JP7088050B2 - Power converter for resonant load - Google Patents

Power converter for resonant load Download PDF

Info

Publication number
JP7088050B2
JP7088050B2 JP2019015787A JP2019015787A JP7088050B2 JP 7088050 B2 JP7088050 B2 JP 7088050B2 JP 2019015787 A JP2019015787 A JP 2019015787A JP 2019015787 A JP2019015787 A JP 2019015787A JP 7088050 B2 JP7088050 B2 JP 7088050B2
Authority
JP
Japan
Prior art keywords
gate
period
series
switching elements
command signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019015787A
Other languages
Japanese (ja)
Other versions
JP2020124070A5 (en
JP2020124070A (en
Inventor
泰裕 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2019015787A priority Critical patent/JP7088050B2/en
Publication of JP2020124070A publication Critical patent/JP2020124070A/en
Priority to JP2021148614A priority patent/JP7151845B2/en
Publication of JP2020124070A5 publication Critical patent/JP2020124070A5/en
Application granted granted Critical
Publication of JP7088050B2 publication Critical patent/JP7088050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、例えば誘導加熱回路などの共振負荷に矩形波電圧を供給する負荷共振電力変換装置における、スイッチング素子のソフトスイッチングに関する。 The present invention relates to soft switching of a switching element in a load resonance power conversion device that supplies a rectangular wave voltage to a resonance load such as an induction heating circuit.

図9は、共振負荷に接続された負荷共振電力変換装置(交直変換装置)の回路構成を示している。図9において、交直変換装置10は、入力側が直流電圧源11に接続され、出力側が誘導加熱回路などの共振負荷12に接続された単相インバータを備えている。この単相インバータの各スイッチング素子をON,OFF制御することにより、共振周波数で矩形波電圧を共振負荷12に出力する。 FIG. 9 shows a circuit configuration of a load resonant power converter (AC / DC converter) connected to a resonant load. In FIG. 9, the AC / DC converter 10 includes a single-phase inverter whose input side is connected to a DC voltage source 11 and whose output side is connected to a resonance load 12 such as an induction heating circuit. By controlling ON and OFF of each switching element of this single-phase inverter, a rectangular wave voltage is output to the resonance load 12 at the resonance frequency.

この交直変換装置10は、共振負荷12が誘導加熱回路である場合は、誘導加熱用負荷共振交直変換装置(誘導加熱用共振型インバータ)として構成される。 When the resonance load 12 is an induction heating circuit, the AC / DC conversion device 10 is configured as an induction heating load resonance AC / DC conversion device (induction heating resonance type inverter).

この誘導加熱用負荷共振交直変換装置は、単相インバータの各スイッチング素子をON、OFF制御して生成した交流を、コイルとキャパシタによるLC共振回路に流し、それによって生成される交番磁界を被加熱体(電気伝導体)に与えて渦電流を流し、これによって発生するジュール熱によって内部から加熱させる方式となっている。 In this load resonance AC / DC converter for inductive heating, the alternating current generated by turning on / off each switching element of the single-phase inverter is passed through the LC resonance circuit by the coil and the capacitor, and the alternating magnetic field generated by the alternating current is heated. It is a method in which an eddy current is applied to a body (electric conductor) to cause an eddy current, and the Joule heat generated by the current causes heating from the inside.

負荷共振電力変換装置(例えば図9の交直変換装置10)の出力側に接続される共振負荷としての誘導加熱回路は、周波数が高いほど、電流浸透深さが減少する性質が従来から知られている。 It has been conventionally known that an induction heating circuit as a resonance load connected to the output side of a load resonance power converter (for example, the AC / DC converter 10 in FIG. 9) has a property that the current penetration depth decreases as the frequency increases. There is.

電縫管接合(継目を電気抵抗溶接で接合し、管を形成する)においては、表面焼き入れによって行われるため、誘導加熱に用いる負荷共振交直変換装置には、周波数が高い電圧を出力できることが要求される。 In the electric sewing pipe joining (joining the seams by electric resistance welding to form a pipe), since it is performed by surface quenching, it is possible to output a high frequency voltage to the load resonance AC / DC converter used for induction heating. Required.

一方で、誘導加熱に用いる負荷共振交直変換装置のスイッチング素子には、駆動周波数に上限があるため、スイッチング素子の駆動周波数よりも高い電圧周波数に対応ができないことが問題となる。 On the other hand, since the switching element of the load resonance AC / DC converter used for induction heating has an upper limit of the drive frequency, there is a problem that it cannot cope with a voltage frequency higher than the drive frequency of the switching element.

この問題を解決するため、本願の発明者は、特許文献1に記載の時分割運転方法を提案している。また従来、高出力高周波数共振負荷インバータとして、特許文献2に記載のものが提案されている。 In order to solve this problem, the inventor of the present application proposes a time-division operation method described in Patent Document 1. Further, conventionally, as a high output high frequency resonant load inverter, the one described in Patent Document 2 has been proposed.

特許第6079861号公報Japanese Patent No. 6079861 特許第4761696号公報Japanese Patent No. 4761696

しかし、特許文献1の時分割運転手法によると、負荷共振交直変換装置のスイッチング素子のバラツキから、各スイッチング素子のON,OFFタイミングと負荷電流の関係を示す図10のように、上下アームのスイッチング切り換え時にデッドタイムを設けなければならない。電流ゼロクロス近辺でのソフト遮断が実現できず、遮断電流が生じる。 However, according to the time-division operation method of Patent Document 1, the switching of the upper and lower arms is performed as shown in FIG. 10, which shows the relationship between the ON / OFF timing of each switching element and the load current due to the variation of the switching element of the load resonance AC / DC converter. A dead time must be set when switching. Soft cutoff cannot be realized near the current zero cross, and a cutoff current is generated.

これに伴い、スイッチング損の発生による素子の過熱、遮断サージによる素子の過電圧となることが問題である。この問題に関連して、スイッチング損は入力電圧と比例関係に近い特性であるので高圧化が難しいこと、出力周波数に比例してスイッチング損が増えるため過熱による制限が周波数によって生じることも問題になる。 Along with this, there is a problem that the element is overheated due to the occurrence of switching loss and the element is overvoltage due to the breaking surge. In relation to this problem, it is also a problem that the switching loss has a characteristic close to the proportional relationship with the input voltage, so it is difficult to increase the high voltage, and the switching loss increases in proportion to the output frequency, so that the limitation due to overheating is caused by the frequency. ..

本発明は上記課題を解決するものであり、その目的は、単相インバータのスイッチング素子の直列数をM、並列数をNとした時分割運転におけるk次高調波スイッチングパターンを生成し、電流ゼロクロス近辺でのソフト遮断を実現することができる共振負荷用電力変換装置を提供することにある。 The present invention solves the above-mentioned problems, and an object thereof is to generate a k-th harmonic switching pattern in a time-divided operation in which the number of switching elements of a single-phase inverter is M and the number of parallels is N, and the current is zero crossed. It is an object of the present invention to provide a power conversion device for a resonance load that can realize a soft cutoff in the vicinity.

上記課題を解決するための請求項1に記載の共振負荷用電力変換装置は、
直流入力側が直流電圧源に、出力側が共振負荷に各々接続され、共振周波数で矩形波電圧を出力する単相インバータを備えた共振負荷用電力変換装置であって、
前記単相インバータの一方の相の上、下アームおよび他方の相の上、下アームに各々接続され、m個(mは2以上の整数)のスイッチング素子の直列体をn個(nは2以上の整数)並列にそれぞれの直列体間を主回路導体で接続して構成されたスイッチ群回路と、
前記単相インバータの前記スイッチ群回路の各スイッチング素子を1/(m×n)に時分割でスイッチング制御する制御部とを備え、
前記単相インバータの一方の相の上アームのスイッチ群回路は、U11~U1mのm個のスイッチング素子が直列接続された第1の直列体と、…Un1~Unmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの一方の相の下アームのスイッチ群回路は、X11~X1mのm個のスイッチング素子が直列接続された第1の直列体と、…Xn1~Xnmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の上アームのスイッチ群回路は、V11~V1mのm個のスイッチング素子が直列接続された第1の直列体と、…Vn1~Vnmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の下アームのスイッチ群回路は、Y11~Y1mのm個のスイッチング素子が直列接続された第1の直列体と、…Yn1~Ynmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記制御部は、
前記単相インバータの出力電流周波数の半サイクルをトリガとし、半サイクル毎にk個(kは3以上の奇数の高調波次数)出力するクロックと、
2×直列数M×並列数N×kクロック(M、Nは2以上の整数)を1周期とし、2×並列数N×(直列数M-1)×k+1クロックの期間ON信号を出力し、{2×直列数M×並列数N×k}-{2×並列数N×(直列数M-1)×k+1}クロックの期間OFF信号を出力するスイッチング素子U11、Y11用ゲート指令信号U11_gate/Y11_gateと、
前記ゲート指令信号U11_gate/Y11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X11,V11用ゲート指令信号X11_gate/V11_gateと、
前記ゲート指令信号X11_gate/V11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U21,Y21用ゲート指令信号U21_gate/Y21_gateと、
前記ゲート指令信号U21_gate/Y21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X21,V21用ゲート指令信号X21_gate/V21_gateと、



スイッチング素子X(n-1)1,V(n-1)1用ゲート指令信号X(n-1)1_gate/V(n-1)1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un1,Yn1用ゲート指令信号Un1_gate/Yn1_gateと、
前記ゲート指令信号Un1_gate/Yn1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn1,Vn1用ゲート指令信号Xn1_gate/Vn1_gateと、
前記ゲート指令信号Xn1_gate/Vn1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U12,Y12用ゲート指令信号U12_gate/Y12_gateと、
前記ゲート指令信号U12_gate/Y12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X12,V12用ゲート指令信号X12_gate/V12_gateと、
前記ゲート指令信号X12_gate/V12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U22,Y22用ゲート指令信号U22_gate/Y22_gateと、
前記ゲート指令信号U22_gate/Y22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X22,V22用ゲート指令信号X22_gate/V22_gateと、



スイッチング素子X(n-1)2,V(n-1)2用ゲート指令信号X(n-1)2_gate/V(n-1)2_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un2,Yn2用ゲート指令信号Un2_gate/Yn2_gateと、
前記ゲート指令信号Un2_gate/Yn2_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn2,Vn2用ゲート指令信号Xn2_gate/Vn2_gateと、



スイッチング素子X1(m-1),V1(m-1)用ゲート指令信号X1(m-1)_gate/V1(m-1)_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U1m,Y1m用ゲート指令信号U1m_gate/Y1m_gateと、
前記ゲート指令信号U1m_gate/Y1m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X1m,V1m用ゲート指令信号X1m_gate/V1m_gateと、
前記ゲート指令信号X1m_gate/V1m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U2m,Y2m用ゲート指令信号U2m_gate/Y2m_gateと、
前記ゲート指令信号U2m_gate/Y2m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X2m,V2m用ゲート指令信号X2m_gate/V2m_gateと、



スイッチング素子X(n-1)m,V(n-1)m用ゲート指令信号X(n-1)m_gate/V(n-1)m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Unm,Ynm用ゲート指令信号Unm_gate/Ynm_gateと、
前記ゲート指令信号Unm_gate/Ynm_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xnm,Vnm用ゲート指令信号Xnm_gate/Vnm_gateと、
を作成するゲート指令作成部を備え、
前記作成された各ゲート指令信号によって前記各スイッチング素子をON、OFF制御することを特徴としている。
The power conversion device for a resonant load according to claim 1 for solving the above problems is
It is a power conversion device for resonance load equipped with a single-phase inverter that outputs a square wave voltage at the resonance frequency by connecting the DC input side to the DC voltage source and the output side to the resonance load.
N series of m (m is an integer of 2 or more) switching elements connected to the upper and lower arms of one phase and the upper and lower arms of the other phase, respectively (n is 2). The above integers) A switch group circuit configured by connecting each series in parallel with a main circuit conductor,
It is provided with a control unit that controls switching of each switching element of the switch group circuit of the single-phase inverter by time division in 1 / (m × n).
In the switch group circuit of the upper arm of one phase of the single-phase inverter, a first series body in which m switching elements of U11 to U1 m are connected in series and ... m switching elements of Un1 to Unm are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the lower arm of one phase of the single-phase inverter, a first series body in which m switching elements of X11 to X1 m are connected in series and ... m switching elements of Xn1 to Xnm are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the upper arm of the other phase of the single-phase inverter, a first series body in which m switching elements of V11 to V1 m are connected in series and ... m switching elements of Vn1 to Vnm are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the lower arm of the other phase of the single-phase inverter, a first series body in which m switching elements of Y11 to Y1 m are connected in series and m switching elements of Yn1 to Ynm are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
The control unit
A clock that outputs k (k is an odd harmonic order of 3 or more) every half cycle, triggered by a half cycle of the output current frequency of the single-phase inverter.
2 × number of series M × number of parallels N × k clock (M and N are integers of 2 or more) is set as one cycle, and 2 × number of parallels N × (number of series M-1) × k + 1 clock period ON signal is output. , {2 x number of series M x number of parallels N x k}-{2 x number of parallels N x (number of series M-1) x k + 1} Switching element U11 that outputs a clock period OFF signal, gate command signal U11_gate for Y11 / Y11_gate and
The gate command signals X11_gate / V11_gate for the switching elements X11 and V11, which are delayed by k clocks from the gate command signal U11_gate / Y11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U21_gate / Y21_gate for the switching elements U21 and Y21, which are delayed by k clocks from the gate command signal X11_gate / V11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X21_gate / V21_gate for the switching elements X21 and V21, which are delayed by k clocks from the gate command signals U21_gate / Y21_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



A k clock delay is delayed from the gate command signal X (n-1) 1_gate / V (n-1) 1_gate for the switching elements X (n-1) 1 and V (n-1) 1, and the ON period of the gate command signal is And the gate command signals Un1_gate / Yn1_gate for the switching elements Un1 and Yn1 having the same ON period and OFF period as the OFF period,
The gate command signals Xn1_gate / Vn1_gate for the switching elements Xn1 and Vn1 which are delayed by k clocks from the gate command signal Un1_gate / Yn1_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal.
The gate command signals U12_gate / Y12_gate for the switching elements U12 and Y12, which are delayed by k clocks from the gate command signal Xn1_gate / Vn1_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal.
The gate command signals X12_gate / V12_gate for the switching elements X12 and V12, which are delayed by k clocks from the gate command signal U12_gate / Y12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U22_gate / Y22_gate for the switching elements U22 and Y22, which are delayed by k clocks from the gate command signal X12_gate / V12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X22_gate / V22_gate for the switching elements X22 and V22, which are delayed by k clocks from the gate command signal U22_gate / Y22_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



The gate command signal for the switching elements X (n-1) 2, V (n-1) 2 is delayed by k clocks from the gate command signal X (n-1) 2_gate / V (n-1) 2_gate, and the ON period of the gate command signal is And the gate command signal Un2_gate / Yn2_gate for the switching elements Un2 and Yn2 having the same ON period and OFF period as the OFF period,
The gate command signals Xn2_gate / Vn2_gate for the switching elements Xn2 and Vn2, which are delayed by k clocks from the gate command signal Un2_gate / Yn2_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



The gate command signal for the switching elements X1 (m-1) and V1 (m-1) is delayed by k clocks from the gate command signal X1 (m-1) _gate / V1 (m-1) _gate, and the gate command signal is turned on and off. A gate command signal U1m_gate / Y1m_gate for switching elements U1m and Y1m having the same ON period and OFF period as the period,
The gate command signals X1m_gate / V1m_gate for the switching elements X1m and V1m, which are delayed by k clocks from the gate command signal U1m_gate / Y1m_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U2m_gate / Y2m_gate for switching elements U2m and Y2m, which are delayed by k clocks from the gate command signal X1m_gate / V1m_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X2m_gate / V2m_gate for switching elements X2m and V2m, which are delayed by k clocks from the gate command signal U2m_gate / Y2m_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



A k clock delay is delayed from the gate command signal X (n-1) m_gate / V (n-1) m_gate for the switching elements X (n-1) m and V (n-1) m, and the ON period of the gate command signal is And the gate command signal Unm_gate / Ynm_gate for switching elements Unm, Ynm having the same ON period and OFF period as the OFF period,
The gate command signals Xnm_gate / Vnm_gate for switching elements Xnm and Vnm, which are delayed by k clocks from the gate command signal Unm_gate / Ynm_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
Equipped with a gate command creation unit to create
It is characterized in that each switching element is ON / OFF controlled by each of the created gate command signals.

請求項2に記載の共振負荷用電力変換装置は、請求項1において、
前記ゲート指令作成部は、
可変の高調波指令を前記スイッチング素子U11,Y11用ゲート指令信号U11_gate/Y11_gateの立上りクロックでサンプルホールドして高調波指令kを演算する高調波指令演算部と、
2×直列数M×並列数N×kを演算することにより、前記各ゲート指令信号の1周期のクロック数およびキャリア上限値を求めるキャリア上限演算部と、
前記キャリア上限演算部で求められた前記各ゲート指令信号の1周期のクロック数から、1周期中のON信号期間のクロック数(2×(M-1)×N×k+1)を減算して1周期中のOFF信号期間のクロック数(2×M×N×k)-{(2×(M-1)×N×k+1)}を求め、前記1周期中のON信号期間のクロック数から前記1周期中のOFF信号期間のクロック数を減算してPWM(Pulse Wide Modulation))指令信号を生成するPWM指令生成部と、
前記単相インバータの出力電流のゼロクロスタイミングから出力電流の周期Tを演算する周期演算部と、
前記周期演算部で演算された周期Tを2で除算して得たキャリア傾きと、前記キャリア上限演算部で求められたキャリア上限値と、前記キャリア上限値に-1を乗算して得たキャリア下限値とに基いて三角波信号を生成する三角波生成部と、
前記三角波生成部で生成された三角波信号を(T×K)/2クロックずつ順次遅延させる2×N×M-1個の遅延部と、
前記PWM指令生成部で生成されたPWM指令信号と、前記三角波生成部で生成された三角波信号および前記2×N×M-1個の遅延部により遅延された三角波信号とを各々比較し、前記三角波信号がPWM指令信号よりも小のときゲートON信号を、三角波信号がPWM指令信号よりも大のときゲートOFF信号を各々出力する2×N×M個の比較器と、
を備えたことを特徴としている。
The power conversion device for a resonant load according to claim 2 is claimed in claim 1.
The gate command creation unit
A harmonic command calculation unit that calculates the harmonic command k by sample-holding a variable harmonic command with the rising clock of the gate command signals U11_gate / Y11_gate for the switching elements U11 and Y11.
A carrier upper limit calculation unit that obtains the number of clocks in one cycle of each gate command signal and the carrier upper limit value by calculating 2 × the number of series M × the number of parallels N × k.
The number of clocks in the ON signal period in one cycle (2 × (M-1) × N × k + 1) is subtracted from the number of clocks in one cycle of each gate command signal obtained by the carrier upper limit calculation unit, and 1 The number of clocks in the OFF signal period during the cycle (2 × M × N × k)-{(2 × (M-1) × N × k + 1)} is obtained, and the clocks in the ON signal period in one cycle are used as described above. A PWM command generator that generates a PWM (Pulse Width Modulation) command signal by subtracting the number of clocks during the OFF signal period in one cycle.
A cycle calculation unit that calculates the cycle T of the output current from the zero cross timing of the output current of the single-phase inverter.
The carrier slope obtained by dividing the cycle T calculated by the cycle calculation unit by 2, the carrier upper limit value obtained by the carrier upper limit calculation unit, and the carrier obtained by multiplying the carrier upper limit value by -1. A triangle wave generator that generates a triangle wave signal based on the lower limit,
A delay unit of 2 × N × M-1 that sequentially delays the triangle wave signal generated by the triangle wave generation unit by (T × K) / 2 clocks, and
The PWM command signal generated by the PWM command generation unit is compared with the triangle wave signal generated by the triangle wave generation unit and the triangle wave signal delayed by the 2 × N × M-1 delay units, respectively. A 2 × N × M comparator that outputs a gate ON signal when the triangle wave signal is smaller than the PWM command signal and a gate OFF signal when the triangle wave signal is larger than the PWM command signal.
It is characterized by being equipped with.

請求項3に記載の共振負荷用電力変換装置は、請求項2において、
前記単相インバータの各アームのスイッチ群回路を構成するスイッチング素子の直列数Mは2、並列数Nは3であり、
前記単相インバータの一方の相の上アームのスイッチ群回路は、U11およびU12の2個のスイッチング素子が直列接続された第1の直列体とU21およびU22の2個のスイッチング素子が直列接続された第2の直列体とU31およびU32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの一方の相の下アームのスイッチ群回路は、X11およびX12の2個のスイッチング素子が直列接続された第1の直列体とX21およびX22の2個のスイッチング素子が直列接続された第2の直列体とX31およびX32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の上アームのスイッチ群回路は、V11およびV12の2個のスイッチング素子が直列接続された第1の直列体とV21およびV22の2個のスイッチング素子が直列接続された第2の直列体とV31およびV32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の下アームのスイッチ群回路は、Y11およびY12の2個のスイッチング素子が直列接続された第1の直列体とY21およびY22の2個のスイッチング素子が直列接続された第2の直列体とY31およびY32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記2×N×M-1個の遅延部は11個の遅延部で構成され、
前記2×N×M個の比較器は12個の比較器で構成され、
前記ゲート指令作成部は、
前記単相インバータの出力電流周波数の半サイクルをトリガとし、半サイクル毎にk個(kは3以上の奇数の高調波次数)出力するクロックと、
2×2(=直列数M)×3(=並列数N)×kクロックを1周期とし、2×3(=並列数N)×1(=直列数M-1)×k+1クロックの期間ON信号を出力し、{2×2(=直列数M)×3(=並列数N)×k}-{2×3(=並列数N)×1(=直列数M-1)×k+1}クロックの期間OFF信号を出力するスイッチング素子U11,Y11用ゲート指令信号U11_gate/Y11_gateと、
前記ゲート指令信号U11_gate/Y11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X11,V11用ゲート指令信号X11_gate/V11_gateと、
前記ゲート指令信号X11_gate/V11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U21,Y21用ゲート指令信号U21_gate/Y21_gateと、
前記ゲート指令信号U21_gate/Y21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X21,V21用ゲート指令信号X21_gate/V21_gateと、
前記ゲート指令信号X21_gate/V21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U31,Y31用ゲート指令信号U31_gate/Y31_gateと、
前記ゲート指令信号U31_gate/Y31_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X31,V31用ゲート指令信号X31_gate/V31_gateと、
前記ゲート指令信号X31_gate/V31_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U12,Y12用ゲート指令信号U12_gate/Y12_gateと、
前記ゲート指令信号U12_gate/Y12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X12,V12用ゲート指令信号X12_gate/V12_gateと、
前記ゲート指令信号X12_gate/V12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U22,Y22用ゲート指令信号U22_gate/Y22_gateと、
前記ゲート指令信号U22_gate/Y22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X22,V22用ゲート指令信号X22_gate/V22_gateと、
前記ゲート指令信号X22_gate/V22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U32,Y32用ゲート指令信号U32_gate/Y32_gateと、
前記ゲート指令信号U32_gate/Y32_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X32,V32用ゲート指令信号X32_gate/V32_gateと、
を作成することを特徴としている。
The power conversion device for a resonant load according to claim 3 is claimed in claim 2.
The number M in series and the number N in parallel of the switching elements constituting the switch group circuit of each arm of the single-phase inverter are 2.
In the switch group circuit of the upper arm of one phase of the single-phase inverter, a first series body in which two switching elements U11 and U12 are connected in series and two switching elements U21 and U22 are connected in series. It has a second series body and a third series body in which two switching elements U31 and U32 are connected in series, and three series bodies from the first series body to the third series body. Are configured in parallel and each series is connected by a main circuit conductor.
In the switch group circuit of the lower arm of one phase of the single-phase inverter, a first series body in which two switching elements X11 and X12 are connected in series and two switching elements X21 and X22 are connected in series. It has a second series body and a third series body in which two switching elements of X31 and X32 are connected in series, and three series bodies from the first series body to the third series body. Are configured in parallel and each series is connected by a main circuit conductor.
In the switch group circuit of the upper arm of the other phase of the single-phase inverter, a first series body in which two switching elements of V11 and V12 are connected in series and two switching elements of V21 and V22 are connected in series. It has a second series body and a third series body in which two switching elements of V31 and V32 are connected in series, and three series bodies from the first series body to the third series body. Are configured in parallel and each series is connected by a main circuit conductor.
In the switch group circuit of the lower arm of the other phase of the single-phase inverter, a first series body in which two switching elements Y11 and Y12 are connected in series and two switching elements Y21 and Y22 are connected in series. It has a second series body and a third series body in which two switching elements of Y31 and Y32 are connected in series, and three series bodies from the first series body to the third series body. Are configured in parallel and each series is connected by a main circuit conductor.
The 2 × N × M-1 delay part is composed of 11 delay parts.
The 2 × N × M comparators are composed of 12 comparators.
The gate command creation unit
A clock that outputs k (k is an odd harmonic order of 3 or more) every half cycle, triggered by a half cycle of the output current frequency of the single-phase inverter.
2 x 2 (= series number M) x 3 (= parallel number N) x k clock is set as one cycle, and 2 x 3 (= parallel number N) x 1 (= series number M-1) x k + 1 clock period ON Output a signal, {2 x 2 (= series number M) x 3 (= parallel number N) x k}-{2 x 3 (= parallel number N) x 1 (= series number M-1) x k + 1} The gate command signals U11_gate / Y11_gate for the switching elements U11 and Y11 that output the clock period OFF signal,
The gate command signals X11_gate / V11_gate for the switching elements X11 and V11, which are delayed by k clocks from the gate command signal U11_gate / Y11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U21_gate / Y21_gate for the switching elements U21 and Y21, which are delayed by k clocks from the gate command signal X11_gate / V11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X21_gate / V21_gate for the switching elements X21 and V21, which are delayed by k clocks from the gate command signals U21_gate / Y21_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U31_gate / Y31_gate for the switching elements U31 and Y31, which are delayed by k clocks from the gate command signal X21_gate / V21_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X31_gate / V31_gate for the switching elements X31 and V31, which are delayed by k clocks from the gate command signal U31_gate / Y31_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U12_gate / Y12_gate for the switching elements U12 and Y12, which are delayed by k clocks from the gate command signal X31_gate / V31_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X12_gate / V12_gate for the switching elements X12 and V12, which are delayed by k clocks from the gate command signal U12_gate / Y12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U22_gate / Y22_gate for the switching elements U22 and Y22, which are delayed by k clocks from the gate command signal X12_gate / V12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X22_gate / V22_gate for the switching elements X22 and V22, which are delayed by k clocks from the gate command signal U22_gate / Y22_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U32_gate / Y32_gate for the switching elements U32 and Y32, which are delayed by k clocks from the gate command signal X22_gate / V22_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X32_gate / V32_gate for the switching elements X32 and V32, which are delayed by k clocks from the gate command signal U32_gate / Y32_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
It is characterized by creating.

請求項4に記載の共振負荷用電力変換装置は、請求項2において、
前記単相インバータの各アームのスイッチ群回路を構成するスイッチング素子の直列数Mは2であり、
前記単相インバータの一方の相の上アームのスイッチ群回路は、U11およびU12の2個のスイッチング素子が直列接続された第1の直列体と、…Un1およびUn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの一方の相の下アームのスイッチ群回路は、X11および12の2個のスイッチング素子が直列接続された第1の直列体と、…Xn1およびXn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の上アームのスイッチ群回路は、V11およびV12の2個のスイッチング素子が直列接続された第1の直列体と、…Vn1およびVn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の下アームのスイッチ群回路は、Y11およびY12の2個のスイッチング素子が直列接続された第1の直列体と、…Yn1およびYn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記ゲート指令作成部は、
前記単相インバータの出力電流周波数の半サイクルをトリガとし、半サイクル毎にk個(kは3以上の奇数の高調波次数)出力するクロックと、
2×2(=直列数M)×並列数N×kクロック(Nは2以上の整数)を1周期とし、2×並列数N×1(=直列数M-1)×k+1クロックの期間ON信号を出力し、{2×2(=直列数M)×並列数N×k}-{2×並列数N×1(=直列数M-1)×k+1}クロックの期間OFF信号を出力するスイッチング素子U11、Y11用ゲート指令信号U11_gate/Y11_gateと、
前記ゲート指令信号U11_gate/Y11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X11,V11用ゲート指令信号X11_gate/V11_gateと、
前記ゲート指令信号X11_gate/V11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U21,Y21用ゲート指令信号U21_gate/Y21_gateと、
前記ゲート指令信号U21_gate/Y21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X21,V21用ゲート指令信号X21_gate/V21_gateと、



スイッチング素子X(n-1)1,V(n-1)1用ゲート指令信号X(n-1)1_gate/V(n-1)1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un1,Yn1用ゲート指令信号Un1_gate/Yn1_gateと、
前記ゲート指令信号Un1_gate/Yn1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn1,Vn1用ゲート指令信号Xn1_gate/Vn1_gateと、
前記ゲート指令信号Xn1_gate/Vn1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U12,Y12用ゲート指令信号U12_gate/Y12_gateと、
前記ゲート指令信号U12_gate/Y12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X12,V12用ゲート指令信号X12_gate/V12_gateと、
前記ゲート指令信号X12_gate/V12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U22,Y22用ゲート指令信号U22_gate/Y22_gateと、
前記ゲート指令信号U22_gate/Y22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X22,V22用ゲート指令信号X22_gate/V22_gateと、



スイッチング素子X(n-1)2,V(n-1)2用ゲート指令信号X(n-1)2_gate/V(n-1)2_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un2,Yn2用ゲート指令信号Un2_gate/Yn2_gateと、
前記ゲート指令信号Un2_gate/Yn2_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn2,Vn2用ゲート指令信号Xn2_gate/Vn2_gateと、
を作成することを特徴としている。
The power conversion device for a resonant load according to claim 4 is claimed in claim 2.
The series number M of the switching elements constituting the switch group circuit of each arm of the single-phase inverter is 2.
In the switch group circuit of the upper arm of one phase of the single-phase inverter, a first series body in which two switching elements U11 and U12 are connected in series and ... Two switching elements Un1 and Un2 are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the lower arm of one phase of the single-phase inverter, a first series body in which two switching elements X11 and 12 are connected in series and ... Two switching elements Xn1 and Xn2 are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the upper arm of the other phase of the single-phase inverter, a first series body in which two switching elements of V11 and V12 are connected in series and ... Two switching elements of Vn1 and Vn2 are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the lower arm of the other phase of the single-phase inverter, a first series body in which two switching elements Y11 and Y12 are connected in series and ... Two switching elements Yn1 and Yn2 are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
The gate command creation unit
A clock that outputs k (k is an odd harmonic order of 3 or more) every half cycle, triggered by a half cycle of the output current frequency of the single-phase inverter.
2 x 2 (= series number M) x parallel number N x k clock (N is an integer of 2 or more) is set as one cycle, and 2 x parallel number N x 1 (= series number M-1) x k + 1 clock period ON Outputs a signal and outputs a {2 × 2 (= series number M) × parallel number N × k}-{2 × parallel number N × 1 (= series number M-1) × k + 1} clock period OFF signal. Gate command signals U11_gate / Y11_gate for switching elements U11 and Y11,
The gate command signals X11_gate / V11_gate for the switching elements X11 and V11, which are delayed by k clocks from the gate command signal U11_gate / Y11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U21_gate / Y21_gate for the switching elements U21 and Y21, which are delayed by k clocks from the gate command signal X11_gate / V11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X21_gate / V21_gate for the switching elements X21 and V21, which are delayed by k clocks from the gate command signals U21_gate / Y21_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



A k clock delay is delayed from the gate command signal X (n-1) 1_gate / V (n-1) 1_gate for the switching elements X (n-1) 1 and V (n-1) 1, and the ON period of the gate command signal is And the gate command signals Un1_gate / Yn1_gate for the switching elements Un1 and Yn1 having the same ON period and OFF period as the OFF period,
The gate command signals Xn1_gate / Vn1_gate for the switching elements Xn1 and Vn1 which are delayed by k clocks from the gate command signal Un1_gate / Yn1_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal.
The gate command signals U12_gate / Y12_gate for the switching elements U12 and Y12, which are delayed by k clocks from the gate command signal Xn1_gate / Vn1_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal.
The gate command signals X12_gate / V12_gate for the switching elements X12 and V12, which are delayed by k clocks from the gate command signal U12_gate / Y12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U22_gate / Y22_gate for the switching elements U22 and Y22, which are delayed by k clocks from the gate command signal X12_gate / V12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X22_gate / V22_gate for the switching elements X22 and V22, which are delayed by k clocks from the gate command signal U22_gate / Y22_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



The gate command signal for the switching elements X (n-1) 2, V (n-1) 2 is delayed by k clocks from the gate command signal X (n-1) 2_gate / V (n-1) 2_gate, and the ON period of the gate command signal is And the gate command signal Un2_gate / Yn2_gate for the switching elements Un2 and Yn2 having the same ON period and OFF period as the OFF period,
The gate command signals Xn2_gate / Vn2_gate for the switching elements Xn2 and Vn2, which are delayed by k clocks from the gate command signal Un2_gate / Yn2_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
It is characterized by creating.

請求項5に記載の共振負荷用電力変換装置は、請求項2において、
前記高調波指令演算部を除去し、固定の高調波指令kを設定する高調波指令設定部を設けたことを特徴としている。
The power conversion device for a resonant load according to claim 5 is claimed in claim 2.
The feature is that the harmonic command calculation unit is removed and a harmonic command setting unit for setting a fixed harmonic command k is provided.

(1)請求項1~5に記載の発明によれば、kに奇数の値を入力することで、単相インバータのスイッチング素子の直列数をM、並列数をNとした時分割運転におけるk次高調波スイッチングパターンを生成することができる。 (1) According to the inventions of claims 1 to 5 , by inputting an odd value to k, k in the time-divided operation in which the number of series of switching elements of the single-phase inverter is M and the number of parallels is N. The next harmonic switching pattern can be generated.

このk次高調波スイッチングパターンにより制御することによって、電流ゼロクロス近辺でのソフト遮断が実現され、電流遮断は生じない。このため出力電圧を上げても損失は増えず、また出力周波数に依存した出力の制約は生じない。またデッドタイムを長くとることができるので、スイッチング素子の特性のバラツキを広く許容できる。
(2)請求項2~4に記載の発明によれば、高調波指令演算部を設けているので、単相インバータにおけるスイッチング素子の直列数Mが2であれば、連続的に高調波指令kを変更することができ、装置出力インピーダンスをオートマッチングさせることができる。例えば高調波次数kが大きくなるほど1サイクルにおけるスイッチング素子のON期間は小さくなり、出力電力が下るので、等価的に共振負荷回路のインピーダンスを調整することができる。
(3)請求項5に記載の発明によれば、単相インバータにおけるスイッチング素子の直列数Mが2以上、並列数Nが2以上であるときに、高調波指令設定部で設定された高調波指令kに応じた制御モデルを生成することができる。
By controlling by this k-th harmonic switching pattern, soft cutoff in the vicinity of the current zero cross is realized, and current cutoff does not occur. Therefore, even if the output voltage is increased, the loss does not increase, and the output is not restricted depending on the output frequency. Moreover, since the dead time can be long, variations in the characteristics of the switching element can be widely tolerated.
(2) According to the inventions of claims 2 to 4, since the harmonic command calculation unit is provided, if the series number M of the switching elements in the single-phase inverter is 2, the harmonic command k is continuously provided. Can be changed, and the device output impedance can be auto-matched. For example, as the harmonic order k increases, the ON period of the switching element in one cycle decreases and the output power decreases, so that the impedance of the resonant load circuit can be adjusted equivalently.
(3) According to the fifth aspect of the present invention, when the number of series M of switching elements in a single-phase inverter is 2 or more and the number of parallels N is 2 or more, the harmonics set by the harmonic command setting unit are used. A control model corresponding to the command k can be generated.

本発明の実施例1による単相インバータの構成図。The block diagram of the single-phase inverter according to Example 1 of this invention. 本発明の実施例1による制御ブロックの構成図。The block diagram of the control block according to Example 1 of this invention. 本発明の実施例2による単相インバータの構成図。The block diagram of the single-phase inverter according to Example 2 of this invention. 本発明の実施例2による制御ブロックの構成図。The block diagram of the control block according to Example 2 of this invention. 本発明の実施例3による単相インバータの構成図。The block diagram of the single-phase inverter according to Example 3 of this invention. 本発明の実施例3による制御ブロックの構成図。The block diagram of the control block according to Example 3 of this invention. 本発明の実施例3によるゲート指令信号生成パターンの一例を示す信号波形図。FIG. 3 is a signal waveform diagram showing an example of a gate command signal generation pattern according to the third embodiment of the present invention. 本発明による、各スイッチング素子のON,OFFタイミングと出力電流波形を表す説明図。An explanatory diagram showing ON / OFF timing and output current waveform of each switching element according to the present invention. 本発明が適用される共振負荷用電力変換装置の構成図。The block diagram of the power conversion apparatus for resonance load to which this invention is applied. 共振負荷に接続された交直変換装置のデッドタイムと遮断電流の関係を示す説明図。An explanatory diagram showing the relationship between the dead time and the breaking current of the AC / DC converter connected to the resonant load.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.

図1は本実施例1による単相インバータ部の構成を表し、例えば図9の交直変換装置10(共振負荷用電力変換装置)に適用される単相インバータを示している。 FIG. 1 shows the configuration of the single-phase inverter unit according to the first embodiment, and shows, for example, a single-phase inverter applied to the AC / DC converter 10 (resonant load power converter) of FIG.

図1の単相インバータの直流入力部は直流リンク電圧入力部Vdcに接続され、各アームはM直列N並列(M=2以上の整数、N=2以上の整数;図1の例では2直列3並列)のスイッチング素子(例えばIGBT)を備えたスイッチ群回路100U,100V,100X,100Yが各々接続され、スイッチ群回路100Uおよび100Xの共通接続点とスイッチ群回路100Vおよび100Yの共通接続点の間には、矩形波の出力電圧Voutが出力されるように構成されている。 The DC input section of the single-phase inverter shown in FIG. 1 is connected to the DC link voltage input section Vdc, and each arm is connected to M series and N parallel (M = 2 or more integers, N = 2 or more integers; 2 series in the example of FIG. 1). Switch group circuits 100U, 100V, 100X, 100Y equipped with switching elements (for example, IGBTs) of 3 parallel) are connected, respectively, and the common connection points of the switch group circuits 100U and 100X and the common connection points of the switch group circuits 100V and 100Y are connected. In the meantime, the output voltage Vout of the rectangular wave is configured to be output.

単相インバータの一方の相の上アームのスイッチ群回路100Uは、U11およびU12の2個のスイッチング素子が直列接続された第1の直列体とU21およびU22の2個のスイッチング素子が直列接続された第2の直列体とU31およびU32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 In the switch group circuit 100U of the upper arm of one phase of a single-phase inverter, a first series body in which two switching elements U11 and U12 are connected in series and two switching elements U21 and U22 are connected in series. It has a second series body and a third series body in which two switching elements U31 and U32 are connected in series, and three series bodies from the first series body to the third series body. Are connected in parallel and each series is connected by a main circuit conductor.

前記単相インバータの一方の相の下アームのスイッチ群回路100Xは、X11およびX12の2個のスイッチング素子が直列接続された第1の直列体とX21およびX22の2個のスイッチング素子が直列接続された第2の直列体とX31およびX32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 In the switch group circuit 100X of the lower arm of one phase of the single-phase inverter, a first series body in which two switching elements X11 and X12 are connected in series and two switching elements X21 and X22 are connected in series. It has a second series body and a third series body in which two switching elements of X31 and X32 are connected in series, and three series from the first series body to the third series body. The bodies are connected in parallel and the series are connected by a main circuit conductor.

前記単相インバータの他方の相の上アームのスイッチ群回路100Vは、V11およびV12の2個のスイッチング素子が直列接続された第1の直列体とV21およびV22の2個のスイッチング素子が直列接続された第2の直列体とV31およびV32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 In the switch group circuit 100V of the upper arm of the other phase of the single-phase inverter, a first series body in which two switching elements V11 and V12 are connected in series and two switching elements V21 and V22 are connected in series. It has a second series body and a third series body in which two switching elements of V31 and V32 are connected in series, and three series from the first series body to the third series body. The bodies are connected in parallel and the series are connected by a main circuit conductor.

前記単相インバータの他方の相の下アームのスイッチ群回路100Yは、Y11およびY12の2個のスイッチング素子が直列接続された第1の直列体とY21およびY22の2個のスイッチング素子が直列接続された第2の直列体とY31およびY32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 In the switch group circuit 100Y of the lower arm of the other phase of the single-phase inverter, a first series body in which two switching elements Y11 and Y12 are connected in series and two switching elements Y21 and Y22 are connected in series. It has a second series body and a third series body in which two switching elements of Y31 and Y32 are connected in series, and three series from the first series body to the third series body. The bodies are connected in parallel and the series are connected by a main circuit conductor.

前記の各直列体は例えば2in1構造のモジュールで構成され、各直列体の2つのスイッチング素子同士はモジュール内部で接続されている。 Each of the above-mentioned series bodies is composed of, for example, a module having a 2in1 structure, and the two switching elements of each series body are connected to each other inside the module.

上記のように図1の単相インバータによれば、スイッチ群回路のスイッチング素子が直並列接続であるため、直流リンク電圧入力部Vdcと上、下アームそれぞれのスイッチング素子の直流入力側端子との間、および矩形波電圧出力部Voutと上、下アームそれぞれのスイッチング素子の出力側端子との間に接続される主回路導体数をスイッチング素子数(M×N)よりも少なくすることができる。そして、スイッチング素子が直並列接続であるため、スイッチング素子数(M×N)に比例して主回路導体の配設スペースが拡大されることはなく、主回路導体の経路長のばらつきに基づくインピーダンスのばらつきを低減できる。 As described above, according to the single-phase inverter of FIG. 1, since the switching elements of the switch group circuit are connected in series and parallel, the DC link voltage input unit Vdc and the DC input side terminals of the switching elements of the upper and lower arms are connected. The number of main circuit conductors connected between the rectangular wave voltage output unit Vout and the output side terminals of the switching elements of the upper and lower arms can be made smaller than the number of switching elements (M × N). Since the switching elements are connected in series and parallel, the space for arranging the main circuit conductor is not expanded in proportion to the number of switching elements (M × N), and the impedance is based on the variation in the path length of the main circuit conductor. Variation can be reduced.

図1の単相インバータを制御する制御部は、時分割運転によりk次高調波スイッチングを行う図2に示す制御ブロックを有している。図2の制御ブロックは、図1に示す直列数M=2、並列数N=3の場合に、前記単相インバータの出力電流周波数の半サイクルをトリガとし、半サイクル毎にk個(kは3以上の奇数の高調波次数)出力するクロックを用い、2*N*M*k=12kクロックで1周期とし、ON信号を2*N*(M-1)*k+1=7kクロック、OFF信号を(2*N*M*k)-{2*N*(M-1*k)+1}=5kクロックとした、各スイッチング素子のゲート指令信号を生成する。 The control unit that controls the single-phase inverter of FIG. 1 has a control block shown in FIG. 2 that performs k-th harmonic switching by time-division operation. When the number of series M = 2 and the number of parallels N = 3 shown in FIG. 1, the control block of FIG. 2 is triggered by a half cycle of the output current frequency of the single-phase inverter, and k (k is) every half cycle. Using a clock that outputs an odd harmonic order of 3 or more, 2 * N * M * k = 12k clock is used for one cycle, and the ON signal is 2 * N * (M-1) * k + 1 = 7k clock, OFF signal. Is (2 * N * M * k)-{2 * N * (M-1 * k) +1} = 5k clock, and a gate command signal for each switching element is generated.

図2において、111は、入力される高調波指令を、後述の比較器121-1から出力されるスイッチング素子U11,Y11用ゲート指令信号の立ち上がりクロックでサンプルホールドして高調波指令kを演算する高調波指令演算部である。 In FIG. 2, 111 calculates the harmonic command k by sample-holding the input harmonic command with the rising clock of the gate command signal for the switching elements U11 and Y11 output from the comparator 121-1 described later. It is a harmonic command calculation unit.

112は、2×直列数M×並列数N×高調波次数kを演算することにより、各ゲート指令信号の1周期のクロック数およびキャリア上限値を求めるキャリア上限演算部である。 Reference numeral 112 denotes a carrier upper limit calculation unit for obtaining the number of clocks in one cycle of each gate command signal and the carrier upper limit value by calculating 2 × series number M × parallel number N × harmonic order k.

113は、(2×(M-1)×N×k+1)を演算して1周期中のON信号期間のクロック数を求めるON信号クロック数演算部である。 Reference numeral 113 denotes an ON signal clock number calculation unit that calculates (2 × (M-1) × N × k + 1) to obtain the number of clocks in the ON signal period in one cycle.

114は、前記キャリア上限演算部112で求められた1周期のクロック数から、ON信号クロック数演算部113で求められた1周期中のON信号期間のクロック数を減算して、1周期中のOFF信号期間のクロック数(2×M×N×k)-{(2×(M-1)×N×k+1)}を出力する減算器である。 In 114, the number of clocks in one cycle obtained by the carrier upper limit calculation unit 112 is subtracted from the number of clocks in one cycle obtained by the ON signal clock number calculation unit 113, and the number of clocks in one cycle is subtracted. It is a subtractor that outputs the number of clocks (2 × M × N × k) − {(2 × (M-1) × N × k + 1)} in the OFF signal period.

115は、前記ON信号クロック数演算部113の出力(2×(M-1)×N×k+1)から、減算器114の出力(OFF信号クロック数(2×M×N×k)-(2×(M-1)×N×k+1))を減算してPWM指令信号を出力する減算器である。 The 115 is the output of the subtractor 114 (the number of OFF signal clocks (2 × M × N × k) − (2) from the output (2 × (M-1) × N × k + 1) of the ON signal clock number calculation unit 113. It is a subtractor that outputs a PWM command signal by subtracting × (M-1) × N × k + 1)).

前記ON信号クロック数演算部113、減算器114、115によって本発明のPWM指令生成部を構成している。 The PWM command generation unit of the present invention is configured by the ON signal clock number calculation unit 113, subtractors 114, and 115.

116は、図1の単相インバータの出力電流のゼロクロスタイミングから出力電流の周期Tを演算する周期演算部である。 Reference numeral 116 denotes a cycle calculation unit that calculates the cycle T of the output current from the zero cross timing of the output current of the single-phase inverter of FIG.

117は、前記周期演算部116で演算された周期Tを2で除算してキャリア傾きを演算する除算器であり、118は、前記キャリア上限演算部112で求められたキャリア上限値に-1を乗算してキャリア下限値を出力する乗算器である。 117 is a divider that calculates the carrier inclination by dividing the period T calculated by the cycle calculation unit 116 by 2, and 118 sets -1 to the carrier upper limit value obtained by the carrier upper limit calculation unit 112. It is a multiplier that multiplies and outputs the lower limit of the carrier.

119は、前記キャリア上限演算部112で求められたキャリア上限値と、乗算器118の出力であるキャリア下限値と、除算器117の出力であるキャリア傾きとに基いて三角波信号を生成する三角波生成部である。 119 generates a triangular wave that generates a triangular wave signal based on the carrier upper limit value obtained by the carrier upper limit calculation unit 112, the carrier lower limit value that is the output of the multiplier 118, and the carrier inclination that is the output of the divider 117. It is a department.

120-1~120-11は、前記三角波生成部119で生成された三角波信号を(T×K)/2クロックずつ順次遅延させる2×N×M-1個(この実施例1では11個)の遅延部である。 120 -1 to 120 -11 are 2 × N × M-1 pieces (11 pieces in this Example 1) in which the triangular wave signal generated by the triangular wave generation unit 119 is sequentially delayed by (T × K) / 2 clocks. It is a delay part of.

121-1~121-12は、前記減算器115から出力されるPWM指令信号と、前記三角波生成部119で生成された三角波信号および遅延部120-1~120-11により各々遅延された三角波信号とを各々比較し、前記三角波信号がPWM指令信号よりも小のときゲートON信号を、三角波信号がPWM指令信号よりも大のときゲートOFF信号を各々出力する2×N×M個(この実施例1では12個)の比較器である。 121 -1 to 121 -12 are a PWM command signal output from the subtractor 115, a triangular wave signal generated by the triangular wave generation unit 119, and a triangular wave signal delayed by the delay units 120 -1 to 120 -11 , respectively. When the triangular wave signal is smaller than the PWM command signal, the gate ON signal is output, and when the triangular wave signal is larger than the PWM command signal, the gate OFF signal is output 2 × N × M (this implementation). 12 in Example 1).

上記構成において、単相インバータの出力電流周波数の半サイクルをトリガとし、半サイクル毎にk個(kは3以上の奇数の高調波次数)出力するクロックを用い、比較器121-1~121-12においては、三角波生成部119から出力される三角波信号を遅延部120-1~120-11で順次(T×k)/2クロックずつ遅延させた信号と、減算器115から出力されるPWM指令信号とを各々比較しているので、比較器121-1~121-12から出力されるゲート指令信号は順次kクロックずつ遅延する。 In the above configuration, using a clock that is triggered by a half cycle of the output current frequency of the single-phase inverter and outputs k (k is an odd harmonic order of 3 or more) every half cycle, the comparators 121 -1 to 121- In 12 , the triangular wave signal output from the triangular wave generation unit 119 is delayed by sequentially (T × k) / 2 clocks in the delay units 120 -1 to 120 -11 , and the PWM command output from the subtractor 115. Since the signals are compared with each other, the gate command signals output from the comparators 121 -1 to 121 -12 are sequentially delayed by k clocks.

すなわち、各比較器121-1~121-12から出力されるゲート指令信号は次のとおりである。 That is, the gate command signals output from the comparators 121 -1 to 121 -12 are as follows.

まず比較器121-1からは、2×2(=直列数M)×3(=並列数N)×kクロックを1周期とし、2×3(=並列数N)×1(=直列数M-1)×k+1クロックの期間ON信号を出力し、{2×2(=直列数M)×3(=並列数N)×k}-{2×3(=並列数N)×1(=直列数M-1)×k+1}クロックの期間OFF信号を出力するスイッチング素子U11,Y11用ゲート指令信号U11_gate/Y11_gateが出力される。 First, from the comparator 121-1 , 2 × 2 (= series number M) × 3 (= parallel number N) × k clock is set as one cycle, and 2 × 3 (= parallel number N) × 1 (= series number M). -1) × k + 1 Clock period ON signal is output, {2 × 2 (= series number M) × 3 (= parallel number N) × k} - {2 × 3 (= parallel number N) × 1 (= Number of series M-1) × k + 1} The gate command signals U11_gate / Y11_gate for the switching elements U11 and Y11 that output the clock period OFF signal are output.

尚、図2ではゲート指令信号U11_gate/Y11_gateを単に「U11/Y11」と表記しており、他のゲート指令信号についても同様に表記している。 In FIG. 2, the gate command signal U11_gate / Y11_gate is simply described as “U11 / Y11”, and other gate command signals are also described in the same manner.

比較器121-2からは、前記ゲート指令信号U11_gate/Y11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X11,V11用ゲート指令信号X11_gate/V11_gateが出力される。 From the comparator 121-2, the gate command for the switching elements X11 and V11, which is delayed by k clock from the gate command signal U11_gate / Y11_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal X11_gate / V11_gate is output.

比較器121-3からは、前記ゲート指令信号X11_gate/V11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U21,Y21用ゲート指令信号U21_gate/Y21_gateが出力される。 From the comparator 121-3, the gate command for the switching elements U21 and Y21, which is delayed by k clock from the gate command signal X11_gate / V11_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal U21_gate / Y21_gate is output.

比較器121-4からは、前記ゲート指令信号U21_gate/Y21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X21,V21用ゲート指令信号X21_gate/V21_gateが出力される。 From the comparator 121 -4 , the gate command for the switching elements X21 and V21, which is delayed by k clock from the gate command signal U21_gate / Y21_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal X21_gate / V21_gate is output.

比較器121-5からは、前記ゲート指令信号X21_gate/V21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U31,Y31用ゲート指令信号U31_gate/Y31_gateが出力される。 From the comparator 121 -5 , the gate command for the switching elements U31 and Y31, which is delayed by k clock from the gate command signal X21_gate / V21_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal U31_gate / Y31_gate is output.

比較器121-6からは、前記ゲート指令信号U31_gate/Y31_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X31,V31用ゲート指令信号X31_gate/V31_gateが出力される。 From the comparator 121 -6 , the gate command for the switching elements X31 and V31, which is delayed by k clock from the gate command signal U31_gate / Y31_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal X31_gate / V31_gate is output.

比較器121-7からは、前記ゲート指令信号X31_gate/V31_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U12,Y12用ゲート指令信号U12_gate/Y12_gateが出力される。 From the comparator 121 -7 , the gate command for the switching elements U12 and Y12, which is delayed by k clock from the gate command signal X31_gate / V31_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal U12_gate / Y12_gate is output.

比較器121-8からは、前記ゲート指令信号U12_gate/Y12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X12,V12用ゲート指令信号X12_gate/V12_gateが出力される。 From the comparator 121 -8 , the gate command for the switching elements X12 and V12, which is delayed by k clock from the gate command signal U12_gate / Y12_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal X12_gate / V12_gate is output.

比較器121-9からは、前記ゲート指令信号X12_gate/V12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U22,Y22用ゲート指令信号U22_gate/Y22_gateが出力される。 From the comparator 121 -9 , the gate command for the switching elements U22 and Y22, which is delayed by k clock from the gate command signal X12_gate / V12_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal U22_gate / Y22_gate is output.

比較器121-10からは、前記ゲート指令信号U22_gate/Y22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X22,V22用ゲート指令信号X22_gate/V22_gateが出力される。 From the comparator 121 -10 , the gate command for the switching elements X22 and V22, which is delayed by k clocks from the gate command signal U22_gate / Y22_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal X22_gate / V22_gate is output.

比較器121-11からは、前記ゲート指令信号X22_gate/V22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U32,Y32用ゲート指令信号U32_gate/Y32_gateが出力される。 From the comparator 121-11 , the gate command for the switching elements U32 and Y32, which is delayed by k clock from the gate command signal X22_gate / V22_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal U32_gate / Y32_gate is output.

比較器121-12からは、前記ゲート指令信号U32_gate/Y32_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X32,V32用ゲート指令信号X32_gate/V32_gateが出力される。 From the comparator 121-12 , the gate command for the switching elements X32 and V32, which is delayed by k clock from the gate command signal U32_gate / Y32_gate and has the same ON period and OFF period as the ON period and OFF period of the gate command signal. The signal X32_gate / V32_gate is output.

図1の単相インバータにおける各アームのスイッチ群回路の直列数Mを2、並列数Nを3とした場合の各スイッチング素子は、前記作成された図2の各ゲート指令信号U11_gate/Y11_gate…X32_gate/V32_gateによって、1周期(2*M*N*kクロック)内のパターンの繰り返しによりON,OFF制御される。 When the series number M of the switch group circuit of each arm in the single-phase inverter of FIG. 1 is 2 and the parallel number N is 3, each switching element has each gate command signal U11_gate / Y11_gate ... X32_gate of FIG. By / V32_gate, ON / OFF control is performed by repeating the pattern within one cycle (2 * M * N * k clock).

以上のように図2の制御ブロックによれば、kに奇数の値を入力することで、単相インバータのスイッチング素子の直列数Mを2、並列数Nを3とした時分割運転におけるk次高調波スイッチングパターンを生成することができる。 As described above, according to the control block of FIG. 2, by inputting an odd value to k, the kth order in the time division operation in which the series number M of the switching element of the single-phase inverter is 2 and the parallel number N is 3. Harmonic switching patterns can be generated.

このk次高調波スイッチングパターンにより制御することによって、電流ゼロクロス近辺でのソフト遮断が実現され、電流遮断は生じない。 By controlling by this k-th harmonic switching pattern, soft cutoff in the vicinity of the current zero cross is realized, and current cutoff does not occur.

すなわち、図1の単相インバータの正相、負相の各スイッチング素子のON,OFFタイミングと負荷電流の関係を示す図8において、正相出力区間を1、その前後を1a,1bとすると、1bは負相出力素子のダイオード導通区間であり、正相出力素子がOFF動作しても電流遮断とならない。図8の負相出力区間を2、その前後を2a,2bとすると、1bから2aの間に正相出力素子をOFF、負相出力素子をONとすれば良いので、デッドタイムを長くとることができ、素子の特性バラツキを広く許容できる。 That is, in FIG. 8 showing the relationship between the ON / OFF timing of each of the positive-phase and negative-phase switching elements of the single-phase inverter of FIG. 1 and the load current, it is assumed that the positive-phase output section is 1 and the front and rear thereof are 1a and 1b. Reference numeral 1b is a diode conduction section of the negative phase output element, and even if the positive phase output element is turned off, the current is not cut off. Assuming that the negative phase output section in FIG. 8 is 2 and the front and back thereof are 2a and 2b, the positive phase output element may be turned off and the negative phase output element may be turned on between 1b and 2a, so that the dead time should be long. It is possible to widely tolerate variations in the characteristics of the element.

電流遮断が生じないので、出力電圧を上げても損失が増えず、また出力周波数に依存した出力の制約は生じない。 Since the current cutoff does not occur, the loss does not increase even if the output voltage is increased, and the output restriction depending on the output frequency does not occur.

また高調波演算部111を設けているので、連続的に高調波指令kを変更することができ、装置出力インピーダンスをオートマッチングさせることができる。例えば高調波次数kが大きくなるほど1サイクルにおけるスイッチング素子のON期間は小さくなり、出力電力が下るので、等価的に共振負荷回路のインピーダンスを調整することができる。 Further, since the harmonic calculation unit 111 is provided, the harmonic command k can be continuously changed, and the device output impedance can be automatically matched. For example, as the harmonic order k increases, the ON period of the switching element in one cycle decreases and the output power decreases, so that the impedance of the resonant load circuit can be adjusted equivalently.

図3は本実施例2による単相インバータ部の構成を表し、例えば図9の交直変換装置10(共振負荷用電力変換装置)に適用される単相インバータを示している。 FIG. 3 shows the configuration of the single-phase inverter unit according to the second embodiment, and shows, for example, the single-phase inverter applied to the AC / DC converter 10 (resonant load power converter) of FIG.

図3の単相インバータの直流入力部は直流リンク電圧入力部Vdcに接続され、各アームは直列数Mが2、並列数Nが2以上のスイッチング素子(例えばIGBT)を備えたスイッチ群回路200U,200V,200X,200Yが各々接続され、スイッチ群回路200Uおよび200Xの共通接続点とスイッチ群回路200Vおよび200Yの共通接続点の間には、矩形波の出力電圧Voutが出力されるように構成されている。 The DC input section of the single-phase inverter shown in FIG. 3 is connected to the DC link voltage input section Vdc, and each arm is a switch group circuit 200U equipped with a switching element (for example, an IGBT) having a series number M of 2 and a parallel number N of 2 or more. , 200V, 200X, 200Y are connected respectively, and a rectangular wave output voltage Vout is output between the common connection point of the switch group circuits 200U and 200X and the common connection point of the switch group circuits 200V and 200Y. Has been done.

単相インバータの一方の相の上アームのスイッチ群回路200Uは、U11およびU12の2個のスイッチング素子が直列接続された第1の直列体と、U21およびU22の2個のスイッチング素子が直列接続された第2の直列体と、Un1およびUn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 In the switch group circuit 200U of the upper arm of one phase of a single-phase inverter, a first series body in which two switching elements U11 and U12 are connected in series and two switching elements U21 and U22 are connected in series. It has a second series body and an nth series body in which two switching elements of Un1 and Un2 are connected in series, and n pieces from the first series body to the nth series body. It is configured by connecting series bodies in parallel and connecting each series body with a main circuit conductor.

前記単相インバータの一方の相の下アームのスイッチ群回路200Xは、X11およびX12の2個のスイッチング素子が直列接続された第1の直列体と、X21およびX22の2個のスイッチング素子が直列接続された第2の直列体と、Xn1およびXn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 In the switch group circuit 200X of the lower arm of one phase of the single-phase inverter, a first series body in which two switching elements X11 and X12 are connected in series and two switching elements X21 and X22 are connected in series. It has a second series body connected and an nth series body in which two switching elements Xn1 and Xn2 are connected in series, and n pieces from the first series body to the nth series body. The series are connected in parallel and the series are connected by a main circuit conductor.

前記単相インバータの他方の相の上アームのスイッチ群回路200Vは、V11およびV12の2個のスイッチング素子が直列接続された第1の直列体と、V21およびV22の2個のスイッチング素子が直列接続された第2の直列体と、Vn1およびVn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 In the switch group circuit 200V of the upper arm of the other phase of the single-phase inverter, a first series body in which two switching elements V11 and V12 are connected in series and two switching elements V21 and V22 are connected in series. It has a second series body connected and an nth series body in which two switching elements of Vn1 and Vn2 are connected in series, and n pieces from the first series body to the nth series body. Series bodies are connected in parallel, and each series body is connected by a main circuit conductor.

前記単相インバータの他方の相の下アームのスイッチ群回路200Yは、Y11およびY12の2個のスイッチング素子が直列接続された第1の直列体と、Y21およびY22の2個のスイッチング素子が直列接続された第2の直列体と、Yn1およびYn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 In the switch group circuit 200Y of the lower arm of the other phase of the single-phase inverter, a first series body in which two switching elements Y11 and Y12 are connected in series and two switching elements Y21 and Y22 are connected in series. It has a second series body connected and an nth series body in which two switching elements of Yn1 and Yn2 are connected in series, and n pieces from the first series body to the nth series body. The series are connected in parallel and the series are connected by a main circuit conductor.

前記の各直列体は、2個のスイッチング素子の直列体を1つのモジュールで構成したものであり、直列体の2個のスイッチング素子同士はモジュール内部で接続されている。 Each of the above-mentioned series bodies is composed of a series body of two switching elements in one module, and the two switching elements of the series body are connected to each other inside the module.

上記のように図3の単相インバータによれば、スイッチ群回路のスイッチング素子が直並列接続であるため、直流リンク電圧入力部Vdcと上、下アームそれぞれのスイッチング素子の直流入力側端子との間、および矩形波電圧出力部Voutと上、下アームそれぞれのスイッチング素子の出力側端子との間に接続される主回路導体数をスイッチング素子数(M×N)よりも少なくすることができる。そして、スイッチング素子が直並列接続であるため、スイッチング素子数(M×N)に比例して主回路導体の配設スペースが拡大されることはなく、主回路導体の経路長のばらつきに基づくインピーダンスのばらつきを低減できる。 As described above, according to the single-phase inverter of FIG. 3, since the switching elements of the switch group circuit are connected in series and parallel, the DC link voltage input unit Vdc and the DC input side terminals of the switching elements of the upper and lower arms are connected. The number of main circuit conductors connected between the rectangular wave voltage output unit Vout and the output side terminals of the switching elements of the upper and lower arms can be made smaller than the number of switching elements (M × N). Since the switching elements are connected in series and parallel, the space for arranging the main circuit conductor is not expanded in proportion to the number of switching elements (M × N), and the impedance is based on the variation in the path length of the main circuit conductor. Variation can be reduced.

図3の単相インバータを制御する制御部は、時分割運転によりk次高調波スイッチングを行う図4に示す制御ブロックを有している。図4の制御ブロックは、図3に示す直列数M=2、並列数N=2以上の場合に、前記単相インバータの出力電流周波数の半サイクルをトリガとし、半サイクル毎にk個(kは3以上の奇数の高調波次数)出力するクロックを用い、2*N*M*k=4Nkクロックで1周期とし、ON信号を2*N*(M-1)*k+1=2Nk+1クロック、OFF信号を(2*N*M*k)-{2*N*(M-1)*k)+1}=2Nk-1クロックとした、各スイッチング素子のゲート指令信号を生成する。 The control unit that controls the single-phase inverter of FIG. 3 has a control block shown in FIG. 4 that performs k-th harmonic switching by time-division operation. When the number of series M = 2 and the number of parallels N = 2 or more shown in FIG. 3, the control block of FIG. 4 is triggered by a half cycle of the output current frequency of the single-phase inverter, and is k (k) per half cycle. Uses a clock that outputs an odd harmonic order of 3 or more), sets 1 cycle with a 2 * N * M * k = 4Nk clock, and sets the ON signal to 2 * N * (M-1) * k + 1 = 2Nk + 1 clock, OFF. A gate command signal for each switching element is generated with the signal as (2 * N * M * k)-{2 * N * (M-1) * k) +1} = 2Nk-1 clock.

図4において図2と同一部分は同一符号をもって示している。図4において図2と異なる点は、三角波生成部119で生成された三角波信号を(T×k)/2クロックずつ順次遅延させる遅延部120の設置個数を4N-1個とし、比較器121の設置個数を4N個とした点にあり、その他の部分は図2と同一に構成されている。図4の各比較器121…から出力されるゲート指令信号は次のとおりである。 In FIG. 4, the same parts as those in FIG. 2 are indicated by the same reference numerals. The difference from FIG. 2 in FIG. 4 is that the number of delay units 120 installed for sequentially delaying the triangle wave signal generated by the triangle wave generation unit 119 by (T × k) / 2 clocks is 4N-1, and the comparator 121 has. The number of installations is 4N, and the other parts are configured in the same way as in FIG. The gate command signals output from the comparators 121 ... In FIG. 4 are as follows.

すなわち、4Nkクロックを1周期とし、2Nk+1クロックの期間ON信号を出力し、2Nk-1クロックの期間OFF信号を出力するスイッチング素子U11,Y11用ゲート指令信号U11_gate/Y11_gateと(尚、図4ではゲート指令信号U11_gate/Y11_gateを単に「U11/Y11」と表記しており、他のゲート指令信号についても同様に表記している)、
前記ゲート指令信号U11_gate/Y11_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X11,V11用ゲート指令信号X11_gate/V11_gateと、
前記ゲート指令信号X11_gate/V11_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U21,Y21用ゲート指令信号U21_gate/Y21_gateと、
前記ゲート指令信号U21_gate/Y21_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X21,V21用ゲート指令信号X21_gate/V21_gateと、



ゲート指令信号X(n-1)1_gate/V(n-1)1_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un1,Yn1用ゲート指令信号Un1_gate/Yn1_gateと、
前記ゲート指令信号Un1_gate/Yn1_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn1,Vn1用ゲート指令信号Xn1_gate/Vn1_gateと、
前記ゲート指令信号Xn1_gate/Vn1_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U12,Y12用ゲート指令信号U12_gate/Y12_gateと、
前記ゲート指令信号U12_gate/Y12_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X12,V12用ゲート指令信号X12_gate/V12_gateと、
前記ゲート指令信号X12_gate/V12_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U22,Y22用ゲート指令信号U22_gate/Y22_gateと、
前記ゲート指令信号U22_gate/Y22_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X22,V22用ゲート指令信号X22_gate/V22_gateと、



ゲート指令信号X(n-1)2_gate/V(n-1)2_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un2,Yn2用ゲート指令信号Un2_gate/Yn2_gateと、
前記ゲート指令信号Un2_gate/Yn2_gateよりもkクロック遅延し、当該指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn2,Vn2用ゲート指令信号Xn2_gate/Vn2_gateと、を各々出力する。
That is, the gate command signals U11_gate / Y11_gate for the switching elements U11 and Y11 that output the period ON signal of the 2Nk + 1 clock and the period OFF signal of the 2Nk-1 clock with the 4Nk clock as one cycle (note that the gate in FIG. 4). The command signal U11_gate / Y11_gate is simply written as "U11 / Y11", and other gate command signals are also written in the same manner),
The gate command signals X11_gate / V11_gate for the switching elements X11 and V11, which are delayed by k clocks from the gate command signal U11_gate / Y11_gate and have the same ON period and OFF period as the ON period and OFF period of the command signal,
The gate command signals U21_gate / Y21_gate for the switching elements U21 and Y21, which are delayed by k clocks from the gate command signal X11_gate / V11_gate and have the same ON period and OFF period as the ON period and OFF period of the command signal,
The gate command signals X21_gate / V21_gate for the switching elements X21 and V21, which are delayed by k clocks from the gate command signals U21_gate / Y21_gate and have the same ON period and OFF period as the ON period and OFF period of the command signal,



For switching elements Un1 and Yn1 that are delayed by k clocks from the gate command signal X (n-1) 1_gate / V (n-1) 1_gate and have the same ON and OFF periods as the ON and OFF periods of the command signal. Gate command signals Un1_gate / Yn1_gate and
The gate command signals Xn1_gate / Vn1_gate for the switching elements Xn1 and Vn1 which are delayed by k clocks from the gate command signal Un1_gate / Yn1_gate and have the same ON period and OFF period as the ON period and OFF period of the command signal.
The gate command signals U12_gate / Y12_gate for the switching elements U12 and Y12, which are delayed by k clocks from the gate command signal Xn1_gate / Vn1_gate and have the same ON period and OFF period as the ON period and OFF period of the command signal,
The gate command signals X12_gate / V12_gate for the switching elements X12 and V12, which are delayed by k clocks from the gate command signal U12_gate / Y12_gate and have the same ON period and OFF period as the ON period and OFF period of the command signal,
The gate command signals U22_gate / Y22_gate for the switching elements U22 and Y22, which are delayed by k clocks from the gate command signal X12_gate / V12_gate and have the same ON period and OFF period as the ON period and OFF period of the command signal,
The gate command signals X22_gate / V22_gate for the switching elements X22 and V22, which are delayed by k clocks from the gate command signal U22_gate / Y22_gate and have the same ON period and OFF period as the ON period and OFF period of the command signal,



For switching elements Un2 and Yn2 that are delayed by k clocks from the gate command signal X (n-1) 2_gate / V (n-1) 2_gate and have the same ON and OFF periods as the ON and OFF periods of the command signal. Gate command signals Un2_gate / Yn2_gate and
Outputs gate command signals Xn2_gate / Vn2_gate for switching elements Xn2 and Vn2, which are delayed by k clocks from the gate command signal Un2_gate / Yn2_gate and have the same ON period and OFF period as the ON period and OFF period of the command signal. do.

図3の単相インバータにおける各アームのスイッチ群回路の直列数Mを2、並列数をNとした場合の各スイッチング素子は、前記作成された図4の各ゲート指令信号U11_gate/Y11_gate…Xn2_gate/Vn2_gateによって、1周期(2*M*N*kクロック)内のパターンの繰り返しによりON,OFF制御される。 When the number of series M of the switch group circuit of each arm in the single-phase inverter of FIG. 3 is 2 and the number of parallels is N, each switching element of each gate command signal U11_gate / Y11_gate ... Xn2_gate / By Vn2_gate, ON / OFF control is performed by repeating the pattern within one cycle (2 * M * N * k clock).

以上のように図4の制御ブロックによれば、kに奇数の値を入力することで、単相インバータのスイッチング素子の直列数M=2、並列数N(=2以上)とした時分割運転におけるk次高調波スイッチングパターンを生成することができる。 As described above, according to the control block of FIG. 4, by inputting an odd value to k, the time division operation is set so that the number of series of switching elements of the single-phase inverter is M = 2 and the number of parallels is N (= 2 or more). It is possible to generate the k-th harmonic switching pattern in.

このk次高調波スイッチングパターンにより制御することによって、実施例1の場合と同様に電流ゼロクロス近辺でのソフト遮断が実現され、電流遮断は生じない。 By controlling by this k-th harmonic switching pattern, soft cutoff in the vicinity of the current zero cross is realized as in the case of the first embodiment, and no current cutoff occurs.

また、スイッチング素子の直列数がM、並列数がN(2以上)、高調波指令をkとするとPWM指令の関係式は次の(1)式となる。 Further, assuming that the number of switching elements in series is M, the number of parallel elements is N (2 or more), and the harmonic command is k, the relational expression of the PWM command is the following equation (1).

PWM指令=2(M-1)・Nk+1-{2MNK-(2(M-1)・NK+1)}=2(M-1)・Nk+2(M-1)・Nk-2MNK+2=4(M-1)Nk-2MNk+2…(1)
上記(1)式のMが2であればPWM指令値は必ず2となり、連続的な高調波指令(k)の切り替えが可能な制御モデルを生成できる。
PWM command = 2 (M-1), Nk + 1- {2MNK- (2 (M-1), NK + 1)} = 2 (M-1), Nk + 2 (M-1), Nk-2MNK + 2 = 4 (M-1) ) Nk-2MNk + 2 ... (1)
If M in the above equation (1) is 2, the PWM command value is always 2, and a control model capable of continuously switching the harmonic command (k) can be generated.

このため、実施例1の場合と同様に、連続的に高調波指令kを変更することができ、装置出力インピーダンスをオートマッチングさせることができる。例えば高調波次数kが大きくなるほど1サイクルにおけるスイッチング素子のON期間は小さくなり、出力電力が下るので、等価的に共振負荷回路のインピーダンスを調整することができる。 Therefore, as in the case of the first embodiment, the harmonic command k can be continuously changed, and the device output impedance can be automatically matched. For example, as the harmonic order k increases, the ON period of the switching element in one cycle decreases and the output power decreases, so that the impedance of the resonant load circuit can be adjusted equivalently.

図5は本実施例3による単相インバータ部の構成を表し、例えば図9の交直変換装置10(共振負荷用電力変換装置)に適用される単相インバータを示している。 FIG. 5 shows the configuration of the single-phase inverter unit according to the third embodiment, and shows, for example, the single-phase inverter applied to the AC / DC converter 10 (resonant load power converter) of FIG.

図5の単相インバータの直流入力部は直流リンク電圧入力部Vdcに接続され、各アームは直列数Mが2、並列数Nが2以上のスイッチング素子(例えばIGBT)を備えたスイッチ群回路300U,300V,300X,300Yが各々接続され、スイッチ群回路300Uおよび300Xの共通接続点とスイッチ群回路300Vおよび300Yの共通接続点の間には、矩形波の出力電圧Voutが出力されるように構成されている。 The DC input section of the single-phase inverter of FIG. 5 is connected to the DC link voltage input section Vdc, and each arm is a switch group circuit 300U equipped with a switching element (for example, an IGBT) having a series number M of 2 and a parallel number N of 2 or more. , 300V, 300X, 300Y are connected respectively, and a rectangular wave output voltage Vout is output between the common connection point of the switch group circuits 300U and 300X and the common connection point of the switch group circuits 300V and 300Y. Has been done.

単相インバータの一方の相の上アームのスイッチ群回路300Uは、U11、U12…U1mのm個のスイッチング素子が直列接続された第1の直列体と、U21、U22…U2mのm個のスイッチング素子が直列接続された第2の直列体と、Un1、Un2…Unmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 The switch group circuit 300U of the upper arm of one phase of the single-phase inverter has m switching of U21, U22 ... U2m and a first series body in which m switching elements of U11, U12 ... U1m are connected in series. It has a second series body in which elements are connected in series, and an nth series body in which m switching elements of Un1, Un2 ... Unm are connected in series, and the first series body to the nth series. It is configured by connecting n series of bodies up to the body in parallel and connecting each series with a main circuit conductor.

前記単相インバータの一方の相の下アームのスイッチ群回路300Xは、X11、X12…X1mのm個のスイッチング素子が直列接続された第1の直列体と、X21、X22…X2mのm個のスイッチング素子が直列接続された第2の直列体と、Xn1、Xn2…Xnmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 The switch group circuit 300X of the lower arm of one phase of the single-phase inverter has a first series body in which m switching elements of X11, X12 ... X1m are connected in series, and m pieces of X21, X22 ... X2m. It has a second series body in which switching elements are connected in series, and an nth series body in which m switching elements of Xn1, Xn2 ... Xnm are connected in series, and the first series body to the nth series body. It is configured by connecting n series bodies up to the series bodies in parallel and connecting each series body with a main circuit conductor.

前記単相インバータの他方の相の上アームのスイッチ群回路300Vは、V11、V12…V1mのm個のスイッチング素子が直列接続された第1の直列体と、V21、V22…V2mのm個のスイッチング素子が直列接続された第2の直列体と、Vn1、Vn2…Vnmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 The switch group circuit 300V of the upper arm of the other phase of the single-phase inverter has a first series body in which m switching elements of V11, V12 ... V1m are connected in series, and m of V21, V22 ... V2m. It has a second series body in which switching elements are connected in series, and an nth series body in which m switching elements of Vn1, Vn2 ... Vnm are connected in series, and the first series body to the nth series body. It is configured by connecting n series bodies up to the series bodies in parallel and connecting each series body with a main circuit conductor.

前記単相インバータの他方の相の下アームのスイッチ群回路300Yは、Y11、Y12…Y1mのm個のスイッチング素子が直列接続された第1の直列体と、Y21、Y22…Y2mのm個のスイッチング素子が直列接続された第2の直列体と、Yn1、Yn2…Ynmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成されている。 The switch group circuit 300Y of the lower arm of the other phase of the single-phase inverter includes a first series body in which m switching elements of Y11, Y12 ... Y1m are connected in series, and m of Y21, Y22 ... Y2m. It has a second series body in which switching elements are connected in series, and an nth series body in which m switching elements of Yn1, Yn2 ... Ynm are connected in series, and the first series body to the nth series body. It is configured by connecting n series bodies up to the series bodies in parallel and connecting each series body with a main circuit conductor.

前記の各直列体は、m個のスイッチング素子の直列体を1つのモジュールで構成したものであり、直列体のm個のスイッチング素子同士はモジュール内部で接続されている。 In each of the above-mentioned series bodies, a series body of m switching elements is composed of one module, and the m switching elements of the series body are connected to each other inside the module.

上記のように図5の単相インバータによれば、スイッチ群回路のスイッチング素子が直並列接続であるため、直流リンク電圧入力部Vdcと上、下アームそれぞれのスイッチング素子の直流入力側端子との間、および矩形波電圧出力部Voutと上、下アームそれぞれのスイッチング素子の出力側端子との間に接続される主回路導体数をスイッチング素子数(M×N)よりも少なくすることができる。そして、スイッチング素子が直並列接続であるため、スイッチング素子数(M×N)に比例して主回路導体の配設スペースが拡大されることはなく、主回路導体の経路長のばらつきに基づくインピーダンスのばらつきを低減できる。 As described above, according to the single-phase inverter of FIG. 5, since the switching elements of the switch group circuit are connected in series and parallel, the DC link voltage input unit Vdc and the DC input side terminals of the switching elements of the upper and lower arms are connected. The number of main circuit conductors connected between the rectangular wave voltage output unit Vout and the output side terminals of the switching elements of the upper and lower arms can be made smaller than the number of switching elements (M × N). Since the switching elements are connected in series and parallel, the space for arranging the main circuit conductor is not expanded in proportion to the number of switching elements (M × N), and the impedance is based on the variation in the path length of the main circuit conductor. Variation can be reduced.

図5の単相インバータを制御する制御部は、時分割運転によりk次高調波スイッチングを行う図6に示す制御ブロックを有している。図6の制御ブロックは、図5に示す直列数M=3以上、並列数N=2以上の場合に、前記単相インバータの出力電流周波数の半サイクルをトリガとし、半サイクル毎にk個(kは3以上の奇数の高調波次数)出力するクロックを用い、2*M*N*kクロックで1周期とし、ON信号を2*(M-1)*N*k+1クロックとし、OFF信号を(2*M*N*k)-{2*(M-1)*N*k+1}クロックとした、各スイッチング素子のゲート指令信号を生成する。 The control unit that controls the single-phase inverter of FIG. 5 has a control block shown in FIG. 6 that performs k-th harmonic switching by time-division operation. When the number of series M = 3 or more and the number of parallels N = 2 or more shown in FIG. 5, the control block of FIG. 6 is triggered by half a cycle of the output current frequency of the single-phase inverter, and k pieces (k) per half cycle. k is a clock that outputs an odd harmonic order of 3 or more), 2 * M * N * k clocks are used for one cycle, ON signals are 2 * (M-1) * N * k + 1 clocks, and OFF signals are used. (2 * M * N * k)-{2 * (M-1) * N * k + 1} clocks are used to generate a gate command signal for each switching element.

図6において図4と同一部分は同一符号をもって示している。図6において図4と異なる点は、三角波生成部119で生成された三角波信号を(T×k)/2クロックずつ順次遅延させる遅延部120の設置個数を2×N×M-1個とし、比較器121の設置個数を2×N×M個とし、前記高調波指令演算部111を除去し、これに代えて固定の高調波指令kを設定する設定部(図示省略)を設けた点にあり、その他の部分は図4と同一に構成されている。 In FIG. 6, the same parts as those in FIG. 4 are indicated by the same reference numerals. The difference from FIG. 4 in FIG. 6 is that the number of delay units 120 installed for sequentially delaying the triangle wave signal generated by the triangle wave generation unit 119 by (T × k) / 2 clocks is 2 × N × M-1. The number of comparators 121 installed is 2 × N × M, the harmonic command calculation unit 111 is removed, and a setting unit (not shown) for setting a fixed harmonic command k is provided instead. Yes, the other parts are configured in the same way as in FIG.

図6の制御ブロックにより生成される信号生成パターンの一例を図7に示す。図7は、3直列(M=3)、6並列(N=6)、3次高調波スイッチング(k=3)の場合を想定して、1周期を2*M*N*k=108クロック、ON信号を2*(M-1)*N*k+1=73クロック、OFF信号を(2*M*N*k)-{2*(M-1)*N*k+1}=35クロックの信号生成パターンを示す。 FIG. 7 shows an example of the signal generation pattern generated by the control block of FIG. FIG. 7 assumes the case of 3 series (M = 3), 6 parallel (N = 6), and 3rd harmonic switching (k = 3), and 1 cycle is 2 * M * N * k = 108 clocks. , ON signal is 2 * (M-1) * N * k + 1 = 73 clock, OFF signal is (2 * M * N * k)-{2 * (M-1) * N * k + 1} = 35 clock signal The generation pattern is shown.

図6の各比較器121…から出力されるゲート指令信号は次のとおりである。 The gate command signals output from the comparators 121 ... In FIG. 6 are as follows.

すなわち、2*M*N*kクロックを1周期とし、2*(M-1)*N*k+1クロックの期間ON信号を出力し、(2*M*N*k)-{2*(M-1)*N*k+1}クロックの期間OFF信号を出力するスイッチング素子U11,Y11用ゲート指令信号U11_gate/Y11_gateと(尚、図6、図7ではゲート指令信号U11_gate/Y11_gateを単に「U11/Y11」と表記しており、他のゲート指令信号についても同様に表記している)、
前記ゲート指令信号U11_gate/Y11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X11,V11用ゲート指令信号X11_gate/V11_gateと、
前記ゲート指令信号X11_gate/V11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U21,Y21用ゲート指令信号U21_gate/Y21_gateと、
前記ゲート指令信号U21_gate/Y21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X21,V21用ゲート指令信号X21_gate/V21_gateと、



スイッチング素子X(n-1)1,V(n-1)1用ゲート指令信号X(n-1)1_gate/V(n-1)1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un1,Yn1用ゲート指令信号Un1_gate/Yn1_gateと、
前記ゲート指令信号Un1_gate/Yn1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn1,Vn1用ゲート指令信号Xn1_gate/Vn1_gateと、
前記ゲート指令信号Xn1_gate/Vn1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U12,Y12用ゲート指令信号U12_gate/Y12_gateと、
前記ゲート指令信号U12_gate/Y12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X12,V12用ゲート指令信号X12_gate/V12_gateと、
前記ゲート指令信号X12_gate/V12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U22,Y22用ゲート指令信号U22_gate/Y22_gateと、
前記ゲート指令信号U22_gate/Y22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X22,V22用ゲート指令信号X22_gate/V22_gateと、



スイッチング素子X(n-1)2,V(n-1)2用ゲート指令信号X(n-1)2_gate/V(n-1)2_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un2,Yn2用ゲート指令信号Un2_gate/Yn2_gateと、
前記ゲート指令信号Un2_gate/Yn2_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn2,Vn2用ゲート指令信号Xn2_gate/Vn2_gateと、



スイッチング素子X1(m-1),V1(m-1)用ゲート指令信号X1(m-1)_gate/V1(m-1)_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U1m,Y1m用ゲート指令信号U1m_gate/Y1m_gateと、
前記ゲート指令信号U1m_gate/Y1m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X1m,V1m用ゲート指令信号X1m_gate/V1m_gateと、
前記ゲート指令信号X1m_gate/V1m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U2m,Y2m用ゲート指令信号U2m_gate/Y2m_gateと、
前記ゲート指令信号U2m_gate/Y2m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X2m,V2m用ゲート指令信号X2m_gate/V2m_gateと、



スイッチング素子X(n-1)m,V(n-1)m用ゲート指令信号X(n-1)m_gate/V(n-1)m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Unm,Ynm用ゲート指令信号Unm_gate/Ynm_gateと、
前記ゲート指令信号Unm_gate/Ynm_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xnm,Vnm用ゲート指令信号Xnm_gate/Vnm_gateと、を各々出力する。
That is, the 2 * M * N * k clock is set as one cycle, and the ON signal for the period of 2 * (M-1) * N * k + 1 clock is output, and (2 * M * N * k)-{2 * (M). -1) * N * k + 1} The gate command signals U11_gate / Y11_gate for the switching elements U11 and Y11 that output the clock period OFF signal (note that in FIGS. 6 and 7, the gate command signals U11_gate / Y11_gate are simply "U11 / Y11". , And other gate command signals are also described in the same way),
The gate command signals X11_gate / V11_gate for the switching elements X11 and V11, which are delayed by k clocks from the gate command signal U11_gate / Y11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U21_gate / Y21_gate for the switching elements U21 and Y21, which are delayed by k clocks from the gate command signal X11_gate / V11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X21_gate / V21_gate for the switching elements X21 and V21, which are delayed by k clocks from the gate command signals U21_gate / Y21_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



A k clock delay is delayed from the gate command signal X (n-1) 1_gate / V (n-1) 1_gate for the switching elements X (n-1) 1 and V (n-1) 1, and the ON period of the gate command signal is And the gate command signals Un1_gate / Yn1_gate for the switching elements Un1 and Yn1 having the same ON period and OFF period as the OFF period,
The gate command signals Xn1_gate / Vn1_gate for the switching elements Xn1 and Vn1 which are delayed by k clocks from the gate command signal Un1_gate / Yn1_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal.
The gate command signals U12_gate / Y12_gate for the switching elements U12 and Y12, which are delayed by k clocks from the gate command signal Xn1_gate / Vn1_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal.
The gate command signals X12_gate / V12_gate for the switching elements X12 and V12, which are delayed by k clocks from the gate command signal U12_gate / Y12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U22_gate / Y22_gate for the switching elements U22 and Y22, which are delayed by k clocks from the gate command signal X12_gate / V12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X22_gate / V22_gate for the switching elements X22 and V22, which are delayed by k clocks from the gate command signal U22_gate / Y22_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



The gate command signal for the switching elements X (n-1) 2, V (n-1) 2 is delayed by k clocks from the gate command signal X (n-1) 2_gate / V (n-1) 2_gate, and the ON period of the gate command signal is And the gate command signal Un2_gate / Yn2_gate for the switching elements Un2 and Yn2 having the same ON period and OFF period as the OFF period,
The gate command signals Xn2_gate / Vn2_gate for the switching elements Xn2 and Vn2, which are delayed by k clocks from the gate command signal Un2_gate / Yn2_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



The gate command signal for the switching elements X1 (m-1) and V1 (m-1) is delayed by k clocks from the gate command signal X1 (m-1) _gate / V1 (m-1) _gate, and the gate command signal is turned on and off. A gate command signal U1m_gate / Y1m_gate for switching elements U1m and Y1m having the same ON period and OFF period as the period,
The gate command signals X1m_gate / V1m_gate for the switching elements X1m and V1m, which are delayed by k clocks from the gate command signal U1m_gate / Y1m_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U2m_gate / Y2m_gate for switching elements U2m and Y2m, which are delayed by k clocks from the gate command signal X1m_gate / V1m_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X2m_gate / V2m_gate for switching elements X2m and V2m, which are delayed by k clocks from the gate command signal U2m_gate / Y2m_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



A k clock delay is delayed from the gate command signal X (n-1) m_gate / V (n-1) m_gate for the switching elements X (n-1) m and V (n-1) m, and the ON period of the gate command signal is And the gate command signal Unm_gate / Ynm_gate for switching elements Unm, Ynm having the same ON period and OFF period as the OFF period,
The gate command signals Xnm_gate / Vnm_gate for switching elements Xnm and Vnm, which are delayed by k clocks from the gate command signal Unm_gate / Ynm_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal, respectively. Output.

図5の単相インバータにおける各アームのスイッチ群回路の直列数Mを3、並列数Nを6、高調波次数kを3とした場合の各スイッチング素子は、前記作成された図6の各ゲート指令信号U11_gate/Y11_gate…Xnm_gate/Vnm_gateによって、1周期(2*M*N*kクロック)内のパターンの繰り返しによりON,OFF制御される。 In the single-phase inverter of FIG. 5, when the series number M of the switch group circuit of each arm is 3, the parallel number N is 6, and the harmonic order k is 3, each switching element is each gate of FIG. The command signal U11_gate / Y11_gate ... Xnm_gate / Vnm_gate controls ON / OFF by repeating the pattern in one cycle (2 * M * N * k clock).

以上のように図6の制御ブロックによれば、kに奇数の値を入力することで、単相インバータのスイッチング素子の直列数をM、並列数をNとした時分割運転におけるk次高調波スイッチングパターンを生成することができる。 As described above, according to the control block of FIG. 6, by inputting an odd value to k, the k-th harmonic in the time-divided operation in which the number of series of switching elements of the single-phase inverter is M and the number of parallels is N is Switching patterns can be generated.

このk次高調波スイッチングパターンにより制御することによって、実施例1、実施例2の場合と同様に電流ゼロクロス近辺でのソフト遮断が実現され、電流遮断は生じない。 By controlling by this k-th harmonic switching pattern, soft cutoff in the vicinity of the current zero cross is realized as in the case of the first and second embodiments, and the current cutoff does not occur.

また、実施例2で述べたPWM指令の関係式(1)から、Mが2でないと高調波指令の切り替えはできないが、本実施例3によれば、単相インバータのスイッチング素子の直列数Mが3以上、並列数Nが2以上であるときに、固定の高調波指令kに応じた制御モデルを生成することができる。 Further, from the PWM command relational expression (1) described in the second embodiment, the harmonic command cannot be switched unless M is 2, but according to the third embodiment, the number of series M of the switching elements of the single-phase inverter is M. When is 3 or more and the number of parallels N is 2 or more, a control model corresponding to the fixed harmonic command k can be generated.

10…交直変換装置
11…直流電圧源
12…共振負荷
100U,100V,100X,100Y,200U,200V,200X,200Y,300U,300V,300X,300Y…スイッチ群回路
111…高調波指令演算部
112…キャリア上限演算部
113…ON信号クロック数演算部
114,115…減算器
116…周期演算部
117…除算器
118…乗算器
119…三角波生成部
120、120-1~120-11…遅延部
121、121-1~121-12…比較器
U11~U1m,U21~U2m,…Un1~Unm,V11~V1m,V21~V2m,…Vn1~Vnm,X11~X1m,X21~X2m,…Xn1~Xnm,Y11~Y1m,Y21~Y2m,…Yn1~Ynm…スイッチング素子
10 ... AC / DC converter 11 ... DC voltage source 12 ... Resonant load 100U, 100V, 100X, 100Y, 200U, 200V, 200X, 200Y, 300U, 300V, 300X, 300Y ... Switch group circuit 111 ... Harmonic command calculation unit 112 ... Carrier upper limit calculation unit 113 ... ON signal Clock number calculation unit 114, 115 ... Subtractor 116 ... Periodic calculation unit 117 ... Divider 118 ... Multiplier 119 ... Triangular wave generator 120, 120 -1 to 120 -11 ... Delay unit 121, 121 -1 to 121 -12 ... Comparer U11 to U1m, U21 to U2m, ... Un1 to Unm, V11 to V1m, V21 to V2m, ... Vn1 to Vnm, X11 to X1m, X21 to X2m, ... Xn1 to Xnm, Y11 ~ Y1m, Y21 ~ Y2m, ... Yn1 ~ Ynm ... Switching element

Claims (5)

直流入力側が直流電圧源に、出力側が共振負荷に各々接続され、共振周波数で矩形波電圧を出力する単相インバータを備えた共振負荷用電力変換装置であって、
前記単相インバータの一方の相の上、下アームおよび他方の相の上、下アームに各々接続され、m個(mは2以上の整数)のスイッチング素子の直列体をn個(nは2以上の整数)並列にそれぞれの直列体間を主回路導体で接続して構成されたスイッチ群回路と、
前記単相インバータの前記スイッチ群回路の各スイッチング素子を1/(m×n)に時分割でスイッチング制御する制御部とを備え、
前記単相インバータの一方の相の上アームのスイッチ群回路は、U11~U1mのm個のスイッチング素子が直列接続された第1の直列体と、…Un1~Unmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの一方の相の下アームのスイッチ群回路は、X11~X1mのm個のスイッチング素子が直列接続された第1の直列体と、…Xn1~Xnmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の上アームのスイッチ群回路は、V11~V1mのm個のスイッチング素子が直列接続された第1の直列体と、…Vn1~Vnmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の下アームのスイッチ群回路は、Y11~Y1mのm個のスイッチング素子が直列接続された第1の直列体と、…Yn1~Ynmのm個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記制御部は、
前記単相インバータの出力電流周波数の半サイクルをトリガとし、半サイクル毎にk個(kは3以上の奇数の高調波次数)出力するクロックと、
2×直列数M×並列数N×kクロック(M、Nは2以上の整数)を1周期とし、2×並列数N×(直列数M-1)×k+1クロックの期間ON信号を出力し、{2×直列数M×並列数N×k}-{2×並列数N×(直列数M-1)×k+1}クロックの期間OFF信号を出力するスイッチング素子U11、Y11用ゲート指令信号U11_gate/Y11_gateと、
前記ゲート指令信号U11_gate/Y11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X11,V11用ゲート指令信号X11_gate/V11_gateと、
前記ゲート指令信号X11_gate/V11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U21,Y21用ゲート指令信号U21_gate/Y21_gateと、
前記ゲート指令信号U21_gate/Y21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X21,V21用ゲート指令信号X21_gate/V21_gateと、



スイッチング素子X(n-1)1,V(n-1)1用ゲート指令信号X(n-1)1_gate/V(n-1)1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un1,Yn1用ゲート指令信号Un1_gate/Yn1_gateと、
前記ゲート指令信号Un1_gate/Yn1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn1,Vn1用ゲート指令信号Xn1_gate/Vn1_gateと、
前記ゲート指令信号Xn1_gate/Vn1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U12,Y12用ゲート指令信号U12_gate/Y12_gateと、
前記ゲート指令信号U12_gate/Y12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X12,V12用ゲート指令信号X12_gate/V12_gateと、
前記ゲート指令信号X12_gate/V12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U22,Y22用ゲート指令信号U22_gate/Y22_gateと、
前記ゲート指令信号U22_gate/Y22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X22,V22用ゲート指令信号X22_gate/V22_gateと、



スイッチング素子X(n-1)2,V(n-1)2用ゲート指令信号X(n-1)2_gate/V(n-1)2_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un2,Yn2用ゲート指令信号Un2_gate/Yn2_gateと、
前記ゲート指令信号Un2_gate/Yn2_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn2,Vn2用ゲート指令信号Xn2_gate/Vn2_gateと、



スイッチング素子X1(m-1),V1(m-1)用ゲート指令信号X1(m-1)_gate/V1(m-1)_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U1m,Y1m用ゲート指令信号U1m_gate/Y1m_gateと、
前記ゲート指令信号U1m_gate/Y1m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X1m,V1m用ゲート指令信号X1m_gate/V1m_gateと、
前記ゲート指令信号X1m_gate/V1m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U2m,Y2m用ゲート指令信号U2m_gate/Y2m_gateと、
前記ゲート指令信号U2m_gate/Y2m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X2m,V2m用ゲート指令信号X2m_gate/V2m_gateと、



スイッチング素子X(n-1)m,V(n-1)m用ゲート指令信号X(n-1)m_gate/V(n-1)m_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Unm,Ynm用ゲート指令信号Unm_gate/Ynm_gateと、
前記ゲート指令信号Unm_gate/Ynm_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xnm,Vnm用ゲート指令信号Xnm_gate/Vnm_gateと、
を作成するゲート指令作成部を備え、
前記作成された各ゲート指令信号によって前記各スイッチング素子をON、OFF制御する共振負荷用電力変換装置。
It is a power conversion device for resonance load equipped with a single-phase inverter that outputs a square wave voltage at the resonance frequency by connecting the DC input side to the DC voltage source and the output side to the resonance load.
N series of m (m is an integer of 2 or more) switching elements connected to the upper and lower arms of one phase and the upper and lower arms of the other phase, respectively (n is 2). The above integers) A switch group circuit configured by connecting each series in parallel with a main circuit conductor,
It is provided with a control unit that controls switching of each switching element of the switch group circuit of the single-phase inverter by time division in 1 / (m × n).
In the switch group circuit of the upper arm of one phase of the single-phase inverter, a first series body in which m switching elements of U11 to U1 m are connected in series and ... m switching elements of Un1 to Unm are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the lower arm of one phase of the single-phase inverter, a first series body in which m switching elements of X11 to X1 m are connected in series and ... m switching elements of Xn1 to Xnm are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the upper arm of the other phase of the single-phase inverter, a first series body in which m switching elements of V11 to V1 m are connected in series and ... m switching elements of Vn1 to Vnm are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the lower arm of the other phase of the single-phase inverter, a first series body in which m switching elements of Y11 to Y1 m are connected in series and m switching elements of Yn1 to Ynm are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
The control unit
A clock that outputs k (k is an odd harmonic order of 3 or more) every half cycle, triggered by a half cycle of the output current frequency of the single-phase inverter.
2 × number of series M × number of parallels N × k clock (M and N are integers of 2 or more) is set as one cycle, and 2 × number of parallels N × (number of series M-1) × k + 1 clock period ON signal is output. , {2 x number of series M x number of parallels N x k}-{2 x number of parallels N x (number of series M-1) x k + 1} Switching element U11 that outputs a clock period OFF signal, gate command signal U11_gate for Y11 / Y11_gate and
The gate command signals X11_gate / V11_gate for the switching elements X11 and V11, which are delayed by k clocks from the gate command signal U11_gate / Y11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U21_gate / Y21_gate for the switching elements U21 and Y21, which are delayed by k clocks from the gate command signal X11_gate / V11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X21_gate / V21_gate for the switching elements X21 and V21, which are delayed by k clocks from the gate command signals U21_gate / Y21_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



A k clock delay is delayed from the gate command signal X (n-1) 1_gate / V (n-1) 1_gate for the switching elements X (n-1) 1 and V (n-1) 1, and the ON period of the gate command signal is And the gate command signals Un1_gate / Yn1_gate for the switching elements Un1 and Yn1 having the same ON period and OFF period as the OFF period,
The gate command signals Xn1_gate / Vn1_gate for the switching elements Xn1 and Vn1 which are delayed by k clocks from the gate command signal Un1_gate / Yn1_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal.
The gate command signals U12_gate / Y12_gate for the switching elements U12 and Y12, which are delayed by k clocks from the gate command signal Xn1_gate / Vn1_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal.
The gate command signals X12_gate / V12_gate for the switching elements X12 and V12, which are delayed by k clocks from the gate command signal U12_gate / Y12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U22_gate / Y22_gate for the switching elements U22 and Y22, which are delayed by k clocks from the gate command signal X12_gate / V12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X22_gate / V22_gate for the switching elements X22 and V22, which are delayed by k clocks from the gate command signal U22_gate / Y22_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



The gate command signal for the switching elements X (n-1) 2, V (n-1) 2 is delayed by k clocks from the gate command signal X (n-1) 2_gate / V (n-1) 2_gate, and the ON period of the gate command signal is And the gate command signal Un2_gate / Yn2_gate for the switching elements Un2 and Yn2 having the same ON period and OFF period as the OFF period,
The gate command signals Xn2_gate / Vn2_gate for the switching elements Xn2 and Vn2, which are delayed by k clocks from the gate command signal Un2_gate / Yn2_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



The gate command signal for the switching elements X1 (m-1) and V1 (m-1) is delayed by k clocks from the gate command signal X1 (m-1) _gate / V1 (m-1) _gate, and the gate command signal is turned on and off. A gate command signal U1m_gate / Y1m_gate for switching elements U1m and Y1m having the same ON period and OFF period as the period,
The gate command signals X1m_gate / V1m_gate for the switching elements X1m and V1m, which are delayed by k clocks from the gate command signal U1m_gate / Y1m_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U2m_gate / Y2m_gate for switching elements U2m and Y2m, which are delayed by k clocks from the gate command signal X1m_gate / V1m_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X2m_gate / V2m_gate for switching elements X2m and V2m, which are delayed by k clocks from the gate command signal U2m_gate / Y2m_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



A k clock delay is delayed from the gate command signal X (n-1) m_gate / V (n-1) m_gate for the switching elements X (n-1) m and V (n-1) m, and the ON period of the gate command signal is And the gate command signal Unm_gate / Ynm_gate for switching elements Unm, Ynm having the same ON period and OFF period as the OFF period,
The gate command signals Xnm_gate / Vnm_gate for switching elements Xnm and Vnm, which are delayed by k clocks from the gate command signal Unm_gate / Ynm_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
Equipped with a gate command creation unit to create
A power conversion device for a resonance load that controls ON / OFF of each switching element by each gate command signal created.
前記ゲート指令作成部は、
可変の高調波指令を前記スイッチング素子U11,Y11用ゲート指令信号U11_gate/Y11_gateの立上りクロックでサンプルホールドして高調波指令kを演算する高調波指令演算部と、
2×直列数M×並列数N×kを演算することにより、前記各ゲート指令信号の1周期のクロック数およびキャリア上限値を求めるキャリア上限演算部と、
前記キャリア上限演算部で求められた前記各ゲート指令信号の1周期のクロック数から、1周期中のON信号期間のクロック数(2×(M-1)×N×k+1)を減算して1周期中のOFF信号期間のクロック数(2×M×N×k)-{(2×(M-1)×N×k+1)}を求め、前記1周期中のON信号期間のクロック数から前記1周期中のOFF信号期間のクロック数を減算してPWM(Pulse Wide Modulation))指令信号を生成するPWM指令生成部と、
前記単相インバータの出力電流のゼロクロスタイミングから出力電流の周期Tを演算する周期演算部と、
前記周期演算部で演算された周期Tを2で除算して得たキャリア傾きと、前記キャリア上限演算部で求められたキャリア上限値と、前記キャリア上限値に-1を乗算して得たキャリア下限値とに基いて三角波信号を生成する三角波生成部と、
前記三角波生成部で生成された三角波信号を(T×K)/2クロックずつ順次遅延させる2×N×M-1個の遅延部と、
前記PWM指令生成部で生成されたPWM指令信号と、前記三角波生成部で生成された三角波信号および前記2×N×M-1個の遅延部により遅延された三角波信号とを各々比較し、前記三角波信号がPWM指令信号よりも小のときゲートON信号を、三角波信号がPWM指令信号よりも大のときゲートOFF信号を各々出力する2×N×M個の比較器と、
を備えたことを特徴とする請求項1に記載の共振負荷用電力変換装置。
The gate command creation unit
A harmonic command calculation unit that calculates the harmonic command k by sample-holding a variable harmonic command with the rising clock of the gate command signals U11_gate / Y11_gate for the switching elements U11 and Y11.
A carrier upper limit calculation unit that obtains the number of clocks in one cycle of each gate command signal and the carrier upper limit value by calculating 2 × the number of series M × the number of parallels N × k.
The number of clocks in the ON signal period in one cycle (2 × (M-1) × N × k + 1) is subtracted from the number of clocks in one cycle of each gate command signal obtained by the carrier upper limit calculation unit, and 1 The number of clocks in the OFF signal period during the cycle (2 × M × N × k)-{(2 × (M-1) × N × k + 1)} is obtained, and the clocks in the ON signal period in one cycle are used as described above. A PWM command generator that generates a PWM (Pulse Width Modulation) command signal by subtracting the number of clocks during the OFF signal period in one cycle.
A cycle calculation unit that calculates the cycle T of the output current from the zero cross timing of the output current of the single-phase inverter.
The carrier slope obtained by dividing the cycle T calculated by the cycle calculation unit by 2, the carrier upper limit value obtained by the carrier upper limit calculation unit, and the carrier obtained by multiplying the carrier upper limit value by -1. A triangle wave generator that generates a triangle wave signal based on the lower limit,
A delay unit of 2 × N × M-1 that sequentially delays the triangle wave signal generated by the triangle wave generation unit by (T × K) / 2 clocks, and
The PWM command signal generated by the PWM command generation unit is compared with the triangle wave signal generated by the triangle wave generation unit and the triangle wave signal delayed by the 2 × N × M-1 delay units, respectively. A 2 × N × M comparator that outputs a gate ON signal when the triangle wave signal is smaller than the PWM command signal and a gate OFF signal when the triangle wave signal is larger than the PWM command signal.
The power conversion device for a resonant load according to claim 1, further comprising.
前記単相インバータの各アームのスイッチ群回路を構成するスイッチング素子の直列数Mは2、並列数Nは3であり、
前記単相インバータの一方の相の上アームのスイッチ群回路は、U11およびU12の2個のスイッチング素子が直列接続された第1の直列体とU21およびU22の2個のスイッチング素子が直列接続された第2の直列体とU31およびU32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの一方の相の下アームのスイッチ群回路は、X11およびX12の2個のスイッチング素子が直列接続された第1の直列体とX21およびX22の2個のスイッチング素子が直列接続された第2の直列体とX31およびX32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の上アームのスイッチ群回路は、V11およびV12の2個のスイッチング素子が直列接続された第1の直列体とV21およびV22の2個のスイッチング素子が直列接続された第2の直列体とV31およびV32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の下アームのスイッチ群回路は、Y11およびY12の2個のスイッチング素子が直列接続された第1の直列体とY21およびY22の2個のスイッチング素子が直列接続された第2の直列体とY31およびY32の2個のスイッチング素子が直列接続された第3の直列体とを有し、前記第1の直列体から第3の直列体までの3個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記2×N×M-1個の遅延部は11個の遅延部で構成され、
前記2×N×M個の比較器は12個の比較器で構成され、
前記ゲート指令作成部は、
前記単相インバータの出力電流周波数の半サイクルをトリガとし、半サイクル毎にk個(kは3以上の奇数の高調波次数)出力するクロックと、
2×2(=直列数M)×3(=並列数N)×kクロックを1周期とし、2×3(=並列数N)×1(=直列数M-1)×k+1クロックの期間ON信号を出力し、{2×2(=直列数M)×3(=並列数N)×k}-{2×3(=並列数N)×1(=直列数M-1)×k+1}クロックの期間OFF信号を出力するスイッチング素子U11,Y11用ゲート指令信号U11_gate/Y11_gateと、
前記ゲート指令信号U11_gate/Y11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X11,V11用ゲート指令信号X11_gate/V11_gateと、
前記ゲート指令信号X11_gate/V11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U21,Y21用ゲート指令信号U21_gate/Y21_gateと、
前記ゲート指令信号U21_gate/Y21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X21,V21用ゲート指令信号X21_gate/V21_gateと、
前記ゲート指令信号X21_gate/V21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U31,Y31用ゲート指令信号U31_gate/Y31_gateと、
前記ゲート指令信号U31_gate/Y31_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X31,V31用ゲート指令信号X31_gate/V31_gateと、
前記ゲート指令信号X31_gate/V31_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U12,Y12用ゲート指令信号U12_gate/Y12_gateと、
前記ゲート指令信号U12_gate/Y12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X12,V12用ゲート指令信号X12_gate/V12_gateと、
前記ゲート指令信号X12_gate/V12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U22,Y22用ゲート指令信号U22_gate/Y22_gateと、
前記ゲート指令信号U22_gate/Y22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X22,V22用ゲート指令信号X22_gate/V22_gateと、
前記ゲート指令信号X22_gate/V22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U32,Y32用ゲート指令信号U32_gate/Y32_gateと、
前記ゲート指令信号U32_gate/Y32_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X32,V32用ゲート指令信号X32_gate/V32_gateと、
を作成することを特徴とする請求項2に記載の共振負荷用電力変換装置。
The number M in series and the number N in parallel of the switching elements constituting the switch group circuit of each arm of the single-phase inverter are 2.
In the switch group circuit of the upper arm of one phase of the single-phase inverter, a first series body in which two switching elements U11 and U12 are connected in series and two switching elements U21 and U22 are connected in series. It has a second series body and a third series body in which two switching elements U31 and U32 are connected in series, and three series bodies from the first series body to the third series body. Are configured in parallel and each series is connected by a main circuit conductor.
In the switch group circuit of the lower arm of one phase of the single-phase inverter, a first series body in which two switching elements X11 and X12 are connected in series and two switching elements X21 and X22 are connected in series. It has a second series body and a third series body in which two switching elements of X31 and X32 are connected in series, and three series bodies from the first series body to the third series body. Are configured in parallel and each series is connected by a main circuit conductor.
In the switch group circuit of the upper arm of the other phase of the single-phase inverter, a first series body in which two switching elements of V11 and V12 are connected in series and two switching elements of V21 and V22 are connected in series. It has a second series body and a third series body in which two switching elements of V31 and V32 are connected in series, and three series bodies from the first series body to the third series body. Are configured in parallel and each series is connected by a main circuit conductor.
In the switch group circuit of the lower arm of the other phase of the single-phase inverter, a first series body in which two switching elements Y11 and Y12 are connected in series and two switching elements Y21 and Y22 are connected in series. It has a second series body and a third series body in which two switching elements of Y31 and Y32 are connected in series, and three series bodies from the first series body to the third series body. Are configured in parallel and each series is connected by a main circuit conductor.
The 2 × N × M-1 delay part is composed of 11 delay parts.
The 2 × N × M comparators are composed of 12 comparators.
The gate command creation unit
A clock that outputs k (k is an odd harmonic order of 3 or more) every half cycle, triggered by a half cycle of the output current frequency of the single-phase inverter.
2 x 2 (= series number M) x 3 (= parallel number N) x k clock is set as one cycle, and 2 x 3 (= parallel number N) x 1 (= series number M-1) x k + 1 clock period ON Output a signal, {2 x 2 (= series number M) x 3 (= parallel number N) x k}-{2 x 3 (= parallel number N) x 1 (= series number M-1) x k + 1} The gate command signals U11_gate / Y11_gate for the switching elements U11 and Y11 that output the clock period OFF signal,
The gate command signals X11_gate / V11_gate for the switching elements X11 and V11, which are delayed by k clocks from the gate command signal U11_gate / Y11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U21_gate / Y21_gate for the switching elements U21 and Y21, which are delayed by k clocks from the gate command signal X11_gate / V11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X21_gate / V21_gate for the switching elements X21 and V21, which are delayed by k clocks from the gate command signals U21_gate / Y21_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U31_gate / Y31_gate for the switching elements U31 and Y31, which are delayed by k clocks from the gate command signal X21_gate / V21_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X31_gate / V31_gate for the switching elements X31 and V31, which are delayed by k clocks from the gate command signal U31_gate / Y31_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U12_gate / Y12_gate for the switching elements U12 and Y12, which are delayed by k clocks from the gate command signal X31_gate / V31_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X12_gate / V12_gate for the switching elements X12 and V12, which are delayed by k clocks from the gate command signal U12_gate / Y12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U22_gate / Y22_gate for the switching elements U22 and Y22, which are delayed by k clocks from the gate command signal X12_gate / V12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X22_gate / V22_gate for the switching elements X22 and V22, which are delayed by k clocks from the gate command signal U22_gate / Y22_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U32_gate / Y32_gate for the switching elements U32 and Y32, which are delayed by k clocks from the gate command signal X22_gate / V22_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X32_gate / V32_gate for the switching elements X32 and V32, which are delayed by k clocks from the gate command signal U32_gate / Y32_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
2. The power conversion device for a resonant load according to claim 2.
前記単相インバータの各アームのスイッチ群回路を構成するスイッチング素子の直列数Mは2であり、
前記単相インバータの一方の相の上アームのスイッチ群回路は、U11およびU12の2個のスイッチング素子が直列接続された第1の直列体と、…Un1およびUn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの一方の相の下アームのスイッチ群回路は、X11および12の2個のスイッチング素子が直列接続された第1の直列体と、…Xn1およびXn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の上アームのスイッチ群回路は、V11およびV12の2個のスイッチング素子が直列接続された第1の直列体と、…Vn1およびVn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記単相インバータの他方の相の下アームのスイッチ群回路は、Y11およびY12の2個のスイッチング素子が直列接続された第1の直列体と、…Yn1およびYn2の2個のスイッチング素子が直列接続された第nの直列体とを有し、前記第1の直列体から第nの直列体までのn個の直列体を並列に、且つそれぞれの直列体間を主回路導体で接続して構成され、
前記ゲート指令作成部は、
前記単相インバータの出力電流周波数の半サイクルをトリガとし、半サイクル毎にk個(kは3以上の奇数の高調波次数)出力するクロックと、
2×2(=直列数M)×並列数N×kクロック(Nは2以上の整数)を1周期とし、2×並列数N×1(=直列数M-1)×k+1クロックの期間ON信号を出力し、{2×2(=直列数M)×並列数N×k}-{2×並列数N×1(=直列数M-1)×k+1}クロックの期間OFF信号を出力するスイッチング素子U11、Y11用ゲート指令信号U11_gate/Y11_gateと、
前記ゲート指令信号U11_gate/Y11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X11,V11用ゲート指令信号X11_gate/V11_gateと、
前記ゲート指令信号X11_gate/V11_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U21,Y21用ゲート指令信号U21_gate/Y21_gateと、
前記ゲート指令信号U21_gate/Y21_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X21,V21用ゲート指令信号X21_gate/V21_gateと、



スイッチング素子X(n-1)1,V(n-1)1用ゲート指令信号X(n-1)1_gate/V(n-1)1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un1,Yn1用ゲート指令信号Un1_gate/Yn1_gateと、
前記ゲート指令信号Un1_gate/Yn1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn1,Vn1用ゲート指令信号Xn1_gate/Vn1_gateと、
前記ゲート指令信号Xn1_gate/Vn1_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U12,Y12用ゲート指令信号U12_gate/Y12_gateと、
前記ゲート指令信号U12_gate/Y12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X12,V12用ゲート指令信号X12_gate/V12_gateと、
前記ゲート指令信号X12_gate/V12_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子U22,Y22用ゲート指令信号U22_gate/Y22_gateと、
前記ゲート指令信号U22_gate/Y22_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子X22,V22用ゲート指令信号X22_gate/V22_gateと、



スイッチング素子X(n-1)2,V(n-1)2用ゲート指令信号X(n-1)2_gate/V(n-1)2_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Un2,Yn2用ゲート指令信号Un2_gate/Yn2_gateと、
前記ゲート指令信号Un2_gate/Yn2_gateよりもkクロック遅延し、当該ゲート指令信号のON期間およびOFF期間と同一のON期間およびOFF期間を有するスイッチング素子Xn2,Vn2用ゲート指令信号Xn2_gate/Vn2_gateと、
を作成することを特徴とする請求項2に記載の共振負荷用電力変換装置。
The series number M of the switching elements constituting the switch group circuit of each arm of the single-phase inverter is 2.
In the switch group circuit of the upper arm of one phase of the single-phase inverter, a first series body in which two switching elements U11 and U12 are connected in series and ... Two switching elements Un1 and Un2 are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the lower arm of one phase of the single-phase inverter, a first series body in which two switching elements X11 and 12 are connected in series and ... Two switching elements Xn1 and Xn2 are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the upper arm of the other phase of the single-phase inverter, a first series body in which two switching elements of V11 and V12 are connected in series and ... Two switching elements of Vn1 and Vn2 are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
In the switch group circuit of the lower arm of the other phase of the single-phase inverter, a first series body in which two switching elements Y11 and Y12 are connected in series and ... Two switching elements Yn1 and Yn2 are connected in series. It has a connected nth series body, and n series bodies from the first series body to the nth series body are connected in parallel, and each series body is connected by a main circuit conductor. Configured,
The gate command creation unit
A clock that outputs k (k is an odd harmonic order of 3 or more) every half cycle, triggered by a half cycle of the output current frequency of the single-phase inverter.
2 x 2 (= series number M) x parallel number N x k clock (N is an integer of 2 or more) is set as one cycle, and 2 x parallel number N x 1 (= series number M-1) x k + 1 clock period ON Outputs a signal and outputs a {2 × 2 (= series number M) × parallel number N × k}-{2 × parallel number N × 1 (= series number M-1) × k + 1} clock period OFF signal. Gate command signals U11_gate / Y11_gate for switching elements U11 and Y11,
The gate command signals X11_gate / V11_gate for the switching elements X11 and V11, which are delayed by k clocks from the gate command signal U11_gate / Y11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U21_gate / Y21_gate for the switching elements U21 and Y21, which are delayed by k clocks from the gate command signal X11_gate / V11_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X21_gate / V21_gate for the switching elements X21 and V21, which are delayed by k clocks from the gate command signals U21_gate / Y21_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



A k clock delay is delayed from the gate command signal X (n-1) 1_gate / V (n-1) 1_gate for the switching elements X (n-1) 1 and V (n-1) 1, and the ON period of the gate command signal is And the gate command signals Un1_gate / Yn1_gate for the switching elements Un1 and Yn1 having the same ON period and OFF period as the OFF period,
The gate command signals Xn1_gate / Vn1_gate for the switching elements Xn1 and Vn1 which are delayed by k clocks from the gate command signal Un1_gate / Yn1_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal.
The gate command signals U12_gate / Y12_gate for the switching elements U12 and Y12, which are delayed by k clocks from the gate command signal Xn1_gate / Vn1_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal.
The gate command signals X12_gate / V12_gate for the switching elements X12 and V12, which are delayed by k clocks from the gate command signal U12_gate / Y12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals U22_gate / Y22_gate for the switching elements U22 and Y22, which are delayed by k clocks from the gate command signal X12_gate / V12_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
The gate command signals X22_gate / V22_gate for the switching elements X22 and V22, which are delayed by k clocks from the gate command signal U22_gate / Y22_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,



The gate command signal for the switching elements X (n-1) 2, V (n-1) 2 is delayed by k clocks from the gate command signal X (n-1) 2_gate / V (n-1) 2_gate, and the ON period of the gate command signal is And the gate command signal Un2_gate / Yn2_gate for the switching elements Un2 and Yn2 having the same ON period and OFF period as the OFF period,
The gate command signals Xn2_gate / Vn2_gate for the switching elements Xn2 and Vn2, which are delayed by k clocks from the gate command signal Un2_gate / Yn2_gate and have the same ON period and OFF period as the ON period and OFF period of the gate command signal,
2. The power conversion device for a resonant load according to claim 2.
前記高調波指令演算部を除去し、固定の高調波指令kを設定する高調波指令設定部を設けたことを特徴とする請求項2に記載の共振負荷用電力変換装置。 The power conversion device for a resonance load according to claim 2, wherein the harmonic command calculation unit is removed and a harmonic command setting unit for setting a fixed harmonic command k is provided.
JP2019015787A 2019-01-31 2019-01-31 Power converter for resonant load Active JP7088050B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019015787A JP7088050B2 (en) 2019-01-31 2019-01-31 Power converter for resonant load
JP2021148614A JP7151845B2 (en) 2019-01-31 2021-09-13 Time-sharing operation method for power converter for resonant load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015787A JP7088050B2 (en) 2019-01-31 2019-01-31 Power converter for resonant load

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021148614A Division JP7151845B2 (en) 2019-01-31 2021-09-13 Time-sharing operation method for power converter for resonant load

Publications (3)

Publication Number Publication Date
JP2020124070A JP2020124070A (en) 2020-08-13
JP2020124070A5 JP2020124070A5 (en) 2021-10-21
JP7088050B2 true JP7088050B2 (en) 2022-06-21

Family

ID=71993162

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019015787A Active JP7088050B2 (en) 2019-01-31 2019-01-31 Power converter for resonant load
JP2021148614A Active JP7151845B2 (en) 2019-01-31 2021-09-13 Time-sharing operation method for power converter for resonant load

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021148614A Active JP7151845B2 (en) 2019-01-31 2021-09-13 Time-sharing operation method for power converter for resonant load

Country Status (1)

Country Link
JP (2) JP7088050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396250B2 (en) 2020-11-05 2023-12-12 株式会社明電舎 AC/DC converter and control method for AC/DC converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079861B1 (en) 2015-12-16 2017-02-15 株式会社明電舎 Resonant load power converter and time-sharing operation method for resonant load power converter
JP2017204909A (en) 2016-05-10 2017-11-16 株式会社明電舎 Power balance controller and power balance control method in resonant load power conversion system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132048B1 (en) * 2016-04-15 2017-05-24 株式会社明電舎 Resonant load power converter and time-sharing operation method for resonant load power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079861B1 (en) 2015-12-16 2017-02-15 株式会社明電舎 Resonant load power converter and time-sharing operation method for resonant load power converter
JP2017204909A (en) 2016-05-10 2017-11-16 株式会社明電舎 Power balance controller and power balance control method in resonant load power conversion system

Also Published As

Publication number Publication date
JP7151845B2 (en) 2022-10-12
JP2021185744A (en) 2021-12-09
JP2020124070A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
JPH02307373A (en) Converter for inverter
Peter et al. A combined PWM and AEM‐based AC voltage controller for resistive loads
Wang et al. Study on comprehensive analysis and compensation for the line current distortion in single-phase three-level NPC converters
RU2683639C9 (en) Power with resonant load conversion device and such device operation method with separation by time
JP7088050B2 (en) Power converter for resonant load
Narmatha et al. Inverter dead-time elimination for reducing harmonic distortion and improving power quality
GB2605557A (en) A method and apparatus for generating a three-phase voltage
Dehbonei et al. A review and a proposal for optimal harmonic mitigation in single-phase pulse width modulation
Subburaj et al. A Ripple Rejection Inherited RPWN for VSI Working with Fluctuating DC Link Voltage
Sengolrajan et al. Comparative study of multicarrier PWM techniques for seven level cascaded Z-source inverter
Govindaraju et al. Power loss minimizing control of cascaded multilevel inverter with efficient hybrid carrier based space vector modulation
WO2017179305A1 (en) Resonant load power conversion device, power-balancing control device in resonant load power conversion system, time-sharing operation method for resonant load power conversion device, and power-balancing control method in resonant load power conversion system
JP6132048B1 (en) Resonant load power converter and time-sharing operation method for resonant load power converter
Show et al. Analysis of current controlled voltage source Inverter with Space Vector PWM and Sinusoidal PWM techniques
Kale et al. A novel hysteresis band current controller scheme for three phase AC chopper
Jyothi et al. Modeling and Simulation of Five-phase Induction Motor Fed with Five-phase Inverter Topologies
Gupta et al. FPGA based comparative analysis of single carrier PWM schemes
Joy et al. Three-phase infinite level inverter fed induction motor drive
Agelidis et al. On applying graph theory toward a unified analysis of three-phase PWM inverter topologies
KR100724498B1 (en) Method for compensating voltage of matrix converter and apparatus thereof
Lee et al. Convenient thermal modeling for loss distribution of 3-level Active NPC using newton's law
Khan et al. Short through avoidance in AC-AC choppers
Panda et al. A novel sine wave inverter with PWM DC link
Jian et al. A new three-level NPC inverter based on phase individual DC-link circuit and high quality digital SPWM control technology
Reddy et al. Hysteresis controller and delta modulator-a two viable scheme for current controlled voltage source inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7088050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150