JP7088187B2 - Optical film manufacturing method - Google Patents

Optical film manufacturing method Download PDF

Info

Publication number
JP7088187B2
JP7088187B2 JP2019526811A JP2019526811A JP7088187B2 JP 7088187 B2 JP7088187 B2 JP 7088187B2 JP 2019526811 A JP2019526811 A JP 2019526811A JP 2019526811 A JP2019526811 A JP 2019526811A JP 7088187 B2 JP7088187 B2 JP 7088187B2
Authority
JP
Japan
Prior art keywords
film
base film
resin
alicyclic structure
temporary support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019526811A
Other languages
Japanese (ja)
Other versions
JPWO2019003980A1 (en
Inventor
壮悟 幸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2019003980A1 publication Critical patent/JPWO2019003980A1/en
Application granted granted Critical
Publication of JP7088187B2 publication Critical patent/JP7088187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、光学フィルムの製造方法に関する。 The present invention relates to a method for manufacturing an optical film.

液晶表示装置、有機エレクトロルミネッセンス表示装置等の表示装置においては、樹脂製の光学フィルムを設けることがある。このような光学フィルムとして、脂環式構造含有重合体を含む樹脂で形成されたフィルムが知られている(例えば特許文献1及び2)。 In a display device such as a liquid crystal display device or an organic electroluminescence display device, a resin optical film may be provided. As such an optical film, a film formed of a resin containing an alicyclic structure-containing polymer is known (for example, Patent Documents 1 and 2).

特開2010-107958号公報Japanese Unexamined Patent Publication No. 2010-107958 国際公開第2014/175312号International Publication No. 2014/175312

脂環式構造含有重合体を含む樹脂で形成されたフィルムを光学フィルムとして用いる場合、その表面に適切な樹脂層を設けられることがある。例えば、脂環式構造含有重合体を含む樹脂で形成されたフィルムの表面に、接着性を高めるために適切な樹脂によって易接着層を形成することがある。一般に、脂環式構造含有重合体を含む樹脂で形成されたフィルムは接着性が乏しく、接着剤を用いても他の部材に高い接着強度で貼り合わせることが困難であったが、前記のような易接着層を用いることにより、前記の部材へ高い接着強度で貼り合わせることが可能となる。 When a film formed of a resin containing an alicyclic structure-containing polymer is used as an optical film, an appropriate resin layer may be provided on the surface thereof. For example, an easy-adhesive layer may be formed on the surface of a film made of a resin containing an alicyclic structure-containing polymer with an appropriate resin in order to enhance the adhesiveness. In general, a film formed of a resin containing an alicyclic structure-containing polymer has poor adhesiveness, and it is difficult to bond it to other members with high adhesive strength even if an adhesive is used. By using the easy-adhesive layer, it is possible to bond to the above-mentioned member with high adhesive strength.

脂環式構造含有重合体を含む樹脂で形成されたフィルムに対して、易接着層等の樹脂層は、塗工法によって形成されることが通常であった。具体的には、脂環式構造含有重合体を含む樹脂で形成されたフィルムに、樹脂層の材料を含む塗工液を塗工し、乾燥させて、樹脂層を形成することが通常であった。しかし、工業生産の現場では、脂環式構造含有重合体を含む樹脂で形成されたフィルムに樹脂層を形成する方法として、塗工法以外の方法が望まれる場合がある。 The resin layer such as the easy-adhesive layer was usually formed by a coating method with respect to the film formed of the resin containing the alicyclic structure-containing polymer. Specifically, it is usual that a film formed of a resin containing an alicyclic structure-containing polymer is coated with a coating liquid containing a resin layer material and dried to form a resin layer. rice field. However, in the field of industrial production, a method other than the coating method may be desired as a method for forming a resin layer on a film formed of a resin containing an alicyclic structure-containing polymer.

例えば、脂環式構造含有重合体を含む樹脂で形成されたフィルムの両面に塗工法によって樹脂層を形成しようとする場合、塗工法の性質上、片面ずつ樹脂層を形成することが求められるので、工程数が多くなり、そのため、製造コストが増加する傾向がある。よって、両面に同時に樹脂層を形成することによって製造コストを抑制する観点では、塗工法以外の方法の開発が望まれる。また、前記の例のように、脂環式構造含有重合体を含む樹脂で形成されたフィルムの両面に樹脂層を形成する以外の場合でも、樹脂層を形成する方法として、塗工法以外の方法が望まれることがある。 For example, when trying to form a resin layer on both sides of a film made of a resin containing an alicyclic structure-containing polymer by a coating method, it is required to form a resin layer one side at a time due to the nature of the coating method. As the number of processes increases, the manufacturing cost tends to increase. Therefore, from the viewpoint of suppressing the manufacturing cost by forming the resin layer on both sides at the same time, it is desired to develop a method other than the coating method. Further, as a method other than forming the resin layer on both sides of the film formed of the resin containing the alicyclic structure-containing polymer as in the above example, a method other than the coating method is used as a method for forming the resin layer. May be desired.

そこで、本発明者は、脂環式構造含有重合体を含む樹脂で形成されたフィルムの表面に樹脂層を形成する方法として、転写法を検討した。転写法では、仮支持体上に形成された樹脂層を、脂環式構造含有重合体を含む樹脂で形成されたフィルムと貼り合わせ、その後、仮支持体を剥離することで、脂環式構造含有重合体を含む樹脂で形成されたフィルムの表面に樹脂層を形成する。ところが、脂環式構造含有重合体を含む樹脂で形成されたフィルムは、一般に樹脂層との密着性に乏しいので、転写法によって形成された樹脂層は、フィルムから容易に剥離する傾向があった。特に、脂環式構造含有重合体を含む樹脂で形成されたフィルムは、延伸後において密着性が更に低下する傾向があるので、延伸フィルムに転写法によって樹脂層を形成することは、特に難しい。 Therefore, the present inventor has investigated a transfer method as a method for forming a resin layer on the surface of a film formed of a resin containing an alicyclic structure-containing polymer. In the transfer method, the resin layer formed on the temporary support is bonded to a film formed of a resin containing an alicyclic structure-containing polymer, and then the temporary support is peeled off to form an alicyclic structure. A resin layer is formed on the surface of a film formed of a resin containing a contained polymer. However, since the film formed of the resin containing the alicyclic structure-containing polymer generally has poor adhesion to the resin layer, the resin layer formed by the transfer method tends to be easily peeled off from the film. .. In particular, it is particularly difficult to form a resin layer on a stretched film by a transfer method because a film formed of a resin containing an alicyclic structure-containing polymer tends to have further reduced adhesion after stretching.

また、本発明者が検討したところ、結晶性を有する脂環式構造含有重合体を用いた場合、その脂環式構造含有重合体を含む樹脂で形成されたフィルムは、樹脂層との密着性がとりわけ低いことが判明した。さらには、結晶性を有する脂環式構造含有重合体を含む樹脂で形成されたフィルムの樹脂層に対する接着性は、その脂環式構造含有重合体の結晶化が進行すると更に低下し、樹脂層の剥離が特に生じ易くなることが判明した。 Further, as examined by the present inventor, when a crystalline alicyclic structure-containing polymer is used, the film formed of the resin containing the alicyclic structure-containing polymer has adhesion to the resin layer. Turned out to be particularly low. Furthermore, the adhesiveness of the film formed of the resin containing the alicyclic structure-containing polymer having crystallinity to the resin layer further decreases as the crystallization of the alicyclic structure-containing polymer progresses, and the resin layer It was found that the peeling of the resin is particularly likely to occur.

本発明は、前記の課題に鑑みて創案されたものであって、脂環式構造含有重合体を含む樹脂で形成された基材フィルムのフィルム表面と仮支持体上に形成された樹脂層とを貼り合わせて、基材フィルム及び前記基材フィルムから剥離し難い樹脂層を含む光学フィルムを製造することができる、光学フィルムの製造方法を提供することを目的とする。 The present invention has been devised in view of the above problems, and includes a film surface of a base film made of a resin containing an alicyclic structure-containing polymer and a resin layer formed on a temporary support. It is an object of the present invention to provide a method for producing an optical film, which can produce an optical film containing a base film and a resin layer that is difficult to peel off from the base film.

本発明者は前記の課題を解決するべく鋭意検討した結果、所定の表面自由エネルギーを有する仮支持面を有する仮支持体の前記仮支持面に樹脂層を形成する工程、基材フィルムのフィルム表面に当該フィルム表面の表面自由エネルギーが所定の範囲となるように親水処理を施す工程、仮支持体の仮支持面に形成された樹脂層と基材フィルムの親水処理を施されたフィルム表面とを貼合する工程、仮支持体を剥離する工程、及び、樹脂層及び基材フィルムに脂環式構造含有重合体のガラス転移温度以上の温度で熱処理を施す工程、を含む製造方法により、前記の課題が解決されることを見い出し、本発明を完成させた。
すなわち、本発明は、下記のものを含む。
As a result of diligent studies to solve the above problems, the present inventor has a step of forming a resin layer on the temporary support surface of a temporary support having a temporary support surface having a predetermined surface free energy, a process of forming a resin layer on the temporary support surface, and a film surface of a base film. In the step of subjecting the film to a hydrophilic treatment so that the surface free energy of the film surface is within a predetermined range, the resin layer formed on the temporary support surface of the temporary support and the surface of the film subjected to the hydrophilic treatment of the base film are subjected to the hydrophilic treatment. The above-mentioned production method includes a step of bonding, a step of peeling off the temporary support, and a step of heat-treating the resin layer and the base film at a temperature equal to or higher than the glass transition temperature of the alicyclic structure-containing polymer. We have found that the problem can be solved and completed the present invention.
That is, the present invention includes the following.

〔1〕 表面自由エネルギーが20mJ/m以下である仮支持面を有する仮支持体の前記仮支持面に、樹脂層を形成する工程、
脂環式構造含有重合体を含む樹脂で形成された基材フィルムのフィルム表面に、当該フィルム表面の表面自由エネルギーが40mJ/m以上となるように親水処理を施す工程、
前記仮支持体の前記仮支持面に形成された前記樹脂層と、前記基材フィルムの親水処理を施された前記フィルム表面とを、貼合する工程、
前記仮支持体を剥離する工程、及び、
前記樹脂層及び前記基材フィルムに、前記脂環式構造含有重合体のガラス転移温度以上の温度で熱処理を施す工程、を含む、光学フィルムの製造方法。
〔2〕 前記脂環式構造含有重合体が、結晶性を有する、〔1〕記載の光学フィルムの製造方法。
〔3〕 前記フィルム表面に親水処理を施される前において、前記脂環式構造含有重合体の結晶化度が3%未満である、〔2〕記載の光学フィルムの製造方法。
〔4〕 前記樹脂層及び前記基材フィルムに前記熱処理を施す工程において、前記脂環式構造含有重合体の結晶化が進行する、〔2〕又は〔3〕記載の光学フィルムの製造方法。
〔5〕 前記樹脂層及び前記基材フィルムに前記熱処理を施す工程が、
前記基材フィルムを延伸する工程と、
延伸後に前記基材フィルムに含まれる前記脂環式構造含有重合体の結晶化を進行させる工程と、を含む、〔2〕~〔4〕のいずれか一項に記載の光学フィルムの製造方法。
〔6〕 前記親水処理が、コロナ処理、プラズマ処理及びエキシマ処理からなる群より選ばれる少なくとも一つである、〔1〕~〔5〕のいずれか一項に記載の光学フィルムの製造方法。
〔7〕 前記樹脂層が、ウレタン樹脂、オレフィン樹脂、ポリエステル樹脂、エポキシ樹脂及びアクリル樹脂からなる群より選ばれる少なくともいずれかによって形成されている、〔1〕~〔6〕のいずれか一項に記載の光学フィルムの製造方法。
[1] A step of forming a resin layer on the temporary support surface of a temporary support having a temporary support surface having a surface free energy of 20 mJ / m 2 or less.
A step of subjecting the film surface of a base film made of a resin containing an alicyclic structure-containing polymer to a hydrophilic treatment so that the surface free energy of the film surface is 40 mJ / m 2 or more.
A step of bonding the resin layer formed on the temporary support surface of the temporary support and the surface of the film subjected to the hydrophilic treatment of the base film.
The step of peeling off the temporary support and
A method for producing an optical film, comprising a step of heat-treating the resin layer and the base film at a temperature equal to or higher than the glass transition temperature of the alicyclic structure-containing polymer.
[2] The method for producing an optical film according to [1], wherein the alicyclic structure-containing polymer has crystallinity.
[3] The method for producing an optical film according to [2], wherein the crystallinity of the alicyclic structure-containing polymer is less than 3% before the film surface is subjected to a hydrophilic treatment.
[4] The method for producing an optical film according to [2] or [3], wherein crystallization of the alicyclic structure-containing polymer proceeds in the step of subjecting the resin layer and the base film to the heat treatment.
[5] The step of applying the heat treatment to the resin layer and the base film is
The step of stretching the base film and
The method for producing an optical film according to any one of [2] to [4], which comprises a step of advancing the crystallization of the alicyclic structure-containing polymer contained in the base film after stretching.
[6] The method for producing an optical film according to any one of [1] to [5], wherein the hydrophilic treatment is at least one selected from the group consisting of corona treatment, plasma treatment and excimer treatment.
[7] In any one of [1] to [6], the resin layer is formed of at least one selected from the group consisting of urethane resin, olefin resin, polyester resin, epoxy resin and acrylic resin. The method for manufacturing an optical film according to the description.

本発明によれば、脂環式構造含有重合体を含む樹脂で形成された基材フィルムのフィルム表面と仮支持体上に形成された樹脂層とを貼り合わせて、基材フィルム及び前記基材フィルムから剥離し難い樹脂層を含む光学フィルムを製造できる製造方法を提供できる。 According to the present invention, the film surface of the base film formed of the resin containing the alicyclic structure-containing polymer and the resin layer formed on the temporary support are bonded together to form the base film and the base material. It is possible to provide a manufacturing method capable of manufacturing an optical film containing a resin layer that is difficult to peel off from the film.

以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and may be arbitrarily modified and carried out without departing from the scope of claims of the present invention and the equivalent scope thereof.

以下の説明において、「長尺」のフィルムとは、幅に対して5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。フィルムの幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下としうる。 In the following description, the "long" film means a film having a length of 5 times or more with respect to the width, preferably 10 times or more, and specifically in a roll shape. A film that has a length that allows it to be rolled up, stored, or transported. The upper limit of the ratio of the length to the width of the film is not particularly limited, but may be, for example, 100,000 times or less.

[1.光学フィルムの製造方法の概要]
本発明の光学フィルムの製造方法は、脂環式構造含有重合体を含む樹脂で形成された基材フィルムと樹脂層とを備えた光学フィルムの製造方法である。この製造方法は、
所定の表面自由エネルギーを有する仮支持面を有する仮支持体の前記仮支持面に、樹脂層を形成する工程(I)、
基材フィルムのフィルム表面に、当該フィルム表面の表面自由エネルギーが所定の範囲となるように、親水処理を施す工程(II)、
仮支持体の仮支持面に形成された樹脂層と、基材フィルムの親水処理を施されたフィルム表面とを、貼合する工程(III)、
仮支持体を剥離する工程(IV)、及び、
樹脂層及び基材フィルムに、脂環式構造含有重合体のガラス転移温度以上の温度で熱処理を施す工程(V)、
を含む。
[1. Outline of manufacturing method of optical film]
The method for producing an optical film of the present invention is a method for producing an optical film including a base film formed of a resin containing an alicyclic structure-containing polymer and a resin layer. This manufacturing method
Step (I) of forming a resin layer on the temporary support surface of a temporary support having a temporary support surface having a predetermined surface free energy.
Step (II) of applying hydrophilic treatment to the film surface of the base film so that the surface free energy of the film surface is within a predetermined range.
Step (III), in which the resin layer formed on the temporary support surface of the temporary support and the surface of the base film treated with hydrophilicity are bonded together.
Step of peeling off the temporary support (IV) and
Step (V) of heat-treating the resin layer and the base film at a temperature equal to or higher than the glass transition temperature of the alicyclic structure-containing polymer.
including.

前記の製造方法によれば、基材フィルム及び前記基材フィルムから剥離し難い樹脂層を含む光学フィルムを製造することができる。また、前記の製造方法では、仮支持体の仮支持面に樹脂層の一部又は全部が残留することを抑制できるので、基材フィルムのフィルム表面への樹脂層の円滑な形成が可能である。 According to the above-mentioned production method, it is possible to produce an optical film including a base film and a resin layer that is difficult to peel off from the base film. Further, in the above-mentioned manufacturing method, it is possible to prevent a part or all of the resin layer from remaining on the temporary support surface of the temporary support, so that the resin layer can be smoothly formed on the film surface of the base film. ..

前記の製造方法の工程(III)において、樹脂層と基材フィルムのフィルム表面とは、通常、直接に貼合される。よって、光学フィルムにおいて、基材フィルムと樹脂層とは、通常、直に接している。ここで、樹脂層と基材フィルムのフィルム表面とが「直接」に貼合される、とは、樹脂層と基材フィルムのフィルム表面との間に他の層が無い態様での貼合をいう。また、基材フィルムと樹脂層とが「直に接する」とは、基材フィルムと樹脂層との間に他の層が無いことをいう。 In the step (III) of the above-mentioned manufacturing method, the resin layer and the film surface of the base film are usually directly bonded to each other. Therefore, in the optical film, the base film and the resin layer are usually in direct contact with each other. Here, the resin layer and the film surface of the base film are "directly" bonded to each other in a manner in which there is no other layer between the resin layer and the film surface of the base film. Say. Further, "direct contact" between the base film and the resin layer means that there is no other layer between the base film and the resin layer.

また、工程(V)は、基材フィルムを延伸する工程(V-1)を含んでいてもよい。さらに、基材フィルムに含まれる脂環式構造含有重合体が結晶性を有する場合、工程(V)は、脂環式構造含有重合体の結晶化を進行させる工程(V-2)を含んでいてもよい。 Further, the step (V) may include a step (V-1) of stretching the base film. Further, when the alicyclic structure-containing polymer contained in the base film has crystallinity, the step (V) includes a step (V-2) of advancing the crystallization of the alicyclic structure-containing polymer. You may.

[2.仮支持体の仮支持面に樹脂層を形成する工程(I)]
光学フィルムの製造方法は、仮支持体の仮支持面に樹脂層を形成する工程(I)を含む。この工程(I)では、通常、所定の表面自由エネルギーを有する仮支持面を有する仮支持体を用意し、その仮支持面に樹脂層を形成する。
[2. Step of forming a resin layer on the temporary support surface of the temporary support (I)]
The method for producing an optical film includes a step (I) of forming a resin layer on a temporary support surface of a temporary support. In this step (I), a temporary support having a temporary support surface having a predetermined surface free energy is usually prepared, and a resin layer is formed on the temporary support surface.

仮支持面の表面自由エネルギーは、通常20mJ/m以下、好ましくは20mJ/m未満、より好ましくは19mJ/m未満である。このように低い表面自由エネルギーを有する仮支持面は、優れた剥離性を有する。よって、工程(IV)において前記の仮支持面を有する仮支持体を剥離する際に、仮支持面への樹脂層の残留を抑制することが可能である。仮支持面の表面自由エネルギーの下限は、特段の制限は無く、例えば10mJ/m以上でありうる。The surface free energy of the temporary support surface is usually 20 mJ / m 2 or less, preferably less than 20 mJ / m 2 , and more preferably less than 19 mJ / m 2 . The temporary support surface having such a low surface free energy has excellent peelability. Therefore, when the temporary support having the temporary support surface is peeled off in the step (IV), it is possible to suppress the residual of the resin layer on the temporary support surface. The lower limit of the surface free energy of the temporary support surface is not particularly limited and may be, for example, 10 mJ / m 2 or more.

ある面の表面自由エネルギーは、その面に対する水及びヘキサデカンの接触角を測定し、その測定された接触角をOwens Wendtモデルに当てはめることによって求めることができる。前記の表面自由エネルギーは、具体的には、実施例において説明する測定方法によって測定できる。 The surface free energy of a surface can be determined by measuring the contact angles of water and hexadecane with respect to the surface and applying the measured contact angles to the Owns Wendt model. Specifically, the surface free energy can be measured by the measuring method described in the examples.

仮支持体としては、通常、樹脂フィルムを用いる。中でも、ロールトゥロール法によって光学フィルムを効率的に製造する観点から、長尺の樹脂フィルムが好ましい。この樹脂フィルムとしては、例えば、表面自由エネルギーが小さい樹脂材料で形成されたフィルムを用いてもよい。表面自由エネルギーが小さい樹脂材料としては、例えば、脂環式構造含有重合体、ポリエチレンテレフタレート、ポリエチレン、ポリブチレンテレフタレート、ポロプロピレン、ポリテトラフルオロエチレン等の重合体を含む樹脂が挙げられる。また、この樹脂フィルムとしては、例えば、表面に適切な離型剤による離型処理が施されたフィルムを用いてもよい。 As the temporary support, a resin film is usually used. Above all, a long resin film is preferable from the viewpoint of efficiently producing an optical film by the roll-to-roll method. As the resin film, for example, a film formed of a resin material having a small surface free energy may be used. Examples of the resin material having a small surface free energy include a resin containing a polymer such as an alicyclic structure-containing polymer, polyethylene terephthalate, polyethylene, polybutylene terephthalate, polypropylene, and polytetrafluoroethylene. Further, as the resin film, for example, a film whose surface has been subjected to a mold release treatment with an appropriate mold release agent may be used.

仮支持体の仮支持面に形成される樹脂層は、光学フィルムに求められる特性に応じた種類の樹脂で形成される。樹脂層を形成する樹脂としては、ウレタン樹脂、オレフィン樹脂、ポリエステル樹脂、エポキシ樹脂及びアクリル樹脂からなる群より選ばれる少なくともいずれかが好ましい。これらの樹脂を用いることにより、樹脂層を易接着層として機能させられるので、他の部材との接着性に優れた光学フィルムを実現できる。 The resin layer formed on the temporary support surface of the temporary support is formed of a type of resin according to the characteristics required for the optical film. As the resin forming the resin layer, at least one selected from the group consisting of urethane resin, olefin resin, polyester resin, epoxy resin and acrylic resin is preferable. By using these resins, the resin layer can function as an easy-adhesion layer, so that an optical film having excellent adhesiveness to other members can be realized.

ウレタン樹脂としては、ポリウレタン又はその架橋物を含む樹脂を用いることができる。ポリウレタンとしては、例えば、各種のポリオール及びポリイソシアネートから誘導されるポリウレタンが挙げられる。ポリオールの例としては、ポリオール化合物と多塩基酸との反応により得られる脂肪族ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネート系ポリオール、及びポリエチレンテレフタレートポリオールのいずれか一種;並びにこれらの混合物が挙げられる。前記のポリオール化合物としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン等が挙げられる。前記の多塩基酸としては、例えば、ジカルボン酸およびトリカルボン酸を含む多価カルボン酸、またはその無水物等の、多価カルボン酸が挙げられる。ジカルボン酸としては、例えば、アジピン酸、コハク酸、セバシン酸、グルタル酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸等が挙げられる。トリカルボン酸としては、例えば、トリメリット酸等が挙げられる。前記のポリエーテルポリオールとしては、例えば、ポリ(オキシプロピレンエーテル)ポリオール、ポリ(オキシエチレン-プロピレンエーテル)ポリオール等が挙げられる。前記ポリウレタンでは、例えば、ポリオールとポリイソシアネートとの反応後、未反応として残った水酸基を架橋剤における官能基との架橋反応が可能な極性基として利用することができる。ポリウレタンとしては、ポリカーボネート系ポリオール及びポリイソシアネートから誘導され、その骨格にカーボネート構造を含むポリカーボネート系のポリウレタンが好ましい。ウレタン樹脂については、例えば、特開2016-182568号公報の記載を参照しうる。 As the urethane resin, a resin containing polyurethane or a crosslinked product thereof can be used. Examples of polyurethanes include polyurethanes derived from various polyols and polyisocyanates. Examples of the polyol include any one of an aliphatic polyester polyol, a polyether polyol, a polycarbonate-based polyol, and a polyethylene terephthalate polyol obtained by reacting a polyol compound with a polybasic acid; and a mixture thereof. Examples of the polyol compound include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, glycerin, and trimethylolpropane. Examples of the polybasic acid include a polyvalent carboxylic acid containing a dicarboxylic acid and a tricarboxylic acid, or a polyvalent carboxylic acid such as an anhydride thereof. Examples of the dicarboxylic acid include adipic acid, succinic acid, sebacic acid, glutaric acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid and the like. Examples of the tricarboxylic acid include trimellitic acid and the like. Examples of the polyether polyol include poly (oxypropylene ether) polyol and poly (oxyethylene-propylene ether) polyol. In the polyurethane, for example, after the reaction between the polyol and the polyisocyanate, the hydroxyl group remaining unreacted can be used as a polar group capable of the cross-linking reaction with the functional group in the cross-linking agent. As the polyurethane, a polycarbonate-based polyurethane derived from a polycarbonate-based polyol and a polyisocyanate and having a carbonate structure in its skeleton is preferable. For the urethane resin, for example, the description in JP-A-2016-182568 can be referred to.

ポリウレタンとしては、水系ウレタン樹脂として市販されている水系エマルションに含まれるものを用いてもよい。水系ウレタン樹脂とは、ポリウレタンと水とを含む組成物であり、通常、ポリウレタンおよび必要に応じて含まれる任意成分が水の中に分散しているものである。水系ウレタン樹脂の例としては、ADEKA社製の「アデカボンタイター」シリーズ、三井化学社製の「オレスター」シリーズ、DIC社製の「ボンディック」シリーズ、「ハイドラン(WLS201,WLS202など)」シリーズ、バイエル社製の「インプラニール」シリーズ、花王社製の「ポイズ」シリーズ、三洋化成工業社製の「サンプレン」シリーズ、第一工業製薬社製の「スーパーフレックス」シリーズ、楠本化成社製の「NEOREZ(ネオレッズ)」シリーズ、ルーブリゾール社製の「Sancure」シリーズなどを用いることができる。 As the polyurethane, those contained in a commercially available water-based emulsion as a water-based urethane resin may be used. The water-based urethane resin is a composition containing polyurethane and water, and is usually one in which polyurethane and optional components contained as necessary are dispersed in water. Examples of water-based urethane resins include ADEKA's "ADEKA BONTITA" series, Mitsui Chemicals' "Orestar" series, DIC's "Bondic" series, and "Hydran (WLS201, WLS202, etc.)" series. , Bayer's "Implanil" series, Kao's "Poise" series, Sanyo Kasei Kogyo's "Samplen" series, Daiichi Kogyo Seiyaku Co., Ltd.'s "Superflex" series, Kusumoto Kasei's "" The "NEOREZ" series, the "Sancure" series manufactured by Lubrizol, etc. can be used.

オレフィン樹脂としては、不飽和カルボン酸成分の含有量が0.1重量%~10重量%である酸変性ポリオレフィン又はその架橋物を含む樹脂を用いることができる。酸変性ポリオレフィンの主成分であるオレフィン成分の好ましい例としては、エチレン、プロピレン、イソブチレン、2-ブテン、1-ブテン、1-ペンテン、1-ヘキセンなどの炭素数2~6のアルケン、及びこれらの混合物が挙げられる。中でも、樹脂層の密着性を高める観点から、エチレン、プロピレン、イソブチレン、1-ブテンなどの炭素数2~4のアルケンがより好ましく、エチレン、プロピレンがさらに好ましく、エチレンが特に好ましい。他方、酸変性ポリオレフィンの変性成分である不飽和カルボン酸成分としては、例えば、アクリル酸、メタクリル酸、(無水)マレイン酸、(無水)イタコン酸、フマル酸、クロトン酸、不飽和ジカルボン酸のハーフエステル、ハーフアミドなどが挙げられる。中でも、樹脂層の密着性を高めたりひび割れを抑制したりできるので、アクリル酸、メタクリル酸、(無水)マレイン酸が好ましく、アクリル酸、(無水)マレイン酸が特に好ましい。前記の不飽和カルボン酸成分は、通常、酸変性ポリオレフィン中で共重合されており、その形態は特に限定されない。共重合の状態としては、例えば、ランダム共重合、ブロック共重合、グラフト共重合(グラフト変性)などが挙げられる。オレフィン樹脂については、例えば、特開2014-240174号公報の記載を参照しうる。 As the olefin resin, a resin containing an acid-modified polyolefin having an unsaturated carboxylic acid component content of 0.1% by weight to 10% by weight or a crosslinked product thereof can be used. Preferred examples of the olefin component which is the main component of the acid-modified polyolefin include alkene having 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 2-butene, 1-butene, 1-pentene and 1-hexene, and alkenes having 2 to 6 carbon atoms thereof. Examples include mixtures. Among them, from the viewpoint of enhancing the adhesion of the resin layer, an alkene having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene is more preferable, ethylene and propylene are more preferable, and ethylene is particularly preferable. On the other hand, the unsaturated carboxylic acid component which is a modification component of the acid-modified polyolefin includes, for example, acrylic acid, methacrylic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, fumaric acid, crotonic acid, and half of unsaturated dicarboxylic acid. Examples include esters and halfamides. Of these, acrylic acid, methacrylic acid, and (maleic anhydride) maleic acid are preferable, and acrylic acid and (maleic anhydride) maleic acid are particularly preferable because they can enhance the adhesion of the resin layer and suppress cracking. The unsaturated carboxylic acid component is usually copolymerized in an acid-modified polyolefin, and its form is not particularly limited. Examples of the copolymerization state include random copolymerization, block copolymerization, and graft copolymerization (graft modification). For the olefin resin, for example, the description in JP-A-2014-240174 can be referred to.

酸変性ポリオレフィンとしては、市販品を用いてもよい。その水性分散体の該市販品としては、例えば、「アローベース(アローベースSA-1200、アローベースSB-1200、アローベースSE-1200、アローベースSB-1010」シリーズ(ユニチカ社製)などが挙げられる。 As the acid-modified polyolefin, a commercially available product may be used. Examples of the commercially available product of the aqueous dispersion include "Arrow Base (Arrow Base SA-1200, Arrow Base SB-1200, Arrow Base SE-1200, Arrow Base SB-1010" series (manufactured by Unitika Ltd.)). Be done.

ポリエステル樹脂としては、前記ポリオール化合物と前記多塩基酸との反応により得られるポリエステル又はその架橋物を含む樹脂を用いることができる。このポリエステルでは、例えば、ポリオール化合物と多塩基酸との反応終了後、未反応として残った水酸基及びカルボキシル基を架橋剤との架橋反応が可能な極性基として利用することができる。また、ポリエステルは、前記のポリオール化合物及び多塩基酸に組み合わせて、水酸基、カルボキシル基等の極性基を有する共重合成分を共重合したものであってもよい。また、ポリエステル樹脂は、樹脂層の密着性の向上のため、ポリエステル又はその架橋物に組み合わせて、更にアクリルポリマーを含むことが好ましい。ポリエステル樹脂については、例えば、特開2015-024511号公報の記載を参照しうる。 As the polyester resin, a resin containing polyester obtained by reacting the polyol compound with the polybasic acid or a crosslinked product thereof can be used. In this polyester, for example, after the reaction between the polyol compound and the polybasic acid is completed, the hydroxyl group and the carboxyl group remaining as unreacted can be used as polar groups capable of the cross-linking reaction with the cross-linking agent. Further, the polyester may be a copolymer of a copolymerization component having a polar group such as a hydroxyl group or a carboxyl group in combination with the above-mentioned polyol compound and polybasic acid. Further, the polyester resin preferably further contains an acrylic polymer in combination with polyester or a crosslinked product thereof in order to improve the adhesion of the resin layer. For the polyester resin, for example, the description in JP-A-2015-024511 can be referred to.

ポリエステルとしては、市販品を用いてもよい。水溶性又は水分散のポリエステルの市販品としては、例えば、「ニチゴポリエスター(ニチゴポリエスターW-0030、ニチゴポリエスターW-0005S30WO、ニチゴポリエスターWR-961等)」シリーズ(日本合成化学社製)、「ペスレジンA(ペスレジンA-210、ペスレジンA-520、ペスレジンA-684G、ペスレジンA-695GE等)」シリーズ(高松油脂社製)などが挙げられる。 As the polyester, a commercially available product may be used. Examples of commercially available water-soluble or water-dispersed polyester products include the "Nichigo Polyester (Nichigo Polyester W-0030, Nichigo Polyester W-0005S30WO, Nichigo Polyester WR-961, etc.)" series (manufactured by Nippon Synthetic Chemical Co., Ltd.). ), "Pesresin A (Pesresin A-210, Pessresin A-520, Pessresin A-684G, Pessresin A-695GE, etc.)" series (manufactured by Takamatsu Oil & Fat Co., Ltd.) and the like.

エポキシ樹脂としては、一液硬化型のエポキシ樹脂、二液硬化型のエポキシ樹脂等、任意のエポキシ樹脂を用いることができる。中でも、水溶性のエポキシポリマーを含むものが好ましい。水溶性のエポキシポリマーの好ましい例としては、ポリアミドエポキシポリマーが挙げられる。このポリアミドエポキシポリマーは、例えば、ジエチレントリアミン、トリエチレンテトラミン等のポリアルキレンポリアミンと、アジピン酸等のジカルボン酸との反応で得られるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られる。このようなポリアミドエポキシポリマーの市販品としては、例えば、住化ケムテック社製の「スミレーズレジン 650(30)」、「スミレーズレジン 675」が挙げられる。エポキシ樹脂については、例えば、特開2008-26352号公報の記載を参照しうる。 As the epoxy resin, any epoxy resin such as a one-component curable epoxy resin and a two-component curable epoxy resin can be used. Of these, those containing a water-soluble epoxy polymer are preferable. Preferred examples of water-soluble epoxy polymers include polyamide epoxy polymers. This polyamide epoxy polymer can be obtained by reacting a polyamide polyamine obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid with epichlorohydrin. Examples of commercially available products of such a polyamide epoxy polymer include "Smiley's Resin 650 (30)" and "Smiley's Resin 675" manufactured by Sumika Chemtech. For the epoxy resin, for example, the description in JP-A-2008-26352 can be referred to.

水溶性のエポキシポリマーを用いる場合は、さらに塗工性を向上させるために、ポリビニルアルコールなどの水溶性ポリマーを組み合わせて用いることが好ましい。このポリビニルアルコールには、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコールだけでなく、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、アミノ基変性ポリビニルアルコール等の、変性ポリビニルアルコールが含まれる。ポリビニルアルコールの市販品としては、クラレ社製のアニオン性基含有ポリビニルアルコールである「KL-318」が挙げられる。 When a water-soluble epoxy polymer is used, it is preferable to use a water-soluble polymer such as polyvinyl alcohol in combination in order to further improve the coatability. This polyvinyl alcohol includes not only partially saponified polyvinyl alcohol and fully saponified polyvinyl alcohol, but also modified polyvinyl such as carboxyl group-modified polyvinyl alcohol, acetacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. Contains alcohol. Examples of commercially available polyvinyl alcohol include "KL-318", which is an anionic group-containing polyvinyl alcohol manufactured by Kuraray.

アクリル樹脂としては、アクリルポリマー又はその架橋物を含む樹脂を用いることができる。また、アクリルポリマーとしては、例えば、アクリルモノマーの単独重合体、2種類以上のアクリルモノマーの共重合体、1種類以上のアクリルモノマーと他のモノマーとの共重合体、などが挙げられる。また、アクリルモノマーとしては、例えば、アクリル酸、アクリル酸アルキル等のアクリル酸エステル、アクリルアミド、アクリロニトリル、メタクリル酸、メタクリル酸アルキル等のメタクリル酸エステル、メタクリルアミド及びメタクリロニトリル等が挙げられる。中でも、アクリル酸エステル及びメタクリル酸エステルからなる群より選ばれるアクリルモノマーの単独重合体及び共重合体が好ましい。特に好ましい例としては、炭素原子数1~6のアルキル基を有するアクリル酸エステル及びメタクリル酸エステルからなる群より選ばれるアクリルモノマーの単独重合体及び共重合体が挙げられる。また、アクリルポリマーは、架橋剤が有する官能基との反応(架橋反応)が可能なように、前記のアクリルモノマーに組み合わせて、水酸基、カルボキシル基等の極性基を有する共重合成分を共重合したものが好ましい。アクリル樹脂については、例えば、特開2015-024511号公報の記載を参照しうる。 As the acrylic resin, a resin containing an acrylic polymer or a crosslinked product thereof can be used. Examples of the acrylic polymer include a homopolymer of an acrylic monomer, a copolymer of two or more kinds of acrylic monomers, and a copolymer of one or more kinds of acrylic monomers and other monomers. Examples of the acrylic monomer include acrylic acid esters such as acrylic acid and alkyl acrylate, methacrylic acid esters such as acrylamide, acrylonitrile, methacrylic acid and alkyl methacrylate, methacrylamide and methacrylic nitrile. Of these, homopolymers and copolymers of acrylic monomers selected from the group consisting of acrylic acid esters and methacrylic acid esters are preferable. Particularly preferable examples include homopolymers and copolymers of acrylic monomers selected from the group consisting of acrylic acid esters and methacrylic acid esters having an alkyl group having 1 to 6 carbon atoms. Further, the acrylic polymer was combined with the above-mentioned acrylic monomer and copolymerized with a copolymerization component having a polar group such as a hydroxyl group and a carboxyl group so that the reaction with the functional group of the cross-linking agent (cross-linking reaction) was possible. Those are preferable. For the acrylic resin, for example, the description in JP-A-2015-024511 can be referred to.

上述した樹脂層において、ポリウレタン、ポリオレフィン、ポリエステル、エポキシポリマー、アクリルポリマー等の重合体は、架橋されていてもよい。架橋された場合、前記の重合体は、架橋剤との反応によって架橋物となっている。この架橋において用いられる架橋剤としては、重合体が含む極性基等の官能基と反応して結合を形成できる官能基を分子内に2個以上有する化合物を用いることができる。架橋剤の例としては、エポキシ化合物、カルボジイミド化合物、オキサゾリン化合物、イソシアネート化合物等が挙げられる。また、架橋剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組合わせて用いてもよい。中でも、架橋剤としては、エポキシ化合物が好ましい。 In the resin layer described above, polymers such as polyurethane, polyolefin, polyester, epoxy polymer, and acrylic polymer may be crosslinked. When cross-linked, the polymer becomes a cross-linked product by reaction with a cross-linking agent. As the cross-linking agent used in this cross-linking, a compound having two or more functional groups in the molecule capable of reacting with a functional group such as a polar group contained in the polymer to form a bond can be used. Examples of the cross-linking agent include epoxy compounds, carbodiimide compounds, oxazoline compounds, isocyanate compounds and the like. In addition, one type of cross-linking agent may be used alone, or two or more types may be used in combination at any ratio. Of these, an epoxy compound is preferable as the cross-linking agent.

エポキシ化合物としては、分子内に2個以上のエポキシ基を有する多官能のエポキシ化合物を用いることができる。これにより、架橋反応を進行させて樹脂層の機械的強度を効果的に向上させることができる。 As the epoxy compound, a polyfunctional epoxy compound having two or more epoxy groups in the molecule can be used. As a result, the cross-linking reaction can proceed and the mechanical strength of the resin layer can be effectively improved.

エポキシ化合物としては、水に溶解性があるか、または水に分散してエマルション化しうるものが、使用の容易性の観点から好ましい。エポキシ化合物の例を挙げると、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサングリコール、ネオペンチルグリコール等のグリコール類1モルと、エピクロルヒドリン2モルとのエーテル化によって得られるジエポキシ化合物;グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類1モルと、エピクロルヒドリン2モル以上とのエーテル化によって得られるポリエポキシ化合物;フタル酸、テレフタル酸、シュウ酸、アジピン酸等のジカルボン酸1モルと、エピクロルヒドリン2モルとのエステル化によって得られるジエポキシ化合物;などが挙げられる。 As the epoxy compound, a compound that is soluble in water or can be dispersed in water and emulsified is preferable from the viewpoint of ease of use. Examples of epoxy compounds include 1 mol of glycols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexaneglycol, and neopentyl glycol. And a diepoxy compound obtained by etherification with 2 mol of epichlorohydrin; poly obtained by etherification of 1 mol of polyhydric alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol, sorbitol and 2 mol or more of epichlorohydrin. Epoxy compounds; diepoxy compounds obtained by esterification of 1 mol of dicarboxylic acid such as phthalic acid, terephthalic acid, oxalic acid, adipic acid and 2 mol of epichlorohydrin; and the like.

より具体的に、エポキシ化合物としては、1,4-ビス(2’,3’-エポキシプロピルオキシ)ブタン、1,3,5-トリグリシジルイソシアヌレート、1,3-ジクリシジル-5-(γ-アセトキシ-β-オキシプロピル)イソシヌレート、ソルビトールポリグリシジルエーテル類、ポリグリセロールポリグリシジルエーテル類、ペンタエリスリトールポリグリシジルエーテル類、ジグリセロールポリグルシジルエーテル、1,3,5-トリグリシジル(2-ヒドロキシエチル)イソシアヌレート、グリセロールポリグリセロールエーテル類およびトリメチロールプロパンポリグリシジルエーテル類等のエポキシ化合物が好ましい。その具体的な市販品の例としては、ナガセケムテックス社製の「デナコール(デナコールEX-521,EX-614Bなど)」シリーズ等を挙げることができる。 More specifically, examples of the epoxy compound include 1,4-bis (2', 3'-epoxypropyloxy) butane, 1,3,5-triglycidyl isocyanurate, and 1,3-dicrysidyl-5- (γ-). Acetoxy-β-oxypropyl) isocinurate, sorbitol polyglycidyl ethers, polyglycerol polyglycidyl ethers, pentaerythritol polyglycidyl ethers, diglycerol polyglucidyl ethers, 1,3,5-triglycidyl (2-hydroxyethyl) isocia Epoxy compounds such as nurate, glycerol polyglycerol ethers and trimethylolpropane polyglycidyl ethers are preferred. Specific examples of commercially available products include the "Denacol (Denacol EX-521, EX-614B, etc.)" series manufactured by Nagase ChemteX Corporation.

さらに、樹脂層を形成する樹脂は、上述した重合体又はその架橋物に組み合わせて、更に任意の成分を含んでいてもよい。任意の成分としては、例えば、硬化促進剤、硬化助剤、粒子、耐熱安定剤、耐候安定剤、レベリング剤、界面活性剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックスなどが挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Further, the resin forming the resin layer may further contain any component in combination with the above-mentioned polymer or a crosslinked product thereof. Optional components include, for example, curing accelerators, curing aids, particles, heat-resistant stabilizers, weather-resistant stabilizers, leveling agents, surfactants, antioxidants, antistatic agents, slip agents, anti-blocking agents, anti-fog agents. Examples include agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes and the like. Any component may be used alone or in combination of two or more at any ratio.

樹脂層を形成する樹脂は、1種類でもよく、2種類以上でもよい。よって、例えば、上述したウレタン樹脂、オレフィン樹脂、ポリエステル樹脂、エポキシ樹脂及びアクリル樹脂は、2種類以上を組み合わせて用いてもよい。例えば、ポリウレタンと酸変性ポリオレフィンとを組み合わせて含む樹脂を用いたり、ポリエステルとアクリルポリマーとを組み合わせて含む樹脂を用いたりしてもよい。 The resin forming the resin layer may be one type or two or more types. Therefore, for example, the above-mentioned urethane resin, olefin resin, polyester resin, epoxy resin, and acrylic resin may be used in combination of two or more. For example, a resin containing a combination of polyurethane and an acid-modified polyolefin may be used, or a resin containing a combination of polyester and an acrylic polymer may be used.

樹脂層の厚みは、当該樹脂層の用途に応じて任意に設定できる。例えば、易接着層として機能できる樹脂層の厚みは、好ましくは10nm以上、より好ましくは30nm以上、特に好ましくは50nm以上であり、好ましくは5μm以下、より好ましくは2μm以下、特に好ましくは1μm以下である。易接着層の厚みを前記下限値以上にすることにより、光学フィルムを他の部材と十分な接着強度で貼り合わせることができる。また、易接着層の厚みを前記上限値以下にすることにより、比較的軟らかい層となる易接着層の変形の発生が抑制され、光学フィルムをロールとして巻き取ることが容易となる。また、易接着層の厚みが前記範囲内にあることにより、基材フィルムと易接着層との十分な密着性が得られ、かつ、光学フィルムの厚みを薄くできる。 The thickness of the resin layer can be arbitrarily set according to the use of the resin layer. For example, the thickness of the resin layer that can function as an easy-adhesion layer is preferably 10 nm or more, more preferably 30 nm or more, particularly preferably 50 nm or more, preferably 5 μm or less, more preferably 2 μm or less, and particularly preferably 1 μm or less. be. By setting the thickness of the easy-adhesion layer to be equal to or greater than the lower limit, the optical film can be bonded to other members with sufficient adhesive strength. Further, by setting the thickness of the easy-adhesive layer to the upper limit or less, the occurrence of deformation of the easy-adhesive layer, which is a relatively soft layer, is suppressed, and the optical film can be easily wound as a roll. Further, when the thickness of the easy-adhesive layer is within the above range, sufficient adhesion between the base film and the easy-adhesive layer can be obtained, and the thickness of the optical film can be reduced.

仮支持体の仮支持面への樹脂層の形成は、例えば、塗工法によって行うことができる。この塗工法では、通常、樹脂層を形成する樹脂に含まれる重合体等の成分又はその前駆体を含む塗工液を仮支持面に塗工し、その塗工された塗工液を硬化させる。この塗工法では、通常、塗工液は、そのまま、樹脂層となりうる。又は、この塗工法では、通常、塗工液は、必要に応じてその中の成分の反応、溶媒の揮発等を経て、樹脂層となりうる。これにより、塗工液に含まれていた成分の一部もしくは全部、又はその反応生成物を含む樹脂の層として、樹脂層を得ることができる。 The formation of the resin layer on the temporary support surface of the temporary support can be performed, for example, by a coating method. In this coating method, a coating liquid containing a component such as a polymer contained in a resin forming a resin layer or a precursor thereof is usually applied to a temporary support surface, and the applied coating liquid is cured. .. In this coating method, the coating liquid can usually be a resin layer as it is. Alternatively, in this coating method, the coating liquid can usually become a resin layer through a reaction of components in the coating solution, volatilization of a solvent, or the like, if necessary. Thereby, a resin layer can be obtained as a layer of a resin containing a part or all of the components contained in the coating liquid or a reaction product thereof.

塗工液におけるポリウレタン等の重合体又はその前駆体の量は、塗工液中の固形分全量100重量%に対して、好ましくは60重量%~100重量%、さらに好ましくは70重量%~100重量%である。 The amount of the polymer such as polyurethane or its precursor in the coating liquid is preferably 60% by weight to 100% by weight, more preferably 70% by weight to 100% by weight, based on 100% by weight of the total solid content in the coating liquid. It is% by weight.

塗工液が架橋剤を含む場合、その架橋剤の量は、塗工液中の重合体及びその前駆体の合計100重量部に対して、通常0.1重量部以上、好ましくは1重量部以上、より好ましくは2重量部以上であり、通常20重量部以下、好ましくは15重量部以下、より好ましくは10重量部以下である。架橋剤の量を前記範囲の下限値以上とすることにより架橋反応が十分に進行するので、樹脂層の機械的強度を適切に向上させることができ、架橋剤の量を上限値以下とすることにより、未反応の架橋剤の残留を少なくでき、樹脂層の機械的強度を適切に向上できる。 When the coating liquid contains a cross-linking agent, the amount of the cross-linking agent is usually 0.1 part by weight or more, preferably 1 part by weight, based on 100 parts by weight of the total of the polymer and its precursor in the coating liquid. As mentioned above, it is more preferably 2 parts by weight or more, usually 20 parts by weight or less, preferably 15 parts by weight or less, and more preferably 10 parts by weight or less. By setting the amount of the cross-linking agent to the lower limit of the above range or more, the cross-linking reaction proceeds sufficiently, so that the mechanical strength of the resin layer can be appropriately improved, and the amount of the cross-linking agent should be set to the upper limit or less. As a result, the residual unreacted cross-linking agent can be reduced, and the mechanical strength of the resin layer can be appropriately improved.

塗工液は、必要に応じて、溶媒を含んでいてもよい。溶媒としては、水;メタノール、エタノール、イソプロピルアルコール、アセトン、テトラヒドロフラン、N-メチルピロリドン、ジメチルスルホキシド、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、メチルエチルケトン、トリエチルアミン等の有機溶媒;などが挙げられる。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、溶媒としては、水が好ましい。好ましい例としては、塗工液は、有機溶媒の濃度が1重量%未満である水系エマルションでありうる。溶媒の量は、塗工液の粘度が、塗布に適した範囲になるように適切に設定することが好ましい。 The coating liquid may contain a solvent, if necessary. Examples of the solvent include water; organic solvents such as methanol, ethanol, isopropyl alcohol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethylsulfoxide, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, methyl ethyl ketone, and triethylamine. In addition, one type of solvent may be used alone, or two or more types may be used in combination at any ratio. Of these, water is preferable as the solvent. As a preferred example, the coating liquid may be an aqueous emulsion in which the concentration of the organic solvent is less than 1% by weight. The amount of the solvent is preferably set appropriately so that the viscosity of the coating liquid is in a range suitable for coating.

塗工液の塗工方法の例としては、ワイヤーバーコート法、ディップ法、スプレー法、スピンコート法、ロールコート法、グラビアコート法、エアーナイフコート法、カーテンコート法、スライドコート法、エクストルージョンコート法などが挙げられる。 Examples of coating liquid coating methods include wire bar coating method, dip method, spray method, spin coating method, roll coating method, gravure coating method, air knife coating method, curtain coating method, slide coating method, and extrusion. The coat method and the like can be mentioned.

また、仮支持体の仮支持面への樹脂層の形成方法では、仮支持面に塗工液を塗工した後、更に任意の工程を行ってもよい。例えば、塗工液が溶媒を含む場合、塗工液を乾燥させて溶媒を除去することを行ってもよい。また、例えば、架橋液が架橋剤を含む場合、その架橋剤によって架橋を行わせることを行ってもよい。乾燥及び架橋の方法は、任意である。例えば、乾燥は、減圧乾燥、加熱乾燥などの任意の方法としうる。中でも、乾燥と共に架橋反応等の反応を速やかに進行させる観点から、加熱乾燥によって塗工液を硬化させることが好ましい。加熱により塗工液を硬化させる場合、加熱温度は、塗工液を乾燥させて溶媒を除去し、同時に塗工液中の固形分を硬化させることができる範囲で適切に設定できる。 Further, in the method of forming the resin layer on the temporary support surface of the temporary support, an arbitrary step may be further performed after applying the coating liquid to the temporary support surface. For example, when the coating liquid contains a solvent, the coating liquid may be dried to remove the solvent. Further, for example, when the cross-linking liquid contains a cross-linking agent, cross-linking may be performed by the cross-linking agent. The method of drying and cross-linking is optional. For example, the drying may be any method such as vacuum drying and heat drying. Above all, from the viewpoint of rapidly advancing the reaction such as the crosslinking reaction together with the drying, it is preferable to cure the coating liquid by heating and drying. When the coating liquid is cured by heating, the heating temperature can be appropriately set within a range in which the coating liquid can be dried to remove the solvent and at the same time the solid content in the coating liquid can be cured.

[3.基材フィルムのフィルム表面に親水処理を施す工程(II)]
光学フィルムの製造方法は、基材フィルムのフィルム表面に、親水処理を施す工程(II)を含む。この工程(II)では、通常、脂環式構造含有重合体を含む樹脂で形成された基材フィルムを用意し、その基材フィルムのフィルム表面に親水処理を施す。
[3. Step of applying hydrophilic treatment to the film surface of the base film (II)]
The method for producing an optical film includes a step (II) of subjecting the film surface of the base film to a hydrophilic treatment. In this step (II), a base film usually formed of a resin containing an alicyclic structure-containing polymer is prepared, and the film surface of the base film is subjected to a hydrophilic treatment.

脂環式構造含有重合体は、分子内に脂環式構造を有する重合体である。脂環式構造含有重合体は、通常、機械的強度、透明性、寸法安定性及び軽量性に優れ、更に、吸湿性が低い。このような脂環式構造含有重合体としては、例えば、環状オレフィンを単量体として用いた重合反応によって得ることができる重合体又はその水素添加物などが挙げられる。また、前記の脂環式構造含有重合体としては、主鎖中に脂環式構造を含有する重合体、及び、側鎖に脂環式構造を含有する重合体のいずれも用いることができる。脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造等が挙げられるが、熱安定性等の観点からシクロアルカン構造が好ましい。 The alicyclic structure-containing polymer is a polymer having an alicyclic structure in the molecule. The alicyclic structure-containing polymer is usually excellent in mechanical strength, transparency, dimensional stability and light weight, and has low hygroscopicity. Examples of such an alicyclic structure-containing polymer include a polymer obtained by a polymerization reaction using a cyclic olefin as a monomer or a hydrogenated product thereof. Further, as the alicyclic structure-containing polymer, either a polymer having an alicyclic structure in the main chain or a polymer having an alicyclic structure in the side chain can be used. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, but the cycloalkane structure is preferable from the viewpoint of thermal stability and the like.

1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上、より好ましくは6個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。 The number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, more preferably 6 or more, preferably 30 or less, and more preferably 20 or less. Particularly preferably, the number is 15 or less. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.

脂環式構造含有重合体中の脂環式構造を有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造を有する構造単位の割合を前記のように多くすることにより、光学フィルムの可撓性及び耐熱性を高めることができる。
また、脂環式構造含有重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
The proportion of the structural unit having an alicyclic structure in the alicyclic structure-containing polymer is preferably 30% by weight or more, more preferably 50% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight. That is all. By increasing the proportion of structural units having an alicyclic structure as described above, the flexibility and heat resistance of the optical film can be enhanced.
Further, in the alicyclic structure-containing polymer, the balance other than the structural unit having the alicyclic structure is not particularly limited and may be appropriately selected depending on the purpose of use.

脂環式構造含有重合体としては、結晶性を有するもの、及び、結晶性を有さないもののいずれを用いてもよく、両者を組み合わせて用いてもよい。ここで、結晶性を有する重合体とは、融点Mpを有する重合体をいう。すなわち、結晶性を有する重合体とは、示差走査熱量計(DSC)で融点Mpを観測することができる重合体をいう。結晶性を有する脂環式構造含有重合体を用いることにより、光学フィルムの衝撃強度、耐溶媒性、耐回折性、引裂き強度を特に高めることができる。また、結晶性を有さない脂環式構造含有重合体を用いることにより、光学フィルムの製造コストを下げることができる。 As the alicyclic structure-containing polymer, either one having crystallinity or one having no crystallinity may be used, or both may be used in combination. Here, the polymer having crystallinity means a polymer having a melting point Mp. That is, the crystalline polymer means a polymer whose melting point Mp can be observed with a differential scanning calorimeter (DSC). By using a crystalline alicyclic structure-containing polymer, the impact strength, solvent resistance, diffraction resistance, and tear strength of the optical film can be particularly enhanced. Further, by using the alicyclic structure-containing polymer having no crystallinity, the manufacturing cost of the optical film can be reduced.

結晶性を有する脂環式構造含有重合体としては、例えば、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、可撓性、耐熱性及び耐折性に優れる光学フィルムが得られ易いことから、結晶性を有する脂環式構造含有重合体としては、重合体(β)が好ましい。
重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
重合体(β):重合体(α)の水素添加物であって、結晶性を有するもの。
重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
重合体(δ):重合体(γ)の水素添加物等であって、結晶性を有するもの。
Examples of the crystalline alicyclic structure-containing polymer include the following polymers (α) to (δ). Among these, the polymer (β) is preferable as the alicyclic structure-containing polymer having crystallinity because it is easy to obtain an optical film having excellent flexibility, heat resistance and folding resistance.
Polymer (α): A ring-opening polymer of a cyclic olefin monomer having crystallinity.
Polymer (β): A hydrogenated product of the polymer (α), which has crystallinity.
Polymer (γ): An addition polymer of a cyclic olefin monomer having crystallinity.
Polymer (δ): A hydrogenated product of the polymer (γ), which has crystallinity.

具体的には、結晶性を有する脂環式構造含有重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものがより好ましく、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは100重量%の重合体をいう。 Specifically, as the alicyclic structure-containing polymer having crystallinity, a ring-opening polymer of dicyclopentadiene having crystallinity and a hydrogenated product of the ring-opening polymer of dicyclopentadiene. The crystallinity is more preferable, and the hydrogenated additive of the ring-opening polymer of dicyclopentadiene, which has crystallinity, is particularly preferable. Here, in the open-ring polymer of dicyclopentadiene, the ratio of the structural unit derived from dicyclopentadiene to all the structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. More preferably, it refers to a polymer of 100% by weight.

ジシクロペンタジエンの開環重合体の水素化物は、ラセモ・ダイアッドの割合が高いことが好ましい。具体的には、ジシクロペンタジエンの開環重合体の水素化物における繰り返し単位のラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは60%以上、特に好ましくは65%以上である。ラセモ・ダイアッドの割合が高いことは、シンジオタクチック立体規則性が高いことを表す。よって、ラセモ・ダイアッドの割合が高いほど、ジシクロペンタジエンの開環重合体の水素化物の融点が高い傾向がある。
ラセモ・ダイアッドの割合は、後述する実施例に記載の13C-NMRスペクトル分析に基づいて決定できる。
The hydride of the ring-opening polymer of dicyclopentadiene preferably has a high proportion of racemic diad. Specifically, the proportion of the repeating unit racemic diad in the hydride of the ring-opening polymer of dicyclopentadiene is preferably 51% or more, more preferably 60% or more, and particularly preferably 65% or more. A high proportion of racemic diads indicates a high syndiotactic stereoregularity. Therefore, the higher the proportion of racemic diad, the higher the melting point of the hydride of the ring-opening polymer of dicyclopentadiene tends to be.
The proportion of racemo diads can be determined based on the 13 C-NMR spectral analysis described in Examples described below.

高い結晶化度を有する脂環式構造含有重合体を含む樹脂は、通常、可撓性、耐熱性、耐折性、耐溶媒性等の特性に優れる。よって、光学フィルムに含まれる結晶性を有する脂環式構造含有重合体は、高い結晶化度を有することが好ましい。しかし、高い結晶化度を有した脂環式構造含有重合体を含む基材フィルムの表面は、他樹脂との密着性が乏しい。したがって、結晶化の進行は、樹脂層を基材フィルムと貼合した後において行うことが好ましく、よって、工程(V)よりも前の時点では、基材フィルムを形成する樹脂に含まれる脂環式構造含有重合体の結晶化度は、低いことが好ましい。そのため、工程(II)においてフィルム表面に親水処理を施される前の時点においては、基材フィルムに含まれる脂環式構造含有重合体の結晶化度は、低いことが好ましい。具体的には、フィルム表面に親水処理を施される前において、基材フィルムに含まれる結晶性を有する脂環式構造含有重合体の結晶化度は、好ましくは3%未満、より好ましくは2%未満、特に好ましくは1%未満である。 A resin containing an alicyclic structure-containing polymer having a high crystallinity is usually excellent in properties such as flexibility, heat resistance, folding resistance, and solvent resistance. Therefore, the crystalline alicyclic structure-containing polymer contained in the optical film preferably has a high crystallinity. However, the surface of the base film containing the alicyclic structure-containing polymer having a high crystallinity has poor adhesion to other resins. Therefore, it is preferable that the crystallization proceeds after the resin layer is bonded to the base film, and therefore, at the time before the step (V), the alicyclic contained in the resin forming the base film is contained. The crystallinity of the formula-containing polymer is preferably low. Therefore, it is preferable that the crystallinity of the alicyclic structure-containing polymer contained in the base film is low before the film surface is subjected to the hydrophilic treatment in the step (II). Specifically, the crystallinity of the crystalline alicyclic structure-containing polymer contained in the base film is preferably less than 3%, more preferably 2 before the surface of the film is subjected to the hydrophilic treatment. %, Especially preferably less than 1%.

結晶化度は、基材フィルムに含まれる結晶性を有する脂環式構造含有重合体のうち、結晶化したものの割合を示す指標である。基材フィルムに含まれる結晶性を有する脂環式構造含有重合体の結晶化度は、X線回折法によって測定できる。前記の結晶化度は、具体的には、実施例において説明する測定方法によって測定できる。 The crystallinity is an index showing the ratio of crystallized alicyclic structure-containing polymers contained in the base film. The crystallinity of the crystalline alicyclic structure-containing polymer contained in the base film can be measured by an X-ray diffraction method. Specifically, the crystallinity can be measured by the measuring method described in the examples.

結晶性を有する脂環式構造含有重合体の融点Mpは、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点Mpを有する結晶性を有する脂環式構造含有重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた光学フィルムを得ることができる。 The melting point Mp of the crystalline alicyclic structure-containing polymer is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and preferably 290 ° C. or lower. By using such a crystalline alicyclic structure-containing polymer having a melting point Mp, an optical film having a better balance between moldability and heat resistance can be obtained.

前記のような結晶性を有する脂環式構造含有重合体は、例えば、国際公開第2016/067893号に記載の方法により、製造できる。 The alicyclic structure-containing polymer having crystallinity as described above can be produced, for example, by the method described in International Publication No. 2016/067893.

他方、結晶性を有さない脂環式構造含有重合体は、例えば、(1)ノルボルネン系重合体、(2)単環の環状オレフィン重合体、(3)環状共役ジエン重合体、(4)ビニル脂環式炭化水素重合体、及びこれらの水素化物などが挙げられる。これらの中でも、透明性及び成形性の観点から、ノルボルネン系重合体及びこの水素化物がより好ましい。 On the other hand, the non-crystalline alicyclic structure-containing polymer is, for example, (1) norbornene-based polymer, (2) monocyclic cyclic olefin polymer, (3) cyclic conjugated diene polymer, (4). Examples thereof include vinyl alicyclic hydrocarbon polymers and hydrides thereof. Among these, the norbornene-based polymer and its hydride are more preferable from the viewpoint of transparency and moldability.

ノルボルネン系重合体としては、例えば、ノルボルネンモノマーの開環重合体、ノルボルネンモノマーと開環共重合可能なその他のモノマーとの開環共重合体、及びそれらの水素化物;ノルボルネンモノマーの付加重合体、ノルボルネンモノマーと共重合可能なその他のモノマーとの付加共重合体などが挙げられる。これらの中でも、透明性の観点から、ノルボルネンモノマーの開環重合体水素化物が特に好ましい。
上記の脂環式構造含有重合体としては、例えば特開2002-321302号公報に記載されたものを任意に選択して用いることができる。
Examples of the norbornene-based polymer include a ring-opening polymer of a norbornene monomer, a ring-opening copolymer of a norbornene monomer and another monomer capable of ring-opening copolymerization, and hydrides thereof; an addition polymer of a norbornene monomer. Examples thereof include an addition copolymer of a norbornene monomer and another copolymerizable monomer. Among these, the ring-opening polymer hydride of the norbornene monomer is particularly preferable from the viewpoint of transparency.
As the alicyclic structure-containing polymer described above, for example, those described in JP-A-2002-321302 can be arbitrarily selected and used.

脂環式構造含有重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the alicyclic structure-containing polymer, one type may be used alone, or two or more types may be used in combination at any ratio.

脂環式構造含有重合体のガラス転移温度Tgは、好ましくは80℃以上、より好ましくは85℃以上、更に好ましくは90℃以上であり、好ましくは250℃以下、より好ましくは170℃以下である。ガラス転移温度がこのような範囲にある脂環式構造含有重合体は、高温下での使用における変形及び応力が生じ難く、耐久性に優れる。 The glass transition temperature Tg of the alicyclic structure-containing polymer is preferably 80 ° C. or higher, more preferably 85 ° C. or higher, further preferably 90 ° C. or higher, preferably 250 ° C. or lower, and more preferably 170 ° C. or lower. .. The alicyclic structure-containing polymer having a glass transition temperature in such a range is less likely to be deformed and stressed when used at a high temperature, and is excellent in durability.

脂環式構造含有重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上、更に好ましくは10,000以上、特に好ましくは25,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下、更に好ましくは100,000以下、中でも好ましくは80,000以下、特に好ましくは50,000以下である。このような重量平均分子量を有する重合体は、成形加工性と耐熱性とのバランスに優れる。 The weight average molecular weight (Mw) of the alicyclic structure-containing polymer is preferably 1,000 or more, more preferably 2,000 or more, still more preferably 10,000 or more, and particularly preferably 25,000 or more. Is 1,000,000 or less, more preferably 500,000 or less, still more preferably 100,000 or less, particularly preferably 80,000 or less, and particularly preferably 50,000 or less. A polymer having such a weight average molecular weight has an excellent balance between molding processability and heat resistance.

脂環式構造含有重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.2以上、特に好ましくは1.5以上であり、好ましくは10以下、より好ましくは4.0以下、更に好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する脂環式構造含有重合体は、成形加工性に優れる。 The molecular weight distribution (Mw / Mn) of the alicyclic structure-containing polymer is preferably 1.0 or more, more preferably 1.2 or more, particularly preferably 1.5 or more, preferably 10 or less, and more preferably. It is 4.0 or less, more preferably 3.5 or less. Here, Mn represents a number average molecular weight. An alicyclic structure-containing polymer having such a molecular weight distribution is excellent in molding processability.

前記の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定できる。 The weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) can be measured as polystyrene-equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.

基材を形成する樹脂における脂環式構造含有重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、更に好ましは80重量%以上、特に好ましくは90重量%以上である。脂環式構造含有重合体の割合を前記範囲の下限値以上にすることにより、脂環式構造含有重合体の優れた特性を効果的に発揮させることができる。 The proportion of the alicyclic structure-containing polymer in the resin forming the base material is preferably 50% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and particularly preferably 90% by weight or more. be. By setting the ratio of the alicyclic structure-containing polymer to the lower limit of the above range or more, the excellent characteristics of the alicyclic structure-containing polymer can be effectively exhibited.

基材を形成する樹脂は、脂環式構造含有重合体に組み合わせて、更に任意の成分を含みうる。任意の成分としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤等の光安定剤;石油系ワックス、フィッシャートロプシュワックス、ポリアルキレンワックス等のワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルク等の核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアソール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体等の蛍光増白剤;ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;タルク、シリカ、炭酸カルシウム、ガラス繊維等の無機充填材;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;フィラー;軟質重合体等の、脂環式構造含有重合体以外の任意の重合体;などが挙げられる。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The resin forming the base material may further contain any component in combination with the alicyclic structure-containing polymer. Optional components include, for example, antioxidants such as phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants; light stabilizers such as hindered amine light stabilizers; petroleum waxes, Fishertroph waxes, etc. Waxes such as polyalkylene waxes; sorbitol compounds, metal salts of organic phosphates, metal salts of organic carboxylic acids, nuclear agents such as kaolin and talc; diaminostylben derivatives, coumarin derivatives, azole derivatives (eg, benzoxazole derivatives, etc.) Fluorochrome agents such as benzotriazole derivatives, benzoimidazole derivatives, and benzothiazole derivatives), carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; benzophenone-based ultraviolet absorbers, salicylic acid-based ultraviolet absorbers, benzotriazole-based UV absorbers such as UV absorbers; Inorganic fillers such as talc, silica, calcium carbonate, glass fibers; Colorants; Flame retardants; Flame retardant aids; Antistatic agents; Plastics; Near infrared absorbers; Lubricants; Fillers ; Any polymer other than the alicyclic structure-containing polymer, such as a soft polymer; and the like. Further, any component may be used alone or in combination of two or more at any ratio.

基材フィルムは、高い全光線透過率を有することが好ましい。具体的には、基材フィルムの全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは88%以上である。前記全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定できる。 The base film preferably has a high total light transmittance. Specifically, the total light transmittance of the base film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more. The total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet / visible spectrometer.

基材フィルムは、ヘイズが小さいことが好ましい。具体的には、基材フィルムのヘイズは、好ましくは3.0%未満、より好ましくは2.0%未満、特に好ましくは1.0%未満であり、理想的には0%である。前記ヘイズは、ヘイズメーターを用いて測定できる。 The base film preferably has a small haze. Specifically, the haze of the substrate film is preferably less than 3.0%, more preferably less than 2.0%, particularly preferably less than 1.0%, and ideally 0%. The haze can be measured using a haze meter.

基材フィルムの厚みは、好ましくは5μm以上、より好ましくは10μm以上、特に好ましくは15μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、特に好ましくは50μm以下である。基材フィルムの厚みを前記下限値以上にすることにより、光学フィルムの機械的強度を高めることができる。基材フィルムの厚みを前記上限値以下にすることにより、光学フィルムの厚みを薄くできる。 The thickness of the base film is preferably 5 μm or more, more preferably 10 μm or more, particularly preferably 15 μm or more, preferably 200 μm or less, more preferably 100 μm or less, and particularly preferably 50 μm or less. By setting the thickness of the base film to the lower limit or more, the mechanical strength of the optical film can be increased. By setting the thickness of the base film to the upper limit or less, the thickness of the optical film can be reduced.

基材フィルムは、脂環式構造含有重合体を含む樹脂を、任意の成形方法によってフィルム状に成形することにより、製造できる。成形方法の例としては、射出成形法、溶融押出成形法、プレス成形法、インフレーション成形法、ブロー成形法、カレンダー成形法、注型成形法、及び圧縮成形法が挙げられる。これらの中でも、厚みの制御が容易であることから、溶融押出成形法が好ましい。 The base film can be produced by molding a resin containing an alicyclic structure-containing polymer into a film by an arbitrary molding method. Examples of the molding method include an injection molding method, a melt extrusion molding method, a press molding method, an inflation molding method, a blow molding method, a calendar molding method, a casting molding method, and a compression molding method. Among these, the melt extrusion molding method is preferable because the thickness can be easily controlled.

溶融押出成形法によって基材フィルムを製造する場合、押出成形の条件は、好ましくは下記の通りである。シリンダー温度(溶融樹脂温度)は、好ましくは(Tg+80℃)以上、より好ましくは(Tg+100℃)以上であり、好ましくは(Tg+180℃)以下、より好ましくは(Tg+150℃)以下である。また、特に結晶性を有する脂環式構造含有重合体を用いる場合、シリンダー温度は、好ましくはTm以上、より好ましくは(Tm+20℃)以上であり、好ましくは(Tm+100℃)以下、より好ましくは(Tm+50℃)以下である。さらに、キャストロール温度は、好ましくは(Tg-30℃)以上であり、好ましくはTg以下、より好ましくは(Tg-15℃)以下である。このような条件で基材フィルムを製造することにより、好ましい厚みの基材フィルムを容易に製造できる。ここで、「Tm」は脂環式構造含有重合体の融点を表し、「Tg」は脂環式構造含有重合体のガラス転移温度を表す。 When the base film is produced by the melt extrusion molding method, the conditions for extrusion molding are preferably as follows. The cylinder temperature (molten resin temperature) is preferably (Tg + 80 ° C.) or higher, more preferably (Tg + 100 ° C.) or higher, preferably (Tg + 180 ° C.) or lower, and more preferably (Tg + 150 ° C.) or lower. Further, particularly when a crystalline alicyclic structure-containing polymer is used, the cylinder temperature is preferably Tm or higher, more preferably (Tm + 20 ° C.) or higher, preferably (Tm + 100 ° C.) or lower, and more preferably (Tm + 100 ° C.) or lower. Tm + 50 ° C.) or less. Further, the cast roll temperature is preferably (Tg-30 ° C.) or higher, preferably Tg or lower, and more preferably (Tg-15 ° C.) or lower. By producing the base film under such conditions, a base film having a preferable thickness can be easily produced. Here, "Tm" represents the melting point of the alicyclic structure-containing polymer, and "Tg" represents the glass transition temperature of the alicyclic structure-containing polymer.

基材フィルムを用意した後で、この基材フィルムのフィルム面に、親水処理を行う。基材フィルムの片方のフィルム面に樹脂層を形成する場合には、その片方のフィルム面に親水処理を施す。また、基材フィルムの両方のフィルム面に樹脂層を形成する場合には、その両方のフィルム面に親水処理を施す。このような親水処理を施すことにより、基材フィルムのフィルム面の表面自由エネルギーを、所定の範囲に調整する。 After preparing the base film, the film surface of the base film is subjected to hydrophilic treatment. When a resin layer is formed on one film surface of the base film, hydrophilic treatment is applied to the one film surface. When the resin layer is formed on both film surfaces of the base film, both film surfaces are subjected to hydrophilic treatment. By applying such a hydrophilic treatment, the surface free energy of the film surface of the base film is adjusted to a predetermined range.

親水処理後の基材フィルムのフィルム面の具体的な表面自由エネルギーは、通常40mJ/m以上、好ましくは50mJ/m以上、特に好ましくは60mJ/m以上である。基材フィルムのフィルム面がこのように高い表面自由エネルギーを有することにより、樹脂層がフィルム面に安定して定着できるので、工程(IV)において仮支持体を剥離する際に、この仮支持体の仮支持面への樹脂層の残留を抑制することが可能である。フィルム面の前記表面自由エネルギーの上限は、特段の制限は無く、例えば77mJ/m以下でありうる。The specific surface free energy of the film surface of the base film after the hydrophilic treatment is usually 40 mJ / m 2 or more, preferably 50 mJ / m 2 or more, and particularly preferably 60 mJ / m 2 or more. Since the film surface of the base film has such a high surface free energy, the resin layer can be stably fixed to the film surface. Therefore, when the temporary support is peeled off in the step (IV), the temporary support is formed. It is possible to suppress the residual of the resin layer on the temporary support surface of the above. The upper limit of the surface free energy of the film surface is not particularly limited and may be, for example, 77 mJ / m 2 or less.

前記の親水処理としては、コロナ処理、プラズマ処理及びエキシマ処理からなる群より選ばれる少なくとも一つを行うことが好ましい。また、これらの処理は、1種類を単独で行ってもよく、2種類以上を組み合わせて行ってもよい。これらの処理を基材フィルムのフィルム面に施すことにより、通常は、前記のフィルム面に、水酸基、カルボキシル基、カルボニル基等の親水性基が生成する。これにより、フィルム面の表面自由エネルギーを向上させることができる。 As the hydrophilic treatment, it is preferable to carry out at least one selected from the group consisting of corona treatment, plasma treatment and excimer treatment. Further, these processes may be performed individually by one type or in combination of two or more types. By applying these treatments to the film surface of the base film, hydrophilic groups such as hydroxyl groups, carboxyl groups, and carbonyl groups are usually generated on the film surface. This makes it possible to improve the surface free energy of the film surface.

前記の親水処理の処理条件は、基材フィルムのフィルム面の表面自由エネルギーを所望の範囲に収めることができるように、適切に設定する。具体的な処理条件は、基材フィルムの種類及び処理装置に応じて異なるが、例えば、下記のように設定しうる。 The treatment conditions for the hydrophilic treatment are appropriately set so that the surface free energy of the film surface of the base film can be kept within a desired range. The specific treatment conditions differ depending on the type of the base film and the treatment device, but can be set as follows, for example.

コロナ処理では、通常、誘電体と絶縁された電極との間に高周波で高電圧をかけてコロナを発生させ、誘電体と電極との間に基材フィルムを通すことによって、フィルム面を処理する。一般に、電極の種類、電極間隔、電圧、湿度、処理される基材フィルムの種類に応じて、コロナ処理を施されたフィルム面の表面自由エネルギーが調整される。電極と基材フィルムとの距離は、1mm~5mmが好ましく、1mm~3mmがより好ましい。コロナ処理を施される基材フィルムの搬送速度は、0.01m/分~10m/分が好ましく、0.05m/分~5m/分がより好ましい。電極幅は、0.1m~1mが好ましい。コロナ出力は、好ましくは100W以上であり、基材フィルムの傷付きを抑制する観点では、好ましくは3kW以下、より好ましくは1.5kW以下である。基材フィルムを搬送しながら行うコロナ処理において「処理強度=(出力)/(搬送速度×電極幅)」で計算される処理強度は、4.2kW・min/m以上が好ましい。In corona treatment, usually, a high voltage is applied between a dielectric and an insulated electrode to generate a corona, and a base film is passed between the dielectric and the electrode to treat the film surface. .. Generally, the surface free energy of the corona-treated film surface is adjusted according to the type of electrodes, the electrode spacing, the voltage, the humidity, and the type of the base film to be treated. The distance between the electrode and the base film is preferably 1 mm to 5 mm, more preferably 1 mm to 3 mm. The transport speed of the base film subjected to the corona treatment is preferably 0.01 m / min to 10 m / min, more preferably 0.05 m / min to 5 m / min. The electrode width is preferably 0.1 m to 1 m. The corona output is preferably 100 W or more, and is preferably 3 kW or less, more preferably 1.5 kW or less, from the viewpoint of suppressing scratches on the base film. In the corona treatment performed while transporting the base film, the processing strength calculated by "processing strength = (output) / (conveying speed x electrode width)" is preferably 4.2 kW · min / m 2 or more.

プラズマ処理では、通常、不活性ガス及び酸素ガス等のガス雰囲気下で、プラズマ放電を行うことにより、基材フィルムのフィルム面を処理する。このプラズマ処理は、例えば0.1Torr~1Torr程度の減圧下で行ってもよいが、基材フィルムを搬送しながら効率良く処理を行う観点から、大気圧下で行うことが好ましい。プラズマ処理で用いるガスの種類としては、例えば、窒素;酸素;アルゴン、ヘリウム等の希ガス;アクリル酸;ヒドロキシアルキル;CF、CHF、C等のフッ素系化合物;等が挙げられる。好ましいガスとしては、例えば、窒素等の不活性ガスと酸素とを95.0:5.0~99.9:0.1の比率で混合した混合ガスが挙げられる。電極と基材フィルムとの距離は、1mm~5mmが好ましく、1mm~3mmがより好ましい。プラズマ処理を施される基材フィルムの搬送速度は、1m/分~70m/分が好ましく、3m/分~50m/分がより好ましい。電極幅は、0.1m~1mが好ましい。プラズマ出力は、好ましくは50W以上である。周波数の範囲は、10kHz~100kHzが好ましい。基材フィルムを搬送しながら行うプラズマ処理において「処理強度=(出力)/(搬送速度×電極幅)」で計算される処理強度は、0.028kW・min/m以上が好ましい。In the plasma treatment, the film surface of the base film is usually treated by performing plasma discharge in a gas atmosphere such as an inert gas and an oxygen gas. This plasma treatment may be performed under a reduced pressure of, for example, about 0.1 Torr to 1 Torr, but is preferably performed under atmospheric pressure from the viewpoint of efficiently performing the treatment while transporting the base film. Examples of the type of gas used in the plasma treatment include nitrogen; oxygen; rare gases such as argon and helium; acrylic acid; hydroxyalkyl; and fluorine-based compounds such as CF 4 , CHF 3 , C 2 F 6 ; and the like. .. Preferred gas includes, for example, a mixed gas in which an inert gas such as nitrogen and oxygen are mixed at a ratio of 95.0: 5.0 to 99.9: 0.1. The distance between the electrode and the base film is preferably 1 mm to 5 mm, more preferably 1 mm to 3 mm. The transport speed of the base film to be subjected to the plasma treatment is preferably 1 m / min to 70 m / min, more preferably 3 m / min to 50 m / min. The electrode width is preferably 0.1 m to 1 m. The plasma output is preferably 50 W or more. The frequency range is preferably 10 kHz to 100 kHz. In the plasma treatment performed while transporting the base film, the treatment strength calculated by "treatment strength = (output) / (transport speed x electrode width)" is preferably 0.028 kW · min / m 2 or more.

エキシマ処理では、通常、エキシマランプを用いて、中心波長が180nm未満の光を照射することにより、基材フィルムのフィルム面を処理する。照射する光の中心波長の下限は、特段の制限は無く、例えば100nm以上でありうる。ここで、「光の中心波長」とは、発光スペクトルにおいて、最大の発光強度をもたらす波長をいう。エキシマ処理では、エキシマランプの種類を選択することにより、目的の中心波長の光が得られる。例えば、Arエキシマランプから照射される光の中心波長は126nmであり、Krエキシマランプから照射される光の中心波長は146nmであり、ArBrエキシマランプから照射される光の中心波長は165nmであり、Xeエキシマランプから照射される光の中心波長は172nmであり、ArClエキシマランプから照射される光の中心波長は175nmである。光の照射時間は、0.1秒~150秒、好ましくは1秒~120秒、より好ましくは10秒~90秒である。照度は、50mW/cm以上が好ましい。エキシマランプと基材フィルムとの距離は、10mm以下が好ましい。In the excimer treatment, the film surface of the base film is usually treated by irradiating light having a center wavelength of less than 180 nm using an excimer lamp. The lower limit of the central wavelength of the irradiated light is not particularly limited and may be, for example, 100 nm or more. Here, the "center wavelength of light" means a wavelength that brings about the maximum emission intensity in the emission spectrum. In excimer processing, light having a desired center wavelength can be obtained by selecting the type of excimer lamp. For example, the central wavelength of the light emitted from the Ar excimer lamp is 126 nm, the central wavelength of the light emitted from the Kr excimer lamp is 146 nm, and the central wavelength of the light emitted from the ArBr excimer lamp is 165 nm. The central wavelength of the light emitted from the Xe excimer lamp is 172 nm, and the central wavelength of the light emitted from the ArCl excimer lamp is 175 nm. The light irradiation time is 0.1 seconds to 150 seconds, preferably 1 second to 120 seconds, and more preferably 10 seconds to 90 seconds. The illuminance is preferably 50 mW / cm 2 or more. The distance between the excimer lamp and the base film is preferably 10 mm or less.

[4.基材フィルムと樹脂層とを貼合する工程(III)]
工程(I)及び工程(II)の後で、仮支持体の仮支持面に形成された樹脂層と、基材フィルムの親水処理を施されたフィルム表面とを、貼合する工程(III)を行う。この工程(III)では、通常、接着層等の他の層を介することなく、樹脂層と基材フィルムのフィルム面とを直接に貼合する。
[4. Step of bonding the base film and the resin layer (III)]
After the steps (I) and (II), the resin layer formed on the temporary support surface of the temporary support and the surface of the base film subjected to the hydrophilic treatment are bonded together (III). I do. In this step (III), the resin layer and the film surface of the base film are usually directly bonded to each other without going through another layer such as an adhesive layer.

前記の貼合は、樹脂層と基材フィルムとの間に気泡が残らないようにする観点から、樹脂層と基材フィルムとが互いに押圧されるように行うことが好ましい。例えば、一対のニップロールの間に、仮支持面に樹脂層を形成された仮支持体と基材フィルムとを通すことにより、樹脂層と基材フィルムとを圧接させて、貼合を行ってもよい。 From the viewpoint of preventing bubbles from remaining between the resin layer and the base film, the bonding is preferably performed so that the resin layer and the base film are pressed against each other. For example, by passing a temporary support having a resin layer formed on a temporary support surface and a base film between a pair of nip rolls, the resin layer and the base film may be pressed against each other for bonding. good.

前記の貼合は、通常、基材フィルムを形成する樹脂に含まれる脂環式構造含有重合体の結晶化開始温度未満の温度で行う。加熱のためのエネルギーを削減して製造コストを抑制する観点では、貼合は、常温において行うことが好ましい。 The above-mentioned bonding is usually performed at a temperature lower than the crystallization start temperature of the alicyclic structure-containing polymer contained in the resin forming the base film. From the viewpoint of reducing the energy for heating and suppressing the manufacturing cost, the bonding is preferably performed at room temperature.

[5.仮支持体を剥離する工程(IV)]
工程(III)の後で、仮支持体を剥離する工程(IV)を行う。基材フィルムのフィルム面の表面自由エネルギーが上述した範囲にあることにより、樹脂層は、基材フィルムのフィルム面に安定して定着できている。また、仮支持体の仮支持面の表面自由エネルギーが上述した範囲にあることにより、仮支持体の仮支持面から樹脂層は円滑に離れることができる。したがって、仮支持体は、円滑に剥離される。よって、剥離される仮支持体の仮支持面への樹脂層の一部又は全部の残留を、生じ難くできる。
前記の仮支持体の剥離により、基材フィルム及び樹脂層を備える複層フィルムが得られる。
[5. Step of peeling off the temporary support (IV)]
After the step (III), the step (IV) of peeling off the temporary support is performed. Since the surface free energy of the film surface of the base film is within the above range, the resin layer can be stably fixed to the film surface of the base film. Further, when the surface free energy of the temporary support surface of the temporary support is within the above-mentioned range, the resin layer can be smoothly separated from the temporary support surface of the temporary support. Therefore, the temporary support is smoothly peeled off. Therefore, it is possible to prevent a part or all of the resin layer from remaining on the temporary support surface of the temporary support to be peeled off.
By peeling off the temporary support, a multi-layer film including a base film and a resin layer can be obtained.

[6.基材フィルム及び樹脂層に熱処理を施す工程(V)]
工程(IV)の後で、樹脂層及び基材フィルムに熱処理を施す工程(V)を行う。熱処理温度は、基材フィルムに含まれる脂環式構造含有重合体のガラス転移温度以上に設定する。このような熱処理温度において、樹脂層と基材フィルムとの密着性が高められて、基材フィルム及びこの基材フィルムから剥離し難い樹脂層を含む光学フィルムを製造することができる。
[6. Step of heat-treating the base film and resin layer (V)]
After the step (IV), a step (V) of heat-treating the resin layer and the base film is performed. The heat treatment temperature is set to be equal to or higher than the glass transition temperature of the alicyclic structure-containing polymer contained in the base film. At such a heat treatment temperature, the adhesion between the resin layer and the base film is enhanced, and an optical film containing the base film and a resin layer that is difficult to peel off from the base film can be manufactured.

樹脂層に含まれる樹脂がガラス転移温度を有する場合、樹脂層に含まれる樹脂のガラス転移温度は、通常、基材フィルムに含まれる脂環式構造含有重合体のガラス転移温度よりも低い。よって、工程(V)における熱処理温度は、通常、樹脂層に含まれる樹脂のガラス転移温度よりも高温である。また、樹脂層に含まれる樹脂のガラス転移温度が基材フィルムに含まれる脂環式構造含有重合体のガラス転移温度よりも高い場合には、樹脂層と基材フィルムとの密着性を効果的に高める観点から、工程(V)における熱処理温度は、樹脂層に含まれる樹脂のガラス転移温度よりも高温に設定することが好ましい。 When the resin contained in the resin layer has a glass transition temperature, the glass transition temperature of the resin contained in the resin layer is usually lower than the glass transition temperature of the alicyclic structure-containing polymer contained in the base film. Therefore, the heat treatment temperature in the step (V) is usually higher than the glass transition temperature of the resin contained in the resin layer. Further, when the glass transition temperature of the resin contained in the resin layer is higher than the glass transition temperature of the alicyclic structure-containing polymer contained in the base film, the adhesion between the resin layer and the base film is effective. The heat treatment temperature in the step (V) is preferably set to a higher temperature than the glass transition temperature of the resin contained in the resin layer.

具体的な熱処理温度は、好ましくは(Tg+30℃)以上、より好ましくは(Tg+50℃)以上、特に好ましくは(Tg+70℃)以上であり、好ましくは(Tg+120℃)以下、より好ましくは(Tg+110℃)以下、特に好ましくは(Tg+100℃)以下である。熱処理温度が、前記範囲の下限値以上であることにより、樹脂層と基材フィルムとの密着性を効果的に高められる。また、熱処理温度が、前記範囲の上限値以下であることにより、基材フィルムの白濁を抑制できる。ここで「Tg」は、基材フィルムに含まれる脂環式構造含有重合体のガラス転移温度を表す。 The specific heat treatment temperature is preferably (Tg + 30 ° C.) or higher, more preferably (Tg + 50 ° C.) or higher, particularly preferably (Tg + 70 ° C.) or higher, preferably (Tg + 120 ° C.) or lower, and more preferably (Tg + 110 ° C.). Hereinafter, it is particularly preferably (Tg + 100 ° C.) or less. When the heat treatment temperature is at least the lower limit of the above range, the adhesion between the resin layer and the base film can be effectively enhanced. Further, when the heat treatment temperature is not more than the upper limit of the above range, the white turbidity of the base film can be suppressed. Here, "Tg" represents the glass transition temperature of the alicyclic structure-containing polymer contained in the base film.

前記の熱処理を施す処理時間は、樹脂層と基材フィルムとの密着性を高められる範囲で任意に設定できる。具体的な処理時間は、好ましくは5秒以上、より好ましくは15秒以上、特に好ましくは30秒以上である。処理時間が、前記範囲の下限値以上であることにより、樹脂層と基材フィルムとの密着性を効果的に高められる。処理時間の上限は、特段の制限は無いが、例えば5分以下でありうる。 The treatment time for applying the heat treatment can be arbitrarily set as long as the adhesion between the resin layer and the base film can be enhanced. The specific processing time is preferably 5 seconds or longer, more preferably 15 seconds or longer, and particularly preferably 30 seconds or longer. When the treatment time is at least the lower limit of the above range, the adhesion between the resin layer and the base film can be effectively enhanced. The upper limit of the processing time is not particularly limited, but may be, for example, 5 minutes or less.

工程(V)は、必要に応じて、基材フィルムを延伸する工程(V-1)を含んでいてもよい。この工程(V-1)では、基材フィルム及び樹脂層を備える複層フィルムを延伸することにより、基材フィルムを延伸する。通常、この延伸は、基材フィルムに含まれる脂環式構造含有重合体のガラス転移温度以上の温度条件で行われる。よって、工程(V-1)においては、樹脂層及び基材フィルムに対する熱処理と、基材フィルムの延伸処理との、両方を行うことができる。 The step (V) may include a step (V-1) of stretching the base film, if necessary. In this step (V-1), the base film is stretched by stretching the base film and the multilayer film including the resin layer. Usually, this stretching is performed under temperature conditions equal to or higher than the glass transition temperature of the alicyclic structure-containing polymer contained in the base film. Therefore, in the step (V-1), both the heat treatment for the resin layer and the base film and the stretching treatment for the base film can be performed.

基材フィルムの延伸方法に格別な制限は無く、任意の延伸方法を用いうる。延伸方法の例としては、基材フィルムを長手方向に一軸延伸する方法(縦一軸延伸法)、基材フィルムを幅方向に一軸延伸する方法(横一軸延伸法)等の、一軸延伸法;基材フィルムを長手方向に延伸すると同時に幅方向に延伸する同時二軸延伸法、基材フィルムを長手方向及び幅方向の一方に延伸した後で他方に延伸する逐次二軸延伸法などの二軸延伸法;並びに基材フィルムを幅方向に対し0°超90°未満といった、幅方向に対し平行でも垂直でもない斜め方向に延伸する方法(斜め延伸法)が挙げられる。このような延伸方法としては、例えば、国際公開第2016/067893号に記載の方法を用いることができる。 There are no particular restrictions on the stretching method of the base film, and any stretching method can be used. Examples of the stretching method include a method of uniaxially stretching the base film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching the base film in the width direction (horizontal uniaxial stretching method), and the like. Biaxial stretching such as a simultaneous biaxial stretching method in which the material film is stretched in the longitudinal direction and at the same time in the width direction, and a sequential biaxial stretching method in which the base film is stretched in one of the longitudinal and width directions and then stretched in the other. Methods; and a method of stretching the substrate film in an oblique direction that is neither parallel nor perpendicular to the width direction, such as more than 0 ° and less than 90 ° with respect to the width direction (diagonal stretching method). As such a stretching method, for example, the method described in International Publication No. 2016/067893 can be used.

工程(V-1)における延伸温度は、好ましくはTg℃以上であり、好ましくは(Tg+60℃)以下、より好ましくは(Tg+50℃)以下である。このような温度範囲で延伸を行うことにより、基材フィルムに含まれる重合体分子を適切に配向させることができる。ここで「Tg」は、基材フィルムに含まれる脂環式構造含有重合体のガラス転移温度を表す。 The stretching temperature in the step (V-1) is preferably Tg ° C. or higher, preferably (Tg + 60 ° C.) or lower, and more preferably (Tg + 50 ° C.) or lower. By stretching in such a temperature range, the polymer molecules contained in the base film can be appropriately oriented. Here, "Tg" represents the glass transition temperature of the alicyclic structure-containing polymer contained in the base film.

工程(V-1)における延伸倍率は、延伸後に得られる光学特性、厚み、強度などの属性に応じて適切に選択でき、通常は1.1倍以上であり、通常は10倍以下、好ましくは5倍以下である。ここで、例えば二軸延伸法のように異なる複数の方向に延伸を行う場合、延伸倍率は各延伸方向における延伸倍率の積で表される総延伸倍率のことである。延伸倍率を前記範囲の上限値以下にすることにより、フィルムが破断する可能性を小さくできるので、光学フィルムの製造を容易に行うことができる。 The draw ratio in the step (V-1) can be appropriately selected according to the attributes such as optical characteristics, thickness, and strength obtained after stretching, and is usually 1.1 times or more, usually 10 times or less, preferably 10 times or less. It is 5 times or less. Here, when stretching is performed in a plurality of different directions as in the biaxial stretching method, the stretching ratio is the total stretching ratio represented by the product of the stretching ratios in each stretching direction. By setting the draw ratio to be equal to or lower than the upper limit of the above range, the possibility of the film breaking can be reduced, so that the optical film can be easily manufactured.

工程(V-1)において前記のような延伸処理を基材フィルムに施すことにより、所望の特性を有する光学フィルムを得ることができる。 By applying the above-mentioned stretching treatment to the base film in the step (V-1), an optical film having desired characteristics can be obtained.

工程(V)は、基材フィルムが結晶性を有する脂環式構造含有重合体を含む場合、必要に応じて、基材フィルムに含まれる脂環式構造含有重合体の結晶化を進行させる工程(V-2)を含んでいてもよい。この工程(V-2)では、基材フィルム及び樹脂層を備える複層フィルムを加熱することによって、基材フィルムを所定の温度に加熱し、脂環式構造含有重合体の結晶化を進行させる。通常、脂環式構造含有重合体の結晶化の進行は、基材フィルムに含まれる脂環式構造含有重合体のガラス転移温度以上の温度条件で行われる。よって、工程(V-2)においては、樹脂層及び基材フィルムに対する熱処理と、基材フィルムに含まれる脂環式構造含有重合体の結晶化処理との、両方を行うことができる。また、工程(V)が基材フィルムを延伸する工程(V-1)を含む場合、通常、脂環式構造含有重合体の結晶化を進行させる工程(V-2)は、工程(V-1)の後に行われる。 Step (V) is a step of advancing the crystallization of the alicyclic structure-containing polymer contained in the base film, if necessary, when the base film contains an alicyclic structure-containing polymer having crystallization. (V-2) may be included. In this step (V-2), the substrate film and the multilayer film provided with the resin layer are heated to a predetermined temperature to promote the crystallization of the alicyclic structure-containing polymer. .. Usually, the crystallization of the alicyclic structure-containing polymer is carried out under a temperature condition equal to or higher than the glass transition temperature of the alicyclic structure-containing polymer contained in the base film. Therefore, in the step (V-2), both the heat treatment of the resin layer and the base film and the crystallization treatment of the alicyclic structure-containing polymer contained in the base film can be performed. When the step (V) includes a step (V-1) of stretching the base film, the step (V-2) for advancing the crystallization of the alicyclic structure-containing polymer is usually a step (V-). It is done after 1).

結晶化は、基材フィルムを含む複層フィルムの少なくとも二の端辺を保持して緊張させた状態で行うことが好ましい。複層フィルムを緊張させた状態とは、複層フィルムに張力がかかった状態をいう。ただし、この複層フィルムを緊張させた状態には、複層フィルムが実質的に延伸される状態を含まない。また、実質的に延伸されるとは、複層フィルムのいずれかの方向への延伸倍率が通常1.1倍以上になることをいう。複層フィルムの少なくとも二の端辺を保持されて緊張した状態では、保持された端辺の間の領域において複層フィルムの熱収縮による変形が妨げられる。よって、そのフィルムの平滑性を損なうことなく、結晶化を進めることができる。 Crystallization is preferably carried out in a state where at least two edges of the multilayer film including the base film are held and tensioned. The state in which the multilayer film is tensioned means a state in which tension is applied to the multilayer film. However, the state in which the multilayer film is tense does not include the state in which the multilayer film is substantially stretched. Further, substantially stretched means that the stretch ratio of the multilayer film in any direction is usually 1.1 times or more. When at least two edges of the double glazing are held and tense, deformation due to thermal shrinkage of the double glazing is prevented in the region between the held edges. Therefore, crystallization can proceed without impairing the smoothness of the film.

複層フィルムの広い面積において変形を妨げるためには、複層フィルムの対向する二の端辺を含む端辺を保持して、その保持された端辺の間の領域を緊張した状態にすることが好ましい。例えば、矩形の枚葉の複層フィルムでは、対向する二の端辺(例えば、長辺側の端辺同士、又は、短辺側の端辺同士)を保持して前記二の端辺の間の領域を緊張した状態にすることで、その枚葉の複層フィルムの全面において変形を妨げることができる。また、長尺の複層フィルムでは、幅方向の端部にある二の端辺(即ち、長辺側の端辺)を保持して前記二の端辺の間の領域を緊張した状態にすることで、その長尺の複層フィルムの全面において変形を妨げることができる。このように変形を妨げられた複層フィルムは、熱収縮によってフィルム内に応力が生じても、シワ等の変形の発生が抑制される。複層フィルムとして延伸処理を施されたものを用いる場合は、延伸方向(二軸延伸の場合は延伸倍率が大きい方向)と直交する少なくとも二の端辺を保持することで、変形の抑制がより確実なものとなる。このような保持具としては、例えば、国際公開第2016/067893号に記載のものを用いることができる。 In order to prevent deformation over a large area of the double glazing, the edges of the double glazing, including the two opposite edges, should be held and the area between the held edges should be tense. Is preferable. For example, in a rectangular single-wafer multi-layer film, two opposite ends (for example, the ends on the long side or the ends on the short side) are held between the two ends. By making the region tense, deformation can be prevented on the entire surface of the single-wafer multi-layer film. Also, in a long multi-layer film, the two ends at the widthwise ends (that is, the ends on the long side) are held so that the area between the two ends is in a tense state. This makes it possible to prevent deformation on the entire surface of the long multilayer film. In the multi-layer film whose deformation is hindered in this way, even if stress is generated in the film due to heat shrinkage, the occurrence of deformation such as wrinkles is suppressed. When a stretched multi-layer film is used, deformation can be further suppressed by holding at least two edges orthogonal to the stretching direction (in the case of biaxial stretching, the direction in which the stretching ratio is large). It will be certain. As such a holder, for example, the one described in International Publication No. 2016/067893 can be used.

工程(V-2)では、前記のように、基材フィルムの温度を所定の処理温度に調整して、その基材フィルムに含まれる脂環式構造含有重合体の結晶化を進行させる。この際、具体的な処理温度は、通常Tg以上、好ましくは(Tg+20℃)以上、より好ましくは(Tg+30℃)以上であり、通常Tm以下、好ましくは(Tm-20℃)以下、より好ましくは(Tm-40℃)以下である。ここで、「Tm」は、基材フィルムに含まれる結晶性を有する脂環式構造含有重合体の融点を表し、「Tg」は、基材フィルムに含まれる結晶性を有する脂環式構造含有重合体のガラス転移温度を表す。処理温度が前記範囲の下限値以上であることにより、脂環式構造含有重合体の結晶化を効率的に進行させることができる。また、処理温度が前記範囲の上限値以下であることにより、基材フィルムの白濁を抑制できる。 In the step (V-2), as described above, the temperature of the base film is adjusted to a predetermined treatment temperature, and the crystallization of the alicyclic structure-containing polymer contained in the base film is promoted. At this time, the specific treatment temperature is usually Tg or more, preferably (Tg + 20 ° C.) or more, more preferably (Tg + 30 ° C.) or more, and usually Tm or less, preferably (Tm-20 ° C.) or less, more preferably. It is (Tm-40 ° C.) or less. Here, "Tm" represents the melting point of the crystalline alicyclic structure-containing polymer contained in the base film, and "Tg" represents the crystalline alicyclic structure-containing polymer contained in the base film. Represents the glass transition temperature of the polymer. When the treatment temperature is at least the lower limit of the above range, the crystallization of the alicyclic structure-containing polymer can be efficiently promoted. Further, when the treatment temperature is not more than the upper limit of the above range, the white turbidity of the base film can be suppressed.

工程(V-2)において、基材フィルムの温度を前記の温度範囲に維持する処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは30分以下、より好ましくは10分以下である。処理時間が、前記範囲の下限値以上であることにより、結晶性を有する脂環式構造含有重合体の結晶化を十分に進行させられるので、光学フィルムの可撓性、耐熱性、耐折性等の特性を高めることができる。また、処理時間が前記範囲の上限値以下であることにより、基材フィルムの白濁を抑制できる。 In the step (V-2), the treatment time for maintaining the temperature of the base film in the above temperature range is preferably 1 second or longer, more preferably 5 seconds or longer, preferably 30 minutes or shorter, and more preferably 10 seconds. Less than a minute. When the treatment time is at least the lower limit of the above range, the crystallization of the alicyclic structure-containing polymer having crystallinity can be sufficiently promoted, so that the flexibility, heat resistance, and folding resistance of the optical film can be sufficiently promoted. Etc. can be enhanced. Further, when the treatment time is not more than the upper limit of the above range, the white turbidity of the base film can be suppressed.

工程(V-2)において前記のような結晶化処理を基材フィルムに施すことにより、基材フィルムに含まれる結晶性を有する脂環式構造含有重合体の結晶化度を高めることができるので、可撓性、耐熱性、耐折性、耐溶媒性等の特性に優れる光学フィルムを得ることができる。 By applying the above crystallization treatment to the base film in the step (V-2), the crystallinity of the crystalline alicyclic structure-containing polymer contained in the base film can be increased. An optical film having excellent properties such as flexibility, heat resistance, fold resistance, and solvent resistance can be obtained.

[7.任意の工程]
光学フィルムの製造方法は、上述した工程に組み合わせて、更に任意の工程を含んでいてもよい。
任意の工程としては、例えば、工程(V-2)の後に、基材フィルムを熱収縮させて、残留応力を除去する緩和工程が挙げられる。
[7. Arbitrary process]
The method for producing an optical film may further include any step in combination with the above-mentioned steps.
As an arbitrary step, for example, after the step (V-2), a relaxation step of heat-shrinking the base film to remove residual stress can be mentioned.

また、任意の工程としては、例えば、光学フィルムに基材フィルム及び樹脂層以外の任意の層を設ける工程が挙げられる。任意の層は、通常、樹脂層とは反対側の基材フィルムの面に設けられる。任意の層の例としては、導電層、反射防止層、ハードコート層、帯電防止層、防眩層、防汚層、セパレーターフィルム層等を挙げることができる。 Further, as an arbitrary step, for example, a step of providing an arbitrary layer other than the base film and the resin layer on the optical film can be mentioned. The arbitrary layer is usually provided on the surface of the base film opposite to the resin layer. Examples of the arbitrary layer include a conductive layer, an antireflection layer, a hard coat layer, an antistatic layer, an antiglare layer, an antifouling layer, a separator film layer and the like.

[8.光学フィルム]
上述した製造方法によれば、基材フィルムと、この基材フィルムのフィルム面に形成されて前記基材フィルムから剥離し難い樹脂層とを含む光学フィルムを得ることができる。この光学フィルムでは、基材フィルムに延伸処理が施されていたり、基材フィルムが結晶性を有する脂環式構造含有重合体を含んでいたり、更には前記の脂環式構造含有重合体の結晶化が進行していたりしても、基材フィルムと樹脂層との密着性を高くできる。
[8. Optical film]
According to the above-mentioned manufacturing method, it is possible to obtain an optical film including a base film and a resin layer formed on the film surface of the base film and difficult to be peeled off from the base film. In this optical film, the base film is stretched, the base film contains a crystalline alicyclic structure-containing polymer, and further, the crystals of the alicyclic structure-containing polymer are described above. Even if the polymerization is progressing, the adhesion between the base film and the resin layer can be improved.

この光学フィルムにおいて、樹脂層は、基材フィルムの片方のフィルム面のみに形成されていてもよく、基材フィルムの両方のフィルム面に形成されていてもよい。基材フィルムの両方のフィルム面に樹脂層を有する光学フィルムは、両方の樹脂層を同時に形成することができる。例えば、上述した工程(II)~工程(V)それぞれを、基材フィルムの両方のフィルム面で同時に行って、2層の樹脂層を同時に形成できる。そのため、塗工法による樹脂層の形成のように、樹脂層の形成を片面ずつ行う必要が無いので、工程数の削減及び製造時間の短縮が可能となり、製造コストを抑制することができる。 In this optical film, the resin layer may be formed on only one film surface of the base film, or may be formed on both film surfaces of the base film. An optical film having resin layers on both film surfaces of the base film can form both resin layers at the same time. For example, each of the above-mentioned steps (II) to (V) can be simultaneously performed on both film surfaces of the base film to form two resin layers at the same time. Therefore, unlike the formation of the resin layer by the coating method, it is not necessary to form the resin layer one side at a time, so that the number of steps can be reduced and the manufacturing time can be shortened, and the manufacturing cost can be suppressed.

光学フィルムは、脂環式構造含有重合体を含む樹脂で形成された基材フィルムを含むので、脂環式構造含有重合体が示す優れた特性を発揮できる。よって、光学フィルムは、通常、機械的強度、透明性、寸法安定性及び軽量性に優れ、更に、吸湿性が低い。また、結晶性を有する脂環式構造含有重合体を用いた場合には、光学フィルムは、前記の優れた性質に加えて、更に、可撓性、耐熱性、耐折性、低吸水性等の特性に優れる。 Since the optical film contains a base film formed of a resin containing an alicyclic structure-containing polymer, the excellent properties exhibited by the alicyclic structure-containing polymer can be exhibited. Therefore, the optical film is usually excellent in mechanical strength, transparency, dimensional stability and light weight, and has low hygroscopicity. Further, when a crystalline alicyclic structure-containing polymer is used, the optical film has, in addition to the above-mentioned excellent properties, flexibility, heat resistance, folding resistance, low water absorption and the like. Excellent in characteristics.

中でも、可撓性、耐熱性、耐折性、低吸水性等の特性を特に良好なものとする観点から、光学フィルムが含む基材フィルム中の結晶性を有する脂環式構造含有重合体は、高い結晶化度を有することが好ましい。具体的な結晶化度の範囲は、好ましくは10%以上、より好ましくは15%以上、更に好ましくは30%以上、中でも好ましくは50%以上、特に好ましくは60%以上である。このように高い結晶化度は、工程(V)において脂環式構造含有重合体の結晶化を進行させることによって達成できる。結晶化度の上限は、理想的には100%であるが、通常は90%以下、又は80%以下としうる。 Among them, from the viewpoint of making properties such as flexibility, heat resistance, folding resistance, and low water absorption particularly good, the alicyclic structure-containing polymer having crystallinity in the base film contained in the optical film is used. , It is preferable to have a high crystallinity. The specific range of crystallinity is preferably 10% or more, more preferably 15% or more, still more preferably 30% or more, particularly preferably 50% or more, and particularly preferably 60% or more. Such a high crystallinity can be achieved by advancing the crystallization of the alicyclic structure-containing polymer in the step (V). The upper limit of crystallinity is ideally 100%, but usually 90% or less, or 80% or less.

また、光学フィルムは、樹脂層を含むので、樹脂層に基づく優れた特性を示すことができる。例えば、樹脂層として易接着層を含む光学フィルムは、当該易接着層側の面において、優れた接着性を示すことができる。よって、易接着層側の面で、他の部材に、接着剤又は粘着剤を介して光学フィルムを高い接着強度で接着することが可能である。 Further, since the optical film contains a resin layer, it can exhibit excellent characteristics based on the resin layer. For example, an optical film containing an easy-adhesive layer as a resin layer can exhibit excellent adhesiveness on the surface on the easy-adhesive layer side. Therefore, it is possible to bond the optical film to another member with a high adhesive strength on the surface on the easy-adhesive layer side via an adhesive or an adhesive.

光学フィルムは、高い全光線透過率を有することが好ましい。具体的には、光学フィルムの全光線透過率は、基材フィルムの全光線透過率の範囲として上述したのと同じ範囲に収まることが好ましい。 The optical film preferably has a high total light transmittance. Specifically, it is preferable that the total light transmittance of the optical film falls within the same range as described above as the range of the total light transmittance of the base film.

光学フィルムは、ヘイズが小さいことが好ましい。具体的には、光学フィルムのヘイズは、基材フィルムのヘイズの範囲として上述したのと同じ範囲に収まることが好ましい。 The optical film preferably has a small haze. Specifically, the haze of the optical film preferably falls within the same range as described above as the range of the haze of the base film.

光学フィルムは、光学用途に任意に適用でき、例えば、表示装置の構成要素として用いることができる。中でも、光学フィルムは、その優れた耐熱性及び機械的強度(特に、可撓性)を活用して、液晶表示装置のタッチセンサの構成要素として用いることが好ましい。特に、結晶性を有する脂環式構造含有重合体を含む基材フィルムを備えた光学フィルムは、耐折性に優れるので、フレキシブルな表示装置に適用可能であり、好ましい。 The optical film can be arbitrarily applied to optical applications and can be used, for example, as a component of a display device. Above all, it is preferable to use the optical film as a component of the touch sensor of the liquid crystal display device by utilizing its excellent heat resistance and mechanical strength (particularly, flexibility). In particular, an optical film provided with a base film containing a crystalline alicyclic structure-containing polymer is preferable because it has excellent folding resistance and can be applied to a flexible display device.

以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples shown below, and may be arbitrarily modified and carried out without departing from the scope of claims of the present invention and the equivalent scope thereof.
In the following description, "%" and "part" representing quantities are based on weight unless otherwise specified. In addition, the operations described below were performed under normal temperature and pressure conditions unless otherwise specified.

[評価方法]
(厚みの測定方法)
フィルムに含まれる各層の厚みは、次のようにして測定した。サンプルとなるフィルムの各層の屈折率を、エリプソメトリー(ウーラム社製「M-2000」)を用いて測定した。その後、測定した屈折率を用いて、フィルムの厚みを、光干渉式膜厚計(大塚電子社製「MCPD-9800」)で測定した。
[Evaluation method]
(Thickness measurement method)
The thickness of each layer contained in the film was measured as follows. The refractive index of each layer of the sample film was measured using ellipsometry (“M-2000” manufactured by Woolam Co., Ltd.). Then, using the measured refractive index, the thickness of the film was measured with an optical interferometry film thickness meter (“MCPD-9800” manufactured by Otsuka Electronics Co., Ltd.).

(重量平均分子量及び数平均分子量の測定方法)
重合体の重量平均分子量及び数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはテトラヒドロフランを用いた。また、測定時の温度は、40℃であった。
(Measuring method of weight average molecular weight and number average molecular weight)
The weight average molecular weight and the number average molecular weight of the polymer were measured as polystyrene-equivalent values using a gel permeation chromatography (GPC) system (“HLC-8320” manufactured by Tosoh Corporation). At the time of measurement, an H type column (manufactured by Tosoh Corporation) was used as the column, and tetrahydrofuran was used as the solvent. The temperature at the time of measurement was 40 ° C.

(ジシクロペンタジエンの開環重合体の水素化物のガラス転移温度Tg、融点Tm及び結晶化温度Tpcの測定方法)
窒素雰囲気下で300℃に加熱した試料を液体窒素で急冷し、示差操作熱量計(DSC)を用いて、10℃/分で昇温して試料のガラス転移温度Tg、融点Tm及び結晶化温度Tpcをそれぞれ求めた。
(Measurement method of glass transition temperature Tg, melting point Tm and crystallization temperature Tpc of hydride of ring-opening polymer of dicyclopentadiene)
A sample heated to 300 ° C. in a nitrogen atmosphere is rapidly cooled with liquid nitrogen and heated at 10 ° C./min using a differential operating calorimeter (DSC) to obtain a glass transition temperature Tg, melting point Tm and crystallization temperature of the sample. Tpc was calculated respectively.

(ポリウレタンのガラス転移温度の測定方法)
実施例で用いたポリウレタンの水分散体を、テフロン(登録商標)加工を施された容器に流し入れ、常温で24時間乾燥させた。その後、120℃のオーブンで更に1時間乾燥し、厚み150μmのポリウレタンの層状物を用意した。この層状物のガラス転移温度を、動的粘弾性測定装置(ユービーエム社製「Rheogel-E4000」)を用いて、tanδのピークから測定した。この際、ピークが2つ出る場合は、温度が低い方のピークをガラス転移温度として採用した。
(Measurement method of glass transition temperature of polyurethane)
The aqueous dispersion of polyurethane used in the examples was poured into a container treated with Teflon (registered trademark) and dried at room temperature for 24 hours. Then, it was dried in an oven at 120 degreeC for another 1 hour, and a layer of polyurethane having a thickness of 150 μm was prepared. The glass transition temperature of this layered material was measured from the peak of tan δ using a dynamic viscoelasticity measuring device (“Rheogel-E4000” manufactured by UBM). At this time, when two peaks appear, the peak with the lower temperature is adopted as the glass transition temperature.

(重合体の水素化率の測定方法)
重合体の水素化率は、オルトジクロロベンゼン-dを溶媒として、145℃で、H-NMR測定により測定した。
(Measuring method of hydrogenation rate of polymer)
The hydrogenation rate of the polymer was measured by 1 H-NMR measurement at 145 ° C. using orthodichlorobenzene - d4 as a solvent.

(重合体のラセモ・ダイアッドの割合の測定方法)
オルトジクロロベンゼン-d/トリクロロベンゼン-d(混合比(質量基準)1/2)を溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体の13C-NMR測定を行った。この13C-NMR測定の結果において、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとを同定した。これらのシグナルの強度比に基づいて、重合体のラセモ・ダイアッドの割合を求めた。
(Measuring method of racemic diad ratio of polymer)
Using orthodichlorobenzene-d 4 / trichlorobenzene-d 3 (mixing ratio (mass basis) 1/2) as a solvent, apply the inverse-gated decoupling method at 200 ° C. to perform 13 C-NMR measurement of the polymer. gone. In the results of this 13 C-NMR measurement, the signal of 43.35 ppm derived from meso-diad and the signal of 43.43 ppm derived from racemic diad were used as the reference shift with the peak of 127.5 ppm of orthodichlorobenzene - d4 as a reference shift. Was identified. Based on the intensity ratios of these signals, the proportion of racemic diads in the polymer was determined.

(重合体の結晶化度の測定方法)
結晶化度は、JIS K0131に準じて、X線回折により確認した。具体的には、広角X線回折装置(リガク社製「RINT 2000」)を用いて、結晶化部分からの回析X線強度を求め、全体の回析X線強度との比から、下記式(I)によって結晶化度を求めた。
Xc=K・Ic/It (I)
上記式(I)において、Xcは被検試料の結晶化度、Icは結晶化部分からの回析X線強度、Itは全体の回析X線強度、Kは補正項を、それぞれ表す。
(Measuring method of polymer crystallinity)
The crystallinity was confirmed by X-ray diffraction according to JIS K0131. Specifically, a wide-angle X-ray diffractometer (“RINT 2000” manufactured by Rigaku Co., Ltd.) was used to obtain the diffracted X-ray intensity from the crystallized portion, and the following formula was obtained from the ratio with the total diffracted X-ray intensity. The crystallinity was determined by (I).
Xc = K · Ic / It (I)
In the above formula (I), Xc represents the crystallinity of the test sample, Ic represents the diffraction X-ray intensity from the crystallized portion, It represents the entire diffraction X-ray intensity, and K represents the correction term.

(表面自由エネルギーの測定方法)
フィルムの面の表面自由エネルギーは、下記の方法によって測定した。
液体試料として水及びヘキサデカンを用意した。これらの液体試料それぞれについて、フィルムの面に対する接触角を測定した。接触角の測定方法は、下記の通りとした。
<接触角測定方法>
・測定装置:AutoDispenser AD-31(協和界面科学社製)
・制御解析ソフトウェア:FAMAS ver3.13
・接触角測定法:懸滴法
・解析法:Young-Laplace法
・テフロン(登録商標)コート針:18G(もしくは22G)
・液量:3μL~4μL
・測定待ち時間:3000ms
・測定回数:10回測定し、その平均値を採用。
(Measurement method of surface free energy)
The surface free energy of the surface of the film was measured by the following method.
Water and hexadecane were prepared as liquid samples. For each of these liquid samples, the contact angle with respect to the surface of the film was measured. The method for measuring the contact angle was as follows.
<Contact angle measurement method>
-Measuring device: AutoDispenser AD-31 (manufactured by Kyowa Interface Science Co., Ltd.)
-Control analysis software: FAMAS ver3.13
-Contact angle measurement method: Suspension method-Analysis method: Young-Laplace method-Teflon (registered trademark) coated needle: 18G (or 22G)
-Liquid volume: 3 μL to 4 μL
・ Measurement waiting time: 3000ms
-Number of measurements: Measured 10 times and adopted the average value.

測定された接触角θを、下記のOwens Wendtモデルに当てはめて、フィルムの面の表面自由エネルギーrを計算した。このOwens Wendtモデルにおいて、フィルムが固体試料に相当する。また、このOwens Wendtモデルにおいて、記号の意味は下記表1の通りであり、液体試料のr、r 及びr の値は表2の通りである。The measured contact angle θ was applied to the Owens Wendt model below to calculate the surface free energy r S of the surface of the film. In this Owens Wendt model, the film corresponds to a solid sample. Further, in this Owns Wendt model, the meanings of the symbols are as shown in Table 1 below, and the values of r L , r L d and r L p of the liquid sample are as shown in Table 2.

Figure 0007088187000001
Figure 0007088187000001

Figure 0007088187000002
Figure 0007088187000002

Figure 0007088187000003
Figure 0007088187000003

[易接着層の転写性の評価方法]
仮支持体を剥離した後で、剥離された仮支持体の表面を目視で観察した。観察の結果、下記の基準によって、易接着層の転写性を判定した。
○:直径50μm以上の易接着層の部分からなる付着片が、仮支持体の表面に全く残っていない。
△:直径50μm以上の易接着層の部分からなる付着片が、仮支持体の表面に1つ以上残っている。
×:仮支持体を易接着層から剥離すること自体ができなかった。
[Evaluation method of transferability of easy-adhesive layer]
After the temporary support was peeled off, the surface of the peeled temporary support was visually observed. As a result of observation, the transferability of the easy-adhesion layer was determined according to the following criteria.
◯: Adhesive pieces made of a portion of the easy-adhesive layer having a diameter of 50 μm or more do not remain on the surface of the temporary support.
Δ: One or more adhered pieces made of a portion of the easy-adhesive layer having a diameter of 50 μm or more remain on the surface of the temporary support.
X: The temporary support could not be peeled off from the easy-adhesive layer.

[易接着層と基材フィルムとの密着性の評価方法]
光学フィルムの易接着層に、カッターを用いて、1mm間隔で縦横に11本の切れ目を入れて、1mm角の正方形(碁盤目)を100個(10×10)作成した。この易接着層の表面にセロハンテープを貼り付けて、素早く剥がし、剥がれずに残った正方形の数を数えた。剥がれずに残った正方形の数が多いほど、易接着層と基材フィルムとの密着性に優れることを表す。
[Evaluation method of adhesion between easy-adhesion layer and base film]
Using a cutter, 11 cuts were made in the easy-adhesion layer of the optical film in the vertical and horizontal directions at 1 mm intervals to create 100 1 mm square squares (go board) (10 × 10). Cellophane tape was attached to the surface of this easy-adhesive layer, peeled off quickly, and the number of squares remaining without peeling was counted. The larger the number of squares remaining without peeling, the better the adhesion between the easy-adhesion layer and the base film.

[剥離強度の測定]
光学フィルムの易接着層面に、コロナ処理を施した。また、ノルボルネン系樹脂で形成された未延伸フィルム(日本ゼオン社製「ゼオノアフィルム」、厚み100μm、樹脂のガラス転移温度160℃)の片面に、コロナ処理を施した。未延伸フィルムのコロナ処理面に、紫外線硬化型の接着剤(東洋インキ社製「CRB1352」)を塗工した。そして、この接着剤が塗工された面に、ラミネータを使用して、光学フィルムのコロナ処理面を貼り合わせた。高圧水銀ランプを用いて、照度350mJ/cm、積算光料1000mJ/cmの条件で紫外線を照射して、接着剤の架橋を行った。これにより、光学フィルムと未延伸フィルムとを含む貼合サンプルを得た。その後、前記貼合サンプルを25mmの幅に裁断して、その光学フィルム側の面を、スライドガラスの表面に粘着剤にて貼合して、貼合物を得た。貼合に際し、粘着剤としては、両面粘着テープ(日東電工社製、品番「CS9621」)を用いた。貼合後、貼合物を12時間静置した。
その後、フォースゲージの先端の治具で未延伸フィルムの端部を挟み、スライドガラスの表面の法線方向に牽引することにより、90度剥離試験を実施した。牽引の際の剥離速度は20mm/分とした。未延伸フィルムが剥れる際に測定された力は、未延伸フィルムを光学フィルムから剥離させるために要する力であるので、この力の大きさを剥離強度として測定した。この剥離強度は、未延伸フィルムと光学フィルムとの接着強度に相当する。
[Measurement of peel strength]
The surface of the easy-adhesion layer of the optical film was subjected to corona treatment. Further, one side of an unstretched film made of a norbornene-based resin (“Zeonoa film” manufactured by ZEON Corporation, thickness 100 μm, glass transition temperature of resin 160 ° C.) was subjected to corona treatment. An ultraviolet curable adhesive (“CRB1352” manufactured by Toyo Ink Co., Ltd.) was applied to the corona-treated surface of the unstretched film. Then, the corona-treated surface of the optical film was bonded to the surface coated with this adhesive using a laminator. Using a high-pressure mercury lamp, the adhesive was crosslinked by irradiating with ultraviolet rays under the conditions of an illuminance of 350 mJ / cm 2 and an integrated light charge of 1000 mJ / cm 2 . As a result, a bonded sample containing an optical film and an unstretched film was obtained. Then, the bonded sample was cut to a width of 25 mm, and the surface on the optical film side was bonded to the surface of the slide glass with an adhesive to obtain a bonded product. At the time of bonding, a double-sided adhesive tape (manufactured by Nitto Denko Corporation, product number "CS9621") was used as the adhesive. After the bonding, the bonded product was allowed to stand for 12 hours.
Then, a 90-degree peeling test was carried out by sandwiching the end portion of the unstretched film with a jig at the tip of the force gauge and pulling it in the normal direction of the surface of the slide glass. The peeling speed during towing was 20 mm / min. Since the force measured when the unstretched film is peeled off is the force required to peel off the unstretched film from the optical film, the magnitude of this force was measured as the peeling strength. This peel strength corresponds to the adhesive strength between the unstretched film and the optical film.

[製造例1.ジシクロペンタジエンの開環重合体の水素化物の製造]
金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を加え、53℃に加温した。
[Manufacturing example 1. Production of hydride of ring-opening polymer of dicyclopentadiene]
The pressure resistant reactor made of metal was sufficiently dried and then replaced with nitrogen. In this metal pressure resistant reactor, 154.5 parts of cyclohexane, 42.8 parts of a 70% cyclohexane solution of dicyclopentadiene (endo content of 99% or more) (30 parts as the amount of dicyclopentadiene), and 1- 1.9 parts of hexene was added and heated to 53 ° C.

テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解した溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。
この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。
得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8750および28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。
To a solution prepared by dissolving 0.014 parts of a tetrachlorotungstenphenylimide (tetrahydrofuran) complex in 0.70 parts of toluene, 0.061 parts of a diethylaluminum ethoxide / n-hexane solution having a concentration of 19% was added, and the mixture was stirred for 10 minutes. Prepared a catalytic solution.
This catalyst solution was added to the pressure resistant reactor to initiate the ring-opening polymerization reaction. Then, the reaction was carried out for 4 hours while maintaining 53 ° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene.
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene are 8750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) obtained from these is 3 It was .21.

得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。 To 200 parts of the obtained solution of the ring-opening polymer of dicyclopentadiene, 0.037 parts of 1,2-ethanediol was added as a terminator, heated to 60 ° C., and stirred for 1 hour to stop the polymerization reaction. I let you. A part of a hydrotalcite-like compound (“Kyoward (registered trademark) 2000” manufactured by Kyowa Chemical Industry Co., Ltd.) was added thereto, and the mixture was heated to 60 ° C. and stirred for 1 hour. After that, 0.4 part of a filtration aid ("Radiolite (registered trademark) # 1500" manufactured by Showa Kagaku Kogyo Co., Ltd.) was added, and a PP pleated cartridge filter ("TCP-HX" manufactured by ADVANTEC Toyo Co., Ltd.) was used as an adsorbent. The solution was filtered off.

濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行った。これにより、ジシクロペンタジエンの開環重合体の水素化物を含む反応液が得られた。この反応液は、水素化物が析出してスラリー溶液となっていた。 To 200 parts of the filtered dicyclopentadiene ring-opening polymer solution (30 parts of polymer amount), 100 parts of cyclohexane is added, 0.0043 parts of chlorohydride carbonyltris (triphenylphosphine) ruthenium is added, and hydrogen is added. The hydrogenation reaction was carried out at a pressure of 6 MPa and 180 ° C. for 4 hours. As a result, a reaction solution containing a hydride of a ring-opening polymer of dicyclopentadiene was obtained. In this reaction solution, hydride was precipitated to form a slurry solution.

前記の反応液に含まれる水素化物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素化物28.5部を得た。この水素化物の水素化率は99%以上、ガラス転移温度Tgは94℃、融点(Tm)は262℃、結晶化温度Tpcは170℃、ラセモ・ダイアッドの割合は89%であった。 The hydride contained in the reaction solution and the solution were separated using a centrifuge and dried under reduced pressure at 60 ° C. for 24 hours to obtain a hydride of a crystallized dicyclopentadiene ring-opening polymer 28. I got 5 copies. The hydrogenation rate of this hydride was 99% or more, the glass transition temperature Tg was 94 ° C., the melting point (Tm) was 262 ° C., the crystallization temperature Tpc was 170 ° C., and the ratio of racemo diad was 89%.

[製造例2.基材フィルムの製造]
製造例1で得たジシクロペンタジエンの開環重合体の水素化物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)0.5部を混合して、結晶性樹脂を得た。
[Manufacturing example 2. Manufacture of base film]
An antioxidant (tetrakis [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl)) was added to 100 parts of the hydride of the ring-opening polymer of dicyclopentadiene obtained in Production Example 1. Propionate] Methane; 0.5 parts of "Irganox (registered trademark) 1010" manufactured by BASF Japan Ltd.) was mixed to obtain a crystalline resin.

結晶性樹脂を、内径3mmΦのダイ穴を4つ備えた二軸押出機(東芝機械社製「TEM-37B」)に投入した。前記の二軸押出機によって、結晶性樹脂を熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターにて細断して、結晶性樹脂のペレットを得た。 The crystalline resin was put into a twin-screw extruder (“TEM-37B” manufactured by Toshiba Machine Co., Ltd.) equipped with four die holes having an inner diameter of 3 mmΦ. The crystalline resin was formed into a strand-shaped molded product by hot melt extrusion using the above-mentioned twin-screw extruder. This molded product was shredded with a strand cutter to obtain pellets of crystalline resin.

引き続き、得られたペレットを、Tダイを備える熱溶融押出フィルム成形機に供給した。このフィルム成形機を用いて、前記の結晶性樹脂からなる長尺のフィルム(幅120mm)を、27m/分の速度でロールに巻き取る方法にて製造した。前記のフィルム成形機の運転条件を、以下に示す。
・バレル温度設定:280℃~290℃
・ダイ温度:270℃
・スクリュー回転数:30rpm
・キャストロール温度:70℃
これにより、結晶性樹脂によって形成された長尺の結晶性樹脂フィルムとして、基材フィルムを得た。得られた基材フィルムの厚みは20μmであった。この基材フィルムにおけるジシクロペンタジエンの開環重合体の水素化物の結晶化度は、0.7%であった。
Subsequently, the obtained pellets were supplied to a heat melt extrusion film forming machine equipped with a T-die. Using this film forming machine, a long film (width 120 mm) made of the above-mentioned crystalline resin was produced by winding it on a roll at a speed of 27 m / min. The operating conditions of the film forming machine are shown below.
-Barrel temperature setting: 280 ° C to 290 ° C
・ Die temperature: 270 ° C
・ Screw rotation speed: 30 rpm
・ Cast roll temperature: 70 ℃
As a result, a base film was obtained as a long crystalline resin film formed of the crystalline resin. The thickness of the obtained base film was 20 μm. The crystallinity of the hydride of the ring-opening polymer of dicyclopentadiene in this base film was 0.7%.

[製造例3.易接着層用の塗工液の製造]
カーボネート系ポリウレタンの水分散体(ADEKA社製「アデカボンタイター SPX-0672」、ガラス転移温度-16℃)をポリウレタンの量で100部と、架橋剤としての多官能性エポキシ化合物(ナガセケムテックス社製「デナコールEX-521」)2.7部と、界面活性剤としてのアセチレングリコール(日信化学工業社製「サーフィノール440」)0.18部と、溶媒としてのイオン交換水とを混合して、固形分濃度30%の塗工液を得た。
[Manufacturing example 3. Manufacture of coating liquid for easy-adhesive layer]
A water dispersion of carbonate-based polyurethane ("Adecabontiter SPX-0672" manufactured by ADEKA, glass transition temperature -16 ° C) was added to 100 parts of polyurethane in an amount of polyurethane, and a polyfunctional epoxy compound as a cross-linking agent (Nagase ChemteX). 2.7 parts of "Denacol EX-521" manufactured by Nisshin Kagaku Kogyo Co., Ltd., 0.18 parts of acetylene glycol as a surfactant ("Surfinol 440" manufactured by Nisshin Chemical Industry Co., Ltd.), and ion-exchanged water as a solvent are mixed. A coating liquid having a solid content concentration of 30% was obtained.

[実施例1]
(1.1.仮支持体上への易接着層の形成工程)
仮支持体として、ノルボルネン系樹脂で形成された樹脂フィルム(日本ゼオン社製「ゼオノアフィルム ZF16-050」、厚み50μm;以下、「仮支持体1」と記すことがある。)を用意した。この仮支持体1の表面の表面自由エネルギーを測定した。仮支持体1の前記表面に、製造例3で製造した塗工液を塗工した。その後、塗工された塗工液の層を、90℃で120秒乾燥させて、仮支持体1の表面に、厚み100nmの易接着層を形成した。
[Example 1]
(1.1. Step of forming an easy-adhesion layer on a temporary support)
As a temporary support, a resin film made of a norbornene-based resin (“Zeonoa Film ZF16-050” manufactured by Zeon Corporation, thickness 50 μm; hereinafter, may be referred to as “temporary support 1”) was prepared. The surface free energy of the surface of the temporary support 1 was measured. The coating liquid produced in Production Example 3 was applied to the surface of the temporary support 1. Then, the coated layer of the coating liquid was dried at 90 ° C. for 120 seconds to form an easily adhesive layer having a thickness of 100 nm on the surface of the temporary support 1.

(1.2.基材フィルムのフィルム表面へのコロナ処理工程)
製造例2で製造した基材フィルムを、当該基材フィルムの長手方向に搬送しながら、そのフィルム表面にコロナ処理を施した。このコロナ処理は、出力100W、電極幅0.3m、フィルム搬送速度0.080m/minの条件で行った。この条件でのコロナ処理の処理強度は、4.2kW・min/mである。コロナ処理を施された基材フィルムのフィルム表面の表面自由エネルギーを測定した。
(1.2. Corona treatment step on the film surface of the base film)
While the base film produced in Production Example 2 was conveyed in the longitudinal direction of the base film, the surface of the film was subjected to corona treatment. This corona treatment was performed under the conditions of an output of 100 W, an electrode width of 0.3 m, and a film transfer speed of 0.080 m / min. The processing intensity of the corona treatment under this condition is 4.2 kW · min / m 2 . The surface free energy of the film surface of the corona-treated base film was measured.

(1.3.貼合工程)
仮支持体1の表面に形成された易接着層と、基材フィルムのコロナ処理面とを、貼り合わせた。
(1.3. Laminating process)
The easy-adhesive layer formed on the surface of the temporary support 1 and the corona-treated surface of the base film were bonded together.

(1.4.仮支持体の剥離工程)
仮支持体1を剥離して、基材フィルム及び易接着層を備える複層フィルムを得た。剥離された仮支持体1の表面を観察して、易接着層の転写性を評価した。
(1.4. Peeling process of temporary support)
The temporary support 1 was peeled off to obtain a multi-layer film including a base film and an easy-adhesive layer. The transferability of the easy-adhesion layer was evaluated by observing the surface of the peeled temporary support 1.

(1.5.延伸工程)
前記の複層フィルムに、延伸温度130℃、延伸倍率1.2倍、延伸速度4mm/分の延伸条件で、当該複層フィルムの幅方向に延伸する延伸処理を施した。
(1.5. Stretching process)
The multilayer film was subjected to a stretching treatment in which the multilayer film was stretched in the width direction under the conditions of a stretching temperature of 130 ° C., a stretching ratio of 1.2 times, and a stretching speed of 4 mm / min.

(1.6.結晶化工程)
延伸処理の後で、複層フィルムを、温度170℃で30秒加熱する結晶化処理を行った。前記の結晶化処理は、複層フィルムの端部を固定して緊張させ、熱収縮によるシワが発生しない状態で行った。
これにより、基材フィルム及び易接着層を備える光学フィルムを得た。得られた光学フィルムが含む基材フィルム中のジシクロペンタジエンの開環重合体の水素化物の結晶化度は、73%であった。この光学フィルムについて、上述した方法で評価を行った。
(1.6. Crystallization process)
After the stretching treatment, the multilayer film was subjected to a crystallization treatment in which the multi-layer film was heated at a temperature of 170 ° C. for 30 seconds. The above crystallization treatment was carried out in a state where the edges of the multilayer film were fixed and tensioned, and wrinkles due to heat shrinkage did not occur.
As a result, an optical film provided with a base film and an easy-adhesion layer was obtained. The crystallinity of the hydride of the ring-opening polymer of dicyclopentadiene in the base film contained in the obtained optical film was 73%. This optical film was evaluated by the method described above.

[実施例2]
仮支持体を、ノルボルネン系樹脂で形成された樹脂フィルム(日本ゼオン社製「ゼオノアフィルム」、厚み50μm;以下、「仮支持体2」と記すことがある。)に変更した。
以上の事項以外は、実施例1と同じにして、光学フィルムの製造及び評価を行った。
[Example 2]
The temporary support was changed to a resin film made of a norbornene-based resin (“Zeonoa film” manufactured by Zeon Corporation, thickness 50 μm; hereinafter, may be referred to as “temporary support 2”).
Except for the above items, the optical film was manufactured and evaluated in the same manner as in Example 1.

[実施例3]
基材フィルムを、ノルボルネン系樹脂で形成された樹脂フィルム(日本ゼオン社製「ゼオノアフィルム」、厚み100μm、ノルボルネン系重合体のガラス転移温度125℃;以下、「非結晶性COP」と記すことがある。)に変更した。
また、複層フィルムの延伸処理において、延伸倍率を3.0倍に変更した。
さらに、複層フィルムに対する結晶化処理を行わないで、延伸処理後に得られた複層フィルムを光学フィルムとして評価した。
以上の事項以外は、実施例1と同じにして、光学フィルムの製造及び評価を行った。
[Example 3]
The base film may be referred to as a resin film made of a norbornene-based resin (“Zeonoa film” manufactured by Nippon Zeon Co., Ltd., thickness 100 μm, glass transition temperature of norbornene-based polymer 125 ° C.; hereinafter, “non-crystalline COP”. Yes.).
Further, in the stretching treatment of the multilayer film, the stretching ratio was changed to 3.0 times.
Further, the multilayer film obtained after the stretching treatment without performing the crystallization treatment on the multilayer film was evaluated as an optical film.
Except for the above items, the optical film was manufactured and evaluated in the same manner as in Example 1.

[実施例4]
仮支持体を、ポリエチレンテレフタレートフィルム(東洋紡社製「コスモシャイン(登録商標)A4100」、厚み100μm;以下、「仮支持体3」と記すことがある。)に変更した。
以上の事項以外は、実施例1と同じにして、光学フィルムの製造及び評価を行った。
[Example 4]
The temporary support was changed to a polyethylene terephthalate film (“Cosmo Shine (registered trademark) A4100” manufactured by Toyobo Co., Ltd., thickness 100 μm; hereinafter, may be referred to as “temporary support 3”).
Except for the above items, the optical film was manufactured and evaluated in the same manner as in Example 1.

[比較例1:易接着層を形成しなかった例]
製造例2で製造した基材フィルムに、実施例1と同じ条件で、コロナ処理、延伸処理及び結晶化処理を行った。すなわち、基材フィルムと易接着層との貼合を行わなかったこと以外は、実施例1と同じにして、光学フィルムの代わりに基材フィルムを得た。こうして得た基材フィルムの剥離強度を、上述した測定方法で測定した。この測定方法では、基材フィルムのコロナ処理面をスライドガラスの表面に貼合して、剥離強度を測定した。
[Comparative Example 1: Example in which the easy-adhesive layer was not formed]
The base film produced in Production Example 2 was subjected to corona treatment, stretching treatment and crystallization treatment under the same conditions as in Example 1. That is, a base film was obtained instead of the optical film in the same manner as in Example 1 except that the base film and the easy-adhesive layer were not bonded. The peel strength of the base film thus obtained was measured by the above-mentioned measuring method. In this measuring method, the corona-treated surface of the base film was attached to the surface of the slide glass, and the peel strength was measured.

[比較例2:易接着層を形成しなかった例]
実施例3で用意した基材フィルムに、実施例3と同じ条件で、コロナ処理及び延伸処理を行った。すなわち、基材フィルムと易接着層との貼合を行わなかったこと以外は、実施例3と同じにして、光学フィルムの代わりに基材フィルムを得た。こうして得た基材フィルムの剥離強度を、上述した測定方法で測定した。この測定方法では、基材フィルムのコロナ処理面をスライドガラスの表面に貼合して、剥離強度を測定した。
[Comparative Example 2: Example in which the easy-adhesive layer was not formed]
The base film prepared in Example 3 was subjected to corona treatment and stretching treatment under the same conditions as in Example 3. That is, a base film was obtained instead of the optical film in the same manner as in Example 3 except that the base film and the easy-adhesive layer were not bonded. The peel strength of the base film thus obtained was measured by the above-mentioned measuring method. In this measuring method, the corona-treated surface of the base film was attached to the surface of the slide glass, and the peel strength was measured.

[比較例3:易接着層との貼合後に熱処理を行わなかった例]
製造例2で製造した基材フィルムに、実施例1と同じ条件で、延伸処理及び結晶化処理を行って、結晶化基材フィルムを得た。この結晶化基材フィルムを、製造例2で製造した基材フィルムの代わりに用いた。
また、この結晶化基材フィルムと易接着層との貼合、及び、仮支持体の剥離を行った後には、延伸処理及び結晶化処理を行わなかった。
以上の事項以外は、実施例1と同じにして、光学フィルムの製造及び評価を行った。
[Comparative Example 3: An example in which heat treatment was not performed after bonding with the easy-adhesion layer]
The base film produced in Production Example 2 was subjected to a stretching treatment and a crystallization treatment under the same conditions as in Example 1 to obtain a crystallized base film. This crystallized base film was used in place of the base film produced in Production Example 2.
Further, after the crystallization base film and the easy-adhesion layer were bonded and the temporary support was peeled off, the stretching treatment and the crystallization treatment were not performed.
Except for the above items, the optical film was manufactured and evaluated in the same manner as in Example 1.

[比較例4:熱処理の温度が低かった例]
延伸処理における延伸温度を、90℃に変更した。
また、結晶化処理を行わなかった。
以上の事項以外は、実施例1と同じにして、光学フィルムの製造及び評価を行った。
[Comparative Example 4: Example in which the heat treatment temperature was low]
The stretching temperature in the stretching treatment was changed to 90 ° C.
Moreover, the crystallization treatment was not performed.
Except for the above items, the optical film was manufactured and evaluated in the same manner as in Example 1.

[比較例5:仮支持面の表面自由エネルギーが大きかった例]
製造例3で製造した塗工液を塗工する前に、仮支持体1の表面に、出力100W、電極幅0.3m、フィルム搬送速度0.080m/minの条件で、処理強度4.2kW・min/mのコロナ処理を施した。
以上の事項以外は、実施例1と同じにして、光学フィルムの製造及び評価を行った。しかし、易接着層の転写性が劣っていたので、易接着層と基材フィルムとの密着性の評価、並びに、剥離強度の測定を行えなかった。
[Comparative Example 5: Example in which the surface free energy of the temporary support surface was large]
Before applying the coating liquid produced in Production Example 3, the processing strength is 4.2 kW on the surface of the temporary support 1 under the conditions of an output of 100 W, an electrode width of 0.3 m, and a film transfer speed of 0.080 m / min. -Min / m 2 corona treatment was applied.
Except for the above items, the optical film was manufactured and evaluated in the same manner as in Example 1. However, since the transferability of the easy-adhesion layer was inferior, it was not possible to evaluate the adhesion between the easy-adhesion layer and the base film and measure the peel strength.

[比較例6:基材フィルムのフィルム表面の表面自由エネルギーが小さかった例]
基材フィルムのフィルム表面へのコロナ処理を行わなかった。
以上の事項以外は、実施例1と同じにして、光学フィルムの製造及び評価を行った。しかし、易接着層の転写性が劣っていたので、易接着層と基材フィルムとの密着性の評価、並びに、剥離強度の測定を行えなかった。
[Comparative Example 6: Example in which the surface free energy of the film surface of the base film was small]
No corona treatment was performed on the film surface of the base film.
Except for the above items, the optical film was manufactured and evaluated in the same manner as in Example 1. However, since the transferability of the easy-adhesion layer was inferior, it was not possible to evaluate the adhesion between the easy-adhesion layer and the base film and measure the peel strength.

[比較例7:基材フィルムのフィルム表面の表面自由エネルギーが小さかった例]
基材フィルムのフィルム表面へのコロナ処理の処理強度を、3.2kW・min/mに変更した。
以上の事項以外は、実施例1と同じにして、光学フィルムの製造及び評価を行った。ただし、比較例7は、易接着層の転写性が不十分であったので、剥離強度の評価は行っていない。
[Comparative Example 7: Example in which the surface free energy of the film surface of the base film was small]
The treatment strength of the corona treatment on the film surface of the base film was changed to 3.2 kW · min / m 2 .
Except for the above items, the optical film was manufactured and evaluated in the same manner as in Example 1. However, in Comparative Example 7, the transferability of the easy-adhesion layer was insufficient, so the peel strength was not evaluated.

[比較例8:仮支持面の表面自由エネルギーが大きかった例]
ノルボルネン系樹脂で形成された樹脂フィルム(日本ゼオン社製「ゼオノアフィルム ZF16-050」、厚み50μm)の表面に、処理強度4.2kW・min/mでコロナ処理を施した。このコロナ処理面に、製造例3で製造した塗工液を塗工した。塗工された塗工液の層を、90℃で120秒乾燥させて、厚み100nmの易接着層を形成した。これにより、樹脂フィルム及び易接着層を備える複層構造の仮支持体(以下、「仮支持体5」と記すことがある。)を得た。
[Comparative Example 8: Example in which the surface free energy of the temporary support surface was large]
The surface of a resin film (“Zeonoa Film ZF16-050” manufactured by Zeon Corporation, thickness 50 μm) formed of a norbornene-based resin was subjected to corona treatment with a treatment strength of 4.2 kW · min / m 2 . The coating liquid produced in Production Example 3 was applied to the corona-treated surface. The coated layer of the coating liquid was dried at 90 ° C. for 120 seconds to form an easy-adhesive layer having a thickness of 100 nm. As a result, a temporary support having a multi-layer structure including a resin film and an easy-adhesive layer (hereinafter, may be referred to as “temporary support 5”) was obtained.

この複層構造の仮支持体5を、実施例1で用いた仮支持体1の代わりに用いた。この際、複層構造の仮支持体5の易接着層側の表面を、更に易接着層を形成するための仮支持面として用いた。
また、基材フィルムのフィルム表面へのコロナ処理を行わなかった。
以上の事項以外は、実施例1と同じにして、光学フィルムの製造及び評価を行った。しかし、易接着層の転写性が劣っていたので、易接着層と基材フィルムとの密着性の評価、並びに、剥離強度の測定を行えなかった。
This temporary support 5 having a multi-layer structure was used in place of the temporary support 1 used in Example 1. At this time, the surface of the temporary support 5 having a multi-layer structure on the side of the easy-adhesive layer was used as a temporary support surface for further forming the easy-adhesive layer.
Moreover, the corona treatment on the film surface of the base film was not performed.
Except for the above items, the optical film was manufactured and evaluated in the same manner as in Example 1. However, since the transferability of the easy-adhesion layer was inferior, it was not possible to evaluate the adhesion between the easy-adhesion layer and the base film and measure the peel strength.

[結果]
前記の実施例及び比較例の結果を、下記の表3及び表4に示す。下記の表において、密着性の欄においては、分子の数値が、易接着層が剥がれずに残った正方形の数を表す。
[result]
The results of the above-mentioned Examples and Comparative Examples are shown in Tables 3 and 4 below. In the table below, in the column of adhesion, the numerical value of the molecule represents the number of squares remaining without peeling off the easy-adhesion layer.

Figure 0007088187000004
Figure 0007088187000004

Figure 0007088187000005
Figure 0007088187000005

[検討]
比較例3から分かるように、仮支持体の仮支持面に形成された易接着層は、脂環式構造含有重合体を含む樹脂で形成された基材フィルムに単純に貼合しても、高い密着性が得られず、容易に剥離する。また、比較例4から分かるように、易接着層を基材フィルムに貼合した後で熱処理を施しても、その熱処理の温度が所定の温度範囲から外れていれば、高い密着性は得られない。これに対し、実施例では、易接着層を基材フィルムに貼合した後で、所定の温度範囲で熱処理を施したことにより、易接着層と基材フィルムとの密着性を効果的に高めることができた。
また、比較例5~8から分かるように、仮支持体の仮支持面の表面自由エネルギー及び基材フィルムのフィルム面の表面自由エネルギーが所定の範囲から外れていると、仮支持面上に形成された易接着層を円滑に基材フィルムのフィルム面に移すことができない。これに対し、実施例では、仮支持体の仮支持面の表面自由エネルギー及び基材フィルムのフィルム面の表面自由エネルギーが所定の範囲にあることにより、易接着層が仮支持面に残ることなく、円滑な転写が実現できた。
以上の結果から、本発明の製造方法では、脂環式構造含有重合体を含む樹脂で形成された基材フィルムのフィルム表面と仮支持体上に形成された樹脂層とを貼り合わせて、基材フィルム及び前記基材フィルムから剥離し難い樹脂層を含む光学フィルムを製造できることが確認された。
[examination]
As can be seen from Comparative Example 3, the easy-adhesive layer formed on the temporary support surface of the temporary support can be simply bonded to the base film formed of the resin containing the alicyclic structure-containing polymer. High adhesion cannot be obtained and it easily peels off. Further, as can be seen from Comparative Example 4, even if the heat treatment is performed after the easy-adhesion layer is bonded to the base film, high adhesion can be obtained if the temperature of the heat treatment is out of the predetermined temperature range. do not have. On the other hand, in the embodiment, the easy-adhesive layer is bonded to the base film and then heat-treated in a predetermined temperature range to effectively improve the adhesion between the easy-adhesive layer and the base film. I was able to.
Further, as can be seen from Comparative Examples 5 to 8, when the surface free energy of the temporary support surface of the temporary support and the surface free energy of the film surface of the base film are out of the predetermined range, they are formed on the temporary support surface. The easy-adhesion layer that has been formed cannot be smoothly transferred to the film surface of the base film. On the other hand, in the embodiment, the surface free energy of the temporary support surface of the temporary support and the surface free energy of the film surface of the base film are within a predetermined range, so that the easy-adhesive layer does not remain on the temporary support surface. , Smooth transfer was realized.
From the above results, in the production method of the present invention, the film surface of the base film formed of the resin containing the alicyclic structure-containing polymer and the resin layer formed on the temporary support are bonded together to form a base. It was confirmed that an optical film containing a resin layer that is difficult to peel off from the material film and the base film can be produced.

さらに、比較例1及び2から分かるように、脂環式構造含有重合体を含む樹脂で形成された基材フィルムは、接着剤又は粘着剤を用いてスライドガラス等の部材に接着しても、その接着強度は小さい。これに対し、基材フィルムに樹脂層としての易接着層を形成して光学フィルムにすることで、実施例に示すように、その光学フィルムは、前記の部材に強力に接着させられることが確認された。 Further, as can be seen from Comparative Examples 1 and 2, the base film formed of the resin containing the alicyclic structure-containing polymer may be adhered to a member such as a slide glass using an adhesive or an adhesive. Its adhesive strength is small. On the other hand, it was confirmed that by forming an easy-adhesive layer as a resin layer on the base film to form an optical film, the optical film can be strongly adhered to the above-mentioned member as shown in Examples. Was done.

Claims (7)

表面自由エネルギーが20mJ/m以下である仮支持面を有する仮支持体の前記仮支持面に、樹脂層を形成する工程、
脂環式構造含有重合体を含む樹脂で形成された基材フィルムのフィルム表面に、当該フィルム表面の表面自由エネルギーが40mJ/m以上となるように親水処理を施す工程、
前記仮支持体の前記仮支持面に形成された前記樹脂層と、前記基材フィルムの親水処理を施された前記フィルム表面とを、貼合する工程、
前記仮支持体を剥離する工程、及び、
前記樹脂層及び前記基材フィルムに、前記脂環式構造含有重合体のガラス転移温度以上の温度で熱処理を施す工程、を含む、光学フィルムの製造方法。
A step of forming a resin layer on the temporary support surface of a temporary support having a temporary support surface having a surface free energy of 20 mJ / m 2 or less.
A step of subjecting the film surface of a base film made of a resin containing an alicyclic structure-containing polymer to a hydrophilic treatment so that the surface free energy of the film surface is 40 mJ / m 2 or more.
A step of bonding the resin layer formed on the temporary support surface of the temporary support and the surface of the film subjected to the hydrophilic treatment of the base film.
The step of peeling off the temporary support and
A method for producing an optical film, comprising a step of heat-treating the resin layer and the base film at a temperature equal to or higher than the glass transition temperature of the alicyclic structure-containing polymer.
前記脂環式構造含有重合体が、結晶性を有する、請求項1記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1, wherein the alicyclic structure-containing polymer has crystallinity. 前記フィルム表面に親水処理を施される前において、前記脂環式構造含有重合体の結晶化度が3%未満である、請求項2記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 2, wherein the crystallinity of the alicyclic structure-containing polymer is less than 3% before the film surface is subjected to a hydrophilic treatment. 前記樹脂層及び前記基材フィルムに前記熱処理を施す工程において、前記脂環式構造含有重合体の結晶化が進行する、請求項2又は3記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 2 or 3, wherein crystallization of the alicyclic structure-containing polymer proceeds in the step of applying the heat treatment to the resin layer and the base film. 前記樹脂層及び前記基材フィルムに前記熱処理を施す工程が、
前記基材フィルムを延伸する工程と、
延伸後に前記基材フィルムに含まれる前記脂環式構造含有重合体の結晶化を進行させる工程と、を含む、請求項2~4のいずれか一項に記載の光学フィルムの製造方法。
The step of applying the heat treatment to the resin layer and the base film is
The step of stretching the base film and
The method for producing an optical film according to any one of claims 2 to 4, further comprising a step of advancing the crystallization of the alicyclic structure-containing polymer contained in the base film after stretching.
前記親水処理が、コロナ処理、プラズマ処理及びエキシマ処理からなる群より選ばれる少なくとも一つである、請求項1~5のいずれか一項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 5, wherein the hydrophilic treatment is at least one selected from the group consisting of corona treatment, plasma treatment and excimer treatment. 前記樹脂層が、ウレタン樹脂、オレフィン樹脂、ポリエステル樹脂、エポキシ樹脂及びアクリル樹脂からなる群より選ばれる少なくともいずれかによって形成されている、請求項1~6のいずれか一項に記載の光学フィルムの製造方法。 The optical film according to any one of claims 1 to 6, wherein the resin layer is formed of at least one selected from the group consisting of urethane resin, olefin resin, polyester resin, epoxy resin and acrylic resin. Production method.
JP2019526811A 2017-06-29 2018-06-18 Optical film manufacturing method Active JP7088187B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017127879 2017-06-29
JP2017127879 2017-06-29
PCT/JP2018/023104 WO2019003980A1 (en) 2017-06-29 2018-06-18 Method for manufacturing optical film

Publications (2)

Publication Number Publication Date
JPWO2019003980A1 JPWO2019003980A1 (en) 2020-04-30
JP7088187B2 true JP7088187B2 (en) 2022-06-21

Family

ID=64740650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019526811A Active JP7088187B2 (en) 2017-06-29 2018-06-18 Optical film manufacturing method

Country Status (3)

Country Link
JP (1) JP7088187B2 (en)
TW (1) TW201905051A (en)
WO (1) WO2019003980A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140371A (en) 2014-01-27 2015-08-03 藤森工業株式会社 Adhesive layer and adhesive film
JP2017111264A (en) 2015-12-16 2017-06-22 コニカミノルタ株式会社 Method for manufacturing polarizing plate protective film and method for manufacturing polarizing plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5810679B2 (en) * 2011-06-30 2015-11-11 日本ゼオン株式会社 Film production method
JP2015024511A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Multilayer film, polarizing plate protective film, and polarizing plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140371A (en) 2014-01-27 2015-08-03 藤森工業株式会社 Adhesive layer and adhesive film
JP2017111264A (en) 2015-12-16 2017-06-22 コニカミノルタ株式会社 Method for manufacturing polarizing plate protective film and method for manufacturing polarizing plate

Also Published As

Publication number Publication date
TW201905051A (en) 2019-02-01
JPWO2019003980A1 (en) 2020-04-30
WO2019003980A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
TWI659233B (en) Polarizing plate, liquid crystal display device and organic electroluminance display device
TWI635155B (en) Multilayer film and manufacturing method thereof
TWI360477B (en) Hard-coated film and optical functional film
JP6477499B2 (en) Multilayer film, polarizing plate, and method for producing multilayer film
JP2015024511A (en) Multilayer film, polarizing plate protective film, and polarizing plate
JP6586721B2 (en) Laminated film, method for producing laminated film, and method for producing polarizing plate
JP6930544B2 (en) Multilayer film, polarizing plate, and liquid crystal display
JP6520038B2 (en) Multilayer film, method for producing the same, and polarizing plate
JP6954299B2 (en) Optical film manufacturing method
JP2009169333A (en) Polarizing plate
CN104246556A (en) Method for manufacturing double-sided polarizing plate and double-sided polarizing plate manufactured by same
JP6922933B2 (en) Optical film, manufacturing method, and multilayer film
JP7088187B2 (en) Optical film manufacturing method
JP2016104539A (en) Mold releasing biaxial oriented polyester film
JP2009237388A (en) Polarizing plate
JP6844651B2 (en) Multi-layer film and its manufacturing method, and polarizing plate
JP7334476B2 (en) Laminate manufacturing method
JP7552147B2 (en) Method for manufacturing optical film
JP2014094521A (en) Polyester film for molding decorative material
JP2019155609A (en) Manufacturing method of film roll
JP2022103719A (en) Optical film, method for producing the same and use thereof
JP2021100751A (en) Double-side coating film manufacturing method, double-side coating film, and stretched film manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7088187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150