JP7086700B2 - 多層の触覚センサ - Google Patents

多層の触覚センサ Download PDF

Info

Publication number
JP7086700B2
JP7086700B2 JP2018086234A JP2018086234A JP7086700B2 JP 7086700 B2 JP7086700 B2 JP 7086700B2 JP 2018086234 A JP2018086234 A JP 2018086234A JP 2018086234 A JP2018086234 A JP 2018086234A JP 7086700 B2 JP7086700 B2 JP 7086700B2
Authority
JP
Japan
Prior art keywords
layer
conductive
layers
sensor assembly
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018086234A
Other languages
English (en)
Other versions
JP2018189648A (ja
Inventor
オネディン,イブロセヴィック
マティアス,クチェラ
マティアス,シュヴァイカー
Original Assignee
ピルツ ゲーエムベーハー アンド コー.カーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピルツ ゲーエムベーハー アンド コー.カーゲー filed Critical ピルツ ゲーエムベーハー アンド コー.カーゲー
Publication of JP2018189648A publication Critical patent/JP2018189648A/ja
Application granted granted Critical
Publication of JP7086700B2 publication Critical patent/JP7086700B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/084Tactile sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0061Force sensors associated with industrial machines or actuators
    • G01L5/0076Force sensors associated with manufacturing machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/02Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
    • H01H3/14Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch adapted for operation by a part of the human body other than the hand, e.g. by foot
    • H01H3/141Cushion or mat switches

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Manipulator (AREA)
  • Pressure Sensors (AREA)

Description

本発明は、可撓性の材料の第1、第2および第3の層を有するセンサアセンブリに関する。これらの層は、少なくとも2つのセンサセルを有する感圧式のセンサを形成している。
こうしたセンサは、例えば下記特許文献1より公知である。
一般的な多層のセンサは、局所的な機械的積載下において積載の地点でその電気的な体積抵抗を変化させる感圧式の材料の、少なくとも1つの層を有することを特徴としている。感圧式の層の上方および下方にある電極が、抵抗における変化を検知し、そのようにして、センサアセンブリに対する圧力負荷の場所および強度を判定することを可能にしている。このようにして、安全マットまたは入力装置で使用できる、可撓性の扁平なセンサを形成することができる。
そうした触覚センサの基本原理が、下記特許文献2に記載されている。下記特許文献2は、感圧式の層が弾性のマットの形態で形成された触覚センサを開示している。このマットは、マット全体を導電性にする、炭素または金属製の添加剤を浸透させた織物またはフェルト材料であってもよい。導電性とされた、マットの繊維は、マットに対する圧力負荷の下で協働し、その結果、マットを通じた接触抵抗が圧力負荷に代わって変化する。
下記特許文献2によれば、細片状の電極が、可変の体積抵抗を測定するために、マットの上方および下方にマトリクス状に配置されており、かつ、電気回路に結合されている。電極は例えば、金属製の箔または金属を添加したシリコンである。上側および下側の電極に印加された電圧を介して、それぞれの電極が重なった区域での電気抵抗を判定することができ、かつ、そのようにして、この場所にある弾性のマットの接触抵抗を判定することができる。次いで、測定された体積抵抗は、この時点でのそれぞれの圧力負荷についての結論を引き出すことを可能にする。上側および下側の電極の間の抵抗を連続して判定することにより、弾性のマットにわたる圧力分布を判定することができる。
ゆえに、測定原理は、圧力分布を判定するために、感圧式の層の可変の体積抵抗を判定することに基づいている。ゆえに、センサの特性にとって決定的であるのは、感圧式で導電性の材料の性質、および、その体積抵抗を変化させるその能力である。非常に薄い層の場合、圧縮荷重による接触抵抗における変化がわずかに過ぎない場合があり、それゆえに、体積抵抗における変化を検知するために大面積の電極が必要となる。ゆえに、センサセルのサイズは、電極の重なり合う面積により決定されるが、感圧式の層の層厚みに直接依存しており、そのため、多くのセンサセルを有するセンサの分解能を好ましくない仕方で制限する。
別の短所は、1つのセルの区域における可変の体積抵抗が隣接するセルに作用するという点で、非常に密集したセンサセルが、互いに影響する場合があることである。ゆえに、この効果を最小にするために、隣接するセンサセルをさらに離間させなければならず、圧力負荷を効果的に検知できない、センサセルの間の不感帯が生じる。
下記特許文献3がこれらの問題に取り組んでおり、隣接する2つのセルを互いに電気的に結合解除するために、感圧式の導電層の少なくとも一部を遮断することを提案している。ゆえに、第1の例では、下記特許文献3は、感圧式の導電層を個々のパッドに分割し、個々のパッドは、それぞれ2つの電極の交差地点に置かれ、かつ、空気、または、より大きな電気抵抗を有する別の媒体により離間されてもいるセンサを開示している。その際、個々のセルは、互いに電気的に完全に結合解除されているが、結合解除が起きる区域は依然として、圧力負荷を効果的に検知できない区画を形成する。
第2の例では、下記特許文献3は、感圧式の導電層を連続的な層として設計できるが、感圧式の導電層の個々の区域が、例えば片を切断または破砕することにより設計されて、その結果、2つの隣接するセンサセルを互いに電気的に結合解除する網が、2つの隣接するセンサセルの間に形成されることを開示している。そのため、感圧式の導電層は連続的なままであるが、高インピーダンスのブリッジの形態で網を形成するために、適切な処理を必要とする。
ゆえに、下記特許文献3に開示された例のそれぞれは、感圧式の導電層が、それを個々の構成要素に分割することにより、または、区域を高抵抗のブリッジに変換することにより、処理および適合されなければならないことを必要とする。両者とも、センサの全体的な設計を、高価で、かつ、時間のかかるものにする。くわえて、分解能に対する制限、または、センサが圧力負荷を効果的に検知できない不感帯を許容しなければならない。
独国特許出願公開第10 2015 120 368 B3号 英国特許出願公開第2 115 555 A号 独国特許出願公開第10 2007 022 871 A1号
ゆえに、本発明の目的は、位置依存性(location-dependent)の圧力分布を精密に判定することができ、かつ、上述した短所を回避する触覚センサを提供することである。特に扁平かつ可撓性であり、高分解能を実現し、かつ、圧力負荷の効果的な判定が可能でない不感帯を2、3個しか有していないセンサを、特に提供するものとする。
本発明の一局面によれば、前記課題は、重ね合わされたときに、少なくとも2つのセンサセルを有する感圧式のセンサを形成する、可撓性の材料の第1、第2および第3の層を備えるセンサアセンブリであって、前記第1の層は、非導電性の領域を介して互いに機械的に接続された第1および第2の導電性の領域を備え、前記第2の層は、表面において延びる第3の導電性の領域を備え、前記第2の層の前記第3の導電性の領域は、前記第1の層の前記第1および第2の導電性の領域と重なり合い、前記重なり合う領域は、第1および第2のセンサセルの活性領域を区画し、前記第3の層は、前記活性領域において、局所的な機械的負荷の下で、電気抵抗が前記圧力負荷の代わりに前記第1、第2および第3の電気的領域の間で変化するように、前記第1の層の前記第1および第2の導電性の領域と協働する、導電性の弾性材料で形成され、前記第1および第2の層を互いに固定するよう構成された固定具を備えており、前記固定具は、前記第1および第3の層が前記活性領域において互いの頂部で負荷を受けないままであり、かつ、互いに向き合う前記第1および第3の層の表面が固定から実質的に自由であるように、前記活性領域の外側に配置されている、センサアセンブリにより解決される。
ゆえに、センサへの圧力負荷を、層の可変の体積抵抗に基づいてではなく、体積抵抗から生じる電気抵抗と、感圧式の層および電極が形成される層の相互作用から生じる接触抵抗とに基づいて判定することが、本発明の着想である。ゆえに、体積抵抗に加えて、層の間の接触抵抗は、圧力負荷を判定するために、特に重要である。センサセルへの圧力が低くても、電気抵抗での測定可能な変化につながることが明らかとなっており、それにより、圧力への感度がより高いセンサを形成することが可能となる。
このように、センサセルは、導電性の材料および電極への接続を備えるだけでなく、むしろ、電極自体がセンサセルの一部であり、その電気特性に大きく貢献する。これは、電極が形成される層を中間層に似せて設計し、それにより、好ましくは感圧式かつ弾性ともすることで実現される。
可変の接触抵抗の影響に主に焦点を当てることにより、感圧式の材料に対するセンサ形状の依存性を低減することもできる。特に、1つのセンサセルから別のセンサセルへのクロストークの影響が、好適な仕方で最小化される。これは、感圧式の材料の体積距離ではなく、むしろ、電極が形成される、上方または下方の層との感圧式の層の相互作用が、今や決定的となるためである。電極は、センサセルを接触させるためだけに使用されるのではなく、その電気特性にも大きく貢献するため、隣接するセルが、電極間の絶縁により、互いに好適に結合解除される。
本発明によれば、センサの個々の層は、固定具が感圧式の接触抵抗に影響しない仕方で、互いに固定されている。これにより、圧力負荷を判定する際に、可変の接触抵抗を好適に使用することが可能となる。この目的のために、層は、センサセルの活性表面の外側に固定されており、その結果、固定具によりセルにかかる圧力が、全くなくなる、または、少なくとも非常に低くなる。電極を正しい位置に保つため、センサの電極は、非導電性の領域を介して互いに機械的に接続される連続的な層の電気的な区域として設計されている。連続的な層および機械的な接続により、非導電性の領域における、すなわちセンサセルの活性領域の外側での、感圧式の層に対する電極の固定が可能となり、その結果、電極が、固定具により、基礎をなす感圧式の材料に押し付けられない。
固定具は、互いに向き合う第1および第3の層の表面が固定から実質的に自由であるように、すなわち特に、可変の接触抵抗に影響を与え得るセルの活性領域において接着剤または他の結合剤が上記表面に存在しないように、さらに構成されている。このように、この設計は、上記特許文献3に記載のものと反対の作用を有している。上記特許文献3によれば、電極は、感圧式の層に、それらの間に規定の接触面を設け、かつ、そのようにして可変の接触抵抗を最小化するために、膠付けまたは押圧により取り付けられる。これは、可変の接触抵抗が「除外され」ることになる上記特許文献3に係るセンサと異なり、本発明によれば、圧力分布は、本発明に係る固定具により実現される可変の接触抵抗により、決定的に判定されることになることを意味している。
本発明に係るセンサにより、圧力分布は主に、可変の接触抵抗により判定され、それにより、固定具は、可変の接触抵抗が妨げられずに発達できるという事実に寄与する。可変の接触抵抗は、圧力負荷に対して、より敏感であるので、わずかな圧力でも、新規なセンサにより容易に検知することができる。同時に、セルからのクロストークの作用が測定に影響を与えることなしに、セルのサイズを、単一のヤーン電極まで縮小できる。センサの「見えない」区域も最小化することができる。それは、これらが本質的に、個々の電極の互いに対する絶縁にのみ依存しており、中間層の感圧式の材料またはその様式に、もはや依存していないためである。このようにして、冒頭で言及した課題は、完全に解決されている。
好ましい実施形態では、前記第1の層は、前記第1および第2の導電性の領域が導電性のヤーンで織り込まれた織物生地である。ゆえに、第1の層および好ましくは第2の層は、第3の層と実質的に同一であり、その結果、測定可能な可変の接触抵抗が、特に好適に形成される。第1の層は織物生地(例えば織り生地)であり、電極は導電性のヤーンで形成されているため、絶縁領域と導電性の領域とが、構造(特に表面)が著しく変化することなく交互になる、連続的な層を、容易に形成することもできる。同時に、単一の織物生地としての層の連続的な構成により、非導電性の領域を介した第1の電気的な領域および第2の電気的な領域の機械的な結合を実現するのが容易になる。このようにして、本発明に係る層の固定を、特に容易に、かつ費用効果の高い仕方で形成できる。
さらに好ましい実施形態では、前記第3の層の前記導電性の弾性材料は、導電性の添加剤が添加された織物、特にマイクロファイバーの布である。この設計は、圧力負荷が、第3の層の導電性の弾性材料と第1および第2の層の電極との間の可変の接触抵抗により、顕著に判定できるという事実に、好適に寄与する。それは、このようなマイクロファイバーの布が、織物状の電極と好適に相互作用できる特別な表面を有しているためである。くわえて、このような層は、一方で柔軟で薄く、かつ、他方で非常に頑丈に設計されていてもよく、それにより、特に薄く、非常に頑丈でもあるセンサを実施することが可能となる。
特に好ましい実施形態では、前記添加剤は、カーボンベースの添加剤または金属製の添加剤である。これらは、第3の層の導電性を、接触抵抗に比べると第3の層の体積抵抗が本質的に無視できる仕方で増加できるという利点を有している。同時に、そうした添加剤は、接触抵抗、特に圧力負荷の下での接触抵抗における変化にとって決定的な、材料の弾性特性を変化させない。このように、この設計は、センサの感度を向上することに好適に寄与する。
さらに好ましい実施形態では、前記固定具は、積層体である、かつ/または、少なくとも1つの縫い目を備えている。積層体または縫い目が、本発明に係るセンサを実現するための固定具として、特に適切である。接着剤または他の固定媒体と異なり、これらの固定具は、可変の接触抵抗に著しい影響を与えずに層を固定する仕方で、設計することができる。くわえて、縫い目は機械で非常に良好に作ることができ、それゆえに安価である。積層は同様に、外部の影響から追加でセンサを保護することもできる固定具を製造する、費用効果の高い方法である。
さらに好ましい実施形態では、前記固定具は、前記第1および前記第3の層を互いに接合するよう構成され、かつ、前記第1の層の前記非導電性の領域に沿って延びる、少なくとも1つの縫い目を備えている。第1の層の非導電性の領域に沿って延び、かつ、第1および第2の導電性の領域を機械的に結合することにより、第2および第3の層に対する第1および第2の電気的な層の特に簡単で費用効果の高い固定を実現することができる。さらなる特に好ましい実施形態では、前記縫い目は、前記第2の層を前記第1および前記第3の層に接着するよう、かつ、前記第1の層の前記非導電性の領域に沿い、前記第2の層の前記第3の導電性の領域を通って延びるようにも構成されている。このようにして、3つの層すべてを、単一の縫い目で互いに接合することができ、かつ、すべての層を互いに固定することができる。これにより、機械で製造するのが容易な、本発明に係るセンサの特に安価な設計が可能になる。
さらに好ましい実施形態では、前記固定具は、前記第3の層の反対を向く前記第1の層の表面を覆い、かつ、前記第1、第2および第3の層を越えて延びる、少なくとも1片の箔を有する積層体である。この実施形態では、このようにして、センサアセンブリが積層され、それにより、本発明に係る固定を実現することができる。積層体の利点は、活性表面の外側の層の固定に加えて、センサアセンブリも同時に保護(好ましくは防水)されることである。それにより、センサアセンブリの特に頑丈な設計を実現することができる。
さらに好ましい実施形態では、前記第1および前記第2の層は、前記第1、第2および第3の導電性の領域が導電性のヤーンにより織られた織物生地である。このように、この設計では、第2の層は第1の層に類似している。ゆえに、第1および第2の層は、特に好適に同じ材料から、かつ、特に好適に1つの同じ仕掛かり品から、得ることができる。これにより、センサの特に安価な製造が可能となる。
さらに好ましい実施形態では、前記導電性の弾性材料は、印加された電圧に対して、前記印加された電圧が0V~5Vの範囲で変化したときに、線形に挙動するよう構成された体積抵抗を有している。ゆえに、この実施形態では、第3の層が、既定の電圧範囲にわたって、オームの法則に従う挙動(ohmic behaviour)を示し、それにより、評価が特に容易となっている。特に、体積抵抗を、オームの法則に従う挙動の場合に、可変の接触抵抗に関して測定することができる。
さらに好ましい実施形態では、前記導電性の弾性材料は、0.75~1.25の間の温度変化係数を有しており、前記温度変化係数は、セ氏70°まで加熱され、かつ、セ氏-20°まで冷却されたときの最大の電流変化を記述する因子である。このような弾性材料により、体積抵抗を、可変の接触抵抗に対し、好ましい範囲にわたって明瞭に判定することができる。
さらに好ましい実施形態では、前記第2の層の前記第3の導電性の領域は、前記第1および第2の導電性の領域ならびに前記第1の層の前記非導電性の領域と重なり合い、かつ、前記第3の層が前記第1および第2の層に対して連続的な閉じた表面を有する領域を区画する。ゆえに、この実施形態では、第3の層は連続的で、特に閉じた層である。これは、第3の層を、調節のさらなるステップなしで、一体にセンサに挿入できることを意味している。それにより、新規なセンサアセンブリの特に費用効果の高い設計を実現することができる。
さらに好ましい実施形態では、前記固定具は、前記活性領域において前記第1、第2および第3の層が負荷を受けずに互いの頂部にあり、かつ、互いに向き合う前記第1、第2および第3の層の前記表面が固定から実質的に自由であるように、さらに設計されている。この実施形態では、このように、固定具も第2の層に関して類似している。これは、両方の層遷移での接触抵抗を好適に使用することができ、それにより、適用される測定原理がさらに向上されるという利点を有している。
上述した本発明の特徴および以下でこれから説明するものを、本発明の範囲を逸脱することなしに、示唆したそれぞれの組み合わせだけでなく、他の組み合わせまたは単独でも使用できることが、理解されるであろう。
本発明の新規な多層のセンサアセンブリの実施形態を示す模式図である。 センサアセンブリの第1および第2の層を示す図である。 センサアセンブリの第3の層を示す図である。 4つのセンサセルを有するセンサアセンブリの実施形態を示す模式図である。 センサアセンブリの実施形態に係る測定回路を示す簡略化した模式図である。 センサアセンブリの作動原理を示す模式図である。 センサアセンブリの実施形態を示す平面図である。 センサアセンブリの実施形態を使用する2つの用途を示す模式図である。
本発明の実施形態を、以下の記載において、より詳細に説明し、かつ、図面に示す。
それぞれの図における同一の参照符号は、同一の部品を意味している。
図1は、新規なセンサアセンブリの実施形態の模式図であり、センサアセンブリはその全体がここで、参照番号10で示されている。
センサアセンブリ10は、第1の層12と、第2の層14と、第1および第2の層の間にある第3の層16とを備えている。第1、第2および第3の層12、14、16は、少なくとも2つのセンサセル(ここでは別体で図示しない)を有する感圧式のセンサを形成する扁平な構造体である。
ゆえに、第1、第2および第3の層12、14、16は、本質的に表面において延び、布または箔状に形成される。個々の層の可撓性の特性は、組み合わせたのちも保持されるのが好ましく、その結果、センサアセンブリ10は、生地のシートと同様に巻き取り、かつ処理することのできる、可撓性のユニットとされている。感圧式のセンサにとって本質的な3つの層に加えて、上方および下方に配置されて3つの層12、14、16を水密に封止できる防水材料の層などの、さらなる層を設けてもよい。
個々の層12、14、16は2、3ミリメートルの厚みであってもよく、好ましくは0.5mmと1.5mmとの間であってもよい。しかし、この区域で、センサアセンブリ10は、数平方センチメートルから最大数平方メートルまで、ほぼ任意に延びることができる。
より詳細に以下に説明するように、センサアセンブリ10の3つの層は、機械的負荷をセンサアセンブリ10の表面18に記録できる仕方で設計されている。好ましい実施形態では、負荷を判定するのに加えて、その強度、および特に、センサアセンブリ10の表面18上のその位置をも判定することができる。この目的のために、図2および図3を参照して、より詳細に以下に説明するように、第1、第2および第3の層12、14、16は具体的に設計される。
図2は、センサアセンブリ10の第1の層12の実施形態を示している。この実施形態では、第1の層12は、電気的な構造体が組み込まれた織物生地である。好ましくは、第1の層12は、導電性の糸および非導電性の糸を使用して、電気的な構造体が組み込まれた生地である。
図2に示すように、導電性の領域20および非導電性の領域22はここで交互にされている。導電性の領域20において、緯糸は、織りの最中に導電性のヤーンで形成されるが、非導電性の領域22において、通常の非導電性のヤーンが緯糸として使用され、その結果、ここに示す縞状の模様を形成する。
より詳細に以下に説明するように、縞状の導電性の領域20の幅および細片状の非導電性の領域の幅により、センサセルのサイズおよび形状が決定され、それにより、感圧式のセンサの分解能が決定される。ここで、導電性および非導電性の領域はそれぞれ同一の幅を有しているが、他の実施形態では、第1の層12の表面にわたる幅は変化してもよい。これには、センサの分解能をそれぞれの要求に適合させることができるという利点がある。
好ましい実施形態では、第2の層14は第1の層12と同一である。これは、第1および第2の層12、14を、1つの同一の仕掛かり品から得ることができることを意味している。それにより、センサアセンブリの、特に費用効果が高くて効率的な生産が実現される。この目的のために、図3を参照して以下に説明するように、仕掛かり品は、好ましくは90°で互いに対して回転され、かつ互いの頂部に配置され、それにより第1および第2の層の間に第3の層が配置される、等しいサイズの2つの部分に分割される。
図3は、センサアセンブリ10の第3の層16の実施形態を示している。第3の層は、感圧式の導電材料24で形成されており、第1の層12と第2の層14との間に配置されている。感圧式の材料24は、機械的負荷の下で変化する比容積抵抗(specific volume resistance)を有している。特に、感圧式の材料は、機械的負荷が除去されたのちに、その元の形状に戻るよう、弾性とされている。
第3の層16は好ましくは、不織の導電生地で形成されている。特に好ましくは、第3の層は、不織の、マイクロファイバーの布26であり、不織の、マイクロファイバーの布26は、導電性のコーティングで被覆された繊維を有している。コーティングは例えば、カーボンベースのコーティングまたは金属製のコーティングであってもよい。コーティングが第3の層を導電性としている。第3の層の表面は、好ましくは粗くされている。特に、第3の層の表面は、第1および第2の層の表面に対して調整されており、その結果、互いに押し付けられたときに、表面の間の接触抵抗が最小とされる。負荷が除去されると、表面自体が互いに分離し、その結果、元の接触抵抗が実現される。履歴現象は可能な限り低くされている。
好ましい実施形態では、第3の層16は、第1および第2の層12、14の間の一片に配置されている。これは、第3の層16が、第1および第2の層の間を均一に延びる、連続的で、かつ特別に閉じられた表面を有することを意味している。次の図4を参照して、より詳細に以下に説明するように、好適には、第3の層は、個々のセンサセルの形成用に別々に適合されている必要はない。
図4は、第1の層12および第2の層14を有するセンサアセンブリ10の簡略化した実施形態を示している。第1の層12と第2の層14との間に配置された第3の層は、より良い表示のために、センサアセンブリ10において省かれている。
第1の層12は、第1の導電の領域20および第2の導電層28を有している。非導電性の領域22が、第1の導電性の領域20と第2の導電性の領域28との間に配置されている。第1の導電性の領域20および第2の導電性の領域28は、非導電性の領域22とともに、1つの仕掛かり品から形成されており、その結果、導電性の領域20、28および非導電性の領域22は機械的に接続されている。図2で説明したように、導電性の領域20、28および非導電性の領域は、導電性の糸および非導電性の糸を使用して、織り生地に組み込まれているのが好ましい。
第2の層14は第1の層12に類似している。第2の層14は、第3の導電性の領域30および第4の導電性の領域32を有している。第3および第4の導電性の領域は、さらなる非導電性の領域34により、互いに分離されている。この実施形態では、第1の層12および第2の層14は、回転されて互いに90°で積層されており、4つのセンサセルを形成している。センサアセンブリ10のセンサセルA、B、C、Dは、導電性の領域20、28、30、32が重なり合う領域に形成されている。
ゆえに、センサセルA、B、C、Dは、第1の層12の導電性の領域20、28および第2の層14の導電性の領域30、32と、第3の層の感圧式の材料24とを常に備えている。第3の層は、第1の層12と第2の層14との間に均一に延びている。
重なり合った区域18により形成されるセンサセルは、センサアセンブリ10への圧力負荷を判定できる、センサ表面上の活性領域36を区画している。この実施形態では、活性領域36は、非導電性の領域22、34により、互いに離間された正方形の区画である。好ましくは、非導電性の領域22、34は、活性領域36に比べて、相対的に小さくされており、その結果、圧力判定が不可能な領域は、可能な限り小さくされている。好ましくは、活性領域は、圧力分布を判定できる、ほぼ閉じられた表面を形成している。これは、セルが互いに密集して配置されている場合にも、1つのセルから隣接するセルへのクロストークを防止する、特別な作動原理により可能となる。センサ表面18にわたる圧力分布を判定するための作動原理を、図5を参照して、より詳細に以下に説明する。
図5は、センサアセンブリ10の等価回路図を示している。センサアセンブリ10はここで、全部で16個のセンサセルを備えており、16個のセルはここで、そのそれぞれの電気抵抗38により模式的に図示されている。センサセルは、第1の電極40および第2の電極42を介して、個々に接触することができ、これらのセルの電気抵抗38を判定することができる。第1および第2の電極40、42は、例えば間に接続された(ここでは図示せず)マルチプレクサを介して、評価回路43に対で接続されている。評価回路43は、センサセルの電気抵抗38を判定するよう構成されている。例えば、簡単な評価回路で、第1および第2の電極40、42の間の電圧降下を判定することができ、かつ、この情報を使用して、現在接触しているセンサセルのそれぞれの電気抵抗38を判定することができる。評価回路が、例えば、より複雑な信号処理を可能にするマイクロコントローラまたは信号処理ユニットの形態でここに示されているよりも、複雑に設計されていてもよいことは言うまでもない。
センサアセンブリ10のセンサセルA、B、C、Dは、上述したように、圧力負荷において、その電気抵抗を変化させるように設計されている。このようにして、センサセルの電気抵抗を判定することにより、セルのそれぞれの圧力負荷を直接判定することができる。すべてのセルについてそれぞれの値を連続して判定することにより、センサアセンブリ10のセンサ区域18にわたる圧力分布を判定することができる。
電気抵抗38は、全体の抵抗を形成する複数の個々の構成要素を備えている。第3の層の圧力可変の体積抵抗、および、電極と第3の層との間の圧力可変の接触抵抗が特に重要である。
最新式の圧力センサでは、センサセルの電気抵抗38が、圧力下で変化する体積抵抗に本質的に依存しているのに対し、センサアセンブリ10に係る電気抵抗38は、第3の層の感圧式の材料24(すなわち、圧力可変の体積抵抗)と、センサセルの第1および第2の電極ならびにその間の感圧式の材料24の相互作用の結果生じる圧力可変の接触抵抗との両方に依存しているのが好ましい。
本発明に係るセンサにより、特に、圧力可変の接触抵抗に焦点を合わせている。これは、特定の形状を有するセンサにおいて、圧力可変の体積抵抗よりも接触抵抗のほうがより重大であることが示されてきたためである。ゆえに、圧力可変の接触抵抗のみが考慮され、電気抵抗38の他の構成要素の作用は、対応する電気回路により補償され、または評価中に除去されることも考え得る。特に、これは、第3の層の電気特性の精密な知識を必要とし、ゆえに、第3の層は、ほぼ線形の(すなわち、オームの法則に従う(ohmic))挙動を示す材料で好適に形成される。
図6を参照して、圧力可変の接触抵抗に関する作動原理を、より詳細に説明する。
図6は、センサアセンブリ10のセルの断面図(左)、および、対応する電気的な等価回路図(右)を示している。センサセルは、第1の層12、第2の層14および第3の層16を備えている。層12、14、16は本質的に自由に、互いの頂部に載っており、少なくとも第1の層12および第3の層16は弾性材料で形成されている。第2の層14は第1の層12に類似しているのが好ましい。
第3の層16の感圧式の材料24は、特定の圧力可変の体積抵抗46を有している。体積抵抗46は、負荷を受けていない状態で、すべてのセンサセルについて同一である。好ましくは、体積抵抗46は、規定の電圧範囲にわたって線形である。すなわち、第3の層16の導電性の弾性材料24は、規定の電圧範囲にわたり(特に0Vから5Vまでの電圧範囲で)、オームの法則に従う挙動(ohmic behavior)を示す。ゆえに、体積抵抗46は、測定による曖昧さなしに、明瞭に判定できるのが好ましい。
体積抵抗46と直列に、接触抵抗52が、第1の層12の表面48と表面50との間に形成されている。接触抵抗52も圧力可変とされており、体積抵抗46と同様に、センサセルの圧力負荷に応じて変化する。これは、第1の層の表面48および第3の層16の表面50が、2つの層の間の接触面を増加させ、かつ接触抵抗52を低減する圧縮荷重の下で(例えば、互いに係合することにより)、相互作用するよう設計されていることを意味している。圧力可変の接触抵抗52は、負荷を受けていない状態で、すべてのセンサセルについて同一とされていてもよい。あるいは、センサセルの形状に応じて、圧力可変の接触抵抗52は、負荷を受けていない状態で、セルについて個別に設定されていてもよい。それに応じて、評価を適合させなければならない。
体積抵抗46および接触抵抗52は、セルがもはや機械的に負荷を受けていないときに、最小の、考え得る履歴現象で、その元の値が再び回復されるように設計されている。例えば、第1および第3の層12、16の弾性は、セルへの圧力が減少するとすぐに表面48と表面50とが引き離されるようにされている。
上述したように、圧力可変の体積抵抗46および圧力可変の接触抵抗52はともに、センサアセンブリ10のセンサセルの全体の抵抗38の成分である。圧力負荷を受けたときに、第3の層16の感圧式の材料24の体積抵抗46が変化する前に接触抵抗52がまず好適に変化することが示されてきた。すなわち、可変の接触抵抗52を使用することにより、圧力負荷を判定するために感圧式の材料24の体積抵抗に主に焦点を合わせる従来の圧力センサを用いるよりも、高感度の圧力測定を実現できる。
主に測定される変数としての接触抵抗52の作用から益を得るために、第1および第3の層12、16の互いに向き合う表面48、50が「自由」であれば好適である。この文脈での自由とは、第1の層12および第3の層16が互いに固定されていてもよいが、固定が、例えば表面を互いに対して押し付けることにより、表面の相互作用に影響しないことを意味している。ゆえに、固定は、本発明に係るセンサに関して特に重要であり、これは、以下に図7において、より詳細に説明する。
図7は、センサアセンブリ10の平面図である。ここでセンサアセンブリ10は、矩形の活性領域36を有する20個のセンサセルを備えている。活性領域36は、第1の層および第2の層の導電性の領域の重なり合った領域により区画されており、非導電性の領域22、34により離間されている。
ここでセンサアセンブリ10は、本発明に係る異なる固定具を示している。
第1の固定具56は、非導電性の領域34に沿って延びる縫い目である。縫い目は、第1の層および少なくとも第3の層を通って、かつ好ましくは第2の層をも通って延びて、それらを互いに固定している。好ましい実施形態では、このような縫い目は、各非導電性の領域22、34に配置されている。第1、第2および第3の層は好ましくは織物であるので、縫い目は特に簡単な仕方で生成することができる。固定に関する決定的要因は、それが第1または第2の層の少なくとも1つの非導電性の領域を通って延びて、その結果、固定具56がセンサセルの活性領域36を越えて延びないことが保証されることである。
このようにして、縫い目56は、第1および第3の層の間の接触面に作用することなく、層を互いに固定する。縫い目の利点は、特に狭く形成できて、その結果、非常に狭い電気的に非主導の区域のみで、縫い目を収容するのに十分なことにある。それにより、センサの死角を最小に保つことができる。しかし、縫い目56が、第1、第2および第3の層を互いに接合する1つのやり方に過ぎないことは、言うまでもない。他の代替方法が考えられる。
例えば、ここで参照番号58により示すように、第2の固定具を、第1、第2および第3の層の点と点との固定(point by point fixation)により実現してもよい。この場合、第2の固定具58も、センサセルの活性領域36の外側に配置される。
くわえて、第1および第2の固定具56、58は縫い目に限定されず、接着剤がセンサセルの活性領域36の外側の層の間に置かれるのであれば、接着剤接合などの他の接合であってもよい。ゆえに、本発明に係る固定にとっては、セルの活性領域36における接触面48、50が自由かつ固定なしに相互作用できて、その結果、圧力依存性の接触抵抗を、本発明の意味において、それ自体、好適に創出できることが重大である。
上述した第1、第2および第3の層の直接の固定の代替として、層を非直接的に固定することもできる。ここで、この第3の固定具は参照番号60により示されている。第3の固定具60は、センサアセンブリ10を包囲しており、そのようにして、センサセルの活性領域の外側に配置されてもいる。例えば、第3の固定具60は、感圧式のセンサを積層することにより、形成することができる。積層中に、箔の片を、第3の層の反対を向いた第1および第2の層の表面に接着する手段を備えるセンサアセンブリ10の上方および下方に設ける。箔片は、個々の層を越えて延び、縁で互いに膠付けされる。このようにして、個々の層は、固定具により作用されるセンサセルの表面48、50なしに、互いに固定される。
固定具により、圧力分布を判定する際に、圧力可変の接触抵抗に好適に集中することができ、これにより、圧力への感度がより高いが、同時に頑丈な触覚センサが可能となる。
上記固定具56、58、60に加えて他の固定具が考案可能であることは、言うまでもない。特に、開示した固定具を互いに組み合わせて、本発明に係るセンサを形成してもよい。固定具にとっての決定的要因は、センサセル内の個々の層が、負荷を受けないままであり、かつ、互いの頂部に自由に載っており、その結果、圧力可変の接触抵抗を創出することである。
以下において、図8は、センサアセンブリを好適に使用できる用途を示す。本発明に係るセンサアセンブリが、これらの好ましい実施形態に限定されないことは、言うまでもない。
図8は、技術設備を保護するための安全装置110、112として使用される、センサアセンブリ10の2つの実施形態を示している。両方の安全装置110、112は、ここで自動運転するロボット116として図示される、技術設備114を監視する。例えば、ロボット116は、製造または組み立てラインにおける切断または溶接ロボットであってもよい。
監視されることになるロボット116は、その端に取り付けられた工具120を有する、自由に移動可能なロボットアーム118を有している。ロボットアーム118の回転および旋回範囲が、ロボット116の危険な区域を表す、ロボット116の運転領域を区画している。危険な区域への進入は、認可がない場合と認可がある場合との両方で、ロボットを人または物体に対して無害な機械状態に移行できるよう、検知されねばならない。ここで検知は、安全システム130に接続された安全装置110および112により実行される。
安全システム130は、簡単な安全リレー、適合性のある安全コントローラまたはプログラム可能な制御ユニットなどの、EN ISO 13856-1の意味における出力切り換え装置であってもよい。安全システム130は、例えば技術設備114を電源遮断することにより、技術設備114を人員にとって安全な状態にならせる。
第1の実施形態に係る安全装置110は、技術設備114の周りの区域内の床に配置された安全マットである。第2の実施形態に係る安全装置112は、ロボット116のタッチセンサー式(touch-sensitive)の「皮膚」として働く、ロボットアーム118のカバーである。安全装置110、112はともに、多数の個々のセンサセル124により形成された、本発明に係るセンサアセンブリ10を備えている。第2の実施形態は特に、センサアセンブリ10の可撓性を示しており、その結果、センサアセンブリは、例えばここでのロボットアーム118の形状などの、異なる形状に適合することができる。
上述したように、センサアセンブリ10は、センサセル124の1つの圧力変化を検知し、かつ、検知に応じて適切な出力信号を生成するよう構成されている。出力信号は、ライン126を介して、安全システム130の入力モジュールに送信される。安全システム130は、信号を評価し、それに応じて反応を発動する。この実施形態では、安全システム130は、この目的のために、出力132を介して接触器134に接続されている。接触器134の作動接点(working contact)136が、ロボット116の電源138に配置されている。
技術設備114の危険な区域にある安全マット110のセンサセル124が負荷を受けた場合、または、物体または人との接触がロボットの皮膚112により検知された場合、安全システム130は、出力132のスイッチを切り、その結果、作動接点を開くことにより接触器134が作動停止され、技術設備114は電源遮断される136。電源遮断することにより、技術設備114は、人または物体に対して安全な状態にされる。
技術設備114を電源遮断することが、技術設備114を安全な状態にする1つのやり方に過ぎないのは言うまでもない。あるいは、または、くわえて、他の実施形態では、例えばロボットアーム118をロボット116により後退させて、安全な状態を実現するために、安全システム130は、ロボット116の動きを制御することもできる。第2の安全装置112のセンサアセンブリ10、第1の安全装置110のセンサアセンブリ10の出力信号または他の安全装置の出力信号を互いに組み合わせて考慮し、かつ、安全システム130が、組み合わせた評価からロボット116の制御に関する決定を下すことも考え得る。他の安全装置が、光バリアもしくは光カーテンなどの電気的検知保護設備(ESPE)または安全カメラシステムを含んでいてもよい。
上記感圧式の安全装置については、EN ISO 13856-1に規定の総則ならびに安全設計および試験に関する要求を閲覧されたい。特に、同規格は、性能、標識化および文書化に関する最低限の安全要求を規定している。例えば、技術設備を保護するための安全装置は、セ氏-20°~セ氏70°の規定の温度範囲内で十分に機能可能であることが保証されねばならない。これらの要求を、本発明に係るセンサアセンブリ10により、特に良好に、かつ費用効果の高い仕方で満たすことができる。
センサアセンブリ10が、上述した用途に限定されず、他の好適な仕方で、特に、使用される感圧式のセンサの頑丈性、信頼性および正確性について高い要求が課される用途で、使用することもできることを理解されたい。

Claims (15)

  1. 重ね合わされたときに、少なくとも2つのセンサセルを有する感圧式のセンサを形成する、可撓性の材料の第1の層(12)、第2の層(14)および第3の層(16)を備えるセンサアセンブリ(10)であって、
    前記第1の層(12)は、非導電性の領域(22)を介して互いに機械的に接続された第1の導電性の領域(20)および第2の導電性の領域(28)を備え、前記第2の層(14)は、表面において延びる第3の導電性の領域(30)を備え、
    前記第2の層(14)の前記第3の導電性の領域(30)は、前記第1の層(12)の前記第1および第2の導電性の領域(20、28)と重なり合い、前記重なり合う領域は、第1および第2のセンサセルの活性領域(36)を区画し、
    前記第3の層(16)は、前記活性領域(36)において、局所的な機械的負荷の下で、電気抵抗(38)が前記圧縮荷重の代わりに前記第1、第2および第3の導電性の領域(20、28、30)の間で変化するように、前記第1の層(12)の前記第1および第2の導電性の領域(20、28)と協働する、導電性の弾性材料(24)で形成され、
    当該センサアセンブリは、前記第1および第2の層(12、14)を互いに固定するよう構成された縫い目(56を備えており、前記縫い目は、前記第1および第3の層(12、16)が前記活性領域(36)において互いに重なった状態で負荷を受けないままであり、かつ、互いに向き合う前記第1および第3の層(12、16)の表面(48、50)が固定から実質的に自由であるように、前記活性領域(36)の外側に配置されている、センサアセンブリ。
  2. 重ね合わされたときに、少なくとも2つのセンサセルを有する感圧式のセンサを形成する、可撓性の材料の第1の層(12)、第2の層(14)および第3の層(16)を備えるセンサアセンブリ(10)であって、
    前記第1の層(12)は、非導電性の領域(22)を介して互いに機械的に接続された第1の導電性の領域(20)および第2の導電性の領域(28)を備え、前記第2の層(14)は、表面において延びる第3の導電性の領域(30)を備え、
    前記第2の層(14)の前記第3の導電性の領域(30)は、前記第1の層(12)の前記第1および第2の導電性の領域(20、28)と重なり合い、前記重なり合う領域は、第1および第2のセンサセルの活性領域(36)を区画し、
    前記第3の層(16)は、前記活性領域(36)において、局所的な機械的負荷の下で、電気抵抗(38)が前記圧縮荷重の代わりに前記第1、第2および第3の導電性の領域(20、28、30)の間で変化するように、前記第1の層(12)の前記第1および第2の導電性の領域(20、28)と協働する、導電性の弾性材料(24)で形成され、
    前記センサアセンブリは、前記第3の層(16)とは反対側の前記第1の層(12)の表面を覆い、かつ前記第1、第2、および第3の層(12、14、16)を超えて延びる少なくとも1枚の箔を備えた積層体(60)を含み、
    前記積層体(60)は、前記第1および第2の層(12、14)を一緒に固定するように構成され、前記第1および第3の層(12、16)が活性領域(36)において互いに重なった状態で無負荷で置かれ、かつ互いに向き合う第1および第3の層(12、16)の表面(48、50)は実質的に固定されないように、前記活性領域(36)の外側に配置される、センサアセンブリ。
  3. 前記第1の層(12)は、前記第1の導電性の領域(20)および第2の導電性の領域(28)が導電性のヤーンで織り込まれた織物生地である、請求項1または請求項2に記載のセンサアセンブリ。
  4. 前記第3の層(16)の前記導電性の弾性材料(24)は、導電性の添加剤が添加された織物である、請求項1~請求項3のいずれか1項に記載のセンサアセンブリ。
  5. 前記添加剤は、カーボンベースの添加剤または金属製の添加剤である、請求項4に記載のセンサアセンブリ。
  6. 前記織物は、マイクロファイバーの布である、請求項4または請求項5に記載のセンサアセンブリ。
  7. 前記縫い目(56)は、前記第1(12)および前記第3の層(16)を互いに接合し、かつ、前記第1の層(12)の前記非導電性の領域(22)に沿って延びている、請求項1に記載のセンサアセンブリ。
  8. 前記縫い目(56)は、前記第2の層(14)を前記第1(12)および前記第3の層(16)に接着するよう、かつ、前記第1の層(12)の前記非導電性の領域(22)に沿い、前記第2の層(14)の前記第3の導電性の領域(30)を通って延びるよう、さらに構成されている、請求項7に記載のセンサアセンブリ。
  9. 前記第1および前記第2の層(12、14)は、前記第1、第2および第3の導電性の領域(20、28、30)が導電性のヤーンで織り込まれた織物生地である、請求項1~請求項8のいずれか1項に記載のセンサアセンブリ。
  10. 前記導電性の弾性材料(24)は、印加された電圧に対して、前記印加された電圧が0V~5Vの範囲で変化したときに、線形に挙動するよう構成された体積抵抗を有している、請求項1~請求項9のいずれか1項に記載のセンサアセンブリ。
  11. 前記導電性の弾性材料(24)は、0.75~1.25の間の温度変化係数を有しており、前記温度変化係数は、セ氏70°まで加熱され、かつ、セ氏-20°まで冷却されたときの最大の電流変化を記述する因子である、請求項1~請求項10のいずれか1項に記載のセンサアセンブリ。
  12. 前記第2の層(14)の前記第3の導電性の領域(30)は、前記第1および第2の導電性の領域(20、28)ならびに前記第1の層(12)の前記非導電性の領域(22)と重なり合い、かつ、前記第3の層(16)が前記第1および第2の層(12、14)に対して連続的な閉じた表面を有する領域を区画する、請求項1~請求項11のいずれか1項に記載のセンサアセンブリ。
  13. 前記縫い目(56)は、前記活性領域(36)における前記第1、第2および第3の層(12、14、16)が互いに負荷を受けないままであり、かつ、互いに向き合う前記第1、第2および第3の層(12、14、16)の前記表面(48、50)が固定から実質的に自由であるように、さらに設計されている、請求項1に記載のセンサアセンブリ。
  14. 前記積層体(60)は、前記活性領域(36)の前記第1、第2および第3の層(12、14、16)が互いに無負荷であるようにさらに設計され、互いに向き合う前記第1、第2および第3の層(12、14、16)の前記表面(48、50)は実質的に固定されていない、請求項2に記載のセンサアセンブリ。
  15. 請求項1~請求項14のいずれか1項に記載のセンサアセンブリを有する、安全装置(110、112)。
JP2018086234A 2017-05-03 2018-04-27 多層の触覚センサ Active JP7086700B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017109487.3 2017-05-03
DE102017109487.3A DE102017109487B4 (de) 2017-05-03 2017-05-03 Mehrschichtiger, taktiler Sensor

Publications (2)

Publication Number Publication Date
JP2018189648A JP2018189648A (ja) 2018-11-29
JP7086700B2 true JP7086700B2 (ja) 2022-06-20

Family

ID=62063433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018086234A Active JP7086700B2 (ja) 2017-05-03 2018-04-27 多層の触覚センサ

Country Status (5)

Country Link
US (1) US10350764B2 (ja)
EP (1) EP3399292B1 (ja)
JP (1) JP7086700B2 (ja)
CN (1) CN108896214B (ja)
DE (1) DE102017109487B4 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016106074A1 (de) * 2016-04-04 2017-10-05 Pilz Gmbh & Co. Kg Gewebe mit mehreren Gewebelagen
DE102017100791B4 (de) * 2017-01-17 2018-09-06 Pilz Gmbh & Co. Kg Mehrschichtiger, taktiler Sensor mit Befestigungsmittel
JP7086011B2 (ja) * 2019-02-06 2022-06-17 タカノ株式会社 感圧センサ
EP3726191A1 (en) * 2019-04-17 2020-10-21 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Pressure sensor
GB201907744D0 (en) * 2019-05-31 2019-07-17 The Shadow Robot Company Ltd Tactile sensor
CN110202595B (zh) * 2019-06-19 2022-03-15 安徽建筑大学 双层稀疏阵列结构的人工皮肤传感器
DE102019119414B3 (de) * 2019-07-17 2020-06-18 Pilz Gmbh & Co. Kg Manipulationsdetektionssystem für einen Abfüllstutzen einer Abfüllanlage und Verfahren zum Detektieren einer Manipulation an einem Abfüllstutzen einer Abfüllanlage
GB2586011B (en) * 2019-07-23 2023-09-13 Hp1 Tech Limited Pressure-sensitive sheet and modular system including the same
DE102019131792B3 (de) 2019-11-25 2020-12-03 Tacterion Gmbh Greiferbacke mit taktilem Sensor sowie Greifvorrichtung mit einer oder mehreren solcher Greiferbacken
CN110987250A (zh) * 2019-12-09 2020-04-10 武汉纺织大学 一种多重刺激响应结构的柔性压力传感器
CN111122024A (zh) * 2019-12-09 2020-05-08 武汉纺织大学 一种多刺激响应结构的压力传感器
CN111168723B (zh) * 2019-12-31 2022-03-08 浙江清华柔性电子技术研究院 力位触觉结构及力位触觉传感器
CN111579134A (zh) * 2020-04-22 2020-08-25 欧菲微电子技术有限公司 超声波压力检测模组及其检测方法、电子设备
DE102020207726B4 (de) 2020-06-22 2024-03-28 Diehl Aviation Laupheim Gmbh Kabinenbauteil für eine Flugzeugkabine sowie Flugzeug mit dem Kabinenbauteil
US20220020253A1 (en) * 2020-07-15 2022-01-20 Palo Alto Research Center Incorporated Systems and methods for improved object placement sensing for point-of-purchase sales
US20220034730A1 (en) * 2020-07-30 2022-02-03 Xerox Corporation Systems and methods for improved sensing performance of pressure-sensitive conductive sheets
CN111998977B (zh) * 2020-08-25 2022-05-13 工科思维技术(深圳)有限公司 一种柔性可穿戴传感器阵列及其制备方法
TWI792078B (zh) * 2020-10-16 2023-02-11 原見精機股份有限公司 接觸感應器與運用其之自動化系統
US20220137744A1 (en) * 2020-11-02 2022-05-05 Sensel, Inc. Environmental compensation element
CN113091968B (zh) * 2021-04-06 2022-04-15 湖北工业大学 一种具有多层结构的柔性压阻传感器及其制备方法
US12009159B2 (en) 2021-04-13 2024-06-11 Xerox Corporation Membrane switches configured to sense pressure applied from compliant and rigid objects
CN113091965B (zh) * 2021-04-25 2022-03-18 棉捷(北京)网络科技有限公司 压力传感器及压力传感系统
DE102021206131A1 (de) * 2021-06-16 2022-12-22 Robert Bosch Gesellschaft mit beschränkter Haftung Modul und Verfahren zum Überwachen von Umwelteinflüssen auf ein Modul

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115555A (en) 1982-02-26 1983-09-07 Gen Electric Co Plc Tactile sensor
JP2012519846A (ja) 2009-03-05 2012-08-30 ストライカー コーポレイション 弾性的に伸縮可能な織物状力センサアレイ及びその作製方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492949A (en) * 1983-03-18 1985-01-08 Barry Wright Corporation Tactile sensors for robotic gripper and the like
WO1997001773A1 (fr) * 1995-06-29 1997-01-16 The Nippon Signal Co., Ltd. Detecteur a transistor a microalliage
JP3359910B2 (ja) * 1998-01-22 2002-12-24 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン マイクロシステム及びマイクロシステムを製造する方法
US6529122B1 (en) * 1999-12-10 2003-03-04 Siemens Technology-To-Business Center, Llc Tactile sensor apparatus and methods
US6543299B2 (en) * 2001-06-26 2003-04-08 Geoffrey L. Taylor Pressure measurement sensor with piezoresistive thread lattice
DE102004026307B4 (de) * 2004-05-31 2016-02-11 Novineon Healthcare Technology Partners Gmbh Taktiles Instrument
US6886415B1 (en) * 2004-08-03 2005-05-03 Toshiba Electric Engineering Corporation Tactile sensor and gripping robot using the same
US7176397B2 (en) * 2005-02-04 2007-02-13 Tapeswitch Corporation Water resistant switch mat having activation across its entire surface
US7673528B2 (en) * 2005-05-12 2010-03-09 Euisik Yoon Flexible modular sensor systems
US7878075B2 (en) * 2007-05-18 2011-02-01 University Of Southern California Biomimetic tactile sensor for control of grip
JP4916549B2 (ja) * 2006-08-31 2012-04-11 コーリア リサーチ インスティトゥート オブ スタンダーズ アンド サイエンス 曲面付着型触覚センサーとその製造方法
US7768376B2 (en) * 2006-10-31 2010-08-03 The Board Of Trustees Of The University Of Illinois Conformal mesh for thermal imaging
DE102007022871A1 (de) * 2007-05-14 2008-11-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Taktilsensor mit entkoppelten Sensorzellen
KR100934767B1 (ko) * 2007-09-14 2009-12-30 한국표준과학연구원 모바일 기기용 슬림형 마우스 및 그 제조 방법
DE102010034717B4 (de) * 2010-08-18 2016-01-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sensorelement zur Erfassung taktiler Reize
ITMO20110324A1 (it) * 2011-12-15 2013-06-16 Max Mara S R L Societa Uniperson Ale Metodo per unire due porzioni di tessuto, struttura multistrato e indumento.
KR101312553B1 (ko) * 2011-12-28 2013-10-14 한국표준과학연구원 촉각 센서의 곡면 부착구조 및 촉각 센서의 곡면 부착방법
CN104662800B (zh) * 2012-06-26 2017-06-20 意大利学院科技基金会 用于电气设备或电子设备的触觉控制布置
CN204757997U (zh) * 2015-04-28 2015-11-11 苏州经贸职业技术学院 一种织物电阻传感器
DE102015120368B3 (de) * 2015-11-25 2016-11-03 Pilz Gmbh & Co. Kg Druckempfindliche Schutzeinrichtung zur Überwachung einer technischen Anlage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115555A (en) 1982-02-26 1983-09-07 Gen Electric Co Plc Tactile sensor
JP2012519846A (ja) 2009-03-05 2012-08-30 ストライカー コーポレイション 弾性的に伸縮可能な織物状力センサアレイ及びその作製方法

Also Published As

Publication number Publication date
CN108896214A (zh) 2018-11-27
JP2018189648A (ja) 2018-11-29
EP3399292B1 (de) 2020-04-29
CN108896214B (zh) 2021-09-10
US10350764B2 (en) 2019-07-16
DE102017109487A1 (de) 2018-11-08
DE102017109487B4 (de) 2021-09-23
US20180319016A1 (en) 2018-11-08
EP3399292A1 (de) 2018-11-07

Similar Documents

Publication Publication Date Title
JP7086700B2 (ja) 多層の触覚センサ
US7679376B2 (en) Capacitive sensor for sensing tactile and proximity, and a sensing system using the same
US8276467B2 (en) Tactile sensor with decoupled sensor cells
CA2996919C (en) Component for producing active haptic feedback
JP5765901B2 (ja) 機械的な構成部分での周辺監視のためのセンサシステムおよび当該センサシステムを駆動制御および評価する方法
JP6419317B2 (ja) 静電容量センサ
US20100162832A1 (en) Shear force and pressure measurement in wearable textiles
US20070056385A1 (en) Pressure sensor in the form of a film
US10060761B2 (en) Safety mat for safeguarding a technical installation
JP2010128647A5 (ja) タッチパネル
JP2003524156A (ja) 2つの導電部材間に圧力依存の接触抵抗を有する接触センサ
US9442594B2 (en) Resistance changing sensor
US10924111B2 (en) Input device with function triggering or control which takes place based on capacitively measured actuation force and adaptation by means of capacitive contact detection
CN105136344A (zh) 非匀强电场型机器人触觉传感器及其检测方法
CA3097764A1 (en) Wide area sensors
JP2023051944A (ja) 静電容量型検知センサ、静電容量型検知センサモジュールおよび静電容量型検知センサを用いた状態判定方法
US6679101B1 (en) Device for detecting leakage in membranes
KR20200131370A (ko) 직물형 멀티 센서 시트
JP2017096658A (ja) 感圧抵抗体
KR101847090B1 (ko) 누설 및 누설위치 감지 센서
JP2012145407A (ja) 感圧センサ
AU2010217549B2 (en) Planar electrode system
KR101578662B1 (ko) 복합 전기활성고분자 구조를 이용한 변형 감지 센서
JPWO2020194482A5 (ja)
JPS61274201A (ja) 曲げ検知装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220608

R150 Certificate of patent or registration of utility model

Ref document number: 7086700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150