JP7081278B2 - 光トランシーバ - Google Patents

光トランシーバ Download PDF

Info

Publication number
JP7081278B2
JP7081278B2 JP2018073173A JP2018073173A JP7081278B2 JP 7081278 B2 JP7081278 B2 JP 7081278B2 JP 2018073173 A JP2018073173 A JP 2018073173A JP 2018073173 A JP2018073173 A JP 2018073173A JP 7081278 B2 JP7081278 B2 JP 7081278B2
Authority
JP
Japan
Prior art keywords
optical
holding member
internal
internal fiber
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018073173A
Other languages
English (en)
Other versions
JP2019184736A (ja
Inventor
邦幸 石井
宏実 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018073173A priority Critical patent/JP7081278B2/ja
Priority to CN201910272949.XA priority patent/CN110346881A/zh
Priority to US16/376,716 priority patent/US10924187B2/en
Publication of JP2019184736A publication Critical patent/JP2019184736A/ja
Application granted granted Critical
Publication of JP7081278B2 publication Critical patent/JP7081278B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4237Welding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • H04B10/25759Details of the reception of RF signal or the optical conversion before the optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

本発明は、光トランシーバに関するものである。
特許文献1には、平板状のプリント基板と、ROSAと、TOSAと、プリント基板、ROSA及びTOSAを収容する筐体とを備えた光トランシーバが記載されている。この光トランシーバは、互いに並列に配置された4個のTOSAと、1個のROSAを備える。4個のTOSA及び1個のROSAの後側にプリント基板が設けられる。TOSA及びROSAのそれぞれと、プリント基板との接続は、FPCをはんだ付けすることによって行われる。
特開2016-57567号公報
光トランシーバにおいては、特に近年、内部の集積度の向上によって高機能化が進んでいる。これに伴い、光トランシーバでは、内部に配置される部品の数が増えており、当該部品の配置、及び当該部品間を接続する配線が複雑化している。その結果、同一の機能を有する複数の部品が最適に配置されないということが生じうる。具体的には、複数のTOSA及び複数のROSAを含む光トランシーバの場合、光トランシーバの横方向(長手方向と垂直な方向)に複数のTOSA及び複数のROSAが互いに並列に配置されるということが起こりうる。
ところで、TOSA及びROSAを含む複数の光サブアセンブリと、各光サブアセンブリに内部ファイバを介して光学的に接続される光合分波器と、を含む光トランシーバが知られている。この光トランシーバにおいて、前述したように複数の光サブアセンブリが横方向に互いに並列に配置された場合、一方の光サブアセンブリから光合分波器まで延びる内部ファイバの長さが、他方の光サブアセンブリから光合分波器まで延びる内部ファイバの長さと異なることがある。よって、複数種類の長さを有する内部ファイバを個別に用意しなければならない。
これに対し、複数の光サブアセンブリが光トランシーバの横方向に並列に配置された場合において、一方の光サブアセンブリから光合分波器まで延びる内部ファイバの長さを、他方の光サブアセンブリから光合分波器まで延びる内部ファイバの長さと同一とした場合、いずれかの内部ファイバを他の内部ファイバよりも大きく引き回さなければならないということが起こりうる。この場合、内部ファイバを大きく引き回すための領域を光トランシーバの内部に確保しなければならないため、光トランシーバの小型化の妨げとなりうる。
本発明は、小型化を実現させることができる光トランシーバを提供することを目的とする。
前述した問題を解決するため、本発明の一側面に係る光トランシーバは、それぞれ光信号及び電気信号の間の光電変換を行う、複数の光サブアセンブリと、複数の光サブアセンブリのそれぞれに電気的に接続される回路を搭載する回路基板と、複数の内部ファイバを有し、複数の光サブアセンブリのそれぞれに複数の内部ファイバのそれぞれを介して光学的に接続されると共に、光信号を合波又は分波する光合分波器と、光合分波器に光学的に接続され、外部の光コネクタを受容するレセプタクルと、複数の光サブアセンブリを保持し、回路基板と係合する保持部材と、を備え、保持部材は、複数の内部ファイバの少なくともいずれか一つをガイドする第1ガイドと、複数の内部ファイバの少なくともいずれか一つとは別の複数の内部ファイバの少なくともいずれか一つを第1ガイドに対して迂回させる第2ガイドを有する。
本発明によれば、小型化を実現させることができる。
図1は、本発明の一実施形態に係る光トランシーバを示す斜視図である。 図2は、図1の光トランシーバの内部構造を示す断面斜視図である。 図3は、図1の光トランシーバの分解斜視図である。 図4は、OSA、FPC及び回路基板を示す側面図である。 図5は、図1の光トランシーバの第1保持部材を示す斜視図である。 図6は、図5の第1保持部材を図5の反対側から見た斜視図である。 図7は、図1の光トランシーバの第2保持部材を示す斜視図である。 図8は、図7の第2保持部材を図7の反対側から見た斜視図である。 図9は、図1の光トランシーバの各部品を示す平面図である。 図10は、OSA、回路基板及び第1保持部材を示す斜視図である。 図11(a)は、光合波器(光分波器)を示す斜視図である。図11(b)は、光分波器(光合波器)の内部構造を模式的に示す図である。 図12は、光合波器(光分波器)、内部ファイバ及び簡易コネクタを示す斜視図である。 図13は、ハウジングの内部におけるOSA、回路基板、及び回路基板に搭載された回路を示す断面図である。 図14は、OSA、FPC及び回路基板を示す斜視図である。 図15は、図14の回路基板に第1保持部材を装着する状態を示す斜視図である。 図16は、図14の回路基板に第1保持部材を装着する状態を図15の反対側から示す斜視図である。 図17は、図16の第1保持部材に第2保持部材を装着する状態を示す斜視図である。 図18は、第1保持部材に合波器(分波器)を仮固定して組み立てた中間アセンブリを示す斜視図である。 図19は、第1保持部材に合波器(分波器)を仮固定して組み立てた中間アセンブリを図18の反対側から示す斜視図である。 図20は、図19の中間アセンブリにおける内部ファイバの配置の一部を示す斜視図である。
[本願発明の実施形態の説明]
最初に、本願発明の実施形態の内容を列記して説明する。本願発明の一実施形態に係る光トランシーバは、それぞれ光信号及び電気信号の間の光電変換を行う、複数の光サブアセンブリと、複数の光サブアセンブリのそれぞれに電気的に接続される回路を搭載する回路基板と、複数の内部ファイバを有し、複数の光サブアセンブリのそれぞれに複数の内部ファイバのそれぞれを介して光学的に接続されると共に、光信号を合波又は分波する光合分波器と、光合分波器に光学的に接続され、外部の光コネクタを受容するレセプタクルと、複数の光サブアセンブリを保持し、回路基板と係合する保持部材と、を備え、保持部材は、複数の内部ファイバの少なくともいずれか一つをガイドする第1ガイドと、複数の内部ファイバの少なくともいずれか一つとは別の複数の内部ファイバの少なくともいずれか一つを第1ガイドに対して迂回させる第2ガイドを有する。
この光トランシーバでは、レセプタクルに外部の光コネクタが受容されると、外部の光コネクタの光は、光合分波器と、複数の光サブアセンブリのそれぞれとに光結合する。光合分波器は、複数の光サブアセンブリのそれぞれに複数の内部ファイバのそれぞれを介して光学的に接続される。また、この光トランシーバは、複数の光サブアセンブリを回路基板に保持する保持部材を備え、保持部材は複数の内部ファイバの少なくともいずれかを迂回させる第2ガイドを有する。よって、複数の光サブアセンブリを保持する保持部材を、内部ファイバの迂回路である第2ガイドを規定する部材として有効利用することができる。また、第2ガイドで複数の内部ファイバのいずれかを迂回させることにより、複数の内部ファイバが通る経路の長さを互いに同一にすることができる。従って、第2ガイドを設けることによって複数の内部ファイバの長さを互いに同一にすることができると共に、内部ファイバの迂回経路を定めることができるため、一部の内部ファイバを大きく引き回す必要性を無くすことができる。よって、内部ファイバを引き回すための領域を光トランシーバの内部に確保する必要がないため、光トランシーバの小型化を実現させることができる。
また、第1ガイド及び第2ガイドは、複数の内部ファイバを収容可能な溝であってもよい。この場合、第2ガイドである溝に内部ファイバを挿入することによって内部ファイバを容易に迂回させることができる。従って、光トランシーバの組み立てを容易に行うことができる。
また、第1ガイド及び第2ガイドは、それぞれの溝に収容された複数の内部ファイバを覆う爪部をそれぞれ有してもよい。この場合、溝に収容された内部ファイバが爪部に覆われることにより、内部ファイバが保持部材から飛び出す可能性を低減させることができる。従って、内部ファイバをより確実に保持部材に保持させることができるので、光トランシーバの組み立てを一層容易に行うことができる。
また、第2ガイドは、光トランシーバの幅方向の中心線に向かって湾曲する形状とされていてもよい。この場合、内部ファイバを光トランシーバの幅方向の中心線に向かって曲線状に迂回させることができる。従って、内部ファイバを光トランシーバの幅方向の中心線に向かって迂回させることにより、光トランシーバの外形が大きくなることを抑制することができる。従って、光トランシーバの小型化を一層確実に実現させることができる。
また、複数の光サブアセンブリは、第1光サブアセンブリと、第1光サブアセンブリが配置された位置よりも光トランシーバの横方向に関して内側に配置された第2光サブアセンブリを含み、複数の内部ファイバは、第1内部ファイバ及び第2内部ファイバを含み、光合分波器は、第1光サブアセンブリに第1内部ファイバを介して光学的に接続されると共に、第2光サブアセンブリに第2内部ファイバを介して光学的に接続されており、第1ガイドは、第1内部ファイバをガイドし、第2ガイドは、第2内部ファイバをガイドしてもよい。この場合、第1内部ファイバ及び第2内部ファイバの2本のうち1本の第2内部ファイバの第2ガイドのみを用意すればよいので、第2ガイドを有する保持部材の構成を簡易にすることができる。
[本願発明の実施形態の詳細]
本願発明の実施形態に係る光トランシーバの具体例を、以下で図面を参照しながら説明する。なお、本発明は、以降の例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の範囲内における全ての変更が含まれることが意図される。以下の説明では、図面の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を適宜省略する。また、図面は、理解を容易にするため、一部を簡略化又は誇張している場合があり、寸法比率等は図面に記載のものに限定されない。
図1は、実施形態に係る光トランシーバ1を示す斜視図である。光トランシーバ1は、所謂、CFP8モジュールである。CFP8モジュールは、当該業界においてその標準的な仕様が決められている。光トランシーバ1において、信号速度が25GbpsのNRZ信号が4値のPAM(Pulse Amplitude Modulation)信号、すなわちPAM4信号に多重化される(多重度2)。
例えば、後述するTOSAの内部にて、一つの半導体レーザをPAM4信号で駆動することによって、1波長当たり50Gbpsにまで伝送速度が高速化される。一つのTOSAは、4つの半導体レーザを搭載し、互いに波長が異なる4つの光信号を出力する。以下、光トランシーバ1に入出力される複数の電気信号と、及びそれら複数の電気信号に対応する一つの波長の光信号との間の信号の経路をレーンという。
すなわち、1つのTOSAは、4つのレーンを扱うことができ、200Gbps(50Gbps×4波長)の信号伝送を行うことができる。また、1つのROSAは、光信号を電気信号に変換する4つのレーンを備え、TOSAと同様に200Gbpsの伝送を行うことができる。従って、CFP8モジュールは、伝送速度が200GbpsのOSA(TOSA及びROSAの総称)を2つずつ搭載することにより、送信側と受信側のそれぞれにおいて、合計で8レーンを扱い、400Gbpsの伝送容量を達成する。
光トランシーバ1はハウジング2を備える。ハウジング2は、上ハウジング7及び下ハウジング8を含む。ハウジング2の外寸は、業界規格であるMSA(Multi-source Agreement)に準拠している。例えば、ハウジング2の長さは106mm、ハウジング2の幅は40mm、ハウジング2の高さは9.5mmである。ハウジング2には、外部の光コネクタを受容するレセプタクル4が設けられる。外部の光コネクタは、例えばLCコネクタである。
以下では、図面において「前後」、「上下」及び「左右」の方向を用いるが、これらの語は図示する状態に基づく便宜的なものである。以下の説明において、上は下ハウジング8に対して上ハウジング7が設けられる方向である。前はハウジング2に対してレセプタクル4が設けられる方向である。左右は、上下及び前後のそれぞれと垂直なハウジング2の幅方向である。
レセプタクル4は、ハウジング2の左右方向(幅)の中央に形成されている。ハウジング2の左右両側からはプルタブ5(アーム部)が前方に延び出している。前方に延び出した左右のプルタブ5(アーム部)は、レセプタクル4の前方で連結して一体となっている。光トランシーバ1は、ハウジング2の左右両側に、スライダ6を備える。スライダ6は、プルタブ5の前後方向の動きに連動してスライドする。スライダ6は、後端に、突起6aを有する。突起6aは、ホストシステムのケージに形成されたタブを押し広げる。
スライダ6が前側へスライドすると、突起6aが当該タブを押し広げることにより、当該タブとホストシステムのケージとの係合が解除される。従って、プルタブ5を前に引くことで光トランシーバ1をケージから外すことができる。また、前述したように、ハウジング2の高さは、10mm程度であり、スライダ6の幅(図1では上下方向の長さ)を僅かに上回る程度とされている。これにより、ホストシステムへの光トランシーバ1の装着密度を高めることが可能である。
図2は、上ハウジング7の一部を切り欠いた光トランシーバ1の内部構造を示す断面斜視図である。図3は、光トランシーバ1の分解斜視図である。上ハウジング7及び下ハウジング8は、前述のレセプタクル4、レセプタクル4の左右両側に位置する光合波器(Optical-Multiple xer:O-Mux)9及び光分波器(Optical-De-Multiplexer:O-DeMux)10、TOSA11、ROSA12、回路基板(プリント基板)13、並びにFPC14を収容する。本明細書では、光合波器9及び光分波器10をまとめて光合分波器と称することがある。
上述したように、光トランシーバ1は、送信部にて8レーンの互いに異なる波長の光信号を扱う。また、光トランシーバ1は、受信部にて8レーンの互いに異なる波長の光信号を扱う。光分波器10は、8レーン分の光信号が多重化された波長多重光信号を、長波長側の4レーン分が多重化されたサブ多重光信号と、短波長側の4レーン分が多重化されたサブ多重光信号に分離する。受信部にて、2つのサブ多重光信号は、ROSA12と光学的に接続される。光合波器9は、2つのサブ多重信号(各4レーン分)を1つの波長多重光信号(8レーン分)に多重化する。送信部にて、2つのサブ多重光信号は、TOSA11と光学的に接続される。以下の説明では、TOSA11及びROSA12を総称してOSA(光サブアセンブリ)50と称することがある。
レセプタクル4は、内部ファイバF及び簡易コネクタCを介してOSA50に光学的に接続される。図3では、OSA50から簡易コネクタCが分離された状態を示している。光合波器9には、レセプタクル4から伸びる1本の内部ファイバF、及びTOSA11に向かう2本の内部ファイバFが光学的に接続される。光分波器10には、ROSA12から延びる2本の内部ファイバF、及びレセプタクル4に向かう1本の内部ファイバFが光学的に接続される。ここで、光学的に接続されるとは、前述の波長多重光信号及びサブ多重化光信号が適切に伝送されるように、光導波路又は光学結合系等が構成されることを意味する。
光合波器9及び光分波器10の後側には、2個のTOSA11、及び2個のROSA12が配置される。これらのOSA50は、光信号及び電気信号間の光電変換を行う。各OSA50には、光合波器9又は光分波器10から延びる2本の内部ファイバFが簡易コネクタCを介して光学的に接続される。各内部ファイバFは、各OSA50の光接続ユニットに光学的に接続される。光接続ユニット内には、光学結合系を構成するレンズ及びアイソレータ等の光学部品が内蔵されている。
光合波器9及び光分波器10は、例えば、互いに同一の形状及び同一の外形寸法を有する。光合波器9及び光分波器10は、それぞれの底部9b,10bに、後方に突出する突出部9a,10aを有していてもよい。但し、これらの突出部9a,10aを省略することも可能である。光合波器9及び光分波器10のそれぞれからは、3本の内部ファイバFがピグテール方式で引き出されている。すなわち、内部ファイバFは、光合波器9又は光分波器10とレセプタクル4のそれぞれとの内部の光学系に直接光学的に接続されている。ピグテール方式で引き出されている内部ファイバFは,光合波器9又は光分波器10に一体化して接続されており、容易に外すことはできない。
内部ファイバFは第1内部ファイバF1と第2内部ファイバF2を含んでいる。光合波器9及び光分波器10のそれぞれは、第1内部ファイバF1を介してレセプタクル4に光学的に接続される。また、光合波器9及び光分波器10のそれぞれは、第2内部ファイバF2を介して簡易コネクタC(OSA50)に接続される。なお、以下の説明では、第1内部ファイバF1と第2内部ファイバF2とを区別して説明する場合には、第1内部ファイバF1、第2内部ファイバF2と称し、第1内部ファイバF1及び第2内部ファイバF2を区別して説明する必要がない場合にはこれらをまとめて内部ファイバFと称する。
各OSA50は、後述する第1保持部材30及び第2保持部材40を介して回路基板(プリント基板)13に装着される。これにより、各OSA50に接続されたFPC14と回路基板13との電気的接続を応力から保護(補強)することができる。従って、接続の信頼性を高めることができる。回路基板13は、OSA50にFPC14を介して電気的に接続される回路を搭載する。回路基板13は、OSA50の後側に配置される。
回路基板13は、上側に位置する第1回路基板15、及び下側に位置する第2回路基板16を含む。第1回路基板15上には、2個のTOSA11に対面する2個のLDドライバ17、DSP(Digital Signal Processor)18及びプリアンプIC等を搭載する。なお、プリアンプICは、ROSA12に内蔵されていてもよい。DSP18は、第1回路基板15の中央に搭載されている。DSP18は、信号処理ICであり、送信側の8つの電気信号、及び受信側の8つの電気信号に対して信号処理を実行する。DSP18は、例えば25GbpsのNRZ信号をPAM4信号に変換する。
第2回路基板16は、その上側に位置する第1回路基板15とスタックコネクタによって電気的に接続される。スタックコネクタを用いることにより、FPCと比較して、省スペースで電気的接続を実現できる。更に比較的高速の電気信号の伝送にも対応可能である。第1回路基板15は、例えばその両面に回路部品を搭載する(両面実装)。第2回路基板16は、例えばその上面のみに回路部品を搭載する(片面実装)。
また、光トランシーバ1は、回路基板13の後方に回路基板13とは別のプラグ基板23を有する。プラグ基板23は、ホストシステムのケージ内に設けられる電気コネクタと係合する。当該電気コネクタとプラグ基板23には100本以上の電極が密に配置されている。係合によって電気コネクタの電極とプラグ基板23の電極とが互いに電気的に接続される。対応する電極同士を正しく接続するために、電気コネクタとプラグ基板23の間の相対位置は正確に決められる。
よって、当該電気コネクタとプラグ基板23の相対位置の精度を確保するためには当該電気コネクタとプラグ基板23の係合力を高める必要があり、当該電気コネクタに対する光トランシーバ1の挿抜力は大きい。光トランシーバ1の挿抜時にプラグ基板23に及ぼされる応力を回路基板13に波及させないため、及び、プラグ基板23を当該電気コネクタに強固に係合させるために、プラグ基板23は回路基板13とは別々の基板となるよう分離されている。
図4に示されるように、各OSA50は、直方体状のパッケージ11a,12aと、その後側のみから引き出された端子11b,12bを有する。パッケージ11a,12aは、光トランシーバ1の長手方向であって且つレセプタクル4の反対側に端子11b,12bを備える。パッケージ11a,12aの各底面11c,12cは、上ハウジング7の内面に当接する。すなわち、各OSA50は、上下が逆にされた状態で上ハウジング7の内部に搭載される。
図5及び図6は第1保持部材30を示す斜視図である。第1保持部材30は、矩形の平板状の外観を有する。第1保持部材30は、突出部31、溝(ガイド)32,33、孔部34,35、係合部36及び突起37を備える。突出部31は、第1保持部材30の左右両端側に設けられる。突出部31は、光合波器9及び光分波器10のそれぞれを仮固定する部位である。ここで、仮固定とは、例えば仮固定された状態では、第1保持部材を斜めに傾けるなどしても光合分波器はずれることはないが、器具を用いなくても人手で外せる程度の強度で固定されていることを意味する。突出部31は、前方に突出する突出片31aと、突出片31aの長手方向の先端部で折り曲げられる折り曲げ部31bと、突出片31aの長手方向の基端部で突出片31aの幅方向に一対に立設する壁部31cとを有する。2つの壁部31cのうちの1つの上端には突出片31aの幅方向内側に突出する凸部31dが設けられる。
光トランシーバ1を組み立てるとき、突出部31の上に光合波器9及び光分波器10のそれぞれを固定することは、効率的な組み立てを可能とする。具体的には、突出部31の突出片31aに光合波器9又は光分波器10が載せられると共に光合波器9又は光分波器10が折り曲げ部31b及び一対の壁部31cの間に挟み込まれて凸部31dに押さえられることにより、光合波器9及び光分波器10は突出部31に仮固定される。光合波器9及び光分波器10の構成については後に詳述する。また、第1保持部材30には光合波器9、光分波器10及びOSA50が一体に仮保持されて、後述する中間アセンブリM(図18等参照)が組み立てられる。この中間アセンブリMが組み立てられることにより、光トランシーバ1の組み立ての効率が向上する。
溝32,33は第1保持部材30の内面38に設けられる。溝32,33は、内部ファイバFを配置するガイドである。溝32,33は、内部ファイバFが所定の経路を通るようにガイドする。溝32は第1保持部材30の左右内側、溝33は第1保持部材30の左右外側、にそれぞれ設けられる。溝32,33には、光合波器9及び光分波器10のそれぞれから引き出されて後部で展開し(曲げながら折り返され)、その後簡易コネクタCにまで延びる内部ファイバFが挿入される。
孔部34は第1保持部材30を第2保持部材40に係合させるための孔である。孔部35は、各OSA50の底面11c,12cを第1保持部材30から露出させる。係合部36は、第1保持部材30の左右両側壁の後部それぞれに設けられる。突起37は、第1保持部材30を回路基板13に係合させる部位であり、第1保持部材30の左右両端且つ後端近傍に設けられる。
OSA50の内部に搭載されると共に放熱を必要とする部品としては、例えばTEC(Thermo Electric Cooler)がある。TECの底面は、発熱する半導体素子をペルチェ効果で冷却するときに、吸収した熱量を放出するための放熱を必要とする。よって、TECの底面が位置するOSA50の底面11c,12cを、孔部35を貫通して上ハウジング7の内面に面接触させることにより、OSA50の放熱性を高めることができる。
なお、OSA50の底面11cの面積は各孔部35の面積より大きくてもよい。この場合、OSA50が孔部35から抜け落ちることが抑制される。しかしながら、この状態では、底面11c,12cと上ハウジング7の内面との間に隙間が形成され、放熱性が低下しうる。よって、当該隙間をゲル状の放熱部材で埋めて当該放熱部材の厚さを第1保持部材30の孔部35の厚さ(深さ)よりも厚くすることにより、OSA50は、当該放熱部材を介して上ハウジング7の内面に面接触する。従って、OSA50から上ハウジング7への熱伝導性の良い放熱経路が構成される。
図7及び図8は、第2保持部材40を示す斜視図である。第2保持部材40は概ね矩形の平板状の外観を呈する。第2保持部材40は、内部ファイバFが挿入される溝(ガイド)42,43、突出部45、爪部46及び突起49を備える。突出部45は、第1保持部材30の係合部36に係合する。突起49は第1保持部材30の孔部34に係合する。よって、第2保持部材40は、突起49及び一対の突出部45の3箇所で第1保持部材30と係合する。
突出部45は孔部45aを有し、係合部36には突起36aが形成されている。孔部45aに突起36aが嵌合することによって、第1保持部材30及び第2保持部材40は後側の2箇所で強固に係合する。突起49は、第2保持部材40の面外方向(第2保持部材40の外観を平板状とみたときの平板と垂直な方向)に突出する第1突出部49aと、第1突出部49aの端部において前方に突出する第2突出部49bとを有する。第2突出部49bは、突起49が孔部34から抜けるのを防ぐ。従って、突起49と孔部34との係合によって、第1保持部材30及び第2保持部材40は前側1箇所で強固に係合する。
第2保持部材40は、第2保持部材40と第1保持部材30の間にOSA50が挟み込まれた状態で第1保持部材30に組み立てられる。第2保持部材40が第1保持部材30に組み立てられたときに、第1保持部材30及び第2保持部材40の全高は、OSA50の全高よりも僅かに低くなる。これにより、OSA50の底面11c,12cが第1保持部材30の孔部35から確実に上ハウジング7側に突き出ることになる。従って、第1保持部材30及び第2保持部材40の全高がOSA50の全高よりも僅かに低いと、上ハウジング7の内面にOSA50は確実に当接する。
溝42,43は、内部ファイバFをガイドするガイドである。溝(ガイド)42,43は、第2保持部材40の底面47に形成されている。溝42(第1ガイド)は第2保持部材40の左右外側において一対に設けられており、溝43は第2保持部材40の左右内側において一対に設けられている。溝43は、レセプタクル4に対向し、レセプタクル4から延びる第1内部ファイバF1を収容する。
溝42は、光合波器9及び光分波器10のそれぞれに対向する。溝42は、光合波器9及び光分波器10のそれぞれに向かう1本の第1内部ファイバF1と2本の第2内部ファイバF2とをガイドする。各溝42は、第2保持部材40の前側から後方に向けて直進すると共に、途中で分岐する迂回路42A(第2ガイド)を有する。迂回路42Aは、直線状に延びる溝42から左右内側(光トランシーバ1の幅方向の内側)に光トランシーバ1の横方向の中心線に向かって分岐すると共に、湾曲しながら後方に延びて溝42の直線部分に合流する。
迂回路42Aには複数の内部ファイバFのうちの一部が通され、複数の内部ファイバFの残部は迂回路42Aに通されず溝42の直線部分に沿って配置される。従って、内部ファイバFの経路は、溝42の直線部分(第1ガイド)を通るか、あるいは、迂回路42A(第2ガイド)を通るか、のいずれか一方を選択することができる。迂回路42Aの曲率半径は、内部ファイバFの最小曲げ径以上の値とされている。迂回路42Aは、例えば、第2保持部材40の左右内側に回転中心を有する円弧状の第1湾曲部42aと、第2保持部材40の左右外側に回転中心を有する円弧状の第2湾曲部42bとを含んでいる。
このように、第1湾曲部42a及び第2湾曲部42bを有することにより、迂回路42Aに内部ファイバFを緩やかに曲げた状態で配置することが可能となる。本実施形態では、光合波器9及び光分波器10のいずれか一方に係る2本の第2内部ファイバF2のうちの1本が迂回路42Aに通される。一方、他の1本の第2内部ファイバF2及び第1内部ファイバF1は、迂回路42Aに通されず溝42の直線部分において直進する。
溝43は、レセプタクル4から後方に直線状に延び出す第1部分43aと、第1部分43aの後端から第2保持部材40の後方且つ左右両端側に斜めに延びる第2部分43bとを含んでいる。2本の溝43の第2部分43bのそれぞれは、第2保持部材40の中央において交差する交差部43cを形成し、交差部43cから左右両端側に斜めに延び出している。交差部43cから後方に斜めに延び出す第2部分43bは途中で溝42に合流する。
溝42及び溝43のそれぞれには爪部46が設けられている。爪部46は、溝42,43に収容された内部ファイバFが溝42,43の外に飛び出ることを抑制する。各爪部46は、各溝42,43において溝42,43を塞ぐように溝42,43の内壁から溝42,43の内側に突出している。爪部46は、例えば、迂回路42Aの前側、曲線状に延びる迂回路42Aの頂部、溝42の直線部分、及び溝43の第2部分43bの後側、のそれぞれに設けられる。なお、爪部46の溝42,43の内側に突出する長さは、爪部46の先端と、爪部46の突出する内壁に対向する内壁(あるいは爪部46の先端に対向する溝42、43の内壁)との距離が、内部ファイバFの外径よりも大きくなるように設定される。これにより、爪部46に妨げられずに内部ファイバFを溝42、43に収容することができ、収容された内部ファイバが溝42、43の外に飛び出ることを効果的に抑制することができる。
図9は、内部ファイバFの引き回し(経路)を説明するための図である。図9では、第1保持部材30及び第2保持部材40の図示を省略している。レセプタクル4から引き出された第1内部ファイバF1は、後方に直進し、OSA50の上(第2保持部材40の外面)で左右反対側に湾曲し、曲率を維持しつつ回路基板13上で回路基板13の外縁内側に沿って大きく逆サイドに湾曲し、左右外側のOSA50の上を通過して光合波器9及び光分波器10のそれぞれに光学的に接続する。
光合波器9及び光分波器10のそれぞれから引き出された2本の第2内部ファイバF2は溝42にガイドされて後方に直進する。1本の第2内部ファイバF2は迂回路42Aを通って光トランシーバ1の幅方向の内側に中心線に向かって湾曲し、他の1本の第2内部ファイバF2は迂回路42Aを通らずに後方に直進する。そして、2本の第2内部ファイバF2は、回路基板13の上において回路基板13の外縁内側に沿って大きく左右逆方向に湾曲し、第1保持部材30後端の係合部36の壁部に沿って前側に引き出され、第1保持部材30の溝33の最も外側に設けられた壁部の外側で屈曲して後側に向かい、それぞれ溝32,33にガイドされて簡易コネクタCに接続する。溝33の最も外側の壁部に沿って第2内部ファイバF2が屈曲することにより、第2内部ファイバF2の屈曲の曲率を抑えることが可能である。第2内部ファイバF2の曲率は、例えば20mmよりも小さい。
次に、OSA50と回路基板13とのFPC14による接続について説明する。図10は、OSA50及び回路基板13を組み立てた後に第1保持部材30を回路基板(プリント基板)13に組み付ける状態を示している。図4及び図10に示すように、FPC14は、端子11b,12bの表面(図4にて上向きの面)と回路基板13の表面を接続する第1FPC14aと、端子11b,12bの裏面(図4にて下向きの面)と回路基板13の裏面を接続する第2FPC14bを含む。TOSA11から端子11bが引き出される上下方向の位置は、ROSA12から端子12bが引き出される上下方向の位置と異なっている。よって、TOSA11に接続されるFPC14、及びROSA12に接続されるFPC14のいずれか一方は、回路基板13との上下方向の高低差により他方よりも大きな応力を付与されてフォーミングされる。
図10では、端子12bの表面と回路基板13の表面との高低差がより大きいので、ROSA12に接続されるFPC14に大きな応力が付与される。なお、このようになるのは、端子11bと端子12bの前後方向の位置がほぼ同じためである。すなわち、FPC14に必要な曲げ具合は、端子11b,12bの前後方向の位置(あるいは回路基板13との距離)と端子11b,12bの回路基板13との上下方向の高低差に依存する。この状態で光トランシーバ1の種々の組み立て作業を施すと、特にROSA12に接続されたFPC14に大きな力のモーメントが付与されることが想定される。そのため、光トランシーバ1では、組み立て時に、OSA50を第1保持部材30上に仮搭載することによって、FPC14に及ぼされる応力(TOSA11、ROSA12の重さによるモーメント)を緩和する。
図11(a)は、光合波器9の外観を示す斜視図である。図11(b)は、光分波器10の機能を説明するための図である。光分波器10の外観は光合波器9の外観と同様であるため、光分波器10の外観に関する説明を適宜省略する。光合波器9は、その底部9bを上にして光トランシーバ1の内部に搭載される。光合波器9の底部9bを第1保持部材30の突出部31に仮固定して、回路基板13、OSA50、第1保持部材30及び第2保持部材40が組み立てられる。
図11(b)に示されるように、光分波器10は波長選択フィルタ10cを有する。光トランシーバ1では、1274nm~1310nmの範囲において4~5nmの間隔で設定される8種類の波長の光信号が扱われる。波長選択フィルタ10cは、この8種類の波長の信号光が多重化された波長多重光信号を、長波長側の4レーン分(1310nm、1305nm、1300nm、1295nm)の光信号(サブ多重光信号)と、短波長側の4レーン分(1274nm、1278nm、1282nm、1286nm)の光信号(サブ多重光信号)とに分離する。
波長選択フィルタ10cは、例えば1286nmと1295nmの間(一例として1290nm)にカットオフ波長を有する。波長選択フィルタ10cは、カットオフ波長に対して誘電体多層膜を実質透明な母材上に形成することによって得られる。波長選択フィルタ10cの波長選択機能は、光の入射角、すなわち、波長選択フィルタ10cの法線と入射光(信号光)の光軸とが成す角度に依存する。光の入射角が0°のときに最良の波長選択機能が得られ、光の入射角が大きくなるほど波長選択機能が低下する。波長選択機能が低下するとは、例えばカットオフ波長付近での透過波長の限界値と反射波長の限界値との差が大きくなり、フィルタ特性が鈍ることを意味する。
光分波器10では、光分波器10のポート10dから、前述した各波長を有する8多重の波長多重光が入射し、ミラー10eで全反射してから波長選択フィルタ10cに入射する。8多重の波長多重光(波長多重光信号)のうち、長波長側4レーン分(又は短波長側4レーン分)の光(サブ多重光信号)は波長選択フィルタ10cを透過してポート10fから出力し、短波長側4レーン分(又は長波長側の4レーン分)の光(サブ多重光信号)は波長選択フィルタ10cで反射する。波長選択フィルタ10cで反射した4本の光信号(サブ多重光信号)は、ミラー10gで全反射してポート10hから出力する。また、ポート10d,10f,10hのそれぞれにはコリメートレンズ(不図示)が設けられており、光分波器10の内部ではコリメート光学系を採用している。すなわち、光信号は、コリメート光の状態で前述したように反射又は透過する。
以上、光分波器10について説明したが、光合波器9については、光分波器10の入出力が逆とされている。すなわち、ポート9hから、長波長側4レーン分(又は短波長側4レーン分)の光信号(サブ多重光信号)が入射し、ミラー9gで全反射してから波長選択フィルタ9cで再度反射する。一方、短波長側4レーン分(又は長波長側4レーン分)の光信号(サブ多重光信号)は、ポート9fから入射し、波長選択フィルタ9cを透過する。波長選択フィルタ9cで反射した4レーン分の信号光と波長選択フィルタ9cを透過した4レーン分の信号光は、ミラー9eで全反射した後にポート9dから波長多重光信号として出力する。以上より、光合波器9の内部に搭載される光学部品は、光分波器10の内部に搭載される光学部品と同様とすることができる。
図12は、光合波器9(光分波器10)、レセプタクル4、簡易コネクタC及び内部ファイバFを示す斜視図である。光合波器9と内部ファイバFの接続、及びレセプタクル4と内部ファイバFの接続は、所謂ピグテール接続(一体化された接続)である。すなわち、内部ファイバFは、光合波器9及びレセプタクル4のそれぞれの内部の光学系に直接光学的に接続されている。また、簡易コネクタCはOSA50に付属されており、OSA50と内部ファイバFとの接続は簡易コネクタCを介して行われる。簡易コネクタCは、その両側にフックC1を有し、フックC1を介してOSA50に接続される。
光合波器9(光分波器10)及びレセプタクル4は、所謂光学的受動部品であるため、部品個々の性能のばらつきは比較的小さい。これに対し、OSA50は、内部にLD又はPD等の半導体光素子(能動部品)を搭載しているので、部品個々の性能のばらつきは比較的大きい。よって、OSA50は、受動部品と比較して交換できることが好ましい。従って、OSA50を着脱が容易な簡易コネクタCを用いて接続することによって、特性不良が生じた場合に各OSA50を独立して交換することができる。
前述したOSA50、LDドライバ17及びDSP18等、回路基板13に搭載される回路部品(能動部品)は電力の供給を受けて動作する時に消費電力に応じてジュール熱を発生する。よって、図13に示されるように、OSA50、LDドライバ17及びDSP18等の放熱面は、ヒートシンクHが接触する上ハウジング7側に配置されている。これにより、上ハウジング7に対するOSA50、LDドライバ17及びDSP18等の熱伝導性の良い放熱経路を構成している。
また、回路基板(プリント基板)13は、水平面(前後左右に延びる平面)に対し若干の傾きを有する。しかしながら、上ハウジング7とLDドライバ17及びDSP18との間等に、ヒートシンクHとして弾性且つ伝熱性を有するシート又はゲルを塗布することによって、上記傾きによる回路基板13の公差を吸収する。これにより、上ハウジング7の内面との面接触を確保でき、熱伝導性の良い放熱経路を構成できる。
次に、光トランシーバ1の組み立てについて説明する。図14は、第1回路基板(第1プリント基板)15の裏面、並びに、OSA50の天井面を示している。まず、図14に示されるように、第1回路基板15とOSA50を互いに電気的に接続する(第1工程)。詳細には、両面に回路部品を搭載済みの第1回路基板15と、OSA50のそれぞれをFPC14によって電気的に接続する。このとき、各FPC14にフォーミングを行う。具体的には、ROSA12に接続するFPC14の可撓部を、TOSA11に接続するFPC14の可撓部よりも大きく曲げる。その後、OSA50の端子11b,12bと第1回路基板15のパッドのそれぞれにFPC14をソルダリングして電気的に接続する。
次に、図15及び図16に示されるように、第1保持部材30の後端の突起37を第1回路基板15に形成された開孔15aに挿入(嵌合)する。突起37は、その先端の径が開孔15aの径よりも大きく設定され、これにより突起37が開孔15aから抜けることが抑制される。そして、各OSA50を第1保持部材30の孔部35に挿入し、各OSA50の底面を孔部35から露出させる。
図17に示されるように、第2保持部材40を第1保持部材30に組み付ける。このとき、第2保持部材40の各孔部45aに第1保持部材30の各突起36aを嵌合させると共に、第2保持部材40の突起49が第1保持部材30の孔部34に嵌合することにより、第1保持部材30に第2保持部材40が強固に係合される。
そして、図9に示されるように、各OSA50のスリーブに、内部ファイバFが接続された簡易コネクタCを接続する。そして、各簡易コネクタCから前方に引き出した内部ファイバFを第1保持部材30の溝32,33に収容して内部ファイバFを後方に湾曲させて回路基板13の部分にまで内部ファイバFを後方に引き伸ばし、更に回路基板13において回路基板13の外縁内側に沿って左右逆方向且つ前方に大きく曲げる。
また、図18及び図19に示されるように、光合波器9及び光分波器10のそれぞれを突出部31に仮固定し、第1保持部材30によって光合波器9及び光分波器10を保持する。このとき、光合波器9及び光分波器10のそれぞれを、突出部31の突出片31aに載せると共に折り曲げ部31b及び壁部31cの間に挟み込むことによって、光合波器9及び光分波器10を突出部31上に仮固定する。そして、レセプタクル4に光学的に接続する内部ファイバFを溝43に収容し、光合波器9及び光分波器10のそれぞれに光学的に接続する内部ファイバFを溝42に収容する。
図20は溝42に挿入される内部ファイバFを示す斜視図であり、図20では光合波器9(光分波器10)、内部ファイバF、OSA50に接続される簡易コネクタC及びレセプタクル4の一部のみを図示すると共に、OSA50の図示を簡略化している。図19及び図20に示されるように、光トランシーバ1の幅方向の外側に位置する第1OSA50a(簡易コネクタC)から延び出す内部ファイバFを内部ファイバFa、光トランシーバ1の幅方向の内側に位置する第2OSA50bから延び出す内部ファイバFを内部ファイバFbとすると、内部ファイバFaは、内部ファイバFbに合流し、その後内部ファイバFbと共に引き回される。
仮に、内部ファイバFbと合流した後の内部ファイバFaを引き回す経路と、内部ファイバFbを引き回す経路とを同一にすると、内部ファイバFaの方が光トランシーバ1の幅方向外側から延び出しているので、内部ファイバFaの長さを内部ファイバFbの長さよりも長くしなければならない。この場合、互いに長さが異なる内部ファイバFa、内部ファイバFbを用意しなければならないので、組み立てに手間がかかると共にコストの増大にもつながる。なお、このような内部ファイバFaの長さと内部ファイバFbの長さの違いは、第1OSA50a及び第2OSA50bがハウジング2の長手方向に対して横方向(長手方向と垂直方向)に並列に配置されていることに起因している。
これに対し、光トランシーバ1では、内部ファイバFaを引き回す経路と、内部ファイバFbを引き回す経路を同一としておらず、溝42の迂回路42Aによって内部ファイバFbの経路が光トランシーバ1の幅方向の内側に迂回している。このように、光トランシーバ1の幅方向の内側に位置する第2OSA50bから延び出す内部ファイバFbの経路を、第1OSA50aから延び出す内部ファイバFaの溝42を含む経路に対して溝42に代えて迂回路42Aを迂回させることにより、内部ファイバFaの長さと内部ファイバFbの長さとを同一にすることが可能となる。従って、内部ファイバFa及び内部ファイバFbを共用できるので、組み立てを容易に行うと共にコストの低減にも寄与する。
以上、内部ファイバFを第2保持部材40の溝42に挿入して行われる組み立ては、ハウジング2の外部において行う。これにより、回路基板13、OSA50、簡易コネクタC、第1保持部材30、第2保持部材40、光合波器9及び光分波器10を含む中間アセンブリMをハウジング2の外部において効率よく組み立てることができる。中間アセンブリMを組み立てた後には、中間アセンブリMを上ハウジング7に設置すると共に、レセプタクル4を上ハウジング7の前端且つ左右中央に設置し、下ハウジング8を上ハウジング7に組み付けてレセプタクル4の位置を規定する。以上のようにハウジング2の組み立てを行った後に光トランシーバ1の組み立てが完了する。
次に、光トランシーバ1から得られる作用効果について詳細に説明する。光トランシーバ1では、レセプタクル4に外部の光コネクタが受容されると、外部の光コネクタの光は、光合分波器(光合波器9及び光分波器10)と、複数のOSA50のそれぞれとに光結合する。光合分波器は、複数のOSA50のそれぞれに複数の内部ファイバFのそれぞれを介して光学的に接続される。また、複数のOSA50を回路基板13に保持する第2保持部材40を備え、第2保持部材40は複数の内部ファイバFのいずれかを迂回させる迂回路42Aを有する。よって、複数のOSA50を保持する第2保持部材40を内部ファイバFの迂回路42Aを規定する部材として有効利用することができる。
また、迂回路42Aで複数の内部ファイバFのいずれか(例えば内部ファイバFb)を迂回させることにより、複数の内部ファイバF(例えば内部ファイバFa及び内部ファイバFb)の経路の長さを互いに同一にすることができる。従って、迂回路42Aを設けることによって複数の内部ファイバFの長さを互いに同一にすることができる。また、内部ファイバFの迂回経路を定めることができるため、一部の内部ファイバF(例えば内部ファイバFaと長さが同一とされた内部ファイバFb)を大きく引き回す必要性を無くすことができる。よって、内部ファイバFをコンパクトに光トランシーバ1の内部に収容することができるので、光トランシーバ1の小型化を実現させることができる。
また、迂回路42Aは、内部ファイバFが収容される溝42である。よって、溝42に内部ファイバFを収容させることによって内部ファイバFを容易に迂回させることができる。従って、光トランシーバ1の組み立てを容易に行うことができる。
また、迂回路42Aは、溝42に挿入された内部ファイバFを覆う爪部46を有する。溝42に挿入された内部ファイバFが爪部46に覆われることによって内部ファイバFが第2保持部材40から飛び出す可能性を低減させることができる。従って、内部ファイバFをより確実に第2保持部材40に保持させることができるので、光トランシーバ1の組み立てを一層容易に行うことができる。
また、迂回路42Aは、光トランシーバ1の幅方向の内側に湾曲する形状とされている。よって、内部ファイバFを光トランシーバ1の幅方向の内側に曲線状に迂回させることができる。従って、内部ファイバFを光トランシーバ1の幅方向の内側に迂回させることにより、光トランシーバ1の外形が大きくなることを抑制することができる。その結果、光トランシーバ1の小型化を一層確実に実現させることができる。
また、複数のOSA50は、第1OSA50a及び第2OSA50bを含み、複数の内部ファイバFは、内部ファイバFa及び内部ファイバFbを含み、光合分波器(光合波器9及び光分波器10)は、第1OSA50aに内部ファイバFaを介して光学的に接続されると共に、第2OSA50bに内部ファイバFbを介して光学的に接続されており、迂回路42Aは内部ファイバFbを迂回させ、内部ファイバFaは迂回されない。従って、内部ファイバFa及び内部ファイバFbのうち1本の内部ファイバFbの迂回路42Aのみを用意すればよいので、迂回路42Aの構成を簡易にすることができる。
更に、本実施形態では、光合波器9及び光分波器10を第1保持部材30(突出部31)に仮固定するので、光合波器9及び光分波器10のそれぞれに接続された内部ファイバFの根元にかかる光合波器9及び光分波器10の自重による応力を緩和することができる。また、内部ファイバFを第2保持部材40の溝42に収容して行われる組み立ては、ハウジング2の外部において行う。この組み立て方法によれば、内部ファイバFをハウジング2の外部において高い自由度で扱うことができ、内部ファイバFの引き回し(各溝への内部ファイバFの挿入、及び回路基板上における内部ファイバFの湾曲等)がハウジング2に制約されることを回避できる。
これにより、内部ファイバFを引き回しているときに、第1保持部材30及び第2保持部材40のそれぞれの溝32,33,42,43に内部ファイバFを効率よく収容することができる。更に、以上の組み込みによって得られた上ハウジング7、下ハウジング8、光合波器9、光分波器10、レセプタクル4、第1保持部材30、第2保持部材40、OSA50及び回路基板13を含む部品群はユニット化されており、表裏(上下)を逆さまにしても互いの部品の位置関係が維持されるため、取扱いが容易である。
以上、本発明に係る光トランシーバの実施形態について説明したが、本発明は前述した実施形態に限定されない。すなわち、本発明が特許請求の範囲に記載された要旨の範囲内において種々の変形及び変更が可能であることは、当業者によって容易に認識される。例えば、第1保持部材30及び第2保持部材40の形状は適宜変更可能である。また、第1保持部材30及び第2保持部材40に代えて、1つの保持部材を備えてもよい。更に、前述の光トランシーバの組み立ての順序は適宜変更可能である。
また、前述の実施形態では、複数の内部ファイバFのうちの一部を迂回させる迂回路42Aが溝42である例について説明した。しかしながら、迂回路は、例えば、保持部材から立設するガイド状の壁部であってもよく、迂回路の形状、大きさ、数及び配置態様は適宜変更可能である。更に、前述の実施形態では、光トランシーバ1の幅方向の内側に湾曲する迂回路42Aについて説明した。しかしながら、例えば、迂回路は、光トランシーバの長手方向の内側に湾曲する迂回路であってもよく、迂回路の位置は適宜変更可能である。更に、第2保持部材に代えて又は第2保持部材と共に、第1保持部材が迂回路を備えていてもよい。また、前述の実施形態では、OSA50が2個のTOSA11及び2個のROSA12の場合を示していたが、例えば、光トランシーバ1が互いに横方向に並列に配置された4個のTOSAを含む場合に、それぞれのTOSAと接続される内部ファイバFの長さの違いを吸収(相殺)するために、第2保持部材が互いに異なる形状の3つの迂回路を有していてもよい。
また、前述の実施形態では、ハウジング2の左右両側から前方に延び出すプルタブ5を備えた光トランシーバ1について説明した。しかしながら、例えば、プルタブに代えて、ハウジングに対して回転可能に支持されるベールを備えていてもよく、ベールを備えた光トランシーバであっても前述と同様の効果が得られる。このように、光トランシーバの各部品の構成については適宜変更可能である。
1…光トランシーバ、2…ハウジング、4…レセプタクル、5…プルタブ、6…スライダ、6a…突起、7…上ハウジング、8…下ハウジング、9…光合波器(光合分波器)、9a,10a…突出部、9b,10b…底部、9c,10c…波長選択フィルタ、9d,9f,9h,10d,10f,10h…ポート、9e,9g,10e,10g…ミラー、10…光分波器(光合分波器)11…TOSA(光サブアセンブリ)、11a,12a…パッケージ、11b,12b…端子、11c,12c…底面、12…ROSA(光サブアセンブリ)、13…回路基板、14…FPC、15…第1回路基板、15a…開孔、16…第2回路基板、17…ドライバ、23…プラグ、30…第1保持部材、31…突出部、31a…突出片、31b…折り曲げ部、31c…壁部、31d…凸部、32,33…溝、34,35…孔部、36…係合部、36a,37…突起、38…内面、40…第2保持部材(保持部材)、42…溝(第1ガイド)、43…溝、42A…迂回路(第2ガイド)、42a…第1湾曲部、42b…第2湾曲部、43a…第1部分、43b…第2部分、45…突出部、45a…孔部、46…爪部、47…底面、49…突起、49a…第1突出部、49b…第2突出部、50…OSA(光サブアセンブリ)、50a…第1OSA(第1光サブアセンブリ)、50b…第2OSA、C…簡易コネクタ、C1…フック、F,Fa,Fb…内部ファイバ、F1…第1内部ファイバ、F2…第2内部ファイバ、H…ヒートシンク、M…中間アセンブリ。

Claims (4)

  1. それぞれ光信号及び電気信号の間の光電変換を行う、複数の光サブアセンブリと、
    長手方向において前記複数の光サブアセンブリの後側に配置され、前記複数の光サブアセンブリのそれぞれに電気的に接続される回路を搭載する回路基板と、
    前記長手方向において前記複数の光サブアセンブリの前側に配置され、複数の内部ファイバを有し、前記複数の光サブアセンブリのそれぞれに前記複数の内部ファイバのそれぞれを介して光学的に接続されると共に、前記光信号を合波又は分波する光合分波器と、
    前記光合分波器に光学的に接続され、外部の光コネクタを受容するレセプタクルと、
    前記複数の光サブアセンブリを保持し、前記回路基板と係合する保持部材と、
    前記長手方向に延び、前記複数の光サブアセンブリ、前記回路基板、前記光合分波器、前記レセプタクル、および前記保持部材が配置されるハウジングと、
    を備え、
    前記複数の光サブアセンブリは、前記長手方向と垂直な横方向に沿って配置され、
    前記保持部材は、前記複数の内部ファイバの少なくともいずれか一つをガイドする第1ガイドと、前記複数の内部ファイバの少なくともいずれか一つとは別の前記複数の内部ファイバの少なくともいずれか一つを前記第1ガイドに対して迂回させる第2ガイドを有し、
    前記第1ガイドは、前記光合分波器から前記回路基板に向けて直線状に延び、
    前記第2ガイドは、前記第1ガイドから前記ハウジングの前記横方向の中心線に向かって分岐すると共に、湾曲しながら前記回路基板に向かって延びて前記第1ガイドに合流する、
    光トランシーバ。
  2. 前記第1ガイド及び前記第2ガイドは、前記複数の内部ファイバを収容可能な溝である、
    請求項1に記載の光トランシーバ。
  3. 前記第1ガイド及び第2ガイドは、それぞれの前記溝に収容された前記複数の内部ファイバを覆う爪部をそれぞれ有する、
    請求項2に記載の光トランシーバ
  4. 前記複数の光サブアセンブリは、第1光サブアセンブリと、前記第1光サブアセンブリが配置された位置よりも前記横方向に関して内側に配置された第2光サブアセンブリを含み、
    前記複数の内部ファイバは、第1内部ファイバ及び第2内部ファイバを含み、
    前記光合分波器は、前記第1光サブアセンブリに前記第1内部ファイバを介して光学的に接続されると共に、前記第2光サブアセンブリに前記第2内部ファイバを介して光学的に接続されており、
    前記第1ガイドは、前記第1内部ファイバをガイドし、
    前記第2ガイドは、前記第2内部ファイバをガイドする、
    請求項1~のいずれか一項に記載の光トランシーバ。
JP2018073173A 2018-04-05 2018-04-05 光トランシーバ Active JP7081278B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018073173A JP7081278B2 (ja) 2018-04-05 2018-04-05 光トランシーバ
CN201910272949.XA CN110346881A (zh) 2018-04-05 2019-04-04 内置多个光学子组件的光收发器
US16/376,716 US10924187B2 (en) 2018-04-05 2019-04-05 Optical transceiver with a plurality of built-in optical subassemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018073173A JP7081278B2 (ja) 2018-04-05 2018-04-05 光トランシーバ

Publications (2)

Publication Number Publication Date
JP2019184736A JP2019184736A (ja) 2019-10-24
JP7081278B2 true JP7081278B2 (ja) 2022-06-07

Family

ID=68096169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018073173A Active JP7081278B2 (ja) 2018-04-05 2018-04-05 光トランシーバ

Country Status (3)

Country Link
US (1) US10924187B2 (ja)
JP (1) JP7081278B2 (ja)
CN (1) CN110346881A (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105997B2 (en) * 2019-06-13 2021-08-31 Lumentum Operations Llc Optical fiber holding device
JP7500959B2 (ja) * 2019-12-10 2024-06-18 住友電気工業株式会社 光トランシーバ
US11073667B1 (en) * 2020-03-04 2021-07-27 Finisar Corporation Pluggable transceiver retainer
US11073666B1 (en) * 2020-03-04 2021-07-27 Finisar Corporation Pluggable transceiver retainer
US11340411B2 (en) 2020-04-21 2022-05-24 Ii-Vi Delaware, Inc. Pluggable transceiver retainer
US11372177B2 (en) 2020-04-21 2022-06-28 Ii-Vi Delaware, Inc. Pluggable transceiver retainer
US11275223B1 (en) * 2020-09-04 2022-03-15 Prime World International Holdings Ltd. Optical transceiver
US11809001B2 (en) * 2022-04-07 2023-11-07 Mellanox Technologies Ltd. Network interface device with external optical connector
US20230412265A1 (en) * 2022-06-14 2023-12-21 Mellanox Technologies, Ltd. Transceiver module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118337A (ja) 2009-10-29 2011-06-16 Sumitomo Electric Ind Ltd 光通信モジュール、及びその製造方法
JP2015121717A (ja) 2013-12-25 2015-07-02 日本アンテナ株式会社 光端末装置
US20180017745A1 (en) 2016-07-14 2018-01-18 Applied Optoelectronics, Inc. Optical transmitter or transceiver including optical multiplexer with input and output ports on a single side

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943461A (en) * 1997-05-12 1999-08-24 Lucent Technologies Inc Connectorized optical module package and method using same with internal fiber connections
US7359641B2 (en) * 2003-07-28 2008-04-15 Emcore Corporation Modular optical transceiver
DE10348675B3 (de) * 2003-10-15 2005-06-09 Infineon Technologies Ag Modul für eine bidirektionale optische Signalübertragung
US7325982B2 (en) * 2004-03-03 2008-02-05 Finisar Corporation Receiver optical subassembly with optical limiting element
US7065106B2 (en) * 2004-03-03 2006-06-20 Finisar Corporation Transmitter optical sub-assembly with eye safety
US7941053B2 (en) * 2006-10-19 2011-05-10 Emcore Corporation Optical transceiver for 40 gigabit/second transmission
US8666257B2 (en) * 2007-05-24 2014-03-04 Finisar Corporation Optoelectronic devices with intelligent transmitter modules
CN102830473B (zh) * 2009-10-29 2014-12-24 住友电气工业株式会社 可插式光收发器及其制造方法
US8821039B2 (en) * 2009-10-29 2014-09-02 Sumitomo Electric Industries, Ltd. Optical transceiver having optical receptacle arranged diagonally to longitudinal axis
US9052477B2 (en) * 2009-10-29 2015-06-09 Sumitomo Electric Industries, Ltd. Optical transceiver with inner fiber set within tray securing thermal path from electronic device to housing
WO2011052802A2 (en) * 2009-10-29 2011-05-05 Sumitomo Electric Industries, Ltd. Pluggable optical transceiver and method for manufacturing the same
JP5471801B2 (ja) * 2010-05-13 2014-04-16 住友電気工業株式会社 光データリンク
CN102103236B (zh) * 2011-03-01 2013-04-03 成都新易盛通信技术股份有限公司 一种双通道紧凑小型可插拔光模块
JP5853309B2 (ja) * 2011-07-21 2016-02-09 住友電気工業株式会社 光通信装置
CN103424821B (zh) * 2012-05-17 2016-08-24 鸿富锦精密工业(深圳)有限公司 光纤连接器
CN102890313B (zh) * 2012-10-22 2015-07-15 索尔思光电(成都)有限公司 Cwdm多工/解多工器系统及其制造方法
US9083468B2 (en) * 2013-08-26 2015-07-14 Applied Optoelectronics, Inc. Heated laser package with increased efficiency for optical transmitter systems
JP2015055834A (ja) * 2013-09-13 2015-03-23 住友電気工業株式会社 光トランシーバ
JP6436692B2 (ja) 2014-09-12 2018-12-12 日本オクラロ株式会社 光モジュール、光送受信モジュール、及びフレキシブル基板
JP6459615B2 (ja) * 2015-02-24 2019-01-30 住友電気工業株式会社 光データリンク
CN104914523B (zh) * 2015-06-05 2017-06-16 成都新易盛通信技术股份有限公司 一种收发一体光模块
US9794017B2 (en) * 2015-08-12 2017-10-17 Finisar Corporation SWDM OSAs
JP6570976B2 (ja) * 2015-11-12 2019-09-04 日本ルメンタム株式会社 光モジュール
JP2017156448A (ja) * 2016-02-29 2017-09-07 住友電気工業株式会社 光データリンク
US9866329B2 (en) * 2016-06-08 2018-01-09 Applied Orthoelectronics, Inc. Optical transmitter or transceiver including transmitter optical subassembly (TOSA) modules directly aligned to optical multiplexer inputs
US10175431B2 (en) * 2016-08-19 2019-01-08 Applied Optoelectronics, Inc. Optical transceiver with a multiplexing device positioned off-center within a transceiver housing to reduce fiber bending loss
JP6890966B2 (ja) * 2016-12-20 2021-06-18 日本ルメンタム株式会社 光モジュール及び光伝送装置
CN108445591A (zh) * 2017-02-16 2018-08-24 住友电气工业株式会社 光收发器
US10270531B2 (en) * 2017-03-01 2019-04-23 Sumitomo Electric Industries, Ltd. Optical transceiver and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118337A (ja) 2009-10-29 2011-06-16 Sumitomo Electric Ind Ltd 光通信モジュール、及びその製造方法
JP2015121717A (ja) 2013-12-25 2015-07-02 日本アンテナ株式会社 光端末装置
US20180017745A1 (en) 2016-07-14 2018-01-18 Applied Optoelectronics, Inc. Optical transmitter or transceiver including optical multiplexer with input and output ports on a single side

Also Published As

Publication number Publication date
US20190312645A1 (en) 2019-10-10
CN110346881A (zh) 2019-10-18
US10924187B2 (en) 2021-02-16
JP2019184736A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
JP7081278B2 (ja) 光トランシーバ
CN108540230B (zh) 光收发器及光收发器的制造方法
JP7279424B2 (ja) 光トランシーバ
US9671580B1 (en) Photonic transceiving device package structure
US10274688B2 (en) Package structure for photonic transceiving device
US9671581B2 (en) Photonic transceiving device package structure
US9614620B2 (en) Coaxial transmitter optical subassembly (TOSA) with cuboid type to laser package and optical transceiver including same
US9891395B2 (en) Optical transmitter or transceiver including optical multiplexer with input and output ports on a single side
US10989870B2 (en) Transmitter optical subassembly with hermetically-sealed light engine and external arrayed waveguide grating
JP6926530B2 (ja) 光トランシーバ
JP2021120704A (ja) 光トランシーバ
JP7500959B2 (ja) 光トランシーバ
CN107852244B (zh) 具有长方体型to激光器封装的同轴光发射次模块(tosa)及包括其的光收发器
JP2020177192A (ja) 光トランシーバ
JPWO2006077961A1 (ja) 光通信モジュールおよび光信号伝送方法
JP7035321B2 (ja) 光トランシーバ
JP6859754B2 (ja) 光トランシーバの製造方法
JP2013232515A (ja) 光モジュール
JP2013232514A (ja) 光モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220509

R150 Certificate of patent or registration of utility model

Ref document number: 7081278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150