JP7084125B2 - 可搬重量を決定するためのシステムおよび方法 - Google Patents

可搬重量を決定するためのシステムおよび方法 Download PDF

Info

Publication number
JP7084125B2
JP7084125B2 JP2017217157A JP2017217157A JP7084125B2 JP 7084125 B2 JP7084125 B2 JP 7084125B2 JP 2017217157 A JP2017217157 A JP 2017217157A JP 2017217157 A JP2017217157 A JP 2017217157A JP 7084125 B2 JP7084125 B2 JP 7084125B2
Authority
JP
Japan
Prior art keywords
aircraft
oew
vehicle
altitude
initial weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017217157A
Other languages
English (en)
Other versions
JP2018188122A (ja
Inventor
シーナ・エス・ゴルシャニー
グナヌラン・カナガラトナ
マシュー・ダブリュー・オア
アンドリュー・ダブリュー・ファスマン
ダニエル・ワジェルスキー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2018188122A publication Critical patent/JP2018188122A/ja
Application granted granted Critical
Publication of JP7084125B2 publication Critical patent/JP7084125B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/07Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Description

本開示は一般に可搬重量に関する。
航空機のようなビークルは、製造後に運用自重(OEW)を決定するために計量されうる。例えば、ビークルのOEWは、乗務員、機器、乗客、ペイロード、燃料、および他のアイテムが当該ビークルに積載される前の当該ビークルの重量を表す。当該ビークルが運用のために積載された後、動作重量(例えば、当該ビークルが航空機である場合、離陸重量(TOW))が、当該積載されたビークルが計量されることなく決定されてもよい。例示すると、OEWが、当該動作重量を決定するために乗務員、機器、乗客、ペイロード等の結合された重量に追加されてもよい。幾つかのビークルに対して、安全な当該ビークルの動作に関連付けられた最大動作重量(例えば、当該ビークルが航空機である場合、最大離陸重量(MTOW))は例えば製造業者または監督機関によって指定されうる。さらに、最大動作重量は当該ビークルが配置されるかまたは動作される特定の位置(例えば、空港)に関連付けられてもよい。動作重量基準を満たすために、当該ビークルは、当該動作重量が当該動作重量基準を超過しないように特定の量のペイロードまたは燃料(または他の要素)を積載されうる。
ビークルの動作に関連付けられた収入またはコストは、所与の時点で当該ビークルにより運搬されるペイロードの量に関連しうる。例えば、航空会社に対する収益は航空機により運搬されうるペイロードまたは貨物の量に関連しうる。さらに、ビークルに関連付けられた最大範囲は当該ビークルにより運搬されうる燃料の量に基づき、当該ビークルの利用(例えば、有用性)は最大範囲に少なくとも部分的に基づいてもよい。OEWが燃料量、ビークルにより運搬されうるペイロード等の量を制限しうるので、OEWは当該ビークルまたは当該ビークルの利用に関連付けられた収益を制限しうる。
特定の実装において、装置はプロセッサおよび当該プロセッサに接続されたメモリを含む。当該メモリは当該プロセッサにより実行されたとき、基準運用自重(OEW)と第1の位置での航空機に関連付けられた緯度または高度の少なくとも1つとに基づいて航空機に対する初期重量推定を生成するステップを含む動作を当該プロセッサに実施させる命令を格納する。基準OEWは第1の位置と異なる第2の位置で予め決定される。当該動作はまた、航空機の追加の可搬重量を当該初期重量推定と基準OEWの間の差に基づいて決定するステップを含む。当該動作はさらに当該追加の可搬重量を示す出力を生成するステップを含む。
別の特定の実装では、方法は運用自重(OEW)と第1の位置での航空機に関連付けられた緯度または高度の少なくとも1つとに基づいて航空機に対する初期重量推定を生成するステップを含む。基準OEWは第1の位置と異なる第2の位置で予め決定される。当該方法は航空機の追加の可搬重量を当該初期重量推定と基準OEWの間の差に基づいて決定するステップを含む。当該方法はさらに、当該追加の可搬重量を示す出力を生成するステップを含む。
別の特定の実装では、ビークルは位置データを生成するように構成された測位システムと、入力データを受信するように構成された入力デバイスと、ルート管理システムとを含む。当該ルート管理システムは、基準運用自重(OEW)と第1の位置での緯度または高度の少なくとも1つとに基づいて初期重量推定を生成するように構成される。当該緯度または高度は、当該位置データ、当該入力データ、またはその両方により示される。基準OEWは第1の位置と異なる第2の位置で予め決定される。当該ルート管理システムは追加の可搬重量を当該初期重量推定と基準OEWの間の差に基づいて決定するように構成される。当該ルート管理システムは当該追加の可搬重量を示す出力をさらに生成するように構成される。
ビークルの追加の可搬重量を決定するシステムの例を示すブロック図である。 飛行管理コンピュータのインタフェースの第1の例を示す図である。 第2の飛行管理コンピュータのインタフェースの例を示す図である。 第3の飛行管理コンピュータのインタフェースの例を示す図である。 飛行ディスパッチ・システムのインタフェースの例を示す図である。 範囲サークルを含むディスプレイの例を示す図である。 ビークルのブロック図である。 ビークルの追加の可搬重量を決定する方法の例の流れ図である。
特定の実装が当該図面を参照して説明される。当該説明において、共通の特徴は当該図面にわたって共通の参照番号により指定される。当該説明において、共通の特徴は当該図面にわたって共通の参照番号により指定される。本明細書で説明する際、様々な用語は特定の実装を説明する目的のために使用されるにすぎず、限定を意図しない。例えば、単数形「a」、「an」および「the」は、特に明記しない限り、複数形も同様に含むものである。当該用語「~を含む」、「~を含む」、および「~を備える」を「~を含む」、「~を含む」、または「~を含む」と交互に使用してもよいことはさらに理解されうる。さらに、用語「wherein」「where」と交互に使用してもよいことは理解される。本明細書で説明する際、「例示的な」は例、実装、および/または態様を示してもよく、限定または優先もしくは好適な実装を示すとして解釈されるべきではない。本明細書で説明する際、構造、コンポーネント、動作等のような要素を修正するために使用される序数的な用語(例えば、「第1の」、「第2の」、「第3の」等)は、それ自体、別の要素に関する当該要素の任意の優先度または順序を示さないが、同一の名前を有する(が順序項の利用のために)別の要素から当該要素を区別するにすぎない。本明細書で説明する際、当該用語「セット」は、1つまたは複数の要素のグループ化を指し、当該用語「複数」は複数の要素を指す。
本明細書で開示した実装は、当該ビークルの製造または配送の時点および位置で決定された所定の基準OEWのような所定の基準OEWより正確なビークルの調節された運用自重(OEW)を決定するように構成されたシステムおよび電子デバイス(例えば、飛行管理コンピュータ、飛行ディスパッチ・システム、または別の計算デバイスまたはシステム)に関する。当該調節されたOEWは、ビークルの特定の位置(または当該ビークルの意図した動作の位置)での地球の重力場の強度を説明する。地球の重力場の強度は異なる位置(例えば、緯度、経度等)および異なる高度で異なるので、当該ビークルに関連付けられた重量(例えば、OEW、積載された動作重量等)は当該ビークルの物理位置に少なくとも部分的に基づいてもよい。
本明細書でさらに説明されるように、地球の重力場の正確な強度は、位置(例えば、緯度、経度、またはその両方)に依存しておよび高度に依存して異なる。当該重力場の変形のため、第1の位置でのビークルの重量は第2の位置でのビークルの重量と異なってもよく、第1の高度での当該ビークルの重量は第2の高度での当該ビークルの重量と異なってもよい。例えば、ワシントン州シアトルで測定された航空機のOEWはコロンビアのボゴタで測定された航空機のOEWとは異なる。さらに、当該重力場の変形に起因して、第1の高度での当該ビークルの重量は第2の高度での同一のビークルの重量と異なってもよい。例えば、30,000フィート(ft)(9.1キロメートル(km))にある航空機のOEWは34,000ft(10.4km)にある同一の航空機のOEWより大きい。したがって、特定のビークルのOEWは位置および高度に基づいて異なる。
飛行管理コンピュータ(FMC)のような本開示のシステムは、ビークルの高度または位置の少なくとも1つに基づいて当該ビークルの追加の可搬重量を決定するように構成される。例示すると、「基準位置」とも称されうる特定の位置(例えば、航空機の製造の位置、航空機の配送の位置、または航空機の重量の位置)で測定された基準OEWがまた、当該システムのメモリ内で事前にプログラムされるかまたは格納されてもよい。当該システムは、当該ビークルの動作の間に、基準OEWに基づいておよび位置またはターゲット高度(例えば、推定された巡航高度)に基づいて、当該ビークルに関連付けられた初期重量推定(例えば、調節されたOEW)を生成するように構成される。例示すると、当該システムは、位置データ(例えば、当該ビークルの物理位置を示すデータ)を全地球測位システム(GPS)センサ(または他の位置センサ(複数可))から受信するように構成されてもよい。さらにまたはあるいは、当該システムは、入力デバイスから、ターゲット位置(例えば、当該ビークルの動作のターゲット位置)、ターゲット高度(例えば、ターゲット巡航高度)、またはその両方を示す入力データを受信するように構成されてもよい。当該システムは、当該位置データ(または入力データ)により示される位置に基づいて、当該入力データにより示される高度(または高度センサからのセンサ・データにより示される高度)に基づいて、またはその両方に基づいて、初期重量推定(または基準OEWに適用するための調節量)を決定するために、当該メモリに格納されたOEWデータにアクセスしてもよい。あるいは、当該システムは、位置、高度(例えば、現在の高度またはターゲット高度)、またはその両方を示すデータを、ビークルの調整されたOEW(例えば、ビークルの初期重量推定)を決定する別のデバイスに送信してもよく、当該システムは、当該初期重量推定を示すデータを他のデバイスから受信してもよい。
当該システムは、初期重量推定と基準OEWの間の差に基づいて当該ビークルの追加の負荷容量を決定するように構成される。例えば、航空機の緯度に基づいて、当該システムは、当該初期重量推定が基準OEWより少ない2000キログラム(kg)であると判定してもよい。この差分は、当該ビークルの当該追加の可搬重量を表す。当該システムが当該追加の可搬重量を決定した後、当該システムは当該追加の可搬重量を示す出力を提供してもよい。特定の例として、航空機のFMCが、航空機に関連付けられた追加のペイロード格納能力または追加の燃料格納能力(および対応する調整された最大飛行範囲)を表示するグラフィカル・ユーザ・インタフェース(GUI)を生成してもよい。さらにまたはあるいは、本明細書でさらに説明されるように他の出力が生成されてもよい。
この方式では、当該システムは、当該ビークルの利用および当該ビークルにより生成された収益を増大させうる。特定の例として、航空機に関連付けられた追加の可搬重量を使用し、追加の燃料を格納し、それにより当該ビークルの最大範囲を増大することができる。当該ビークルの最大範囲が増大すると、例えば当該ビークルがより長い距離を移動しあまり頻繁に燃料補給しなくてよくすることで、当該ビークルの利用が増大しうる。特定の例として、航空機の最大飛行範囲が増大すると、航空会社は、現在提供されているフライトと比べて空港から遠く離れた目的地へのフライトを提供でき、これは、さらなる乗客を魅了し航空会社への収益を増大しうる。別の特定の例として、当該ビークルに関連付けられた追加の可搬重量により、当該ビークルは、コストの増大なしに、移動中に多くの貨物を運搬することができる。移動の間に運搬される貨物の量が増大すると、当該ビークルの所有者は、貨物を輸送するためにより高い値段を課すことができ(または特定量の貨物を、より少数のビークル、またはより少数の復路行程を用いて輸送できる)、それによりオーナへの収益が増大しうる。
図1は、(図6に示すビークル600のような)ビークルの追加の可搬重量を決定するように構成されたシステム100の例を示す。当該ビークルは本明細書で航空機として説明されているが、他の実装では、当該ビークルは自動車、無人自律ビークル(例えば、ドローン)、船、ロケット、ヘリコプタ、または別の タイプのビークルであってもよい。システム100は、例示的な、非限定的な例として、コンピュータまたは計算デバイス(例えば、FMC、飛行ディスパッチコンピュータ、デスクトップコンピュータ、タブレットコンピュータ、ラップトップコンピュータまたはノートブックコンピュータ、ネットワークコンピュータ等)、ビークルのコントローラ、サービス、携帯電話、パーソナルデジタルアシスタント(PDA)、任意の他の電子デバイス、またはその任意の組合せのような電子デバイス内で統合されてもよい。
システム100は位置センサ102、プロセッサ104、メモリ106、入力デバイス108、およびディスプレイ・デバイス110を含む。当該ビークルの追加の負荷容量を決定するための装置101はプロセッサ104およびメモリ106を含む。プロセッサは本明細書で説明した方法を実施するように構成される。したがって、システム100は装置101、位置センサ102、入力デバイス108、およびディスプレイ・デバイス110を含む。位置センサ102はプロセッサ104に接続され、プロセッサ104はメモリ106、入力デバイス108、およびディスプレイ・デバイス110の各々に接続される。位置センサ102、プロセッサ104、メモリ106、入力デバイス108、およびディスプレイ・デバイス110をシステム100の一部として図1に示すが、他の実装では、位置センサ102、入力デバイス108、ディスプレイ・デバイス110、またはその組合せが外部にあり、システム100に接続されてもよい。
位置センサ102は、航空機に関連付けられた位置を表す位置データ112を決定するように構成される。位置データ112は、航空機に関連付けられた緯度、航空機に関連付けられた経度、航空機に関連付けられた高度、他の形態の位置データ、またはその組合せを示してもよい。便宜上、システム100の動作は、航空機に関連付けられた緯度に関して説明される。他の実装では、システム100の動作は航空機に関連付けられた経度に基づいてもよくまたは緯度および経度に基づいてもよい。
特定の実装において、位置センサ102は1つまたは複数のGPSセンサを含み、位置データ112はGPSデータを含むかまたはそれに対応する。別の特定の実装では、位置センサ102は1つまたは複数の慣性ナビゲーション・ユニット(例えば、加速度計、ジャイロスコープ、1つまたは複数の他の動きセンサまたは回転センサ、またはその組合せ)を含み、位置データ112は慣性センサ・データを含むかまたはそれに対応する。別の特定の実装では、位置センサ102は1つまたは複数のGPSセンサおよび1つまたは複数の慣性ナビゲーション・ユニットを含む。他の実装では、位置センサ102は他のタイプの位置センサを含む。
プロセッサ104はインタフェース120および入出力(I/O)インタフェース122を含む。インタフェース120は、位置センサ102との通信(例えば、位置センサ102へのデータ送信、位置センサ102からのデータ受信、またはその両方)を可能とするように構成される。例えば、インタフェース120は位置データ112を受信するように構成されてもよい。I/Oインタフェース122は、入力デバイス108およびディスプレイ・デバイス110のような1つまたは複数のI/Oデバイスとの通信を可能とするように構成される。
特定の実装において、図3を参照してさらに説明されるように、I/Oインタフェース122は、航空機の推定された現在位置の表示(例えば、位置データ112に基づいて決定された位置)をディスプレイ・デバイス110で開始し、当該推定された現在位置の表示に応答して入力データ受信するように構成される。この実装では、航空機の現在位置が、本明細書でさらに説明されるように当該入力データに基づいて決定されてもよい。例えば、本明細書でさらに説明されるように、現在位置は当該入力データにより示される確認に基づいて、当該推定された現在位置であると決定される。あるいは、現在位置は本明細書でさらに説明されるように、当該入力データにより示される位置であると決定される。単一のI/Oインタフェースとして示されているが、他の実装ではI/Oインタフェース122は複数のI/Oインタフェースを含んでもよい。プロセッサ104の一部として説明されているが、他の実装ではインタフェース120、I/Oインタフェース122、またはその両方はプロセッサ104の外部にあるか、または、プロセッサ104と異なり、有線接続(複数可)、ワイヤレス接続(複数可)、またはその組合せを介してプロセッサ104と通信するかまたはプロセッサ104に接続される。
プロセッサ104は、本明細書で説明した動作を実施するための、メモリ106に格納された1つまたは複数の命令130を実行するように構成される。メモリ106は、データ、命令、またはその両方を格納するように構成されるコンピュータ可読媒体(例えば、ハード・ドライブ)を含むかまたはそれに対応する。例えば、メモリ106は命令130を格納するように構成される。幾つかの実装では、メモリ106はまた、閾値重量128、基準OEW132、および複数のOEW値を示すOEWデータ133を格納するように構成される。特定の実装において、本明細書でさらに説明されるように、OEW値は、テーブルのようなデータ構造に格納され、緯度により、経度により、高度により、またはその組合せによりインデックス付けされる。
入力デバイス108は、入力(例えば、ユーザ入力)を受信し、当該入力に基づいて入力データ144を生成するように構成される。例えば、入力デバイス108は、キーボード、タッチ・スクリーン、マウス、または当該入力に基づいて入力データ144を生成するように構成される別の入力デバイスを含んでもよく、または、それに対応してもよい。入力データ144は、本明細書でさらに説明されるようにターゲット位置、ターゲット高度、またはその両方を示してもよい。I/Oインタフェース122は入力データ144を入力デバイス108から受信するように構成される。
ディスプレイ・デバイス110はプロセッサ104から受信された情報に基づいて出力を表示するように構成される。例えば、ディスプレイ・デバイス110はスクリーン、モニタ、テレビ、タッチ・スクリーン、または別のタイプのディスプレイ・デバイスを含んでもよく、または、それに対応してもよい。
特定の実装において、システム100は、図2A、2B、および3を参照してさらに説明されるように、FMC内で統合される。別の特定の実装では、図4を参照してさらに説明されるように、システム100は飛行ディスパッチ・システム内に統合される。別の特定の実装では、図5を参照してさらに説明されるように、システム100は、地図に重ね合わせられた少なくとも1つの調整された範囲サークルを表示するように構成された計算デバイス内に統合される。
動作の間に、プロセッサ104は、ディスプレイ・デバイス110でのグラフィカル・ユーザ・インタフェース(GUI)の生成を開始してもよい。当該GUIは、本明細書でさらに説明されるように、調節されたOEWの決定に関連付けられた選択可能インジケータを含む。ユーザ(例えば、パイロット、副操縦士、航空交通コントローラ等)は入力デバイス108を使用して当該選択可能インジケータを選択してもよい。入力デバイス108により受信された入力に基づいて、入力デバイス108は入力データ144を生成する。特定の実装において、入力データ144は、調節されたOEWが生成されるべきことを示す。別の実装では、入力データ144はまた、入力デバイス108(例えば、キーボード、タッチ・スクリーン等)を介して当該ユーザにより入力されたターゲット位置(例えば、航空機の動作に関連付けられた位置)、ターゲット高度(例えば、航空機の動作に関連付けられた高度)、またはその両方を示す。入力デバイス108は、入力データ144をプロセッサ104にI/Oインタフェース122を介して送信する。別の特定の実装では、飛行計画データは、当該ユーザ(例えば、技術者、デザイナ等)以外の誰かにより入力データ144としてプロセッサ104にロードまたは提供される。
調節されたOEWが生成されるべきことを入力データ144が示すことに応答して、プロセッサ104は、基準OEW132と第1の位置(例えば、航空機の動作の現在位置またはターゲット位置)で航空機に関連付けられた緯度または高度の少なくとも1つとに基づいて、初期重量推定124を生成する。代替的な実装では、プロセッサ104は、要求を受信することなく初期重量推定124を生成する。
さらにまたはあるいは、初期重量推定124が、第1の位置での航空機に関連付けられた経度、他の位置データ、またはその組合せに基づいて決定されてもよい。例えば、初期重量推定124は経度、緯度および経度、緯度および高度、経度および高度、または緯度、経度、および高度に基づいてもよい。さらにまたはあるいは、初期重量推定124は、本明細書でさらに説明されるように垂直偏向値に基づくことができる。例えば、初期重量推定124が、緯度、経度、高度、垂直偏向値、またはその組合せに基づいて決定されてもよい。初期重量推定124は、初期重量推定124が(緯度および高度に加えて)経度、垂直偏向値、またはその両方に基づいて決定される場合、より正確でありうる。しかし、経度および垂直偏向は地球の重力場に(およびしたがって初期重量推定124に)非常に少ない影響を及ぼしうるので、幾つかの実装では経度および垂直偏向は無視される(例えば、初期重量推定124は経度または垂直偏向に基づかない)。
基準OEW132は、第1の位置と異なる第2の位置(例えば、航空機の製造の位置、航空機の配送の位置、または航空機の重量の位置)で測定された、航空機に関連付けられた所定のOEWを表す。第2の位置は当該特定の位置であり、基準位置とも称される。基準OEW132は、航空機が第2の位置で計量された後にメモリ106に格納されてもよい。さらにまたはあるいは、基準OEW132が航空機に関連付けられた飛行マニュアルまたは他のドキュメントで指定されてもよく、ユーザは入力デバイス108を用いて基準OEW132を入力してもよい。
緯度は位置データ112により示されてもよい。特定の実装において、プロセッサ104は、位置データ112を位置センサ102からインタフェース120を介して受信する。幾つかの実装では、位置データ112はプロセッサ104により周期的間隔で受信される。他の実装では、位置データ112は要求されたときにプロセッサ104により受信される。あるいは、(例えば、現在位置が入力デバイス108を介して入力されたとき)当該緯度は入力データ144により示されてもよい。
プロセッサ104は、基準OEW132と第1の位置の航空機に関連付けられた緯度または高度の少なくとも1つとに基づいて、航空機に対する初期重量推定124を生成する。例えば、プロセッサ104は、基準OEW132をメモリ106から取り出し、当該緯度、当該高度、またはその両方に基づいて基準OEW132を調節して、初期重量推定124を生成してもよい。他の実装では、プロセッサ104は、初期重量推定124を当該緯度、当該高度の少なくとも1つ、またはその両方に基づいて計算する。特定の実装において、プロセッサ104は、第1の位置での航空機に関連付けられた緯度(またはターゲット緯度)に基づいて初期重量推定124を決定する。別の特定の実装では、プロセッサ104は、第1の位置の航空機に関連付けられた高度に基づいて(またはターゲット巡航高度のような飛行中のターゲット高度に基づいて)初期重量推定124を決定する。別の特定の実装では、プロセッサ104は、当該緯度および当該高度に基づいて初期重量推定124を決定する。幾つかの実装では、初期重量推定124は、当該緯度を含む緯度範囲、当該高度含む高度範囲、またはその両方に基づいて決定される。他の実装では、初期重量推定124は、経度範囲、別の位置範囲、動作範囲、回転範囲、他のデータまたは範囲、またはその組合せに基づいて決定される。
特定の実装において、初期重量推定124は緯度に起因する地球の重力場の変動を説明する。例示すると、地球は楕円であるので、特定の緯度での地球の半径は以下の式により与えられる。
Figure 0007084125000001
R(φ)は地球の半径であり、
Figure 0007084125000002
は地球の軌道長半径(即ち、3963.18マイルまたは6、378.137キロメートル(km))であり、
Figure 0007084125000003
は地球の軌道短半径(即ち、3949.90マイルまたは6、356.7523km)であり、Φは(世界測地系(WGS-84)協調システムを用いて測定された)緯度である。
重力のニュートン則は、2つの物体(例えば、航空機および地球)の間の引力の強度が当該物体の質量と当該2つの物体の間の距離とに基づくことを示す。したがって、地球により航空機に働く引力は航空機に関連付けられた位置での地球の半径に基づく。当該物体の重量は航空機に働く地球の引力に基づくので、航空機の重量は航空機に関連付けられた当該位置での地球の半径に基づく。したがって、航空機の引力(および重量)の大きさは、航空機に関連付けられた緯度に基づく。例示すると、重力に起因する加速度を、以下の式を用いて決定することができる。
Figure 0007084125000004
g(φ)は(平方秒あたりのメートル(m/sec)での)重力に起因する加速度であり、ΦはWGS-84協調システムを用いて測定された航空機の地理的緯度である。
式2に基づいて、重力に起因する加速度(および引力の大きさ)は航空機に関連付けられた緯度に基づいて異なる。航空機の重量は航空機の質量に航空機に働く重力を乗じたものに対応するので、航空機の重量は緯度とともに異なる。したがって、第1の位置での航空機の初期重量は第1の位置に関連付けられた緯度に基づき、基準OEW132は第2の位置に関連付けられた緯度に基づく。1例として、第1の位置(例えば、動作の現在位置またはターゲット位置)での航空機のOEWは、第1の位置と第2の位置の間のおおよそ50度の緯度の差に起因して、第2の位置(例えば、計量位置)での航空機のOEWより少ないおおよそ0.3%少なくてもよい。
プロセッサ104が、基準OEW132と第1の位置での航空機の緯度とに基づいて初期重量推定124を生成してもよい。特定の実装において、プロセッサ104は、調節因子を決定して当該調節因子に基づいて基準OEW132を修正することにより初期重量推定124を計算し、初期重量推定124を生成する。
別の特定の実装では、プロセッサ104は、基準OEW132と緯度に基づいて、メモリ106の複数の格納されたOEW値からOEWを取り出す。例示すると、メモリ106は、第1のOEW値134(「OEW値0」)、第2のOEW値136(「OEW値1」)、およびN番目のOEW値138(「OEW値N」)を含むOEWデータ133を格納してもよい。当該格納されたOEW値はテーブルのようなデータ構造に格納されてもよく、緯度、基準OEW132、またはその両方によりインデックス付けしてもよい。特定の実装において、OEWデータ133により示された各OEW値は、緯度値および基準OEW値によりインデックス付けされる。別の特定の実装では、OEWデータ133はOEW値の複数のテーブルに対応し、各OEWテーブルは基準OEW値によりインデックス付けされ、特定のテーブル内の各OEW値は対応する緯度値によりインデックス付けされる。プロセッサ104は、当該緯度、基準OEW132、またはその両方に基づいてOEW値を取り出す。例えば、第2のOEW値136のインデックス(「インデックス1」)が当該緯度、基準OEW132、またはその両方にマッチすると判定したことに応答して、プロセッサ104は第2のOEW値136をメモリ106から取り出す。当該取り出されたOEW値を初期重量推定124として使用してもよい。別の特定の実装では、OEWデータ133は複数の調節因子を表し、プロセッサ104は当該緯度に基づいて調節因子を取り出す。当該調節因子を取り出した後、プロセッサ104は当該調節因子を基準OEW132に適用して初期重量推定124を計算する。
別の特定の実装では、プロセッサ104は補間を実施して初期重量推定124を決定する。例示すると、緯度が2つのインデックス付けされた緯度値の間にある場合、プロセッサ104は、当該2つのインデックス付けされた緯度値に対応する格納されたOEW値を補間する。例えば、プロセッサ104により決定される緯度が第1のインデックス値(「インデックス0」)より大きく、第2のインデックス値(「インデックス1」)より小さい場合、プロセッサ104は、第1のOEW値134および第2のOEW値136を補間して、初期重量推定124を決定してもよい。他の実装では、プロセッサ104は、緯度、高度、経度、垂直偏向値、またはその組合せによりインデックス付けされたOEW値を補間して、初期重量推定124を決定してもよい。
別の特定の実装では、初期重量推定124は、高度に起因する地球の重力場の変動(例えば、重力に起因する加速度の変動)が説明されるように、航空機に関連付けられた高度(またはターゲット高度)に基づく。例えば、重力に起因する加速度を、以下の式を用いて計算してもよい。
Figure 0007084125000005
gh(Φ)は高度hでの重力に起因する加速度であり、gΦは特定の緯度(例えば、航空機の動作の位置の緯度)に対する平均海面レベルでの重力に起因する加速度であり、re(Φ)は当該特定の緯度での地球の半径である。
式3に基づいて、重力に起因する加速度は航空機の高度(またはターゲット高度)に基づいて異なる。航空機の重量は航空機の質量に航空機に働く重力を乗じたものに対応するので、航空機の重量は高度により異なる。したがって、航空機の初期重量は航空機の高度(または、ターゲット巡航高度のようなターゲット高度)に基づく。
当該高度が航空機の重量に影響を及ぼすので、プロセッサ104が、基準OEW132と航空機に関連付けられた高度とに基づいて初期重量推定124を生成してもよい。本明細書で説明する際、航空機に関連付けられた高度は、ターゲット巡航高度のような航空機の動作の間の特定の位置またはターゲット高度で航空機に関連付けられた高度を指す。特定の実装において、プロセッサ104は、(式3)に基づいて調節因子を決定し、当該調節因子に基づいて基準OEW132を修正することで初期重量推定124を計算し、初期重量推定124を生成する。別の特定の実装では、プロセッサ104は、基準OEW132と高度に基づいてメモリ106の複数の格納されたOEW値からOEWを取り出す。例えば、OEWデータ133は高度と基準OEW値に基づいてインデックス付けされた複数のOEW値を表してもよく、特定のOEW値は基準OEW132と高度に基づいて取り出されてもよい。別の特定の実装では、OEWデータ133は複数の調節因子を表し、プロセッサ104は、当該高度に基づいて調節因子を取り出し、当該調節因子を基準OEW132に適用して、初期重量推定124を計算する。別の特定の実装では、ターゲット巡航高度が2つのインデックス付けされた高度値の間にある場合、プロセッサ104は、当該2つのインデックス付けされた高度値に対応する2つのOEW値を補間して、初期重量推定124を決定する。
他の実装では、初期重量推定124が、基準OEW132と、(例えば、第1の位置でのまたは航空機に関連付けられた飛行経路に沿ったターゲット位置での)航空機に関連付けられた緯度および航空機に関連付けられた高度の両方とに基づいて生成される。幾つかの実装では、プロセッサ104は当該緯度(または当該高度)に基づいて基準OEW132を調節することで第1の重量推定を生成し、プロセッサ104は当該高度(または当該緯度)に基づいて第1の重量推定を調節することで初期重量推定124を生成する。代替的な実装では、当該プロセッサは、当該緯度および当該高度の両方に基づいて初期重量推定124を計算する。例示すると、当該緯度と当該高度の両方に基づく重力に起因する加速度が以下の式に基づいて決定されてもよい。
Figure 0007084125000006
gh,Φは高度hおよび地理的緯度Φ(WGS-84協調システムを使用)での航空機の重力に起因する加速度(m/sec)であり、
Figure 0007084125000007
は地球の軌道長半径(即ち、6、378.137km)であり、
Figure 0007084125000008
は地球の軌道短半径(即ち、6、356.7523km)である。特定の実装において、プロセッサ104は、当該緯度および当該経度に関連付けられた重力に起因する加速度に基づいて初期重量推定124を計算する。
初期重量推定124が航空機に関連付けられた緯度に基づいて決定されるとして本明細書で説明されているが、幾つかの実装では初期重量推定124は航空機に関連付けられた経度にも基づく。例えば、OEWデータ133は、経度により、緯度および経度により、または緯度、経度、および高度によりインデックス付けされたOEW値を表してもよい。さらにまたはあるいは、初期重量推定124は、垂直偏向値に基づくことができる。垂直偏向値は、山または大水域のような地理的特徴の存在に起因する地球の重力場の方向の偏差を表す。例えば、大水域に起因する重力場の方向の偏差は小さいかもしれず(例えば、おおよそ0.002度)、山に起因する偏差は大きいかもしれない(例えば、おおよそ0.036度)。様々な緯度、経度、またはその両方に関連付けられた垂直偏向値がメモリ106に格納されてもよく、またはOEWデータ133は緯度、経度、高度、垂直偏向値、またはその組合せに基づくOEW値を表してもよい。したがって、初期重量推定124は、初期重量推定124が当該経度、当該垂直偏向、またはその両方にさらに基づいて生成される場合により正確でありうる。しかし、経度および垂直偏向は地球の重力場の変形(およびしたがって航空機の重量)に非常に小さな影響を及ぼしうるので、幾つかの実装では経度および垂直偏向は無視される(例えば、初期重量推定124は経度または垂直偏向に基づかない)。
初期重量推定124を決定した後、プロセッサ104は初期重量推定124および基準OEW132の差に基づいて航空機の追加の可搬重量126を決定する。特定の実装において、追加の可搬重量126は初期重量推定124を基準OEW132から差し引くことにより決定される。初期重量推定124および基準OEW132の間の差分は、航空機が基準を超えることなく航空機により運搬しうる追加のペイロードの重量を表す。例えば、当該基準は、製造業者により指定された最大離陸重量(MTOW)(例えば、貨物、乗務員、燃料、乗客等が航空機に積載された後の航空機の最大重量)、航空機に関連付けられた飛行マニュアルで指定されたMTOW、航空機が離陸または着陸する空港に関連付けられたルール、または幾つかの他の基準であってもよい。例示すると、第1の位置(例えば、現在位置または動作の位置)での航空機の第1の離陸重量(TOW)(例えば、航空機が動作に関して積載された後の航空機の重量)が、第2の位置(例えば、製造、配送、または計量の位置)での同一の航空機の第2のTOWより少ない990キログラム(kg)である場合、航空機は、第1の位置に関連付けられた緯度と同一の(または同一の緯度範囲内の)緯度で特定のMTOWを超えることなく、追加の990kgのペイロードを運搬することができる。別の例として、第1の位置での航空機の第1のTOWが第2の位置での同一の航空機の第2のTOWより575kgより大きい場合、航空機は、当該基準を満たすために575kg少ないペイロードで積載すべきである。
追加の可搬重量126は、MTOWのような基準を超えることなく航空機に積載しうる追加の量(例えば、重量)のペイロードを表す。追加の可搬重量126は航空機の追加の燃料格納能力、航空機の追加のペイロード(例えば、貨物)格納能力、航空機の追加の乗客運搬能力等に対応してもよい。特定の実装において、当該追加の燃料格納能力は航空機の増大された最大飛行範囲に対応する。例えば、おおよそ1700kgの追加の燃料格納能力はおおよそ600kmの増大された最大飛行範囲に関連付けられてもよい。別の特定の実装では、追加の可搬重量126は航空機により運搬しうる追加の数の乗客に関連付けられる。例えば、おおよそ500kgの追加の格納能力は4つの追加の乗客を運搬するための能力に関連付けられてもよい。幾つかの実装では、プロセッサ104は初期重量推定124を閾値重量128(例えば、MTOW、ターゲットTOW、または別の閾値重量)と比較して、航空機に対する総可搬重量を決定する。例えば、閾値重量128がおおよそ300,000kgであり初期重量推定124がおおよそ138,000kgである場合、当該総可搬重量はおおよそ162,000kgである(例えば、航空機は、おおよそ162,000kgの乗務員、貨物、燃料、乗客等を運搬することができる)。
追加の可搬重量126を決定した後、プロセッサ104は追加の可搬重量126を示す出力140を生成する。出力140を生成した後、プロセッサ104は出力140の表示をディスプレイ・デバイス110で開始する。特定の実装において、プロセッサ104は追加の可搬重量126を示すGUIの表示を開始する。非限定的な例として、当該GUIは追加のペイロード格納能力または追加の燃料格納能力および対応する飛行範囲の増大を含んでもよい。当該GUIがさらに図2A、2B、および3を参照して説明される。
幾つかの実装では、プロセッサ104は、飛行計画に関連付けられた1つまたは複数の空港の位置での緯度、高度、またはその両方に基づいて、1つまたは複数の性能分析動作を実施する。例えば、航空機の(初期重量推定124を含む)初期重量推定が当該1つまたは複数の空港に対して決定され、1つまたは複数の第1の性能分析動作が航空機の当該初期重量推定に基づいて実施される。特定の実装において、第1の性能分析動作は、航空機の離陸フィールド長さ(TFOL)、様々な速度(例えば、ストール速度、判定速度、回転速度、離陸速度、障害物高さ速度、またはその組合せ)のような低速性能メトリック、他の低速性能メトリック、またはその組合せを生成する「低速」性能分析動作を含む。当該低速性能メトリック(またはその計算)は連邦航空局(FAA)のような監督機関により指定または認証されうる。別の例として、航空機の(初期重量推定124を含む)初期重量推定が航空機に関連付けられた飛行経路の様々な位置および高度に対して決定され、1つまたは複数の第2の性能分析動作が航空機の初期重量推定に基づいて実施される。特定の実装において、第2の性能分析動作は、フライトのシミュレーションの間に、航空機性能、動作コスト等のようなメトリックを決定する「高速」性能分析動作を含む。
プロセッサ104は性能分析結果148を表すデータを含む第2の出力146を生成する。性能分析結果148は、低速性能分析動作、高速度性能分析動作、またはその両方からの結果を含んでもよい。プロセッサ104はディスプレイ・デバイス110での第2の出力146の表示を開始する。特定の実装において、第2の出力146により示される性能分析結果148は、当該GUIを介して(または第2のGUIを介して)表示される。さらにまたはあるいは、プロセッサ104はメモリ106でまたは別の位置で性能分析結果148を示すデータを格納してもよい。
特定の実装において、システム100のコンポーネントのうち1つまたは複数を、ビークル(例えば、航空機)に積載するプロセスの間に使用してもよい。例示すると、プロセッサ104は、基準OEW(例えば、基準OEW132)と第1の位置での当該ビークルの緯度または高度の少なくとも1つとに基づいて、当該ビークルに関連付けられた初期重量推定を生成する。プロセッサ104は、初期重量推定(例えば、初期重量推定124)と基準OEWの差に基づいて当該ビークルの追加の可搬重量(例えば、追加の負荷容量126)を決定する。プロセッサ104は当該追加の可搬重量を示す出力を生成する。基準可搬重量および当該追加の可搬重量(例えば、当該基準可搬重量および当該追加の可搬重量の合計とおおよそ同一の重さの乗客、乗務員、備品、燃料、ペイロード、またはその組合せ)が当該ビークルに積載される。当該基準可搬重量は基準OEWが基づく基準位置での可搬重量である。例えば、プロセッサ104が、乗員(例えば、飛行乗務員、地上乗務員等)に、特定の重量の備品、貨物、燃料、ペイロード、乗客、乗務員等を当該ビークルに積載するように当該乗員に指示させるための1つまたは複数の表示可能命令を生成してもよい。
別の特定の実装では、システム100の1つまたは複数のコンポーネントは航空機の初期飛行計画を調整するための動作を実施してもよい。例示すると、プロセッサ104は、基準OEW(例えば、基準OEW132)と第1の位置での航空機の緯度または高度のうち少なくとも1つとに基づいて、航空機に関連付けられた初期重量推定を生成する。プロセッサ104は、初期重量推定(例えば、124)と基準OEWの差に基づいて航空機の追加の可搬重量(例えば、126)を決定する。プロセッサ104はまた、当該追加の可搬重量に基づいて初期飛行計画を調節して、調節された飛行計画を生成する。例えば、当該追加の可搬重量は航空機に積載しうる追加の燃料量を含んでもよく、または、それに対応してもよく、当該初期飛行計画は、当該調節された飛行計画内の飛行経路を、当該追加の燃料量に基づいて当該初期飛行計画内の飛行経路より長く調節することで調整される。
したがって、システム100は、航空機のようなビークルの利用、および当該ビークルの所有者への収益を増大してもよい。例えば、システム100は、特定の基準(例えば、閾値重量128)を超えることなく当該ビークルに積載し当該ビークルにより運搬されうる追加の可搬重量(例えば、非限定的な例として、追加の貨物容量または追加の乗客容量)を決定し、示す。当該ビークルにより運搬される貨物の量または乗客の数を増大することで、航空会社のような当該ビークルの所有者またはオペレータへの収益を増大してもよい。別の例として、システム100は、当該特定の基準を超えることなく当該ビークルの追加の燃料容量を決定し、示す。当該追加の燃料容量は当該ビークルの最大移動範囲の増大に対応する。当該ビークルの移動範囲を増大することが当該ビークルの利用を増大しうる。特定の例として、(航空機により多くの燃料を積むことで)航空機の最大飛行範囲を増大することは、現在提供されている宛先より空港から遠く離れた位置の宛先に航空会社がフライトを提供することを可能とする。追加の宛先を提供することは追加の乗客を引き込み、それにより航空会社への収益を増大させる。
上の説明では、図1のシステム100により実施される様々な機能が、命令130の実行に基づいてプロセッサ104により実施されるとして説明される。これは例示の目的のためである。代替的な実装では、プロセッサ104により実施される1つまたは複数の機能は実際には1つまたは複数のハードウェアコンポーネントにより実施される。例えば、第1のコンポーネントが初期重量推定124を生成してもよく、第2のコンポーネントは追加の可搬重量126を決定し、出力140を生成してもよい。各コンポーネントを、ハードウェア(例えば、フィールド・プログラム可能ゲート・アレイ(FPGA)デバイス、特殊用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、コントローラ等)、ソフトウェア(例えば、プロセッサにより実行可能な命令)、またはその組合せを用いて実装してもよい。
図2Aおよび2Bはそれぞれ、システム100とともに使用されるGUI200および210の例を示す。特定の例として、GUI200および210は図1のディスプレイ・デバイス110により表示可能である。本明細書で説明したようにGUI200および210は航空機の飛行管理コンピュータ(または、ヘリコプタ、自動化された航空機、船等のような異なるビークルを制御するコンピュータ)で使用されるが、GUI200および210を、システム100の当該コンポーネントを含む任意のコンピュータ(複数可)内で使用することができる。図2Aおよび2Bに示す実装では、初期重量推定、追加の可搬重量、および出力は当該飛行管理コンピュータにより(例えば、当該飛行管理コンピュータのプロセッサにより)生成される。1例として、当該初期重量推定、当該追加の可搬重量、および当該出力は、図1のプロセッサ104により生成された初期重量推定124、追加の可搬重量126、および出力140であってもよい。特定の実装において、GUI200、210の各々が当該飛行管理コンピュータのディスプレイ・デバイスに表示される。
図2Aを参照すると、GUI200の要素が初期重量推定(例えば、調節されたOEW)の決定の前に表示される。当該GUIの表示が図1のプロセッサ104のようなプロセッサにより開始されてもよい。図2Aで示されるように、GUI200は基準OEW202を表示する。基準OEW202は、特定の位置(例えば、製造の位置、配送の位置、または航空機が測定された異なる位置)で測定された航空機の重量を表す。非限定的な例として、基準OEW202はおおよそ138,000kgであってもよい。
GUI200はまた、基準OEW202の調節(例えば、初期重量推定の生成)に関連付けられる選択可能インジケータ204を表示する。選択可能インジケータ204の選択は、当該飛行管理コンピュータに基準OEW202を調節して初期重量推定を生成させる。例えば、当該飛行管理コンピュータは、図1の入力デバイス108のような入力デバイスを介した選択可能インジケータ204の選択に応答して、基準OEW202を調節する。特定の実装において、当該飛行管理コンピュータは、図1の位置センサ102のような1つまたは複数の位置センサ(例えば、1つまたは複数のGPSセンサ、1つまたは複数の慣性ナビゲーション・ユニット等)により示される現在位置(例えば、緯度、経度、高度、またはその組合せ)に基づいて基準OEW202を調節する量を決定する。他の実装では、図3を参照してさらに説明されるように、現在位置は、当該入力デバイスから受信された入力データにより示される。
図2Bは、基準OEW202が調整された後の更新されたGUI210の例を示す。図2Bで示されるように、GUI210は初期重量推定212(例えば、調節されたOEW)を表示する。初期重量推定212は、特定の位置(例えば、基準OEW202に関連付けられた位置)と現在位置(または選択された位置)の間の地球の重力場の強度の差に起因して、図2Aの基準OEW202と異なってもよい。非限定的な例として、初期重量推定212はおおよそ136,270kgであってもよい。GUI210はまた、調節されたOEWに起因する航空機の追加の可搬重量を表示する。特定の実装において、GUI210は、追加のペイロード格納能力214、追加の燃料格納能力216、および追加の燃料格納能力216に対応する増大された飛行範囲218を表示する。別の特定の実装では、GUI210は、追加のペイロード格納能力214または追加の燃料格納能力216の何れか(および増大された飛行範囲218)を表示する。
図2Bに示す例示的な例として、追加のペイロード格納能力214はおおよそ1730kg(例えば、基準OEW202と初期重量推定212の差)であってもよく、追加の燃料格納能力216はおおよそ457ガロンの燃料(例えば、基準OEW202と初期重量推定212の差に対応する量の燃料)であってもよく、増大された飛行範囲218はおおよそ642キロメートル(km)(例えば、追加の燃料格納能力216に基づいて決定される飛行範囲)であってもよい。他の実装では、GUI210は、追加の乗客運搬容量または他の負荷容量のような追加の情報を含んでもよい。
図3は飛行管理コンピュータのGUI300の第3の例を示す。当該飛行管理コンピュータはシステム100の少なくとも幾つかのコンポーネントを含む。特定の例として、GUI300は図1のディスプレイ・デバイス110を介して表示可能である。図3では、GUI300は、(例えば、1つまたは複数の位置センサ102に基づいて)当該飛行管理コンピュータにより決定される航空機の現在位置(またはおおよそのまたは推定された現在位置)を示す現在位置インジケータ302を含む。GUI300はまた、位置フィールド304を含む。位置フィールド304により、異なる位置のエントリを、基準OEWを調節する際に使用することができる。現在位置インジケータ302および位置フィールド304に関連付けられた選択可能インジケータ(例えば、チェックボックス)により、当該飛行管理コンピュータにより決定される推定された現在位置を受理することとまたは異なる位置を入力することとの間の選択を可能とする。特定の実装において、当該推定された現在位置は、図1の位置センサ102のような位置センサからの情報に基づいて決定され、当該位置センサの正確性、精度、および許容値に基づく推定である。位置フィールド304を介して入力された様々な位置を、現在位置(例えば、飛行計画、ディスパッチャ等からインポートされた位置)またはターゲット位置(または当該ビークルが発車した位置)と称してもよい。
GUI300はまた高度フィールド306を含む。高度フィールド306により、ターゲット巡航高度のエントリを、基準OEWを調節する際に使用することができる。幾つかの実装では、GUI300は、当該飛行管理コンピュータにより決定される航空機の推定された高度を示す現在の高度インジケータを含む。かかる実装では、当該ターゲット高度を入力してもよく、または当該推定された高度を受理してもよい。別の特定の実装では、GUI300は現在位置インジケータ302および位置フィールド304を含み、高度フィールド306は含まれない。別の特定の実装では、GUI300は高度フィールド306を含み、現在位置インジケータ302および位置フィールド304は含まれない。他の実装では、GUI300は経度インジケータおよびフィールド、または他のインジケータおよびフィールドのような追加の情報およびインジケータを含む。
図2A、2B、および3は飛行管理コンピュータとして説明されているが、他の実装では、当該飛行管理コンピュータにより実施される動作をコンピュータ、コントローラ等に関連付けられた他のタイプのビークルにより実施してもよい。例えば、当該飛行管理コンピュータにより実施される動作を、ヘリコプタ、無人空中ビークル(例えば、ドローン)、ボート、自動車等に関連付けられた計算デバイスにより実施してもよい。
図4は飛行ディスパッチ・システムのGUI400の例を示し、当該飛行ディスパッチ・システムはシステム100の少なくとも幾つかのコンポーネントを含む。特定の例として、GUI400は図1のディスプレイ・デバイス110を介して表示可能である。当該飛行ディスパッチ・システムが、発車、到着、飛行時間、ルート、および航空交通の他の属性をスケジュールするために、航空機コントローラまたは他のユーザにより使用されてもよい。飛行ディスパッチ・システムとして説明されているが、他の実装では、当該飛行ディスパッチ・システムの動作を、無人空中ビークル、ヘリコプタ、ボート等に関連付けられたシステムのような他のビークルディスパッチまたは管理システムにより実施してもよい。
GUI400は1つまたは複数の航空機飛行に対する情報を含む。図4に示す例では、GUI400は、第1の飛行(「飛行0001」)、第2の飛行(「飛行0002」)、およびN番目の飛行(「飛行N」)に対する情報を含む。他の実装では、より多くの飛行またはより少ない飛行に関連付けられた情報をGUI400に含めてもよい。特定の実装において、各飛行に関連付けられた情報は、航空機の飛行識別子、出発時間、到着時刻、飛行距離、および最大飛行範囲を含む。特定の例として、第1の飛行に関連付けられた情報は第1の飛行識別子402、第1の出発時間404、第1の到着時刻406、第1の飛行距離408、および第1の最大飛行範囲410を含む。図4内の情報の値は例に過ぎず限定ではない。他の実装では、GUI400は、図4に示したものより少ない情報または多くの情報を含んでもよい。例えば、GUI400は、当該飛行に関連付けられた貨物運搬能力、発車位置、到着位置、重量情報、燃料運搬能力、投影された巡航高度等を含んでもよい。
GUI400はまた、第1の選択可能アイコン412および第2の選択可能アイコン414を含む。図1を参照して説明されたように、(例えば、入力デバイスを介した)第1の選択可能アイコン412の選択により、当該飛行ディスパッチ・システムに位置(例えば、非限定的な例として、緯度、経度、その両方、またはターゲット位置)、高度(例えば、非限定的な例として、ターゲット巡航高度または現在の高度)、またはその両方に基づいて最大飛行範囲を修正させてもよい。例えば、現在位置(またはターゲット位置)での航空機に関連付けられた初期重量推定124が航空機に関連付けられた基準OEW(例えば、異なる位置の航空機に関連付けられた測定された重量)より少ない場合に、第1の最大飛行範囲410を増大させてもよい。さらに、第2の選択可能アイコン414の選択が最大飛行範囲の調節を防止してもよい。他の実装では、GUI400はまた、図1を参照して説明されたように、航空機に関連付けられた貨物運搬能力および(例えば、位置、高度、またはその両方に基づいて)調整された貨物運搬能力の表示を可能とする選択可能インジケータを含む。
図5は少なくとも1つの範囲サークルを含むディスプレイ500の例を示す。ディスプレイ500は、ビークルの範囲を例示するために、コンピュータ、タブレットコンピュータ、モバイルデバイス等のような計算デバイスにより生成されてもよい。特定の実装において、ディスプレイ500が図1のディスプレイ・デバイス110で生成される。別の特定の実装では、当該ビークルは航空機である。他の実装では、当該ビークルは、ヘリコプタ、無人空中ビークル、ボート等のような様々なタイプのビークルである。
ディスプレイ500は第1の範囲サークル502を含む。第1の範囲サークル502は、当該ビークルに関連付けられ特定の位置(例えば、当該ビークルが計量された位置)で測定された基準OEWに基づく当該ビークルの推定された範囲を示す。当該ビークルの最大燃料格納能力は基準OEWに基づいて決定され、当該ビークルの推定された最大範囲は最大燃料格納能力に基づいて決定される。最大範囲は第1の範囲サークル502の第1の半径506に対応する。しかし、図1を参照して説明したように、ビークルは、当該ビークルが当該特定の位置と異なる位置に配置または動作されるとき、追加の燃料格納能力216に関連付けられてもよい。したがって、ディスプレイ500はまた、調節された範囲サークル504を含む。調節された範囲サークル504をまた、「補正された」範囲サークルと称してもよい。調節された範囲サークル504は、当該ビークルの位置、高度、またはその両方に起因して追加の燃料格納能力216に基づいて当該ビークルの最大範囲に対応する第2の半径508を有する。特定の実装において、範囲サークル502および504は、風条件に起因した当該ビークルの最大範囲への影響を考慮した「風補正された範囲サークル」である。特定の実装において、第2の半径508は以下の式に基づいて決定される。
Figure 0007084125000009
ψは起点から目的地点への「大圏コース」の平均機首方位であり、Rwindは高度hでの方位ψに沿った起点からの風調整された範囲であり、φはWGS-84協調システムにおける点の緯度であり、λはWGS-84協調システムにおける点の経度であり、
Figure 0007084125000010
は平均巡航高度であり、Rgravityは(例えば、緯度、経度、および高度に基づく)調節された半径であり、Sはサロゲート因子である。当該サロゲート因子Sが以下の式に基づいて決定されてもよい。
Figure 0007084125000011
当該ディスプレイはまた、第1の範囲インジケータ510および第2の範囲インジケータ512を含む。第1の範囲インジケータ510は追加の燃料格納能力216を決定する前に決定されるビークルの範囲に関連付けられ、第2の範囲インジケータ512は追加の燃料格納能力216に基づいて決定される調節された範囲に関連付けられる。他の実装では、ディスプレイ500は少ない情報を含む。例えば、ディスプレイ500は第1の範囲サークル502、第1の半径506、および第1の範囲インジケータ510を含まなくてもよい。他の実装では、ディスプレイ500は追加の情報を含む。
図6は例示的なビークル600を示す。特定の実装において、ビークル600は航空機である。他の実装では、ビークル600は、無人空中ビークル、ヘリコプタ、船、自動車等のような異なるタイプのビークルである。特定の実装において、ビークル600の当該コンポーネントのうち1つまたは複数は図1のシステム100の1つまたは複数のコンポーネントを含む。
ビークル600はシステム601を含む。ビークル600は場合によっては、機体、内部、1つまたは複数のエンジン、他のシステム(例えば、リフトおよび推進システム、電気システム、油圧システム、環境システム、通信システム、燃料システム等)、またはその組合せのような追加のコンポーネントおよびシステム620を含む。システム601は、無線ナビゲーション受信機602、無線ナビゲーションシステム604、GPSプロセッサ606、GPS受信機608、ディスプレイ・デバイス610、飛行管理コンピュータ612、慣性ナビゲーションシステム614、空中データ・コンピュータ616、磁気センサ618、および入力デバイス619を含む。特定の実装において、システム601は図1のシステム100を含むかまたはそれに対応する。他の実装では、ビークル600は、図6に示すコンポーネントより多くのまたは少ないコンポーネントを含む。ビークル600は、トランジットの間にビークル600を運用するビークル乗務員(例えば、パイロット、副操縦士等)、およびトランジットに対してビークル600を準備するかまたはルート、到着時刻、出発時間等のような当該トランジットの態様を決定するビークルディスパッチ乗員に関連付けられてもよい。
無線ナビゲーション受信機602は無線ナビゲーションデータを受信するように構成される。例えば、無線ナビゲーション受信機602は、計器着陸システム(ILS)受信機、超高周波数(VHF)無指向性範囲(VOR)受信機、ナビゲーションデータレコーダ(NDR)受信機、または別のタイプの受信機を含んでもよい。無線ナビゲーションシステム604は、当該無線ナビゲーションデータを無線ナビゲーション受信機602から受信し、当該無線ナビゲーションデータを処理し、当該処理された無線ナビゲーションデータを飛行管理コンピュータ612に提供するように構成される。
GPS受信機608はGPSデータを受信するように構成される。GPSプロセッサ606は、GPS受信機608から受信されたGPSデータを処理し、当該処理されたGPSデータを飛行管理コンピュータ612に提供するように構成される。慣性ナビゲーションシステム614は、加速度計、ジャイロスコープ、または他のタイプの動きセンサまたは回転センサのような1つまたは複数のセンサから受信されたデータに基づいてビークル600の位置を決定するように構成される。位置センサ102(図1に示す)は、無線ナビゲーション受信機602、GPS受信機608およびGPSプロセッサ606、慣性ナビゲーションシステム614、またはその組合せを含む。
空中データ・コンピュータ616は1つまたは複数のテスト機能を実施して1つまたは複数の空中データ機器を較正するように構成される。磁気センサ618はビークル600の方位を測定するように構成される。入力デバイス619は入力を受信し、当該入力に基づいて入力データ144を生成するように構成される。例えば、入力デバイス619はキーボード、タッチ・スクリーン、ジョイスティック、ノブ(複数可)、他のタイプの入力デバイス、またはその組合せを含んでもよい。特定の実装において、入力デバイス619は図1の入力デバイス108を含むかまたはそれに対応する。
飛行管理コンピュータ612は、コンポーネント604、606、614、616、618、および619の各々からデータを受信し、当該ビークルに対するミッション計画を生成する(および動作の間に当該ビークルの進行を分析する)ように構成される。特定の実装において、飛行管理コンピュータ612は宛先条件および互換性、ナビゲーション情報、性能データ、重量を決定し、計算、他の情報、またはその組合せをバランスして、当該ミッション計画を生成し当該ビークルの進行を分析する。飛行管理コンピュータ612はプロセッサ613およびメモリ615を含む。特定の実装において、飛行管理コンピュータ612は図1の装置101を含むかまたはそれに対応する。例えば、プロセッサ613は図1に示すプロセッサ104を含むかまたはそれに対応し、メモリ615は図1に示すメモリ106を含むかまたはそれに対応する。
飛行管理コンピュータ612はまた、1つまたは複数のGUIのようなディスプレイ・デバイス610での1つまたは複数の出力の表示を開始するように構成される。例えば、非限定的な例として、ディスプレイ・デバイス610は図1のディスプレイ・デバイス110を含んでもよく、または、それに対応してもよく、当該1つまたは複数の出力は図2Aおよび2BのGUI200および210、図3のGUI300、図4のGUI400、または図5のディスプレイ500を含んでもよく、または、それに対応してもよい。当該1つまたは複数の出力(例えば、当該1つまたは複数のGUI)を表示することで、例えば入力デバイス619を介して、当該ビークル乗務員は入力を提供するかまたは当該ミッション計画に関する選択を行うことができる。幾つかの実装では、飛行管理コンピュータ612は、図1を参照して説明されたように、ビークル600に関連付けられた基準OEWを調節し、当該ビークルの追加の可搬重量600を決定するように構成される。
特定の実装において、航空機のようなビークル600は、位置データを生成するように構成された測位システム、入力データを受信するように構成された入力デバイス、およびルート管理システムを含む。例えば、当該測位システムは無線ナビゲーション受信機602、無線ナビゲーションシステム604、GPSプロセッサ606、GPS受信機608、慣性ナビゲーションシステム614、空中データ・コンピュータ616、磁気センサ618、またはその組合せを含んでもよく、または、それに対応してもよい。当該入力デバイスは入力デバイス619、ディスプレイ・デバイス610、またはその両方を含んでもよく、または、それに対応してもよい。
システム601は、飛行管理コンピュータ612を含んでもよく、または、それに対応してもよいルート管理システムであることができる。当該ルート管理システムは、基準OEWと第1の位置での緯度または高度の少なくとも1つとに基づいて初期重量推定124を生成するように構成される。当該緯度または当該高度の少なくとも1つは位置データ、入力データ、またはその両方により示されてもよく、基準OEWは、第1の位置と異なる第2の位置(例えば、製造の位置、配送の位置、当該ビークルの計量の位置等)で予め決定される(例えば、測定される)。
当該ルート管理システムはまた、初期重量推定124および基準OEWの差に基づいて追加の可搬重量126を決定するように構成される。当該ルート管理システムは当該追加の可搬重量を示す出力をさらに生成するように構成される。例えば、当該ルート管理システムは、図1を参照して説明されたように、追加の可搬重量126を決定し、出力140を生成してもよい。特定の実装において、当該ビークルはさらに、当該出力を表示するように構成されたディスプレイ・デバイス610のようなディスプレイ・デバイスを含む。当該出力は、追加の燃料格納能力216、追加のペイロード格納能力214、調節された推定された範囲、またはその組合せを示す。
図7は、ビークルの追加の可搬重量を決定する方法700を示す。方法700を、非限定的な例として、図1のシステム100(例えば、プロセッサ104)、図6のビークル600(例えば、飛行管理コンピュータ612)、図2AのGUI200、図2BのGUI210、図3のGUI300、図4のGUI400、または図5のディスプレイ500を出力するように構成された1つまたは複数のデバイスまたはシステムにより実施してもよい。特定の実装において、当該ビークルは航空機である。
方法700は、702で、運用自重(OEW)と第1の位置での航空機の緯度または高度のうち少なくとも1つとに基づいて、航空機に関連付けられた初期重量推定を生成するステップを含む。例えば、当該初期重量推定は初期重量推定124を含んでもよく、または、それに対応してもよく、基準OEWは図1の基準OEW132を含んでもよく、または、それに対応してもよい。基準OEWは第1の位置と異なる第2の位置で予め決定される(例えば、測定される)。
方法700は、704で、当該初期重量推定と基準OEWの間の差に基づいて航空機の追加の可搬重量を決定するステップを含む。例えば、当該追加の可搬重量は図1の追加の可搬重量126を含んでもよく、または、それに対応してもよい。
方法700はまた、706で、当該追加の可搬重量を示す出力を生成するステップを含む。例えば、当該出力は図1の出力140を含んでもよく、または、それに対応してもよい。特定の実装において、図2A、2B、および3を参照して説明されたように、当該出力が飛行管理コンピュータで生成される。別の特定の実装では、図4を参照して説明されたように、当該出力が飛行ディスパッチ・システムで生成される。
特定の実装において、方法700はさらにディスプレイ・デバイスでの当該出力の表示を開始するステップを含む。例えば、当該ディスプレイ・デバイスは、図1のディスプレイ・デバイス110または図6のディスプレイ・デバイス610を含んでもよく、または、それに対応してもよい。別の特定の実装では、当該追加の可搬重量がさらに第1の位置での航空機の経度に基づいて決定される。別の特定の実装では、方法700は、航空機の推定された最大飛行範囲を示す調節された範囲サークルを表すデータを第1の位置から生成するステップを含む。当該推定された最大飛行範囲は、当該追加の負荷容量に基づく(例えば、当該推定された最大飛行範囲は、追加の燃料格納容量216に基づいてデフォルト値から調整される)。例えば、当該調節された範囲サークルは図5の当該補正された範囲サークル504を含んでもよく、または、それに対応してもよい。
特定の実装において、当該初期重量推定を生成するステップは、図1を参照して説明されたように、当該緯度、当該高度、またはその両方に基づいて基準OEWを修正するステップを含む。追加の可搬重量126を決定するステップは、閾値重量(例えば、図1の閾値重量128)を超えることなく航空機に格納されうる追加の燃料の量または当該閾値重量を超えることなく航空機に格納されうる追加のペイロードの重量を決定するステップを含む。
別の特定の実装では、方法700は、当該初期重量推定に基づいて飛行計画に関連付けられた性能分析結果を生成するステップと、当該性能分析結果を含む第2の出力を生成するステップとを含む。例えば、当該性能分析結果は性能分析結果148を含んでもよく、または、それに対応してもよく、第2の出力は図1の第2の出力146を含んでもよく、または、それに対応してもよい。
別の特定の実装では、方法700は、全地球測位システムセンサまたは1つまたは複数の慣性ナビゲーション・ユニットから受信された位置データに基づいて航空機の推定された位置を決定するステップを含む。例えば、当該位置データは図1の位置データ112を含んでもよく、または、それに対応してもよく、当該GPSセンサおよび当該1つまたは複数の慣性ナビゲーション・ユニットは、それぞれ図1の位置センサ102、または図6のGPS受信機608および慣性ナビゲーションシステム614を含んでもよく、または、それに対応してもよい。方法700はまた、当該推定された位置の表示を開始するステップと、第1の位置として当該推定された位置の受理または拒絶を示す入力データを受信するステップとを含む。例えば、当該入力デバイスは、図3を参照して説明されたように、GUIと対話することで当該推定された位置の受理(または拒絶)を促進してもよい。
さらに、本開示は以下の項に従う実装を含む。
項1:航空機の追加の負荷容量を決定する方法であって、基準運用自重(OEW)と第1の位置での航空機の緯度または高度のうち少なくとも1つとに基づいて航空機に関連付けられた初期重量推定を生成するステップであって、当該基準OEWは第1の位置と異なる第2の位置で予め決定される、ステップと、当該初期重量推定と基準OEWの間の差に基づいて航空機の追加の可搬重量を決定するステップと、当該追加の可搬重量を示す出力を生成するステップとを含む、方法。
項2:ディスプレイ・デバイスでの当該出力の表示を開始するステップであって、当該追加の可搬重量がさらに第1の位置での航空機の経度に基づいて決定される、ステップをさらに含む、項1に記載の方法。
項3:当該出力が飛行管理コンピュータで生成される、項1または2に記載の方法。
項4:当該出力が飛行ディスパッチ・システムで生成される、項1または2に記載の方法。
項5:第1の位置からの航空機の推定された最大飛行範囲を示す補正された範囲サークルを表すデータを生成するステップであって、当該推定された最大飛行範囲は当該追加の可搬重量に基づく、ステップをさらに含む、項1乃至4に記載の方法。
項6:当該初期重量推定を生成するステップは、当該緯度、当該高度、またはその両方に基づいて基準OEWを修正するステップを含み、当該追加の可搬重量を決定するステップは、当該閾値重量を超えることなく航空機に格納されうる閾値重量または追加のペイロードの重量を超えることなく、航空機に格納されうる追加の燃料の量を決定するステップを含む、項1乃至5に記載の方法。
項7:当該初期重量推定に基づいて飛行計画に関連付けられた性能分析結果を生成するステップと、当該性能分析結果を含む第2の出力を生成するステップとをさらに含む、項1乃至6に記載の方法。
項8:全地球測位システム(GPS)センサからまたは1つまたは複数の慣性ナビゲーション・ユニットから受信された位置データに基づいて航空機の推定された位置を決定するステップと、当該推定された位置の表示を開始するステップと、第1の位置として当該推定された位置の受理または拒絶を示す入力データを受信するステップとをさらに含む、項1乃至7に記載の方法。
項9:航空機の追加の負荷容量を決定するための装置であって、プロセッサと、当該プロセッサに接続されたメモリとを備え、当該メモリは、当該プロセッサにより実行されたとき、当該プロセッサに項1乃至8に記載の方法を含む動作を実施させる命令を格納する、装置。
項10:航空機の追加の負荷容量を決定するための装置であって、プロセッサと、当該プロセッサに接続されたメモリとを備え、当該メモリは、当該プロセッサにより実行されたとき、当該プロセッサに、航空機に関連付けられた初期重量推定を、基準運用自重(OEW)と第1の位置での航空機の緯度または高度のうち少なくとも1つとに基づいて生成するステップであって、当該基準OEWは第1の位置と異なる第2の位置で予め決定される、ステップと、当該初期重量推定と基準OEWの間の差に基づいて航空機の追加の可搬重量を決定するステップと、当該追加の可搬重量を示す出力を生成するステップとを含む動作を実施させる命令を格納する、装置。
項11:当該追加の可搬重量は航空機の追加の燃料格納能力に対応する、項10に記載の装置。
項12:当該追加の可搬重量は航空機の追加のペイロード格納能力に対応する、項10または11に記載の装置。
項13:当該動作はさらに、ディスプレイ・デバイスでの当該出力の表示を開始するステップを含む、項10乃至12に記載の装置。
項14:当該メモリはさらに複数のOEW値を格納するように構成され、当該複数のOEW値は緯度により、高度により、またはその両方によりインデックス化され、当該初期重量推定を生成するステップは当該緯度、当該高度、またはその両方に基づいて当該複数のOEW値のOEW値を当該メモリから取り出すステップを含む、項10乃至13に記載の装置。
項15:位置データを全地球測位(GPS)センサからまたは1つまたは複数の慣性ナビゲーション・ユニットから受信するように構成されたインタフェースをさらに備え、当該位置データは当該緯度を示す、項10乃至14に記載の装置。
項16:入力データを入力デバイスから受信するように構成された入出力インタフェースをさらに備え、当該入力データは当該緯度、当該高度、またはその両方を示す、項10乃至15に記載の装置。
項17:推定された現在位置の表示を開始し、当該推定された現在位置の表示に応答して入力データを受信するように構成された入出力インタフェースをさらに備え、当該入力データは、第1の位置に対する第1の位置またはターゲット位置として当該推定された現在位置の受理を示す、項10乃至16に記載の装置。
項18:項10乃至17に記載の装置を備える、航空機。
項19:ビークルの追加の可搬重量を決定するように構成されたシステムであって、位置センサと、入力デバイスと、ディスプレイ・デバイスと、項10乃至17に記載の装置を備える、システム。
項20:位置データを生成するように構成された測位システムと、入力データを受信するように構成された入力デバイスと、基準運用自重(OEW)と第1の位置での緯度または高度の少なくとも1つとに基づいて初期重量推定を生成し、当該初期重量推定と基準OEWの間の差に基づいて追加の可搬重量を決定し、当該追加の可搬重量を示す出力を生成するように構成されたルート管理システムであって、当該緯度または当該高度の少なくとも1つは、当該位置データ、当該入力データ、またはその両方により示され、当該基準OEWは第1の位置と異なる第2の位置で予め決定される、ルート管理システムと、を備えたビークル。
項21:当該追加の可搬重量は追加の燃料格納能力または追加のペイロード格納能力に対応し、第2の位置は製造の位置、配送の位置、または当該ビークルの計量の位置である、項20に記載のビークル。
項22:当該出力を表示するように構成されたディスプレイ・デバイスをさらに備え、当該出力は当該追加の燃料格納能力、当該追加のペイロード格納能力、調節された推定された範囲、またはその組合せを示す、項21に記載のビークル。
項23:当該ビークルは航空機を含む、項20乃至22に記載のビークル。
項24:ビークルの追加の可搬重量を決定するように構成されたシステムであって、当該システムは、プロセッサと、当該プロセッサに接続された位置センサと、当該プロセッサに接続された入力デバイスと、当該プロセッサに接続されたディスプレイ・デバイスと、当該プロセッサに接続されたメモリとを備え、当該メモリは、当該プロセッサにより実行されたとき、当該プロセッサに、基準運用自重(OEW)と第1の位置での当該ビークルの緯度または高度の少なくとも1つとに基づいて当該ビークルに関連付けられた初期重量推定を生成するステップであって、当該基準OEWは第1の位置と異なる第2の位置で予め決定される、ステップと、当該初期重量推定と基準OEWの間の差に基づいて当該ビークルの追加の可搬重量を決定するステップと、当該追加の可搬重量を示す出力を生成するステップであって、当該出力は当該追加の可搬重量を表示するための当該ディスプレイ・デバイスを開始する、ステップとを含む動作を実施させる命令を格納する、システム。
項25:当該位置センサは当該ビークルに関連付けられた第1の位置を表す位置データを決定するように構成され、当該位置データは第1の位置での当該ビークルの緯度、第1の位置での当該ビークルの経度、当該ビークルに関連付けられた高度、またはその組合せを示す、項24に記載のシステム。
項26:当該位置センサは無線ナビゲーション受信機、GPS受信機およびGPSプロセッサ、慣性ナビゲーションシステム、またはその組合せを含む、項24または25に記載のシステム。
項27:入出力(I/O)インタフェースをさらに含み、当該プロセッサは当該I/Oインタフェースを含む、項24乃至26に記載のシステム。
項28:当該I/Oインタフェースは当該ディスプレイ・デバイスでの航空機の推定された現在位置の表示を開始し、当該推定された現在位置の表示に応答して入力データを受信するように構成され、当該推定された現在位置は当該位置センサにより取得された位置データに基づく、項27に記載のシステム。
項29:当該I/Oインタフェースは入力データを当該入力デバイスから受信し、当該入力データを当該プロセッサに送信するように構成され、当該入力データは調節されたOEW命令、ターゲット位置、ターゲット高度、飛行計画データ、またはその組合せを含む、項27または28に記載のシステム。
項30:項24乃至29に記載のシステムを備えた飛行管理コンピュータを備える、航空機。
項31:項24乃至29に記載のシステムを備える、ルート管理システム。
項32:航空機に積載するための方法であって、基準運用自重(OEW)と第1の位置での航空機の緯度または高度のうち少なくとも1つとに基づいて航空機に関連付けられた初期重量推定を生成するステップであって、当該基準OEWは第1の位置と異なる第2の位置で予め決定される、ステップと、当該初期重量推定と基準OEWの間の差分に基づいて航空機の追加の可搬重量を決定するステップと、当該追加の可搬重量を示す出力を生成するステップと、基準可搬重量および当該追加の可搬重量を航空機に積載するステップとを含む、方法。
項33:航空機の初期飛行計画を調節するための方法であって、基準運用自重(OEW)と第1の位置での航空機の緯度または高度のうち少なくとも1つとに基づいて航空機に関連付けられた初期重量推定を生成するステップであって、当該基準OEWは第1の位置と異なる第2の位置で予め決定される、ステップと、当該初期重量推定と基準OEWの間の差に基づいて航空機の追加の可搬重量を決定するステップと、当該追加の可搬重量に基づいて当該初期飛行計画を調節して調節された飛行計画を生成するステップとを含む、方法。
項34:当該追加の可搬重量は追加の燃料量であり、当該調節するステップは、当該追加の燃料量に基づいて当該初期飛行計画内の飛行経路より長く当該調節された飛行計画内の飛行経路を調節するステップを含む、項33に記載の方法。
本明細書で説明した例の例示は、当該様々な実装の構造の一般的な理解を提供することを意図している。当該例示は、本明細書で説明した構造または方法を利用する装置およびシステムの要素および特徴の全ての完全な説明の役割を果たすものではない。多くの他の実装は本開示を検討すれば当業者には明らかであろう。構造的および論理的な置換えと変更を本開示の範囲から逸脱することなく行い得るように、他の実装を利用してもよく、本開示から導出しうる。例えば、方法の動作を、図面に示したものと異なる順序で実施してもよく、または、1つまたは複数の方法動作を省略してもよい。したがって、本開示および当該図面は限定的ではなく例示的であるものである。
さらに、特定の例が本明細書で図示され説明されているが、同一のまたは同様な結果を実現するように設計された任意の後続の配置を、示した特定の実装に対して置換えてもよいことは理解されるべきである。本開示は、様々な実装の任意のおよび全ての後続の適合または変動を包含することを意図している。上の実装の組合せ、および本明細書で特に説明していない他の実装は当該説明を検討すれば当業者には明らかであろう。
本開示の要約は、それが諸請求項の範囲または意味を解釈または限定するために使用されないとの理解のもと提出されている。さらに、以上の詳細な説明では、様々な特徴を、本開示を分かりやすくするために単一の実装でグループ化または説明されているかもしれない。上述された例は本開示を示すが本開示を限定しない。本開示の原理に従う多数の修正および変動が可能であることも理解されるべきである。添付の特許請求の範囲が反映するように、当該クレームした主題が、開示された例の何れかの特徴の全てより少ないものに関連してもよい。したがって、本開示の範囲は以下のクレームおよびそれらの均等物により定義される。
101 装置
102 位置センサ(例えば、GPSセンサまたは慣性ナビゲーション・ユニット)
104 プロセッサ
106 メモリ
108 入力デバイス
110 ディスプレイ・デバイス
112 位置データ
120 インタフェース
122 入出力インタフェース

Claims (11)

  1. ビークル(600)の基準運用自重(OEW)(132)に対する追加の可搬重量(126)を決定するための方法(700)であって、
    調節されたOEWである初期重量推定(124)であって、基準OEW(132)と第1の位置での前記ビークルの緯度または高度の少なくとも1つとに基づいて前記ビークルに関連付けられた、初期重量推定を生成するステップ(702)であって、前記基準OEWは前記第1の位置と異なる第2の位置で予め決定される、ステップ(702)と、
    前記初期重量推定および前記基準OEWの間の差に基づいて前記ビークルの前記追加の可搬重量を決定するステップ(704)と、
    前記追加の可搬重量を示す出力(140)を生成するステップ(706)と、
    を含み、
    前記初期重量推定(124)を生成するステップ(702)は前記緯度、前記高度、またはその両方に基づいて前記基準OEW(132)を修正するステップを含み、前記追加の可搬重量(126)を決定するステップ(704)は、前記基準OEW(132)とは別に予め決定された閾値重量(128)を超過することなく前記ビークル(600)に格納されうる追加の燃料の量または前記閾値重量を超過することなく前記ビークルに格納されうる追加のペイロードの重量を決定するステップを含む、方法。
  2. ディスプレイ・デバイス(110)の前記出力(140)の表示を開始するステップであって、前記追加の可搬重量(126)はさらに前記第1の位置での前記ビークルの経度に基づいて決定される、ステップをさらに含む、請求項1に記載の方法(700)。
  3. 前記ビークル(600)は航空機であり、前記出力(140)が飛行管理コンピュータ(612)または飛行ディスパッチ・システムで生成される(706)、請求項1または2に記載の方法(700)。
  4. 前記ビークル(600)は航空機であり、前記方法は、前記第1の位置からの前記航空機の推定された最大飛行範囲(410)を示す調節された範囲サークル(504)を表すデータを生成するステップをさらに含み、前記推定された最大飛行範囲は前記追加の可搬重量(126)に基づく、請求項1乃至3の何れか1項に記載の方法(700)。
  5. 前記ビークル(600)は航空機であり、前記方法は、前記初期重量推定(124)に基づいて飛行計画に関連付けられた性能分析結果(148)を生成するステップと、
    前記性能分析結果を含む第2の出力(146)を生成するステップと、
    をさらに含む、請求項1乃至4の何れか1項に記載の方法(700)。
  6. 全地球測位システム(GPS)センサおよび1つまたは複数の慣性ナビゲーション・ユニットのうち少なくとも1つを含む位置センサ(102)から受信された位置データに基づいて前記ビークル(600)の推定された位置を決定するステップと、
    前記推定された位置の表示を開始するステップと、
    前記第1の位置として前記推定された位置の受理または拒絶を示す入力データ(144)を受信するステップと、
    をさらに含む、請求項1乃至5の何れか1項に記載の方法(700)。
  7. 航空機に積載するための方法(600)であって、
    請求項1乃至6の何れか1項に記載の追加の可搬重量(126)を決定するための方法(700)と、
    前記第2の位置で予め決定された基準可搬重量および前記追加の可搬重量を前記航空機に積載するステップと、
    を含む、方法。
  8. 航空機(600)の基準運用自重(OEW)(132)に対する追加の可搬重量(126)を決定するための装置(101)であって、
    プロセッサ(104)と、
    前記プロセッサに接続されたメモリ(106)であって、前記メモリは、前記プロセッサにより実行されたとき、前記プロセッサに、
    調節されたOEWである初期重量推定(124)であって、基準OEW(132)と第1の位置での前記航空機の緯度または高度のうち少なくとも1つとに基づいて前記航空機に関連付けられた、初期重量推定を生成するステップ(702)であって、前記基準OEWは前記第1の位置と異なる第2の位置で予め決定される、ステップと、
    前記初期重量推定と前記基準OEWの間の差に基づいて前記航空機の前記追加の可搬重量を決定するステップ(704)と、
    前記追加の可搬重量を示す出力(140)を生成するステップ(706)と、
    を含む動作を実施させる命令(130)を格納する、メモリ(106)と、
    を備え、
    前記初期重量推定(124)を生成するステップ(702)は前記緯度、前記高度、またはその両方に基づいて前記基準OEW(132)を修正するステップを含み、前記追加の可搬重量(126)を決定するステップ(704)は、前記基準OEW(132)とは別に予め決定された閾値重量(128)を超過することなく前記航空機(600)に格納されうる追加の燃料の量または前記閾値重量を超過することなく前記航空機に格納されうる追加のペイロードの重量を決定するステップを含む、装置(101)。
  9. 前記追加の可搬重量(126)は、前記航空機の追加の燃料格納能力(216)または前記航空機の追加のペイロード格納能力(214)に対応する、請求項8に記載の装置(101)。
  10. 前記メモリ(106)はさらに複数のOEW値を含むOEWデータ(133)を格納するように構成され、前記複数のOEW値は緯度により、高度により、またはその両方によりインデックス化され、前記初期重量推定(124)を生成するステップ(702)は、前記緯度、前記高度、またはその両方に基づいて前記複数のOEW値のOEW値を前記メモリから取り出すステップを含む、請求項8または9に記載の装置(101)。
  11. 入力データ(144)を入力デバイス(108)から受信するように構成された入出力インタフェース(122)をさらに含み、前記入力データは前記緯度、前記高度、またはその両方を示す、請求項8乃至10の何れか1項に記載の装置(101)。
JP2017217157A 2017-01-25 2017-11-10 可搬重量を決定するためのシステムおよび方法 Active JP7084125B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/415,585 US10337906B2 (en) 2017-01-25 2017-01-25 System and method for determining a load capability
US15/415,585 2017-01-25

Publications (2)

Publication Number Publication Date
JP2018188122A JP2018188122A (ja) 2018-11-29
JP7084125B2 true JP7084125B2 (ja) 2022-06-14

Family

ID=60331414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017217157A Active JP7084125B2 (ja) 2017-01-25 2017-11-10 可搬重量を決定するためのシステムおよび方法

Country Status (4)

Country Link
US (1) US10337906B2 (ja)
EP (1) EP3355146B1 (ja)
JP (1) JP7084125B2 (ja)
CN (1) CN108341065B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704375B2 (ja) * 2017-07-13 2020-06-03 日立建機株式会社 積載量補正システム
CN109581245A (zh) * 2018-11-30 2019-04-05 中国航空工业集团公司沈阳飞机设计研究所 一种飞机电气负载统计及电源容量分析方法及系统
US11410058B2 (en) * 2019-03-29 2022-08-09 QuantumiD Technologies Inc. Artificial intelligence system for estimating excess non-sapient payload capacity on mixed-payload aeronautic excursions
US10661902B1 (en) * 2019-03-29 2020-05-26 QuantumID Technologies Inc Artificial intelligence system for estimating excess non-sapient payload capacity on mixed-payload aeronautic excursions
US11912431B2 (en) 2021-09-20 2024-02-27 Rockwell Collins, Inc. Time based overlay for positional map displays
US20230214951A1 (en) * 2021-12-30 2023-07-06 United Parcel Service Of America, Inc. Optimizing placement of an asset array in a loading area
US11861135B1 (en) * 2022-10-24 2024-01-02 The Boeing Company Aircraft spatial configuration difference display system
CN116029587A (zh) * 2022-12-13 2023-04-28 中国人民解放军63921部队 一种火箭运载能力的量化表征方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100161156A1 (en) 2008-12-23 2010-06-24 Thales Device for assisting in the choice of a diversion airport
US20140172619A1 (en) 2012-12-14 2014-06-19 Bell Helicopter Textron Inc. Aircraft Sales Tool
US20150226576A1 (en) 2007-09-21 2015-08-13 The Boeing Company Predicting aircraft trajectory
JP2015227158A (ja) 2014-05-30 2015-12-17 ザ・ボーイング・カンパニーTheBoeing Company 視覚的燃料予測システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490802A (en) * 1981-12-21 1984-12-25 Sperry Corporation Takeoff weight computer apparatus for aircraft
CA2457992A1 (en) * 2003-02-21 2004-08-21 Robert Alan Hess Method of inferring rotorcraft gross weight
US8068975B2 (en) * 2006-05-01 2011-11-29 American Airlines, Inc. Determining an estimate of the weight and balance of an aircraft automatically in advance and up to the point of take-off
US8905353B2 (en) * 2008-06-02 2014-12-09 The Boeing Company Bi-convex airship
GB201005202D0 (en) * 2010-03-29 2010-05-12 Fuel Matrix Ltd Fueling arrangement and method
EP2461142B1 (en) * 2010-12-01 2015-08-19 AGUSTAWESTLAND S.p.A. Aircraft takeoff weight calculating method and system
CA2845094A1 (en) 2011-08-16 2013-04-18 Unmanned Innovation Inc. Modular flight management system incorporating an autopilot
WO2014203118A1 (en) * 2013-06-10 2014-12-24 Aka Advanced Technologies Ltd. Weighing systems having location calibration capability
US9096330B2 (en) 2013-08-02 2015-08-04 Honeywell International Inc. System and method for computing MACH number and true airspeed
US9488544B2 (en) * 2013-12-05 2016-11-08 The Boeing Company Load estimation system for aerodynamic structures
US10665114B2 (en) * 2014-03-28 2020-05-26 The Boeing Company Aircraft fuel optimization analytics
US9958573B2 (en) 2014-08-11 2018-05-01 The Boeing Company 4D volumetric weather data processing and display
WO2016086278A1 (en) * 2014-12-04 2016-06-09 The University Of Sydney Determining a preferred flight plan
US10089634B2 (en) * 2015-10-27 2018-10-02 C Kirk Nance Method to recover non-recognized errors in aircraft weight determinations to increase weight and center of gravity limitations for regulated aircraft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150226576A1 (en) 2007-09-21 2015-08-13 The Boeing Company Predicting aircraft trajectory
US20100161156A1 (en) 2008-12-23 2010-06-24 Thales Device for assisting in the choice of a diversion airport
US20140172619A1 (en) 2012-12-14 2014-06-19 Bell Helicopter Textron Inc. Aircraft Sales Tool
JP2015227158A (ja) 2014-05-30 2015-12-17 ザ・ボーイング・カンパニーTheBoeing Company 視覚的燃料予測システム

Also Published As

Publication number Publication date
EP3355146A1 (en) 2018-08-01
US20180209837A1 (en) 2018-07-26
JP2018188122A (ja) 2018-11-29
EP3355146B1 (en) 2019-02-27
CN108341065B (zh) 2023-02-28
US10337906B2 (en) 2019-07-02
CN108341065A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
JP7084125B2 (ja) 可搬重量を決定するためのシステムおよび方法
US11935420B1 (en) Flight assistant
US10551205B2 (en) Activity based resource management system
US9256225B2 (en) Unmanned aerial vehicle authorization and geofence envelope determination
US9310222B1 (en) Flight assistant with automatic configuration and landing site selection method and apparatus
EP1943571B1 (en) System and method for performing 4-dimensional navigation
US20100332122A1 (en) Advance automatic flight planning using receiver autonomous integrity monitoring (raim) outage prediction
US20200020237A1 (en) System for calculating a mission of an aircraft by combination of algorithms and related method
Hajiyev et al. State estimation and control for low-cost unmanned aerial vehicles
US10302450B1 (en) Methods and systems for high accuracy and integrity estimation of flight critical aircraft states
US11430343B2 (en) Aircraft mission computing system comprising a mission deck
US20160163201A1 (en) Method of computing aircraft trajectory subject to lateral and vertical constraints
CN104331593B (zh) 用于地面预测航空器沿路径的定位的特征的设备和方法
Young et al. Architecture and information requirements to assess and predict flight safety risks during highly autonomous urban flight operations
US11604480B2 (en) Methods and systems for automatic descent mode
US9174745B1 (en) Performance-based method and system for checking the fuel quantity of a vehicle
EP3936376A1 (en) System and method for a mission-based battery status display for electric vehicles
US11308812B1 (en) Systems and methods for actionable avionics event-based communications
Middleton et al. Small lunar lander/hopper performance analysis
Rushdi et al. Development of a small-scale autonomous UAV for research and development
US11292606B1 (en) Systems and methods of airspeed control with dynamic asymmetric airspeed reference
US11694559B2 (en) Methods and systems for modifying a flight plan based on focus boom detection
EP4039591A1 (en) Methods and systems for automatic route planning
US20230123233A1 (en) Aircraft mission calculation system indicating a risk of loss of optimality of the trajectory actually followed by the aircraft and related method
US20240133693A1 (en) Route planning for unmanned aerial vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220602

R150 Certificate of patent or registration of utility model

Ref document number: 7084125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150