拌装置とが作動するように構成してもよい。 Further, it is preferable that the pump and the stirring device are automatically operated based on the determination of the occurrence of the flood so that the supply amount of the muddy water is automatically controlled. As a result, the dam deposit downstream reduction system can be automatically operated and controlled, and unmanned automatic operation becomes possible. The judgment of flood occurrence is made by the dam manager based on the precipitation data in the upstream area of the dam and the water level of the dam, but it is automatically pumped based on various information such as the precipitation data and the water level of the dam. It may be configured to operate with the stirrer.

本発明のダム堆積物下流還元方法およびシステムによれば、ダムの貯水池の堆積物に含まれるシルト粘土分をダムの下流に供給しても下流の河川へ悪影響を及ぼすことがない。 According to the dam deposit downstream reduction method and system of the present invention, even if the silt clay contained in the sediment of the dam reservoir is supplied to the downstream of the dam, it does not adversely affect the downstream river.

図1は本実施形態によるダム堆積物下流還元システムおよびその周辺のダム等を概略的に示す図である。FIG. 1 is a diagram schematically showing a dam deposit downstream reduction system according to the present embodiment and dams and the like around the dam. 本実施形態によるダム堆積物下流還元方法の平常時における工程を説明するためのフローチャートである。It is a flowchart for demonstrating the process in normal times of the dam sediment downstream reduction method by this embodiment. 本実施形態によるダム堆積物下流還元方法の洪水時における主要な工程を説明するためのフローチャートである。It is a flowchart for demonstrating the main process at the time of flood of the dam sediment downstream reduction method by this embodiment. 本実施形態において泥水をダムの下流に供給し停止するタイミングを説明するために放流量と時間との関係を概略的に示すグラフである。In this embodiment, it is a graph which shows the relationship between the discharge flow rate and time in order to explain the timing of supplying muddy water downstream of a dam and stopping it. 図1の排泥タンク、攪拌装置およびその周囲の構成を概略的に示す斜視図である。FIG. 3 is a perspective view schematically showing the configuration of the mud drainage tank, the agitator, and the surroundings thereof in FIG. 1. 図5の排泥タンク内の攪拌部を示す平面図である。It is a top view which shows the stirring part in the mud drain tank of FIG. 図6のVII-VII線方向に切断して見た図である。It is the figure which cut in the direction of VII-VII line of FIG. 本実施形態によるダム堆積物下流還元システムの制御システムを概略的に示すブロック図である。It is a block diagram which shows schematic the control system of the dam sediment downstream reduction system by this embodiment. 図1,図5の排泥タンク内におけるダム下流供給前の泥水の濁度測定およびダム下流への泥水の供給量決定の各工程を説明するためのフローチャートである。It is a flowchart for demonstrating each process of the turbidity measurement of the mud water before the supply to the downstream of a dam in the mud drain tank of FIG. 1 and FIG. 泥水のダム下流供給後の供給量調整および濁度調整の各工程を説明するためのフローチャートである。It is a flowchart for demonstrating each process of supply amount adjustment and turbidity adjustment after the dam downstream supply of muddy water. 本実施形態による別の攪拌装置を示す斜視図である。It is a perspective view which shows another stirring apparatus by this embodiment.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態によるダム堆積物下流還元システムおよびその周辺のダム等を概略的に示す図である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a dam deposit downstream reduction system according to the present embodiment and dams and the like around the dam.

図1のように、本実施形態によるダム堆積物下流還元システム10は、ダム1の貯水池2近くに設置され、上流4から貯水池2に流入し堆積した土砂等の堆積物3を浚渫してから、その浚渫された堆積物を粒径0.075mm以下のシルト粘土分と粒径0.075mmを超えた砂とに分級する分級装置11と、分級装置11からパイプライン圧送で送られたシルト粘土分を貯留し沈殿させ、洪水時に沈殿したシルト粘土分を攪拌する攪拌装置を有する排泥タンク12と、排泥タンク12の上澄みの余水を濁水処理し貯水池2に戻す濁水処理装置13と、洪水時に排泥タンク12に給水する水中ポンプ14と、を備える。洪水時に排泥タンク12では沈殿したシルト粘土分を攪拌し給水された水で泥水とし、この泥水をダム1の下流5に排出し供給する。 As shown in FIG. 1, the dam sediment downstream reduction system 10 according to the present embodiment is installed near the reservoir 2 of the dam 1, and after the sediment 3 such as earth and sand that has flowed into and accumulated in the reservoir 2 from the upstream 4 is drowned. , The classification device 11 that classifies the drowned sediment into silt clay content with a particle size of 0.075 mm or less and sand with a particle size of more than 0.075 mm, and the silt clay content sent from the classification device 11 by pipeline pumping. A mud drainage tank 12 having a stirring device that stores and settles and stirs the silt clay content that has settled during a flood, a muddy water treatment device 13 that treats the residual water of the supernatant of the mud drainage tank 12 with muddy water and returns it to the reservoir 2, and a muddy water treatment device 13 during a flood. A submersible pump 14 for supplying water to the mud drain tank 12 is provided. At the time of flood, the silt clay content settled in the mud drain tank 12 is agitated to make muddy water with the supplied water, and this muddy water is discharged to the downstream 5 of the dam 1 and supplied.

分級装置11は、公知の各種の分級機・分級装置を使用でき、たとえば、スパイラル分級機、ドラグ分級機、ロータリー分級機、水力分級機、サイザー、湿式サイクロン等を用いることができる。 As the classifying device 11, various known classifying machines / classifying devices can be used, and for example, a spiral classifying machine, a drag classifying machine, a rotary classifying machine, a hydraulic classifying machine, a sizer, a wet cyclone and the like can be used.

また、濁水処理装置13は、公知の各種の濁水処理装置・濁水処理プラントを使用でき、たとえば、懸濁物の沈殿分離、中和、排泥などの各処理機能を有し濁度の低い処理水を排出する濁水処理装置等を用いることができる。 Further, the turbid water treatment device 13 can use various known turbid water treatment devices and turbid water treatment plants, and has, for example, various treatment functions such as precipitation separation, neutralization, and wastewater of suspensions, and has low turbidity. A turbid water treatment device or the like that discharges water can be used.

次に、図1のダム堆積物下流還元システム10によるダム堆積物下流還元方法について図1~図4を参照して説明する。図2は本実施形態によるダム堆積物下流還元方法の平常時における工程を説明するためのフローチャートである。図3は本実施形態によるダム堆積物下流還元方法の洪水時における主要な工程を説明するためのフローチャートである。図4は本実施形態において泥水をダムの下流に供給し停止するタイミングを説明するためにダム放流量と時間との関係を概略的に示すグラフである。 Next, the method of reducing the dam deposit downstream by the dam deposit downstream reduction system 10 of FIG. 1 will be described with reference to FIGS. 1 to 4. FIG. 2 is a flowchart for explaining a process in normal times of the dam deposit downstream reduction method according to the present embodiment. FIG. 3 is a flowchart for explaining the main steps of the dam deposit downstream reduction method according to the present embodiment at the time of flooding. FIG. 4 is a graph schematically showing the relationship between the discharge rate of the dam and the time in order to explain the timing of supplying and stopping the muddy water downstream of the dam in the present embodiment.

まず、平常時に、図1,図2のように、貯水池2に堆積した土砂等の堆積物3を浚渫船等により浚渫し(S01)、その浚渫された堆積物を分級装置11で分級し(S02)、分級された粒径0.075mmを超えた砂(S03)と粒径0.075mm以下のシルト粘土分(S04)とは、それぞれ次のように処理される。 First, in normal times, as shown in FIGS. 1 and 2, the sediment 3 such as earth and sand deposited in the reservoir 2 is dredged by a dredging ship or the like (S01), and the dredged sediment is classified by the classifying device 11 (S02). ), The classified sand (S03) having a particle size of more than 0.075 mm and the silt clay content (S04) having a particle size of 0.075 mm or less are treated as follows.

すなわち、粒径0.075mmを超えた砂は、仮置場18に暫定的に置かれてから(S05)、適時にダンプカー等で運搬されてダム下流置土19とされ(S06)、また、骨材として有効利用される(S07)。 That is, sand having a particle size of more than 0.075 mm is provisionally placed in the temporary storage site 18 (S05), and then transported by a dump truck or the like in a timely manner to be used as soil downstream of the dam (S06). It is effectively used as (S07).

また、粒径0.075mm以下のシルト粘土分は、分級装置11からパイプライン圧送により排泥タンク12に送られる(S08)。排泥タンク12内でシルト粘土分は貯留されて沈殿し(S09)、また、その上澄みの余水が生じる(S10)。排泥タンク12内の余水は濁水処理装置13に送られて濁水処理され(S11)、濁度の低い処理水が貯水池2に戻される(S12)。 Further, the silt clay content having a particle size of 0.075 mm or less is sent from the classification device 11 to the mud drain tank 12 by pipeline pressure feeding (S08). The silt clay content is stored and settled in the mud drain tank 12 (S09), and residual water in the supernatant is generated (S10). The residual water in the mud drain tank 12 is sent to the turbid water treatment device 13 for turbid water treatment (S11), and the treated water having low turbidity is returned to the reservoir 2 (S12).

以上の工程S01~S12がダム堆積物下流還元システム10において平常時に実行される。 The above steps S01 to S12 are normally executed in the dam deposit downstream reduction system 10.

次に、洪水時に、図1,図3のように、洪水が発生したと判断されると(S21)、貯水池2から水中ポンプ14により排泥タンク12に給水を開始し(S22)、排泥タンク12に沈殿したシルト粘土分を攪拌装置により攪拌し(S23)、泥水を作製する(S24)。なお、給水工程S22では、ダム湖表層水(濁度約50PPM以下)を取水して排泥タンク12へ給水することが好ましい。 Next, at the time of flood, as shown in FIGS. 1 and 3, when it is determined that a flood has occurred (S21), water is started to be supplied from the reservoir 2 to the mud drain tank 12 by the submersible pump 14 (S22), and the mud is drained. The silt clay content settled in the tank 12 is stirred by a stirrer (S23) to prepare muddy water (S24). In the water supply step S22, it is preferable to take water from the surface of the dam lake (turbidity of about 50 PPM or less) and supply it to the mud drain tank 12.

なお、洪水発生の判断工程S21は、通常、ダムの上流地域の降水量やダムの貯水池の水位などの各種の洪水情報に基づいてダム管理者によってなされるが、ダム管理者により発せられる洪水発生信号を制御システムの制御装置41(図8)が受信することで判断するようにしてもよい。また、これらの洪水情報に基づいて制御装置41(図8)が自動的に判断するように構成してもよい。 The flood occurrence determination step S21 is usually performed by the dam manager based on various flood information such as the amount of precipitation in the upstream area of the dam and the water level of the reservoir of the dam. The signal may be determined by being received by the control device 41 (FIG. 8) of the control system. Further, the control device 41 (FIG. 8) may be configured to automatically determine based on the flood information.

また、図3では、泥水作製のための給水工程S22と攪拌工程S23とを洪水発生判断工程S21の後に開始するが、通常、洪水発生判断時からダム放流開始時までにはある程度の時間があるので、その間に泥水を作製することができる。また、図4のようにダム放流開始時から泥水のダム下流供給時(T1)まである程度の時間があるので、ダム放流開始の確認後に給水工程S22と攪拌工程S23とを開始するようにしてもよい。 Further, in FIG. 3, the water supply step S22 and the stirring step S23 for preparing muddy water are started after the flood occurrence determination step S21, but usually there is a certain amount of time from the time of the flood occurrence determination to the start of the dam discharge. Therefore, muddy water can be produced in the meantime. Further, as shown in FIG. 4, since there is a certain amount of time from the start of the dam discharge to the downstream supply of muddy water (T1), the water supply step S22 and the stirring step S23 may be started after the dam discharge start is confirmed. good.

洪水発生判断の後にダム1の常用洪水吐から放流が開始され(S25)、ダム下流5の水位が上昇すると、砂からなるダム下流置土19がダム下流5へと供給される(S26)。なお、ダム1からの放流が終了し、ダム下流5の水位が低下し元通りになると、ダム下流置土19のダム下流5への供給が終了する。 After the flood occurrence is determined, the discharge is started from the regular spillway of the dam 1 (S25), and when the water level of the dam downstream 5 rises, the dam downstream soil 19 made of sand is supplied to the dam downstream 5 (S26). When the discharge from the dam 1 is completed and the water level of the dam downstream 5 is lowered to the original level, the supply of the dam downstream soil 19 to the dam downstream 5 is terminated.

また、図4のように、ダム1からの単位時間当たりの放流量Q(m3/秒)が時間とともに増加し、時間T1で予め設定した第1の所定量Q1以上となると(S27)、排泥タンク12から泥水を排出しダム下流5へ供給する(S28)。第1の所定量Q1は、ダムの下流の河川内にシルト粘土分が残留しないような充分な放流量に設定される。 Further, as shown in FIG. 4, when the discharge rate Q (m 3 / sec) per unit time from the dam 1 increases with time and becomes equal to or more than the first predetermined amount Q1 preset in the time T1 (S27). Mud water is discharged from the mud drain tank 12 and supplied to the downstream of the dam 5 (S28). The first predetermined amount Q1 is set to a sufficient discharge flow rate so that silt clay content does not remain in the river downstream of the dam.

洪水時にダム1からの単位時間当たりの放流量Q(m3/秒)は、図4のように、時間とともに増加し、やがてピーク放流量に達し(S29)、その後、時間とともに減少し、時間T2で予め設定した第2の所定量Q2以下となると(S30)、泥水のダム下流5への供給を停止する(S31)。 At the time of flood, the discharge Q (m 3 / sec) per unit time from the dam 1 increases with time, reaches the peak discharge (S29), and then decreases with time, as shown in FIG. When the amount becomes equal to or less than the second predetermined amount Q2 preset in T2 (S30), the supply of muddy water to the downstream of the dam 5 is stopped (S31).

本実施形態のダム堆積物下流還元方法によれば、平常時にダムの貯水池から浚渫された堆積物を分級装置11でシルト粘土分と砂とに分級し、分級されたシルト粘土分を排泥タンク12で貯留し沈殿させておき、洪水の発生時に、貯水池2から水中ポンプ14で排泥タンク12に給水し、沈殿したシルト粘土分を攪拌して泥水としてから、その泥水をダム1の放流量(m3/秒)がダムの下流の河川内にシルト粘土分が残留しないような充分な放流量(図4の第1の所定量Q1)に達したときに、ダムの下流に供給する。このため、泥水をダム下流へ適切な供給時期に供給でき、シルト粘土分を含む泥水をダムの下流に供給しても河川へ悪影響を及ぼさない。 According to the downstream reduction method of dam deposits of the present embodiment, the sediments drenched from the reservoir of the dam in normal times are classified into silt clay and sand by the classification device 11, and the classified silt clay is classified into a mud drain tank. It is stored and settled in No. 12, and when a flood occurs, water is supplied from the reservoir 2 to the mud drain tank 12 by a submersible pump 14, the settled silt clay is stirred to make muddy water, and then the muddy water is discharged to the dam 1. When (m 3 / sec) reaches a sufficient discharge rate (first predetermined amount Q1 in FIG. 4) so that silt clay does not remain in the river downstream of the dam, it is supplied downstream of the dam. Therefore, muddy water can be supplied to the downstream of the dam at an appropriate supply time, and even if muddy water containing silt clay is supplied to the downstream of the dam, it does not adversely affect the river.

従来の一般的な置土工法ではダム下流の河道に土砂を直接置くため、洪水が小規模の場合には置土材料が流れきらず、河道内にシルト粘土分が残留することになり、河川環境に悪影響を及ぼす可能性があった。これに対し、本実施形態によれば、一定規模以上の洪水が発生した場合に、すなわち、ダム1の単位時間当たりの放流量Q(m3/秒)が第1の所定量Q1以上となった時に、シルト粘土分を含む泥水をダム下流に供給することで、ダム下流の河道内にシルト粘土分が残留しない。 In the conventional general soil placement method, the earth and sand are placed directly in the river channel downstream of the dam, so if the flood is small, the soil placement material will not flow completely and silt clay will remain in the river channel, resulting in a river environment. Could have an adverse effect on. On the other hand, according to the present embodiment, when a flood of a certain scale or more occurs, that is, the discharge rate Q (m 3 / sec) per unit time of the dam 1 becomes the first predetermined amount Q1 or more. At that time, by supplying muddy water containing silt clay to the downstream of the dam, silt clay does not remain in the river channel downstream of the dam.

また、図4の放流量Qが第1の所定量Q1以上となった時に泥水の下流供給を開始し、ダムの放流量の増加に合わせて泥水の供給量を増やし、ピーク放流量に達した後の洪水の収束に合わせて泥水の供給を第2の所定量Q2以下で停止することで、効率的で河川環境に悪影響を及ぼさない泥水のダム下流供給が可能となる。 Further, when the discharge Q of FIG. 4 becomes the first predetermined amount Q1 or more, the downstream supply of muddy water is started, and the supply amount of muddy water is increased according to the increase of the discharge rate of the dam to reach the peak discharge rate. By stopping the supply of muddy water at the second predetermined amount Q2 or less in accordance with the subsequent convergence of the flood, it is possible to efficiently supply the muddy water downstream of the dam without adversely affecting the river environment.

また、図4のように、時間T1、ダムの放流量Q1で泥水の下流供給を開始し、時間T2、ダムの放流量Q2で泥水の下流供給を停止するが、Q1<Q2と設定し、泥水の供給停止時のダムの放流量Q2を高めに設定することで、泥水の供給停止後に泥水が流れきり、ダム下流5の河道内にシルト粘土分が残留せず、河川内を充分に清浄な状態に戻すことができる。 Further, as shown in FIG. 4, the downstream supply of muddy water is started at the time T1 and the discharge rate Q1 of the dam, and the downstream supply of the muddy water is stopped at the time T2 and the discharge rate Q2 of the dam. By setting the discharge rate Q2 of the dam when the supply of muddy water is stopped to a high value, the muddy water will flow completely after the supply of muddy water is stopped, and silt clay will not remain in the river channel 5 downstream of the dam, and the inside of the river will be sufficiently cleaned. Can be returned to the normal state.

また、シルト粘土分が多く、河川還元には元来適していない堆積物であっても、浚渫後の堆積物を分級処理することで、河川還元に適した材料に改良することができる。これにより、河床低下対策となり、望ましい魚類の生息環境を実現できる。 Moreover, even if the sediment is originally unsuitable for river reduction due to the large amount of silt clay, it can be improved into a material suitable for river reduction by classifying the sediment after dredging. As a result, it becomes possible to take measures against the riverbed lowering and realize a desirable habitat for fish.

また、最も実績が多くイニシャルコストが安価な置土工法をベースにし、排泥タンクからシルト粘土分を泥水にして供給することで、洪水時の河川環境を考慮したダム堆積物下流還元方法・システムを提供できる。特許文献1,2の吸引工法や排砂バイパストンネルのような大規模な工事が不要であるため、イニシャルコストが安価である。 In addition, based on the earth-laying method, which has the most achievements and the lowest initial cost, silt clay is supplied as muddy water from the mud drain tank, and the downstream reduction method and system of dam deposits considering the river environment at the time of flood. Can be provided. Since the suction method of Patent Documents 1 and 2 and the large-scale construction such as the sand removal bypass tunnel are not required, the initial cost is low.

また、一般的な浚渫工法と置土工法とによる工法と比較して、土捨場が不要であり、砂のみの運搬でよく運搬コストが低減するためランニングコストが安価である。 In addition, compared with the general dredging method and the earth-placement method, a dumping ground is not required, and only sand can be transported, and the transportation cost is reduced, so that the running cost is low.

次に、図1のダム堆積物下流還元システムの排泥タンク、攪拌装置およびその周囲の構成について、図5~図7を参照して説明する。図5は、図1の排泥タンク、攪拌装置およびその周囲の構成を概略的に示す斜視図である。図6は、図5の排泥タンク内の攪拌部を示す平面図である。図7は、図6のVII-VII線方向に切断して見た図である。 Next, the configuration of the mud drainage tank, the agitator, and the surroundings of the dam sediment downstream reduction system of FIG. 1 will be described with reference to FIGS. 5 to 7. FIG. 5 is a perspective view schematically showing the configuration of the mud drainage tank, the agitator, and the surroundings thereof of FIG. FIG. 6 is a plan view showing the stirring portion in the mud drain tank of FIG. FIG. 7 is a view cut in the direction of the line VII-VII of FIG.

図5のように、排泥タンク12は、円筒状に構成され、内部にシルト粘土分が沈殿し貯留可能に構成され、沈殿したシルト粘土分を攪拌するための攪拌装置20を有する。なお、排泥タンク12は、回転可能なように地盤に設置されるが、その設置構造は図5では図示を省略している。また、攪拌装置20を有する排泥タンク12は、複数基設置してもよい。 As shown in FIG. 5, the mud drainage tank 12 is configured to have a cylindrical shape, and is configured so that silt clay content can be settled and stored inside, and has a stirring device 20 for stirring the settled silt clay content. The mud drainage tank 12 is installed on the ground so as to be rotatable, but the installation structure thereof is not shown in FIG. Further, a plurality of mud drainage tanks 12 having the stirring device 20 may be installed.

攪拌装置20は、排泥タンク12内で水平方向に延びる攪拌部21と、排泥タンク12の中心に位置し鉛直方向に延びて攪拌部21を支持する支持軸22と、支持軸22を攪拌部21とともに鉛直方向上下に移動させる鉛直移動装置23と、排泥タンク12内のシルト粘土分6を攪拌するために排泥タンク12を攪拌部21および支持軸22に対し回転させる水平回転装置24と、を備える。 The stirring device 20 stirs the stirring portion 21 extending horizontally in the mud drain tank 12, the support shaft 22 located at the center of the mud drain tank 12 and extending vertically to support the stirring portion 21, and the support shaft 22. A vertical moving device 23 that moves up and down in the vertical direction together with the section 21, and a horizontal rotating device 24 that rotates the mud drain tank 12 with respect to the stirring section 21 and the support shaft 22 in order to stir the silt clay content 6 in the mud drain tank 12. And.

攪拌部21は、図5~図7のように、中心の支持軸22から排泥タンク12の半径方向に放射状に延びる複数の攪拌棒21a~21hを有する。複数の攪拌棒21a~21hは、円周方向に等間隔に配置され、各攪拌棒21a~21hの下端から下方に傾斜して排泥タンク12内のシルト粘土分6を削ることで攪拌するための排土板26a~26hと、各排土板26a~26hに沿ってシルト粘土分6に向けて給水管27aから噴流水JWを噴出するジェットノズル27と、を有する。 As shown in FIGS. 5 to 7, the stirring unit 21 has a plurality of stirring rods 21a to 21h extending radially from the central support shaft 22 in the radial direction of the mud drain tank 12. The plurality of stirring rods 21a to 21h are arranged at equal intervals in the circumferential direction, and are inclined downward from the lower end of each stirring rod 21a to 21h to stir by scraping the silt clay content 6 in the mud drain tank 12. The soil discharge plates 26a to 26h and a jet nozzle 27 for ejecting jet water JW from the water supply pipe 27a toward the silt clay content 6 along the soil discharge plates 26a to 26h.

排土板26a~26hは、図6のように、各攪拌棒21a~21hの水平方向長さよりも水平方向長さが短く、各々の半径方向位置が隣接の排土板に対し相違するとともに、排土板26a~26h全体として支持軸22から半径方向外周まで満遍なく位置するように構成される。排泥タンク12が回転方向Rに回転すると、図6,図7のように、各排土板26a~26hがジェットノズル27から噴流水JWをシルト粘土分6に噴出しながらシルト粘土分6を表面から少しずつ削り取り攪拌することができる。また、ジェットノズル27からの噴流水JWの噴出により固結したシルト粘土分でも充分に解泥できる。 As shown in FIG. 6, the soil removal plates 26a to 26h have a shorter horizontal length than the horizontal lengths of the stirring rods 21a to 21h, and their radial positions are different from those of the adjacent soil removal plates. The soil removal plates 26a to 26h as a whole are configured to be evenly located from the support shaft 22 to the outer periphery in the radial direction. When the mud drain tank 12 rotates in the rotation direction R, as shown in FIGS. It can be scraped off from the surface little by little and stirred. Further, even the silt clay content solidified by the jet of jet water JW from the jet nozzle 27 can be sufficiently demudged.

鉛直移動装置23は、図5のように、排泥タンク12の上方の水平部25に配置され、公知の電動スピンドル構造からなり、支持軸22のねじ部22aと螺合することで回転運動を支持軸22の直線移動に変換する。これにより、攪拌部21をシルト粘土分の攪拌の進行に合わせて支持軸22とともに図7の下方に移動させることができ、排泥タンク12内のシルト粘土分6を上部から下部まで攪拌できる。なお、水平部25は、支持体25a~25dにより支持されている。 As shown in FIG. 5, the vertical moving device 23 is arranged in the horizontal portion 25 above the mud drain tank 12, has a known electric spindle structure, and is screwed with the threaded portion 22a of the support shaft 22 to rotate. It is converted into a linear movement of the support shaft 22. As a result, the stirring unit 21 can be moved to the lower part of FIG. 7 together with the support shaft 22 in accordance with the progress of stirring the silt clay content, and the silt clay content 6 in the mud drain tank 12 can be stirred from the upper part to the lower part. The horizontal portion 25 is supported by the supports 25a to 25d.

水平回転装置24は、図5のように、排泥タンク12の外周に一周配置された外周歯車24aと、外周歯車24aと螺合する回転歯車24bと、回転歯車24bを回転させる電動モータ29と、を有する。電動モータ29の回転により回転歯車24bが回転すると、外周歯車24aとともに排泥タンク12が回転する。 As shown in FIG. 5, the horizontal rotary device 24 includes an outer peripheral gear 24a arranged around the outer periphery of the mud drain tank 12, a rotary gear 24b screwed with the outer peripheral gear 24a, and an electric motor 29 for rotating the rotary gear 24b. , Have. When the rotary gear 24b is rotated by the rotation of the electric motor 29, the mud drain tank 12 rotates together with the outer peripheral gear 24a.

排泥タンク12の回転に伴う攪拌部21によるシルト粘土分6の攪拌量は、電動モータ29の回転速度と、攪拌部21の鉛直移動装置23による下方移動速度とによって調整することができる。 The amount of stirring of the silt clay content 6 by the stirring unit 21 accompanying the rotation of the mud drain tank 12 can be adjusted by the rotation speed of the electric motor 29 and the downward moving speed of the stirring unit 21 by the vertical moving device 23.

図5のように、ダム堆積物下流還元システム10は、図1の分級装置11から排泥タンク12に延びる配管31を有し、配管31を通して分級装置11で分級されたシルト粘土分が圧送により排泥タンク12に送られる。 As shown in FIG. 5, the dam sediment downstream reduction system 10 has a pipe 31 extending from the classification device 11 of FIG. 1 to the mud drainage tank 12, and the silt clay component classified by the classification device 11 through the pipe 31 is pumped. It is sent to the mud drain tank 12.

また、図5の排泥タンク12の上部から図1の濁水処理装置13へと延びる配管32と、ポンプ33とを有し、排泥タンク12内の上澄みの余水がポンプ33の作動により配管32を通して濁水処理装置13に送られる。 Further, it has a pipe 32 extending from the upper part of the mud drain tank 12 of FIG. 5 to the muddy water treatment device 13 of FIG. 1 and a pump 33, and the residual water of the supernatant in the mud tank 12 is piped by the operation of the pump 33. It is sent to the turbid water treatment device 13 through 32.

また、図1の貯水池2の水中ポンプ14から排泥タンク12に延びる配管34を有し、水中ポンプ14の作動により貯水池2から配管34を通して排泥タンク12に給水される。かかる給水は、配管34の途中に設けられた給水制御バルブ35により制御される。 Further, it has a pipe 34 extending from the submersible pump 14 of the reservoir 2 of FIG. 1 to the mud drain tank 12, and water is supplied from the reservoir 2 to the mud tank 12 through the pipe 34 by the operation of the submersible pump 14. Such water supply is controlled by a water supply control valve 35 provided in the middle of the pipe 34.

また、図5の排泥タンク12の上部から図1のダム下流5へと延びる泥水供給管36と、泥水ポンプ37とを有し、排泥タンク12内でシルト粘土分から作製された泥水が泥水ポンプ37の作動により泥水供給管36を通してダム下流5に供給される。かかる泥水のダム下流5への供給は、泥水供給管36の途中に設けられた泥水制御バルブ38により制御される。 Further, it has a muddy water supply pipe 36 extending from the upper part of the mud drainage tank 12 of FIG. 5 to the dam downstream 5 of FIG. By the operation of the pump 37, it is supplied to the downstream of the dam 5 through the muddy water supply pipe 36. The supply of the muddy water to the downstream side 5 of the dam is controlled by a muddy water control valve 38 provided in the middle of the muddy water supply pipe 36.

なお、給水制御バルブ35と泥水制御バルブ38は、公知の制御バルブ、制御弁、調節弁等を使用でき、水の流量を制御する制御機構と、この制御機構を駆動する駆動部とを有し、制御信号により駆動部を制御し制御機構で水の流量を制御する。 The water supply control valve 35 and the muddy water control valve 38 can use known control valves, control valves, control valves, etc., and have a control mechanism for controlling the flow rate of water and a drive unit for driving the control mechanism. , The drive unit is controlled by the control signal, and the flow rate of water is controlled by the control mechanism.

また、図5のように、排泥タンク12内には排泥タンク12内の泥水の濁度を測定する第1の濁度計28が配置されている。また、図5の泥水供給管36には、泥水制御バルブ38の上流側にダム下流へ供給される泥水の濁度を測定する第2の濁度計39が配置され、また、泥水制御バルブ38の下流側に泥水の流量を測定する流量計40が配置されている。 Further, as shown in FIG. 5, a first turbidity meter 28 for measuring the turbidity of the muddy water in the mud drain tank 12 is arranged in the mud drain tank 12. Further, in the muddy water supply pipe 36 of FIG. 5, a second turbidity meter 39 for measuring the turbidity of the muddy water supplied to the downstream of the dam is arranged on the upstream side of the muddy water control valve 38, and the muddy water control valve 38 is also arranged. A flow meter 40 for measuring the flow rate of muddy water is arranged on the downstream side of the.

次に、図1,図5~図7のダム堆積物下流還元システム10を自動制御するための制御システムについて図8を参照して説明する。図8は、本実施形態によるダム堆積物下流還元システム10の制御システムを概略的に示すブロック図である。 Next, a control system for automatically controlling the dam deposit downstream reduction system 10 of FIGS. 1 and 5 to 7 will be described with reference to FIG. FIG. 8 is a block diagram schematically showing a control system of the dam deposit downstream reduction system 10 according to the present embodiment.

図8のように、制御システムは、各種の情報や測定情報が入力し、各部に対し制御信号を送る制御装置41を備える。制御装置41は、たとえば、パーソナルコンピュータ(PC)から構成され、各種制御を実行するCPU(中央演算処理装置)と、制御の際のプログラムや各種情報を一時的に保持するRAM等からなるメモリと、ハードディスク等からなる記憶装置と、を備え、本実施形態によるダム堆積物下流還元方法の各工程を実行するためのプログラムが記憶装置にインストールされており、かかるプログラムおよび各種の入力情報に基づいてダム堆積物下流還元方法の各工程が自動的に実行される。 As shown in FIG. 8, the control system includes a control device 41 for inputting various information and measurement information and sending a control signal to each unit. The control device 41 is, for example, a memory composed of a personal computer (PC), a CPU (central processing unit) that executes various controls, and a RAM that temporarily holds programs and various information for control. A storage device including a hard disk, etc., and a program for executing each step of the dam deposit downstream reduction method according to the present embodiment are installed in the storage device, and based on the program and various input information. Each step of the dam deposit downstream reduction method is automatically executed.

制御装置41には、図8のように、第1の濁度計28により測定された図5の排泥タンク12内の泥水の測定濁度情報、第2の濁度計39により測定された図5の泥水供給管36を流れる泥水の測定濁度情報、および、流量計40により測定された図5の泥水供給管36を流れる泥水の測定流量情報が入力される。また、ダム下流の河川における許容濁度情報、洪水情報およびダム放流量情報が入力される。 As shown in FIG. 8, the control device 41 has the measured turbidity information of the muddy water in the mud drain tank 12 of FIG. 5 measured by the first turbidity meter 28, and measured by the second turbidity meter 39. The measured turbidity information of the muddy water flowing through the muddy water supply pipe 36 of FIG. 5 and the measured flow rate information of the muddy water flowing through the muddy water supply pipe 36 of FIG. 5 measured by the flow meter 40 are input. In addition, permissible turbidity information, flood information and dam discharge information in rivers downstream of the dam are input.

また、制御装置41は、図1の貯水池2内に配置された水中ポンプ14,図5の攪拌装置20の電動モータ29,鉛直移動装置23,給水制御バルブ35、泥水ポンプ37および泥水制御バルブ38を各入力情報に基づいて制御する。 Further, the control device 41 includes a submersible pump 14 arranged in the reservoir 2 of FIG. 1, an electric motor 29 of the stirring device 20 of FIG. 5, a vertical moving device 23, a water supply control valve 35, a muddy water pump 37, and a muddy water control valve 38. Is controlled based on each input information.

次に、図1,図5~図8のダム堆積物下流還元システム10による下流還元の各工程について図9,図10を参照して説明する。図9は、図1,図5の排泥タンク内におけるダム下流供給前の泥水の濁度測定およびダム下流への泥水の供給量決定の各工程を説明するためのフローチャートである。図10は、泥水のダム下流供給後の供給量調整および濁度調整の各工程を説明するためのフローチャートである。 Next, each step of downstream reduction by the dam deposit downstream reduction system 10 of FIGS. 1 and 5 to FIG. 8 will be described with reference to FIGS. 9 and 10. FIG. 9 is a flowchart for explaining each process of measuring the turbidity of the mud water before the supply of the mud downstream in the mud drain tank of FIGS. 1 and 5 and determining the amount of the mud water supplied to the downstream of the dam. FIG. 10 is a flowchart for explaining each process of supply amount adjustment and turbidity adjustment after the downstream supply of muddy water to the dam.

図9の工程S21~S24は、図3と同様の工程であるが、図9の洪水発生判断工程S21では、ダムの上流地域の降水量やダムの貯水池の水位などの各種洪水情報が図8の制御装置41に入力し、これらの洪水情報に基づいて図8の制御装置41が洪水発生を自動的に判断する。 Steps S21 to S24 in FIG. 9 are the same steps as in FIG. 3, but in the flood occurrence determination step S21 in FIG. 9, various flood information such as the amount of precipitation in the upstream area of the dam and the water level of the reservoir of the dam is shown in FIG. It is input to the control device 41 of the above, and the control device 41 of FIG. 8 automatically determines the occurrence of a flood based on these flood information.

次に、洪水発生と判断すると、制御装置41は、水中ポンプ14を作動させ、給水制御バルブ35を開き、貯水池2から配管34を通して排泥タンク12内に給水する(S22)。 Next, when it is determined that a flood has occurred, the control device 41 operates the submersible pump 14, opens the water supply control valve 35, and supplies water from the reservoir 2 to the mud drain tank 12 through the pipe 34 (S22).

また、制御装置41は、攪拌装置20の電動モータ29を作動させ、排泥タンク12を攪拌部21に対し回転させることで、攪拌棒21a~21hの各排土板26a~26hが図7のようにして排泥タンク12内のシルト粘土分6を削りとることで攪拌する(S23)。このときジェットノズル27から噴流水JWが噴出することで攪拌効率が向上する。また、攪拌部21による攪拌に合わせて鉛直移動装置23を作動させ攪拌部21を下方へと移動させる。 Further, the control device 41 operates the electric motor 29 of the stirring device 20 to rotate the mud draining tank 12 with respect to the stirring unit 21, so that the soil draining plates 26a to 26h of the stirring rods 21a to 21h are shown in FIG. In this way, the silt clay content 6 in the mud drain tank 12 is scraped off to stir (S23). At this time, the jet nozzle 27 ejects the jet water JW to improve the stirring efficiency. Further, the vertical moving device 23 is operated in accordance with the stirring by the stirring unit 21 to move the stirring unit 21 downward.

上述の給水工程S22と攪拌工程S23とにより排泥タンク12内で泥水を作製し(S24)、この泥水の濁度を排泥タンク12内の第1の濁度計28により測定する(S35)。 Muddy water is prepared in the mud drainage tank 12 by the water supply step S22 and the stirring step S23 described above (S24), and the turbidity of the muddy water is measured by the first turbidity meter 28 in the mud drainage tank 12 (S35). ..

上記濁度測定結果に基づいて排泥タンク12内の泥水の濁度を調整する場合(S36)、攪拌装置20の電動モータ29による排泥タンク12の回転速度と鉛直移動装置23による攪拌部21の下方への移動速度とを制御装置41により制御することで、泥水の濁度を調整できる。 When adjusting the turbidity of the mud in the mud tank 12 based on the turbidity measurement result (S36), the rotation speed of the mud tank 12 by the electric motor 29 of the stirring device 20 and the stirring unit 21 by the vertical moving device 23. The turbidity of the muddy water can be adjusted by controlling the downward movement speed of the mud by the control device 41.

次に、制御装置41は、入力された、第1の濁度計28による排泥タンク12内の泥水の測定濁度情報と、ダム下流の河川における許容濁度情報と、ダムの放流量(m3/秒)情報とに基づいてダム下流への泥水の供給量(m3/秒)を決定する(S37)。なお、許容濁度は、生息する魚類や植物への影響を考慮し、河川毎に決定される。 Next, the control device 41 inputs the measured turbidity information of the muddy water in the mud drain tank 12 by the first turbidity meter 28, the allowable turbidity information in the river downstream of the dam, and the discharge flow rate of the dam ( Based on the m 3 / sec) information, the amount of muddy water supplied to the downstream of the dam (m 3 / sec) is determined (S37). The permissible turbidity is determined for each river in consideration of the influence on the inhabiting fish and plants.

以上のようにして、ダム下流への泥水の単位時間当たりの供給量を各入力情報に基づいて制御装置41により自動的に決定できる。これにより、シルト粘土分を適切な濃度で含む泥水を作製でき、ダム下流に供給しても、下流の河川で許容濁度を超えることがなく、河川への悪影響が生じない。 As described above, the amount of muddy water supplied to the downstream of the dam per unit time can be automatically determined by the control device 41 based on each input information. As a result, muddy water containing silt clay at an appropriate concentration can be prepared, and even if it is supplied downstream of the dam, the allowable turbidity will not be exceeded in the downstream river, and no adverse effect on the river will occur.

次に、泥水のダム下流への供給後における泥水の供給量調整および濁度調整について図10を参照して説明する。 Next, the adjustment of the supply amount of muddy water and the adjustment of turbidity after the supply of muddy water to the downstream of the dam will be described with reference to FIG.

ダム放流量Qが所定範囲内であるか否かを判断し(S40)、所定範囲内であれば(Q1<Q、または、Q>Q2(図4参照))、上述のようにして決定された供給量で排泥タンク12から泥水を泥水ポンプ37を作動させ泥水供給管36を通してダム下流5へ供給する(S28(図3))。このとき、制御装置41は、泥水制御バルブ38を制御することで、ダム下流への泥水の供給量が決定された供給量となるように泥水の流量を調整する。 It is determined whether or not the dam discharge Q is within the predetermined range (S40), and if it is within the predetermined range (Q1 <Q or Q> Q2 (see FIG. 4)), it is determined as described above. Muddy water is supplied from the muddy drain tank 12 to the downstream of the dam 5 through the muddy water supply pipe 36 by operating the muddy water pump 37 (S28 (FIG. 3)). At this time, the control device 41 controls the muddy water control valve 38 to adjust the flow rate of muddy water so that the supply amount of muddy water to the downstream of the dam becomes the determined supply amount.

上記判断工程S40および上記泥水供給工程S28は、図3の工程S27~S30に対応し、ダム放流量Qが所定量Q2以下となると(S30)、泥水のダム下流5への供給を停止する(S31)。 The determination step S40 and the muddy water supply step S28 correspond to the steps S27 to S30 of FIG. 3, and when the dam discharge rate Q becomes a predetermined amount Q2 or less (S30), the supply of muddy water to the downstream dam 5 is stopped (S30). S31).

泥水は図5の泥水供給管36を流れてダム下流に供給されるが、この泥水の濁度を図5の第2の濁度計39により測定する(S41)。 The muddy water flows through the muddy water supply pipe 36 of FIG. 5 and is supplied downstream of the dam, and the turbidity of this muddy water is measured by the second turbidity meter 39 of FIG. 5 (S41).

上記測定された測定濁度情報およびその時点でのダムの放流量情報により、制御装置41は、図9の工程S37と同様にして泥水の供給量を再度決定し、その結果、泥水の供給量を増減すると判断した場合(S42)、給水制御バルブ35を制御し、排泥タンク12への給水量を調整する(S43)。 Based on the measured turbidity information measured above and the discharge flow rate information of the dam at that time, the control device 41 redetermines the supply amount of muddy water in the same manner as in step S37 of FIG. 9, and as a result, the supply amount of muddy water (S42), the water supply control valve 35 is controlled to adjust the amount of water supplied to the mud drain tank 12 (S43).

次に、図5の流量計40により泥水供給管36を流れる泥水の流量を測定する(S44)。かかる測定流量情報に基づいて制御装置41は、泥水の供給量を微調整すると判断した場合(S45)、泥水制御バルブ38を制御し、ダム下流への泥水の供給量を調整する(S46)。 Next, the flow rate of muddy water flowing through the muddy water supply pipe 36 is measured by the flow meter 40 of FIG. 5 (S44). When the control device 41 determines that the supply amount of muddy water is finely adjusted based on the measured flow rate information (S45), the control device 41 controls the muddy water control valve 38 and adjusts the supply amount of muddy water to the downstream of the dam (S46).

一方、泥水の濁度測定工程S41からの測定濁度情報に基づいて制御装置41は、泥水の濁度を増減すると判断した場合(S47)、図5~図7の攪拌装置20の電動モータ29と鉛直移動装置23とを制御し、シルト粘土分の攪拌量を増減することで泥水の濁度を調整する(S48)。この濁度の調整された泥水がダム下流へ供給される。 On the other hand, when the control device 41 determines that the turbidity of the muddy water is increased or decreased based on the measurement turbidity information from the turbidity measuring step S41 (S47), the electric motor 29 of the stirring device 20 of FIGS. 5 to 7 And the vertical movement device 23 are controlled, and the turbidity of the muddy water is adjusted by increasing or decreasing the amount of stirring of the silt clay content (S48). This turbidity-adjusted muddy water is supplied downstream of the dam.

以上のように、本実施形態によれば、排泥タンク内の泥水の濁度とダム放流量との関係から、泥水のダム下流への供給量を自動で制御できるダム堆積物下流還元システムを実現できる。また、分級後のシルト粘土分の下流供給による河川への悪影響が生じないように、泥水の供給時期と供給量とを制御することができる。 As described above, according to the present embodiment, a dam sediment downstream reduction system capable of automatically controlling the amount of muddy water supplied to the downstream of the dam based on the relationship between the turbidity of the muddy water in the mud drain tank and the discharge rate of the dam is provided. realizable. In addition, it is possible to control the supply timing and supply amount of muddy water so that the downstream supply of silt clay after classification does not adversely affect the river.

すなわち、図3,図4のように泥水のダム下流への供給時期を制御することで、泥水を適切な供給時期にダム下流へ供給できる。また、泥水のダム下流への供給中における泥水の供給量調整および濁度調整がダム下流へ供給される泥水の濁度測定と流量測定とに基づいて行われることで、図4のようなダムの放流量(m3/秒)の増加・減少に合わせて泥水の供給量を増加・減少させても、図9の工程S37と同様にして泥水の供給量(m3/秒)を決定することで、シルト粘土分を含む泥水を適切な濃度にでき、ダム下流に供給しても、下流の河川で許容濁度を超えることがなく、河川への悪影響が生じない。 That is, by controlling the supply timing of the muddy water to the downstream of the dam as shown in FIGS. 3 and 4, the muddy water can be supplied to the downstream of the dam at an appropriate supply timing. Further, the muddy water supply amount adjustment and the turbidity adjustment during the supply of muddy water to the downstream of the dam are performed based on the turbidity measurement and the flow rate measurement of the muddy water supplied to the downstream of the dam, so that the dam as shown in FIG. 4 Even if the muddy water supply amount is increased or decreased in accordance with the increase or decrease of the discharge flow rate (m 3 / sec), the muddy water supply amount (m 3 / sec) is determined in the same manner as in step S37 of FIG. As a result, the muddy water containing silt clay can be adjusted to an appropriate concentration, and even if it is supplied downstream of the dam, the permissible turbidity will not be exceeded in the downstream river, and no adverse effect on the river will occur.

なお、泥水供給量の増減判断工程(S42)と泥水濁度の増減判断工程(S47)とは、泥水供給量の決定工程(図9の工程S37)と同様にして下流の河川で許容濁度を超えることがないように行われる。 The muddy water supply increase / decrease determination step (S42) and the muddy water turbidity increase / decrease determination step (S47) are the same as the muddy water supply amount determination step (step S37 in FIG. 9), and the allowable turbidity in the downstream river. It is done so as not to exceed.

本実施形態のダム堆積物下流還元システムによれば、洪水発生を判断し、排泥タンク12内で泥水を作製し、ダム放流量が所定値Q1に達すると、泥水をダム下流へ供給し、所定値Q2以下になると、泥水の供給を停止し、その泥水の供給の間、泥水により下流の河川で許容濁度を超えることがないように泥水の供給量がダムの放流量に合わせて決定され、これらの各工程が自動制御でき、遠隔操作も可能である。 According to the dam sediment downstream reduction system of the present embodiment, it is determined that a flood has occurred, muddy water is produced in the mud drain tank 12, and when the dam discharge amount reaches the predetermined value Q1, the muddy water is supplied to the downstream of the dam. When the specified value is Q2 or less, the supply of muddy water is stopped, and the amount of muddy water supplied is determined according to the discharge rate of the dam so that the muddy water does not exceed the allowable turbidity in the downstream river during the supply of muddy water. Each of these processes can be automatically controlled and can be operated remotely.

次に、本実施形態の攪拌装置の別の構成例について図11を参照して説明する。図11は、本実施形態による別の攪拌装置を示す斜視図である。 Next, another configuration example of the stirring device of the present embodiment will be described with reference to FIG. FIG. 11 is a perspective view showing another stirring device according to the present embodiment.

図11のように、攪拌装置50は、無人化バックホウタイプにより構成され、排泥タンク内を水平移動可能な移動部51と、移動部51から延びたアーム52と、アーム52の先端に設けられ略水平方向に延びる回転軸を中心に電動モータ等の回転駆動手段により回転する攪拌部53と、を備え、排泥タンク内に設けられたレール50a~50c上を移動部51が走行しながら攪拌部53が回転することで排泥タンク内のシルト粘土分6を表面から削りとって攪拌する。 As shown in FIG. 11, the stirring device 50 is composed of an unmanned backhoe type, and is provided with a moving portion 51 that can move horizontally in the mud drain tank, an arm 52 extending from the moving portion 51, and the tip of the arm 52. A stirring unit 53 that is rotated by a rotation driving means such as an electric motor around a rotating shaft extending in a substantially horizontal direction is provided, and the moving unit 51 stirs while traveling on rails 50a to 50c provided in the mud drainage tank. As the portion 53 rotates, the silt clay content 6 in the mud drain tank is scraped from the surface and stirred.

攪拌装置50は、図8と同様の制御システムにより制御され、移動部51の走行速度と攪拌部53の回転速度とを制御することでシルト粘土分6の攪拌量を調整し、泥水の濁度を調整できる。 The stirring device 50 is controlled by the same control system as in FIG. 8 and adjusts the stirring amount of the silt clay content 6 by controlling the traveling speed of the moving unit 51 and the rotation speed of the stirring unit 53, and the turbidity of muddy water. Can be adjusted.

なお、図11の場合、排泥タンクの周囲の構成は、図5と同様であるが、排泥タンクは自転しないので、配管31,32,34,泥水供給管36は排泥タンクに直接接続するように構成してもよい。また、攪拌装置50は複数台設置するように構成できる。 In the case of FIG. 11, the configuration around the mud drain tank is the same as that of FIG. 5, but since the mud drain tank does not rotate, the pipes 31, 32, 34 and the mud water supply pipe 36 are directly connected to the mud drain tank. It may be configured to do so. Further, the stirring device 50 can be configured to be installed in a plurality of units.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、図3では、洪水時に、排泥タンク12に給水を開始してから(S22)、シルト粘土分を攪拌した(S23)が、本発明はこれに限定されず、給水と攪拌とをほぼ同時に開始してもよく、また、攪拌を開始してから、給水を行うようにしてもよい。 Although the embodiment for carrying out the present invention has been described above, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, in FIG. 3, during a flood, water supply to the mud drain tank 12 was started (S22), and then the silt clay content was agitated (S23), but the present invention is not limited to this, and water supply and agitation are substantially the same. It may be started at the same time, or the stirring may be started and then the water supply may be performed.

また、図1の分級装置11では、浚渫された堆積物を粒径0.075mm以下のシルト粘土分と粒径0.075mm径を超えた砂とに分級したが、本発明はこれに限定されず、たとえば、粒径0.075mm以下のシルト粘土分と粒径0.075mm径を超えた砂礫とに分級するようにしてもよい。この場合、砂礫は、ダムによって相違するが、砂(粒径0.075~2mm)と細礫(粒径2~19mm)とであってよく、さらに祖礫(粒径19mm越)を含んでもよい。 Further, in the classification device 11 of FIG. 1, the drowned sediment is classified into silt clay having a particle size of 0.075 mm or less and sand having a particle size of more than 0.075 mm, but the present invention is not limited to this. For example, it may be classified into silt clay having a particle size of 0.075 mm or less and sand gravel having a particle size exceeding 0.075 mm. In this case, the gravel may be sand (particle size 0.075 to 2 mm) and fine gravel (particle size 2 to 19 mm), and may further contain gravel (particle size over 19 mm), although it depends on the dam.

また、図5,図6の排泥タンク12と攪拌部21との相対回転の構成は、排泥タンク12を自転させるようにしたが、これに限定されず、排泥タンク12に対し攪拌部21を支持軸22とともに回転させるように構成してもよい。 Further, the configuration of the relative rotation between the mud drain tank 12 and the stirring section 21 in FIGS. 5 and 6 is such that the mud drain tank 12 rotates on its axis, but the present invention is not limited to this, and the stirring section is relative to the mud drain tank 12. 21 may be configured to rotate with the support shaft 22.

また、図6,図7の攪拌装置20の排土板とジェットノズルとは、いずれか一方でシルト粘土分を充分に攪拌できる場合には他方を省略してもよい。 Further, if one of the soil removal plate and the jet nozzle of the stirring device 20 of FIGS. 6 and 7 can sufficiently stir the silt clay content, the other may be omitted.

また、図5の泥水供給管36の泥水制御バルブ38の直前に泥水の濁度の安定化を図るために泥水の貯留槽を設置してもよい。 Further, a muddy water storage tank may be installed immediately before the muddy water control valve 38 of the muddy water supply pipe 36 of FIG. 5 in order to stabilize the turbidity of the muddy water.

本発明のダム堆積物下流還元方法およびシステムによれば、ダムの貯水容量の維持のため貯水池を浚渫し、その堆積物に含まれるシルト粘土分をダムの下流に供給しても下流の河川へ悪影響を及ぼすことがないので、河川の濁水化や河川環境悪化等の問題を未然に防止できる。 According to the dam deposit downstream reduction method and system of the present invention, the reservoir is dredged to maintain the reservoir capacity of the dam, and the silt clay contained in the sediment is supplied to the downstream river even if it is supplied to the downstream of the dam. Since there is no adverse effect, problems such as muddy water in the river and deterioration of the river environment can be prevented.

1 ダム
2 貯水池
3 堆積物
4 上流
5 ダム下流
6 シルト粘土分
10 ダム堆積物下流還元システム
11 分級装置
12 排泥タンク
13 濁水処理装置
14 水中ポンプ
19 ダム下流置土
20 攪拌装置
21 攪拌部
21a~21h 攪拌棒
26a~26h 排土板
22 支持軸
23 鉛直移動装置
24 水平回転装置
27 ジェットノズル
28 第1の濁度計
29 電動モータ
35 給水制御バルブ
36 泥水供給管
38 泥水制御バルブ
39 第2の濁度計
40 流量計
41 制御装置
50 攪拌装置
51 移動部
52 アーム
53 攪拌部
JW 噴流水
Q ダム放流量
1 Dam 2 Reservoir 3 Sediment 4 Upstream 5 Dam downstream 6 Silt clay content 10 Dam deposit downstream reduction system 11 Classification device 12 Mud drain tank 13 Muddy water treatment device 14 Submersible pump 19 Dam downstream soil 20 Stirrer 21 Stirrer 21a ~ 21h Stirring rod 26a-26h Soil removal plate 22 Support shaft 23 Vertical movement device 24 Horizontal rotation device 27 Jet nozzle 28 First turbidity meter 29 Electric motor 35 Water supply control valve 36 Muddy water supply pipe 38 Muddy water control valve 39 Second turbidity Meter 40 Flow meter 41 Control device 50 Stirrer 51 Moving part 52 Arm 53 Stirring part JW Water jet Q Dam discharge

Claims (13)

ダムの貯水池の堆積物をダムの下流に供給するダム堆積物下流還元方法であって、
平常時に貯水池から浚渫された堆積物を所定粒径以下のシルト粘土分と前記所定粒径を超えた砂とに分級し、
前記分級されたシルト粘土分を排泥貯留部に送り、
前記排泥貯留部で前記シルト粘土分を貯留し沈殿させ、
洪水時に前記貯水池から前記排泥貯留部に給水し、前記沈殿したシルト粘土分を攪拌して泥水とし、ダムの放流量(m/秒)に基づいて前記泥水を前記ダムの下流に供給し、
前記泥水の供給量(m /秒)は、前記放流量と、前記泥水の濁度と、前記ダムの下流における許容濁度とに基づいて決定されるダム堆積物下流還元方法。
It is a method of reducing the sediment downstream of the dam to supply the sediment of the reservoir of the dam downstream of the dam.
In normal times, the sediments dredged from the reservoir are classified into silt clay with a predetermined particle size or less and sand with a predetermined particle size or more.
The classified silt clay content is sent to the wastewater storage section, and
The silt clay content is stored and settled in the mud storage section, and then settled.
During a flood, water is supplied from the reservoir to the mud reservoir, the settled silt clay is agitated to form muddy water, and the muddy water is supplied downstream of the dam based on the discharge rate of the dam (m 3 / sec). ,
The dam deposit downstream reduction method in which the muddy water supply amount (m 3 / sec) is determined based on the discharge rate, the turbidity of the muddy water, and the allowable turbidity downstream of the dam.
前記分級された砂をダム下流置土とする請求項1に記載のダム堆積物下流還元方法。 The method for reducing downstream of dam deposits according to claim 1, wherein the classified sand is placed downstream of the dam. 前記排泥貯留部における上澄みの余水を排出し濁水処理した後に前記貯水池に戻す請求項1または2に記載のダム堆積物下流還元方法。 The method for reducing downstream dam deposits according to claim 1 or 2, wherein the residual water of the supernatant in the wastewater storage section is discharged, treated with turbid water, and then returned to the reservoir. 前記泥水の供給を前記放流量が予め設定した所定値以上となった時に開始する請求項1乃至3のいずれかに記載のダム堆積物下流還元方法。 The method for reducing downstream of dam sediment according to any one of claims 1 to 3, wherein the supply of muddy water is started when the discharge rate becomes equal to or higher than a preset predetermined value. 前記泥水の供給量(m/秒)を前記放流量の増加に応じて増やし、前記泥水の供給を前記放流量の収束に合わせて停止する請求項1乃至4のいずれかに記載のダム堆積物下流還元方法。 The dam deposition according to any one of claims 1 to 4, wherein the amount of muddy water supplied (m 3 / sec) is increased according to the increase in the discharge amount, and the supply of the muddy water is stopped in accordance with the convergence of the discharge amount. Product downstream reduction method. ダムの貯水池の堆積物をダムの下流に供給するダム堆積物下流還元システムであって、
貯水池から浚渫された堆積物を所定粒径以下のシルト粘土分と前記所定粒径を超えた砂とに分級する分級装置と、
前記分級されたシルト粘土分を貯留し沈殿させる排泥貯留部と、
前記排泥貯留部に沈殿したシルト粘土分を攪拌する攪拌装置と、
前記貯水池から前記排泥貯留部に給水するポンプと、
前記排泥貯留部における泥水の濁度を測定する第1の濁度計と、を備え、
洪水時に前記排泥貯留部において前記ポンプにより給水されるとともに前記シルト粘土分が前記攪拌装置により攪拌されて泥水とされ、ダムの放流量(m/秒)に基づいて前記泥水を前記ダムの下流に供給するように構成され
前記泥水の供給量(m /秒)は、前記放流量と、前記第1の濁度計により測定された濁度と、前記ダムの下流における許容濁度とに基づいて制御されるダム堆積物下流還元システム。
It is a dam sediment downstream reduction system that supplies the sediment of the dam reservoir to the downstream of the dam.
A classifying device that classifies sediments dredged from a reservoir into silt clay content of a predetermined particle size or less and sand exceeding the predetermined particle size.
A mud storage section that stores and precipitates the classified silt clay content,
A stirring device that stirs the silt clay content that has settled in the waste mud storage section, and
A pump that supplies water from the reservoir to the mud reservoir,
A first turbidity meter for measuring the turbidity of mud in the mud storage section is provided.
At the time of flood, water is supplied by the pump in the mud storage section, and the silt clay content is agitated by the stirrer to make muddy water, and the muddy water is used in the dam based on the discharge rate (m 3 / sec) of the dam. Configured to supply downstream ,
The amount of muddy water supplied (m 3 / sec) is controlled based on the discharge rate, the turbidity measured by the first turbidity meter, and the allowable turbidity downstream of the dam. Product downstream reduction system.
前記貯水池からの給水量を制御する給水制御バルブと、
前記排泥貯留部で攪拌された泥水を排出する際の排水量を制御する排水制御バルブと、
前記排出される泥水の流量を測定する流量計と、をさらに備え、
前記泥水の供給量の増減を前記給水制御バルブにより行い、
前記泥水の供給量の微調整を前記流量計による測定結果に基づいて前記排水制御バルブにより行う請求項に記載のダム堆積物下流還元システム。
A water supply control valve that controls the amount of water supplied from the reservoir,
A drainage control valve that controls the amount of drainage when the mud that has been agitated in the wastewater storage section is discharged,
Further equipped with a flow meter for measuring the flow rate of the discharged muddy water,
The amount of muddy water supplied can be increased or decreased by the water supply control valve.
The dam deposit downstream reduction system according to claim 6 , wherein the drainage control valve finely adjusts the supply amount of muddy water based on the measurement result by the flow meter.
前記排泥貯留部における上澄みの余水を濁水処理する濁水処理装置をさらに備える請求項6または7に記載のダム堆積物下流還元システム。 The downstream dam deposit reduction system according to claim 6 or 7 , further comprising a turbid water treatment device for treating the residual water of the supernatant in the effluent storage unit. 前記攪拌装置は、鉛直方向に延びる支持軸に支持された攪拌部と、回転部と、を備え、前記回転部の回転により前記排泥貯留部と前記攪拌部とを相対的に回転させることで前記攪拌部が前記排泥貯留部のシルト粘土分を攪拌する請求項乃至のいずれかに記載のダム堆積物下流還元システム。 The stirring device includes a stirring unit supported by a support shaft extending in the vertical direction and a rotating unit, and the rotation of the rotating unit causes the mud storage unit and the stirring unit to rotate relatively. The dam deposit downstream reduction system according to any one of claims 6 to 8 , wherein the stirring unit agitates the silt clay content of the wastewater storage unit. 前記攪拌装置は、前記排泥貯留部内を水平移動可能な移動部と、前記移動部から延びたアームと、前記アームの先端に設けられ略水平方向に延びる回転軸を中心に回転する攪拌部と、を備え、前記移動部の移動により前記攪拌部が回転しながら前記排泥貯留部のシルト粘土分を攪拌する請求項乃至のいずれかに記載のダム堆積物下流還元システム。 The stirring device includes a moving portion that can move horizontally in the mud storage section, an arm extending from the moving section, and a stirring section provided at the tip of the arm and rotating about a rotation axis extending in a substantially horizontal direction. The dam deposit downstream reduction system according to any one of claims 6 to 8 , wherein the stirring unit rotates due to the movement of the moving unit to agitate the silt clay content of the mud storage unit. 前記排泥貯留部から排出された泥水の濁度を測定する第2の濁度計をさらに備え、
前記泥水の濁度の増減を前記第2の濁度計による測定結果に基づいて前記攪拌装置の前記回転部の制御により行う請求項に記載のダム堆積物下流還元システム。
Further provided with a second turbidity meter for measuring the turbidity of the mud discharged from the mud storage section.
The dam deposit downstream reduction system according to claim 9 , wherein the turbidity of the muddy water is increased or decreased by controlling the rotating portion of the stirring device based on the measurement result by the second turbidity meter.
前記排泥貯留部から排出された泥水の濁度を測定する第2の濁度計をさらに備え、
前記泥水の濁度の増減を前記第2の濁度計による測定結果に基づいて前記攪拌装置の前記移動部の制御により行う請求項10に記載のダム堆積物下流還元システム
Further provided with a second turbidity meter for measuring the turbidity of the mud discharged from the mud storage section.
The dam deposit downstream reduction system according to claim 10, wherein the turbidity of the muddy water is increased or decreased by controlling the moving portion of the stirring device based on the measurement result by the second turbidity meter .
前記洪水の発生の判断に基づいて前記ポンプと前記攪拌装置とが自動的に作動し前記泥水の供給量が自動的に制御される請求項乃至12のいずれかに記載のダム堆積物下流還元システム。 The downstream reduction of dam sediment according to any one of claims 6 to 12 , wherein the pump and the stirring device are automatically operated based on the determination of the occurrence of the flood, and the supply amount of the muddy water is automatically controlled. system.
JP2018046249A 2018-03-14 2018-03-14 Dam deposit downstream reduction method and system Active JP7089137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018046249A JP7089137B2 (en) 2018-03-14 2018-03-14 Dam deposit downstream reduction method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046249A JP7089137B2 (en) 2018-03-14 2018-03-14 Dam deposit downstream reduction method and system

Publications (2)

Publication Number Publication Date
JP2019157516A JP2019157516A (en) 2019-09-19
JP7089137B2 true JP7089137B2 (en) 2022-06-22

Family

ID=67995943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046249A Active JP7089137B2 (en) 2018-03-14 2018-03-14 Dam deposit downstream reduction method and system

Country Status (1)

Country Link
JP (1) JP7089137B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020318A (en) 1999-07-08 2001-01-23 Mitsubishi Heavy Ind Ltd Waters purifying method and waters purifying system and dam soil discharging system
JP2004316275A (en) 2003-04-17 2004-11-11 Toa Harbor Works Co Ltd Disposal method of dam sedimentary sand and soil
JP2005042392A (en) 2003-07-22 2005-02-17 Nishimatsu Constr Co Ltd Dredging plant and dredging method for dam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020318A (en) 1999-07-08 2001-01-23 Mitsubishi Heavy Ind Ltd Waters purifying method and waters purifying system and dam soil discharging system
JP2004316275A (en) 2003-04-17 2004-11-11 Toa Harbor Works Co Ltd Disposal method of dam sedimentary sand and soil
JP2005042392A (en) 2003-07-22 2005-02-17 Nishimatsu Constr Co Ltd Dredging plant and dredging method for dam

Also Published As

Publication number Publication date
JP2019157516A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US9587372B2 (en) Apparatus for the dredging of sediments from the seabed
EA004721B1 (en) Apparatus and method for high speed dewatering of slurries
US9650751B2 (en) Method and device for deepening riverbeds and their cleaning from sediments
US10240412B2 (en) Drilling fluid processing tank and system
WO1998020208A1 (en) Dredging method and dredging apparatus
US6848860B2 (en) Maintenance apparatuses for permeability improvement in fluid containment basins
CN110670653B (en) Dredging device and dredging method under wharf
JP7089137B2 (en) Dam deposit downstream reduction method and system
US4574501A (en) In-place underwater dredging apparatus of the crater sink type
KR102176241B1 (en) Sand cleaning apparatus of sediment treatment system
CN106978983B (en) Mud circulation treatment device and use method thereof
JP4141229B2 (en) Device for transferring fluid from solid sand basin
JP2001276898A (en) Treating equipment for dredged earth and sand
CN210394103U (en) Small-size river lake is dredged and silt treatment facility
JP7319946B2 (en) Dredging equipment, dredging system, and dredging method
JP4675061B2 (en) Sediment flow transfer equipment
CN114164920B (en) A prevent stifled cistern for hydraulic engineering
US20050123352A1 (en) Maintenance apparatuses for permeability improvement in fluid containment basins
JP2008202273A (en) Equipment and method for regenerating removed mud
JP2017002534A (en) System and method for recovering bottom mud
GB2280384A (en) A bucketwheel sand washer with submerged recovered fine aggregate transporter
RU2802639C1 (en) Pipe sluice for enrichment of sand placers of precious metals
WO2006033441A1 (en) Running-down apparatus for submerged sediment
JP5100705B2 (en) Sediment flow transfer equipment
CN115125908B (en) Ecological restoration system for preventing water and soil loss of dykes and dams

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180702

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20181105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220408

R150 Certificate of patent or registration of utility model

Ref document number: 7089137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350