JP7080848B2 - Manufacturing method of contact combustion type hydrogen gas sensor and contact combustion type hydrogen gas sensor - Google Patents

Manufacturing method of contact combustion type hydrogen gas sensor and contact combustion type hydrogen gas sensor Download PDF

Info

Publication number
JP7080848B2
JP7080848B2 JP2019081325A JP2019081325A JP7080848B2 JP 7080848 B2 JP7080848 B2 JP 7080848B2 JP 2019081325 A JP2019081325 A JP 2019081325A JP 2019081325 A JP2019081325 A JP 2019081325A JP 7080848 B2 JP7080848 B2 JP 7080848B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
wire
gas sensor
combustion type
contact combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019081325A
Other languages
Japanese (ja)
Other versions
JP2020176991A (en
Inventor
健吾 鈴木
義基 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Toyota Motor Corp
Original Assignee
New Cosmos Electric Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd, Toyota Motor Corp filed Critical New Cosmos Electric Co Ltd
Priority to JP2019081325A priority Critical patent/JP7080848B2/en
Publication of JP2020176991A publication Critical patent/JP2020176991A/en
Application granted granted Critical
Publication of JP7080848B2 publication Critical patent/JP7080848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、水素ガスを検知する接触燃焼式水素ガスセンサ及び接触燃焼式水素ガスセンサの製造方法に関する。 The present invention relates to a contact combustion type hydrogen gas sensor for detecting hydrogen gas and a method for manufacturing a contact combustion type hydrogen gas sensor.

従来より、焼結体のガス感応部を有するガスセンサとしては、接触燃焼式ガスセンサ、半導体式ガスセンサ、固体電解質式ガスセンサ等が知られている。 Conventionally, as a gas sensor having a gas sensitive portion of a sintered body, a contact combustion type gas sensor, a semiconductor type gas sensor, a solid electrolyte type gas sensor and the like are known.

例えば、接触燃焼式ガスセンサは、検知対象となる可燃性ガスに対して燃焼反応する検知素子と燃焼反応しない補償素子の2つの素子を有しているものが知られている(例えば、特許文献1参照)。 For example, a contact combustion type gas sensor is known to have two elements, a detection element that has a combustion reaction to a combustible gas to be detected and a compensation element that does not have a combustion reaction (for example, Patent Document 1). reference).

次に、接触燃焼式ガスセンサにより可燃性ガスの濃度を検知する一般的な原理を説明する。接触燃焼式ガスセンサの検知素子は、白金等の貴金属線と、当該貴金属線を覆う、白金等の貴金属触媒を担持したアルミナ等の金属酸化物焼結体からなるガス感応部(燃焼触媒部)とで構成される。この検知素子を所定温度に加熱しておき、ガス感応部において検知対象となる可燃性ガスを貴金属触媒と接触・燃焼させることで、燃焼の際に生じる温度変化を貴金属線の抵抗値の変化として検出する。一方、補償素子は、検知素子のように貴金属触媒を担持しないが、その他の構成は検知素子と同様に構成される。つまり、補償素子は、白金等の貴金属線と、当該貴金属線を覆う、貴金属触媒を担持していないアルミナ等の金属酸化物焼結体とで構成される。補償素子上では貴金属触媒を担持していないので可燃性ガスの燃焼が起こらず、その貴金属線の抵抗値は変化しない。可燃性ガスの燃焼熱は可燃性ガスの濃度に比例し、貴金属線の抵抗値は燃焼熱に比例するため、可燃性ガスの燃焼による貴金属線の抵抗の変化値を測定することによって可燃性ガスの濃度を測定することができる。このため、検知素子と補償素子とを2辺としたブリッジ回路に電圧の差が生じる。この電圧の差は、可燃性ガスの爆発下限界までは、ガス濃度に比例した出力として検出される。 Next, the general principle of detecting the concentration of combustible gas by the contact combustion type gas sensor will be described. The detection element of the contact combustion type gas sensor includes a gas sensitive part (combustion catalyst part) made of a noble metal wire such as platinum and a metal oxide sintered body such as alumina carrying a noble metal catalyst such as platinum that covers the noble metal wire. Consists of. By heating this detection element to a predetermined temperature and contacting and burning the flammable gas to be detected in the gas sensitive part with the noble metal catalyst, the temperature change that occurs during combustion is regarded as the change in the resistance value of the noble metal wire. To detect. On the other hand, the compensating element does not support the noble metal catalyst like the detection element, but other configurations are the same as those of the detection element. That is, the compensating element is composed of a noble metal wire such as platinum and a metal oxide sintered body such as alumina that covers the noble metal wire and does not support the noble metal catalyst. Since the noble metal catalyst is not supported on the compensating element, combustion of the flammable gas does not occur, and the resistance value of the noble metal wire does not change. Since the combustion heat of the combustible gas is proportional to the concentration of the combustible gas and the resistance value of the noble metal wire is proportional to the combustion heat, the change value of the resistance of the noble metal wire due to the combustion of the combustible gas is measured. The concentration of gas can be measured. Therefore, a voltage difference occurs in the bridge circuit having the detection element and the compensation element on two sides. This voltage difference is detected as an output proportional to the gas concentration up to the lower explosive limit of the flammable gas.

このような接触燃焼式ガスセンサは、例えば、燃料電池システムからの水素ガスの漏れを検知する水素ガスセンサ(水素ディテクタ)として、圧縮水素ガスを燃料とする燃料電池自動車(以下、FCVという)に搭載されている。水素ガスを検知する方式(センサ)にはいくつかあるが、FCVの安全基準を満たすために、0~4vol%の水素ガスを検知することが求められる車載用の水素ガスセンサとしては、接触燃焼式ガスセンサが適している。 Such a contact combustion type gas sensor is mounted on a fuel cell vehicle (hereinafter referred to as FCV) using compressed hydrogen gas as a fuel, for example, as a hydrogen gas sensor (hydrogen detector) for detecting the leakage of hydrogen gas from the fuel cell system. ing. There are several methods (sensors) for detecting hydrogen gas, but as an in-vehicle hydrogen gas sensor that is required to detect 0 to 4 vol% hydrogen gas in order to meet FCV safety standards, a contact combustion type is used. A gas sensor is suitable.

また、車載環境によっては、意図せず水素ガスセンサが高濃度の水素にさらされる可能性がある。接触燃焼式水素ガスセンサは、水素濃度が高い環境に置かれると、水素の燃焼熱によって検知素子が800℃前後の高温にまで発熱することになる。例えば、特許文献1に記載のように、白金(Pt)線をヒーターコイルとして有する接触燃焼式ガスセンサ素子の場合、検知素子が想定以上の温度にさらされるとPt線内部のPt結晶粒子の粒界に残留していた応力が緩和されて検知素子の抵抗値が低下することがある。このような抵抗値の低下は、水素ガスの検知精度に悪影響を及ぼす。そのため、高濃度の水素にさらされて検知素子が高温下に置かれても抵抗値が変化しないように予め対策することが求められる。 In addition, depending on the in-vehicle environment, the hydrogen gas sensor may be unintentionally exposed to a high concentration of hydrogen. When the contact combustion type hydrogen gas sensor is placed in an environment with a high hydrogen concentration, the detection element generates heat up to a high temperature of about 800 ° C. due to the heat of combustion of hydrogen. For example, as described in Patent Document 1, in the case of a contact combustion type gas sensor element having a platinum (Pt) wire as a heater coil, when the detection element is exposed to a temperature higher than expected, the grain boundaries of Pt crystal particles inside the Pt wire The stress remaining in the detection element may be relaxed and the resistance value of the detection element may decrease. Such a decrease in resistance value adversely affects the detection accuracy of hydrogen gas. Therefore, it is required to take measures in advance so that the resistance value does not change even if the detection element is exposed to a high concentration of hydrogen and is placed at a high temperature.

特許第4559894号公報Japanese Patent No. 4559894

GuidetotheRealizationoftheITS-90PlatinumResistanceThermometry(https://www.bipm.org/utils/common/pdf/ITS-90/Guide-ITS-90-Platinum-Resistance-Thermometry.pdf)GuidetotheRealizationoftheITS-90PlatinumResistanceThermometry (https://www.bipm.org/utils/common/pdf/ITS-90/Guide-ITS-90-Platinum-Resistance-Thermometry.pdf)

そこで、本発明は、上記課題に鑑みてなされたものであり、センサ使用時に高濃度水素中にさらされて検知素子が高温になる場合でも応力緩和による抵抗値の変化を抑えることができる接触燃焼式水素ガスセンサを提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and contact combustion can suppress changes in resistance value due to stress relaxation even when the detection element is exposed to high-concentration hydrogen when the sensor is used and the temperature of the detection element becomes high. It is an object of the present invention to provide a type hydrogen gas sensor.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problem to be solved by the present invention is as described above, and next, the means for solving this problem will be described.

即ち、本発明の接触燃焼式水素ガスセンサは、水素ガスを検知する接触燃焼式水素ガスセンサであって、コイル状のPt線と前記Pt線を覆う担体部とを有する検知素子を備え、前記Pt線は、Ptの結晶方位差を表す指標である結晶粒方位分散(GOS:Grain Orientation Spread)が1.0~2.0であるものである。 That is, the contact combustion type hydrogen gas sensor of the present invention is a contact combustion type hydrogen gas sensor that detects hydrogen gas, and includes a detection element having a coiled Pt wire and a carrier portion covering the Pt wire, and the Pt wire. The crystal grain orientation dispersion (GOS: Grain Origination Spread), which is an index representing the crystal orientation difference of Pt, is 1.0 to 2.0.

また、本発明の接触燃焼式水素ガスセンサでは、前記Pt線は、Ptの塑性ひずみや結晶粒界近傍の欠陥、および粒界毎の不均一な分布状態を表す指標であるKAM(Kernel Averaged Misorientation)が0.6~0.9であるものである。 Further, in the contact combustion type hydrogen gas sensor of the present invention, the Pt wire is an index indicating the plastic strain of Pt, the defect near the crystal grain boundary, and the non-uniform distribution state at each grain boundary, KAM (Kernel Avenue Missionation). Is 0.6 to 0.9.

また、本発明の接触燃焼式水素ガスセンサでは、前記Pt線断面を観察した時のPt結晶粒の粒子径分布に占める粒子径が0.5~5μmの割合が全体の70%以上であるものである。 Further, in the contact combustion type hydrogen gas sensor of the present invention, the ratio of the particle size to the particle size distribution of the Pt crystal grains when observing the Pt line cross section is 0.5 to 5 μm or more, which is 70% or more of the whole. be.

また、本発明の接触燃焼式水素ガスセンサでは、前記検知素子は、前記Pt線に電流を流すことで加熱され、その加熱温度と加熱時間を制御することで前記Pt線がアニール処理されるものである。 Further, in the contact combustion type hydrogen gas sensor of the present invention, the detection element is heated by passing an electric current through the Pt wire, and the Pt wire is annealed by controlling the heating temperature and the heating time. be.

また、本発明の接触燃焼式水素ガスセンサは、車載用である。 Further, the contact combustion type hydrogen gas sensor of the present invention is for in-vehicle use.

また、本発明の接触燃焼式水素ガスセンサの製造方法は、コイル状のPt線と前記Pt線を覆う担体部とを有する検知素子を備える接触燃焼式水素ガスセンサの製造方法であって、前記Pt線に電流を流すことで加熱して、前記Pt線をアニール処理し、前記アニール処理後のPt線は、Ptの結晶方位差を表す指標である結晶粒方位分散(GOS:Grain Orientation Spread)が1.0~2.0であるものである。 Further, the method for manufacturing a contact combustion type hydrogen gas sensor of the present invention is a method for manufacturing a contact combustion type hydrogen gas sensor including a detection element having a coiled Pt wire and a carrier portion covering the Pt wire. The Pt wire is annealed by heating by passing an electric current through the Pt wire, and the Pt wire after the annealing treatment has a crystal grain orientation dispersion (GOS) of 1 which is an index indicating the crystal orientation difference of Pt. It is 0.0 to 2.0.

また、本発明の接触燃焼式水素ガスセンサの製造方法では、前記アニール処理後のPt線は、Ptの塑性ひずみや結晶粒界近傍の欠陥、および粒界毎の不均一な分布状態を表す指標であるKAM(Kernel Averaged Misorientation)が0.6~0.9であるものである。 Further, in the method for manufacturing a contact combustion hydrogen gas sensor of the present invention, the Pt wire after the annealing treatment is an index showing the plastic strain of Pt, defects near the grain boundaries, and a non-uniform distribution state at each grain boundary. A certain KAM (Kernel Averaged Distribution) is 0.6 to 0.9.

本発明によれば、センサ使用時に高濃度水素中にさらされて高温になる場合でも応力緩和による抵抗値の変化を抑えることができる。これにより、水素ガス検知精度が向上した接触燃焼式水素ガスセンサを実現することができる。 According to the present invention, it is possible to suppress a change in resistance value due to stress relaxation even when the sensor is exposed to high-concentration hydrogen and becomes hot when used. This makes it possible to realize a contact combustion type hydrogen gas sensor with improved hydrogen gas detection accuracy.

本発明の一実施形態に係るブリッジ回路を有する接触燃焼式水素ガスセンサを示す概略図。The schematic diagram which shows the contact combustion type hydrogen gas sensor which has the bridge circuit which concerns on one Embodiment of this invention. 検知素子の構成を示す模式図。The schematic diagram which shows the structure of the detection element. 補償素子の構成を示す模式図。The schematic diagram which shows the structure of a compensating element. アニール処理温度・時間と検知素子の抵抗値変化の関係を示すグラフ。The graph which shows the relationship between the annealing processing temperature / time and the resistance value change of a detection element. 図4に示すグラフの時間軸を拡大したグラフ。A graph in which the time axis of the graph shown in FIG. 4 is enlarged. アニール処理温度と高濃度水素曝露後の検知素子の抵抗値変化との関係を示すグラフ。The graph which shows the relationship between the annealing treatment temperature and the resistance value change of a detection element after exposure to high-concentration hydrogen. 検知素子断面におけるPt線部分をEBSD法によって解析した結果(KAM、GOS)を示す図。The figure which shows the result (KAM, GOS) which analyzed the Pt line part in the cross section of a detection element by the EBSD method. アニール処理温度とKAMの関係を示すグラフ。The graph which shows the relationship between the annealing treatment temperature and KAM. アニール処理温度とGOSの関係を示すグラフ。The graph which shows the relationship between the annealing processing temperature and GOS. 検知素子断面におけるPt線部分をEBSD法によって解析した結果(粒度分布)を示す図。The figure which shows the result (particle size distribution) which analyzed the Pt line part in the cross section of a detection element by the EBSD method.

次に、本発明の一実施形態である接触燃焼式水素ガスセンサ100について図を参照しながら説明する。 Next, the contact combustion type hydrogen gas sensor 100, which is an embodiment of the present invention, will be described with reference to the drawings.

接触燃焼式水素ガスセンサ100は、図1に示すように、被検知ガスである水素ガスを燃焼させて検知する検知素子1と、環境の変化等、水素ガスの燃焼以外の温度変化に基づく、検知素子1の抵抗値の変化を補正する補償素子2と、固定抵抗R1、R2とを有し、これらによりブリッジ回路を構成している。検知素子1は、水素ガスの燃焼熱に応じて抵抗値が変化する。検知素子1と補償素子2とは、2つの抵抗である固定抵抗R1、R2を介して電源Eに並列に接続される。ブリッジ回路は、電源Eによって常時約90~120mAの電流を供給し、水素ガスが接触燃焼し易い所定の温度に検知素子1を保持している。 As shown in FIG. 1, the contact combustion type hydrogen gas sensor 100 has a detection element 1 that burns and detects hydrogen gas as a detected gas, and detection based on temperature changes other than hydrogen gas combustion such as changes in the environment. It has a compensating element 2 that corrects a change in the resistance value of the element 1 and fixed resistances R1 and R2, and constitutes a bridge circuit by these. The resistance value of the detection element 1 changes according to the heat of combustion of hydrogen gas. The detection element 1 and the compensation element 2 are connected in parallel to the power supply E via fixed resistances R1 and R2, which are two resistors. The bridge circuit constantly supplies a current of about 90 to 120 mA by the power source E, and holds the detection element 1 at a predetermined temperature at which hydrogen gas is likely to be contact-combusted.

検知素子1と補償素子2とは、抵抗値が等しくなるように設定してある。このため、水素ガスが存在しない場合には、ブリッジ回路は平衡状態となり、センサ出力Vは生じない。一方、水素ガスが存在すると、その燃焼によって検知素子1の温度が上昇して抵抗値が大きくなるため、ブリッジ回路の平衡がくずれ、センサ出力Vが生じる。このセンサ出力Vは水素ガスの濃度に比例するため、この接触燃焼式水素ガスセンサ100により空気中の水素ガスの濃度を測定することができる。 The detection element 1 and the compensation element 2 are set so that the resistance values are equal to each other. Therefore, in the absence of hydrogen gas, the bridge circuit is in an equilibrium state and the sensor output V does not occur. On the other hand, when hydrogen gas is present, the temperature of the detection element 1 rises due to its combustion and the resistance value increases, so that the balance of the bridge circuit is lost and the sensor output V is generated. Since the sensor output V is proportional to the concentration of hydrogen gas, the concentration of hydrogen gas in the air can be measured by the contact combustion type hydrogen gas sensor 100.

検知素子1は、図2に示すように、コイル状の貴金属線であるPt(白金)線11と、当該Pt線11を覆い、水素ガスと接触して燃焼させるガス感応部である略球状の担体部12とを有する。また、Pt線11は、当該担体部12を加熱するための加熱手段になる。
担体部12は、触媒担体に貴金属触媒を担持して構成される。貴金属触媒としては、水素ガスに触媒活性を有する貴金属であればよく、例えば、白金(Pt)、パラジウム(Pd)、白金とパラジウム等が使用でき、特に限定されない。触媒担体は、貴金属触媒を担持するものであれば特に限定されず、例えば、アルミナ、シリカアルミナ等の金属酸化物の焼結体を適用することができる。
なお、本実施形態におけるPt線とは、Pt(白金)のみからなる金属材料、またはPt(白金)を主成分とする金属材料であればよく、白金を主成分とする金属材料としては、白金と他の金属材料成分とで合金を形成してもよく、合金を形成せずに互いに独立して存在する結晶であってもよい。
As shown in FIG. 2, the detection element 1 is a substantially spherical gas-sensitive portion that covers a coiled noble metal wire Pt (platinum) wire 11 and the Pt wire 11 and burns in contact with hydrogen gas. It has a carrier portion 12. Further, the Pt wire 11 serves as a heating means for heating the carrier portion 12.
The carrier unit 12 is configured by supporting a noble metal catalyst on a catalyst carrier. The noble metal catalyst may be any noble metal having catalytic activity for hydrogen gas, and for example, platinum (Pt), palladium (Pd), platinum and palladium and the like can be used, and the noble metal catalyst is not particularly limited. The catalyst carrier is not particularly limited as long as it supports a noble metal catalyst, and for example, a sintered body of a metal oxide such as alumina or silica alumina can be applied.
The Pt wire in the present embodiment may be a metal material consisting only of Pt (platinum) or a metal material containing Pt (platinum) as a main component, and the metal material containing platinum as a main component is platinum. And other metal material components may form an alloy, or may be crystals that exist independently of each other without forming an alloy.

このような検知素子1は、例えば、触媒担体を構成するアルミナ等の金属酸化物と、白金等の貴金属触媒と、エチレングリコール等の有機溶媒(バインダー)とを混合してペースト状にして、このペースト状にしたものをPt線11のコイル状の部分であるコイル部11aに、所定の球径になるように付着させた後、Pt線11の自己加熱によって焼成して担体部12を焼結体として形成させることにより作製することができる。 In such a detection element 1, for example, a metal oxide such as alumina constituting a catalyst carrier, a noble metal catalyst such as platinum, and an organic solvent (binder) such as ethylene glycol are mixed to form a paste. The paste-like material is attached to the coil portion 11a, which is the coil-shaped portion of the Pt wire 11, so as to have a predetermined spherical diameter, and then fired by self-heating of the Pt wire 11 to sinter the carrier portion 12. It can be produced by forming it as a body.

また、担体部12が焼結体として形成された後、検知素子1は、Pt線11に所定の電流を流すことで加熱され、その加熱温度と加熱時間を制御することでPt線11がアニール処理される。Pt線11の好ましいアニール処理条件及びPt線11断面の好ましい結晶の状態については後述する。こうして、接触燃焼式水素ガスセンサ100の検知素子1が製造される。 Further, after the carrier portion 12 is formed as a sintered body, the detection element 1 is heated by passing a predetermined current through the Pt wire 11, and the Pt wire 11 is annealed by controlling the heating temperature and the heating time thereof. It is processed. The preferred annealing conditions for the Pt wire 11 and the preferred crystalline state of the Pt wire 11 cross section will be described later. In this way, the detection element 1 of the contact combustion type hydrogen gas sensor 100 is manufactured.

検知素子1は、水素ガス中に置かれたとき、通電により発熱することで自身が備える貴金属触媒が加熱されて水素ガスと反応し、その反応熱に応じて(水素ガスの濃度に応じて)出力値が変化する。 When the detection element 1 is placed in hydrogen gas, it generates heat by energization, so that its own noble metal catalyst is heated and reacts with hydrogen gas, and according to the reaction heat (depending on the concentration of hydrogen gas). The output value changes.

補償素子2は、図3に示すように、基本的な構成は図2に示す検知素子1と同様であり、異なる構成は貴金属触媒を含まないことである。具体的には、補償素子2は、検知素子1と同一のコイル状のPt線11と、当該Pt線11を覆うとともに、貴金属触媒を含まない検知素子1と同一の触媒担体で構成される略球状の担体部13とを有する。また、Pt線11は、当該担体部13を加熱するための加熱手段になる。
触媒担体は、例えば、アルミナ、シリカアルミナ等の金属酸化物の焼結体を適用することができる。
As shown in FIG. 3, the compensating element 2 has the same basic configuration as the detection element 1 shown in FIG. 2, and the different configuration does not include the precious metal catalyst. Specifically, the compensating element 2 is substantially composed of the same coiled Pt wire 11 as the detection element 1 and the same catalyst carrier as the detection element 1 that covers the Pt wire 11 and does not contain a precious metal catalyst. It has a spherical carrier portion 13. Further, the Pt wire 11 serves as a heating means for heating the carrier portion 13.
As the catalyst carrier, for example, a sintered body of a metal oxide such as alumina or silica alumina can be applied.

補償素子2は、検知素子1と同様に水素ガスが存在する空気中に置かれて通電されることで、検知素子1の温度補償を行うための素子であり、検知素子1が有する貴金属触媒による燃焼熱に応じた出力値の変化分のみを取り出すために用いられる。補償素子2の担体部13中には、貴金属触媒が担持されておらず、検知素子1のように貴金属触媒の触媒反応による水素ガスの燃焼は生じない。当該補償素子2は、通電されることにより発熱してその周囲を覆う担体部13を加熱するものであり、熱により自らの抵抗値が変化する。 Similar to the detection element 1, the compensation element 2 is an element for performing temperature compensation of the detection element 1 by being placed in the air where hydrogen gas is present and energized, and is based on the precious metal catalyst of the detection element 1. It is used to extract only the change in output value according to the heat of combustion. The noble metal catalyst is not supported in the carrier portion 13 of the compensating element 2, and unlike the detection element 1, hydrogen gas is not burned by the catalytic reaction of the noble metal catalyst. The compensating element 2 generates heat when energized and heats the carrier portion 13 that covers the periphery thereof, and its resistance value changes due to the heat.

このような補償素子2は、例えば、触媒担体を構成するアルミナ等の金属酸化物と、エチレングリコール等の有機溶媒(バインダー)とを混合してペースト状にして、このペースト状にしたものをPt線11のコイル状の部分であるコイル部11aに、所定の球径になるように付着させた後、Pt線11の自己加熱によって焼成して担体部13を焼結体として形成させることにより作製することができる。
以上のようにして、接触燃焼式水素ガスセンサ100が製造される。
In such a compensating element 2, for example, a metal oxide such as alumina constituting a catalyst carrier and an organic solvent (binder) such as ethylene glycol are mixed to form a paste, and the paste is formed into Pt. Manufactured by attaching to the coil portion 11a, which is a coil-shaped portion of the wire 11, so as to have a predetermined spherical diameter, and then firing by self-heating of the Pt wire 11 to form the carrier portion 13 as a sintered body. can do.
As described above, the contact combustion type hydrogen gas sensor 100 is manufactured.

なお、検知素子1及び補償素子2を備えた接触燃焼式水素ガスセンサ100のその他の構成、機能については、従来公知の接触燃焼式水素ガスセンサと同様である。 The other configurations and functions of the contact combustion type hydrogen gas sensor 100 provided with the detection element 1 and the compensation element 2 are the same as those of the conventionally known contact combustion type hydrogen gas sensor.

次に、Pt線内部に応力が発生するメカニズムについて説明する。
Pt線内部の残留応力はPt線の製造段階で生じる。Pt線は、延伸加工で細線化される際にPt線内部の結晶が引き延ばされる。この加工工程を経たPtの結晶方位はランダムになっており結晶の粒界には無数の点欠陥が存在する。更に、検出素子のコイル部を形成するために、Pt線をコイル状に加工する工程を経るとPt線内部には塑性ひずみによってPt線内に転位欠陥が導入され、結晶方位の局所的な変化が生じる。
Next, the mechanism by which stress is generated inside the Pt wire will be described.
Residual stress inside the Pt wire is generated during the manufacturing stage of the Pt wire. When the Pt wire is thinned by the stretching process, the crystals inside the Pt wire are stretched. The crystal orientation of Pt that has undergone this processing step is random, and there are innumerable point defects at the grain boundaries of the crystal. Furthermore, when the Pt wire is processed into a coil shape in order to form the coil portion of the detection element, a dislocation defect is introduced in the Pt wire due to plastic strain inside the Pt wire, and a local change in crystal orientation occurs. Occurs.

これらPt結晶粒界の点欠陥や組成ひずみは、電子伝導を妨げる要因となり、局所的に抵抗値が高い部分が残された状態になっている。そのため、センサを製造する各工程で発生するこれら抵抗成分が残留したままで検知素子が作製される。このような状態の検知素子を有したセンサが使用されると高濃度の水素などに暴露されて検知素子が高温にさらされた際に、結晶粒界の再配列や加工時の残留応力の緩和が進み抵抗値が低下してしまう。検知素子が有するPt線(コイル)の抵抗値の低下は、ブリッジの偏差電圧の変化として現れるためガス検知精度に影響を及ぼす。 These point defects and composition strains at the Pt crystal grain boundaries become factors that hinder electron conduction, and a portion having a locally high resistance value is left. Therefore, the detection element is manufactured with these resistance components generated in each process of manufacturing the sensor remaining. When a sensor with a detection element in such a state is used, when the detection element is exposed to high temperature due to exposure to high concentration hydrogen etc., the crystal grain boundaries are rearranged and the residual stress during processing is relaxed. And the resistance value drops. The decrease in the resistance value of the Pt wire (coil) of the detection element appears as a change in the deviation voltage of the bridge, which affects the gas detection accuracy.

検知素子が有するPt線(コイル)の抵抗値が低抵抗化するメカニズムは明白であり、例えば製造段階で検知素子に高温を経験させるアニール処理を施し、点欠陥や残留応力を緩和しておけば、それ以降、抵抗値が低下せずに安定化することになる。
ただし、経験させる温度には限界があり、過度のアニール処理はPt粒子の成長を促進することとなる。Pt粒子の粒成長が進行すると、粒界に境界ができ、これが電子伝導を妨げる障壁となるので抵抗値が高くなり好ましくない。また粒成長が進行したPt線は、結晶粒界がすべり面となって変形しやすくなるので、振動や衝撃などのストレスによる断線のリスクが高まる。すなわち、水素ガスセンサの安定化を目的とするPt線のアニール処理条件としては、Pt粒子の残留応力が緩和された適度な結晶の状態で留めるために、適正な加熱温度と加熱時間がある。
The mechanism by which the resistance value of the Pt wire (coil) of the detection element is lowered is clear. For example, if the detection element is annealed to experience high temperature at the manufacturing stage, point defects and residual stress are alleviated. After that, the resistance value does not decrease and stabilizes.
However, there is a limit to the temperature that can be experienced, and excessive annealing treatment promotes the growth of Pt particles. As the grain growth of Pt particles progresses, a boundary is formed at the grain boundary, which becomes a barrier that hinders electron conduction, and thus the resistance value becomes high, which is not preferable. Further, since the Pt wire in which the grain growth has progressed, the crystal grain boundary becomes a slip surface and is easily deformed, so that the risk of disconnection due to stress such as vibration or impact increases. That is, the conditions for annealing the Pt wire for the purpose of stabilizing the hydrogen gas sensor include an appropriate heating temperature and heating time in order to keep the Pt particles in an appropriate crystalline state in which the residual stress is relaxed.

そこで、本発明は、上記メカニズムを考慮してなされたものであり、Pt線コイルに過度なストレスを与えることなく、Pt結晶粒界の点欠陥や組成ひずみを解消することで、使用段階で高濃度の水素にさらされて検知素子が高温を経験しても、抵抗値が変化しない高耐久性の接触燃焼式水素ガスセンサを実現するものである。 Therefore, the present invention has been made in consideration of the above mechanism, and by eliminating point defects and composition strains at the Pt crystal grain boundaries without giving excessive stress to the Pt wire coil, the invention is high in the stage of use. It realizes a highly durable contact combustion type hydrogen gas sensor whose resistance value does not change even when the detection element experiences a high temperature when exposed to a concentration of hydrogen.

一般的に金属を加工(塑性変形)すると種々の格子欠陥が蓄積され、アニール処理することで緩和される。アニール処理のプロセスでは、処理温度に応じて金属材料の組織変化が起こり、その変化過程として回復、再結晶、及び粒成長に分類でき、各段階で結晶組織の状態が異なる。 Generally, when metal is processed (plastic deformation), various lattice defects are accumulated and alleviated by annealing. In the annealing process, the structure of the metal material changes depending on the treatment temperature, and the process can be classified into recovery, recrystallization, and grain growth, and the state of the crystal structure is different at each stage.

[検知素子のアニール処理時間・アニール処理温度に対する動作抵抗値差の変化]
図4及び図5は、検知素子に対してアニール処理時間・アニール処理温度を変えてアニール処理前後の動作抵抗値の変化を評価した結果である。図4及び図5のグラフは、縦軸が検知素子におけるアニール処理前後の動作抵抗値(Ω)であり、横軸がアニール処理時間(sec.)である。また、図5のグラフは、アニール処理初期段階の変化したものであり、図4のグラフを拡大して示している。
[Changes in operating resistance value difference with respect to annealing treatment time and annealing treatment temperature of detection element]
4 and 5 are the results of evaluating the change in the operating resistance value before and after the annealing treatment by changing the annealing treatment time and the annealing treatment temperature for the detection element. In the graphs of FIGS. 4 and 5, the vertical axis represents the operating resistance value (Ω) before and after the annealing treatment in the detection element, and the horizontal axis represents the annealing treatment time (sec.). Further, the graph of FIG. 5 is a change in the initial stage of the annealing process, and is shown by enlarging the graph of FIG.

検知素子のPt線に電流を流して自己発熱(ジュール熱)によるアニール処理を行うと、検知素子の動作抵抗値は処理前に比べて一旦低下したのち、高抵抗化する。アニール処理前のPt線は、Pt結晶粒の粒界に存在する点欠陥や塑性ひずみが電子伝導を妨げて抵抗値が高い状態にあり、アニール処理によってこれらの欠陥が解消されるために抵抗値は低下する。この過程が回復及び再結晶に相当する。動作抵抗値が最小となるアニール処理時間は、アニール処理温度に依存している。また、動作抵抗値はアニール処理温度に依存し、1000℃または1050℃ではアニール時間が3sec.である条件で動作抵抗値は最小値となる。図5に示す結果より、Pt線内部に残留する点欠陥や歪を緩和するには700℃ではアニール処理時間を増加させても不十分であり、1000℃では3sec.程度でこれらが解消されることを示している。 When an electric current is passed through the Pt wire of the detection element to perform annealing treatment by self-heating (Joule heat), the operating resistance value of the detection element is once lowered as compared with that before the treatment, and then the resistance is increased. The Pt wire before the annealing treatment has a high resistance value due to the point defects and plastic strains existing at the grain boundaries of the Pt crystal grains hindering electron conduction, and the resistance value is eliminated by the annealing treatment. Decreases. This process corresponds to recovery and recrystallization. The annealing treatment time at which the operating resistance value is minimized depends on the annealing treatment temperature. The operating resistance value depends on the annealing treatment temperature, and the annealing time is 3 sec. At 1000 ° C. or 1050 ° C. The operating resistance value becomes the minimum value under the condition of. From the results shown in FIG. 5, it is not sufficient to increase the annealing treatment time at 700 ° C. to alleviate the point defects and strain remaining inside the Pt wire, and at 1000 ° C., 3 sec. It is shown that these are resolved by the degree.

また、アニール処理温度によって動作抵抗値の最小値が異なるのは、塑性歪みや点欠陥の状態によって、これの解消に必要な熱エネルギーが異なることを意味している。例えば1000℃のアニール処理でほぼ完全に欠陥が解消されるとすれば、850℃のアニール処理では全体の50%程度しか解消できていないことが図5の結果からわかる。このことは、非特許文献1の中で、アニールによる再結晶温度と時間の関係に関する以下のような式(1)を用いて説明される。 Further, the fact that the minimum value of the operating resistance value differs depending on the annealing treatment temperature means that the thermal energy required to eliminate this differs depending on the state of plastic strain and point defects. For example, if the defect is almost completely eliminated by the annealing treatment at 1000 ° C., it can be seen from the result of FIG. 5 that only about 50% of the whole is eliminated by the annealing treatment at 850 ° C. This is explained in Non-Patent Document 1 by using the following equation (1) regarding the relationship between the recrystallization temperature due to annealing and time.

Figure 0007080848000001
Figure 0007080848000001

式(1)はPt内に多くの欠陥がある(Eaが低い)、アニール温度(T)が高い場合は、指数関数的に欠陥が解消される時間が短くなることを表している。また、低エネルギーで解消される欠陥は短時間で消滅するので、Eaはアニールの進行に従って高くなることを示している。故にさらにその半分の欠陥を解消するには、より高い温度でのアニール処理が必要になる。しかしその一方で、より高温でのアニール処理は、欠陥が解消された部分は粒成長の反応が進行しやすくなる。以下にアニール処理を継続した場合の抵抗値の変化について説明する。 Equation (1) indicates that when there are many defects in Pt (Ea is low) and the annealing temperature (T) is high, the time for exponentially eliminating the defects is shortened. In addition, since the defects that are eliminated with low energy disappear in a short time, it is shown that Ea increases as the annealing progresses. Therefore, in order to eliminate half of the defects, annealing at a higher temperature is required. However, on the other hand, in the annealing treatment at a higher temperature, the reaction of grain growth tends to proceed in the portion where the defect is eliminated. The change in resistance value when the annealing treatment is continued will be described below.

アニール処理を継続すると、図4に示す通りアニール処理温度700℃を除いてアニール処理時間に比例して抵抗値は右肩上がりに増加する。これは、前記メカニズムで説明した粒成長の過程に相当する。すなわち、アニール処理がスタートして10sec.ぐらいまでは、アニール処理によって抵抗値が最小となる再結晶化の過程であり、アニール処理時間が5sec.以降の高抵抗化は、再結晶の過程から粒成長の過程へと移行して粒成長が進行していく過程であると考えられる。
なお、本実施形態では、Pt線に対するアニール処理では、Pt線に電流を流して自己発熱により直接アニールを行っているが、電気炉等を用いてPt線を外部から熱してアニール処理を行ってもよい。本実施形態のようにPt線に電流を流して自己発熱により直接アニール処理を行う場合は、電気炉等の設備を必要とせず、製造工程内にアニール処理工程を容易に導入することができる。
When the annealing treatment is continued, the resistance value increases in proportion to the annealing treatment time except for the annealing treatment temperature of 700 ° C. as shown in FIG. This corresponds to the grain growth process described in the mechanism. That is, the annealing process started and 10 sec. Up to this point, the process of recrystallization in which the resistance value is minimized by the annealing treatment is performed, and the annealing treatment time is 5 sec. Subsequent increase in resistance is considered to be a process in which grain growth progresses by shifting from the process of recrystallization to the process of grain growth.
In the present embodiment, in the annealing treatment for the Pt wire, a current is passed through the Pt wire to directly perform the annealing by self-heating, but the Pt wire is heated from the outside using an electric furnace or the like to perform the annealing treatment. May be good. When the annealing process is performed directly by self-heating by passing a current through the Pt wire as in the present embodiment, the annealing process can be easily introduced into the manufacturing process without the need for equipment such as an electric furnace.

図4及び図5のグラフに示す評価結果に基づくと、接触燃焼式水素ガスセンサを製造する際には、Pt線内部に残留する応力等を緩和するためにアニール処理時間は、1秒以上、20秒以下の範囲内であることが好ましく、より好ましくは3秒以上、10秒以下の範囲内であることである。なぜなら、アニール処理時間が1秒未満である場合は、再結晶が進行しておらず、アニール処理時間が20秒を超える場合は、粒成長が進み過ぎて高抵抗化するとともに結晶界面のずれやすべりが生じ易くなるため、Pt線の強度が低下するおそれがあるからである。
なお、図4及び図5のグラフに示す評価結果では、アニール処理温度が850℃~1050℃の範囲内においては、アニール処理時間が5秒前後が好ましい結晶の組織状態が得られる最適時間と考えられるが、製造マージン(アニール処理のばらつき等)を考慮する場合は、アニール処理時間は5秒以上、10秒以下程度とすることが好ましい。また、Pt線内部に残留する応力等を緩和するためのアニール処理温度としては、850℃以上、1050℃以下であることが好ましい。アニール処理温度が700℃では、再結晶化を進行するための必要なエネルギーが得られず、残留する応力等を十分に緩和することができない。
以上をまとめると、上述したようにPt線に対する好ましいアニール処理条件としては、アニール処理温度が850℃~1050℃であり、アニール処理時間が1秒以上、20秒以下の範囲内である。
Based on the evaluation results shown in the graphs of FIGS. 4 and 5, when manufacturing the contact combustion type hydrogen gas sensor, the annealing treatment time is 20 seconds or more in order to alleviate the stress remaining inside the Pt wire. It is preferably within the range of seconds or less, and more preferably within the range of 3 seconds or more and 10 seconds or less. This is because if the annealing treatment time is less than 1 second, recrystallization has not progressed, and if the annealing treatment time exceeds 20 seconds, the grain growth has progressed too much and the resistance is increased, and the crystal interface is displaced. This is because slippage is likely to occur and the strength of the Pt wire may decrease.
In the evaluation results shown in the graphs of FIGS. 4 and 5, when the annealing treatment temperature is in the range of 850 ° C. to 1050 ° C., the annealing treatment time of about 5 seconds is considered to be the optimum time for obtaining a preferable crystal structure. However, when considering the manufacturing margin (variation in annealing treatment, etc.), the annealing treatment time is preferably about 5 seconds or more and 10 seconds or less. The annealing treatment temperature for relaxing the stress remaining inside the Pt wire is preferably 850 ° C. or higher and 1050 ° C. or lower. When the annealing treatment temperature is 700 ° C., the energy required to proceed with recrystallization cannot be obtained, and the residual stress or the like cannot be sufficiently relieved.
Summarizing the above, as described above, the preferred annealing conditions for the Pt wire are an annealing temperature of 850 ° C to 1050 ° C, and an annealing time in the range of 1 second or more and 20 seconds or less.

[アニール処理時間と高濃度水素暴露後のセンサ出力の変動値との関係]
図6は、アニール処理温度と高濃度水素暴露前後の検知素子の動作抵抗値との関係を示すグラフである。なお、高濃度水素暴露条件としては、純水素ガスを検知素子に5秒間吹き付ける操作を3回繰り返した。
[Relationship between annealing treatment time and fluctuation value of sensor output after exposure to high-concentration hydrogen]
FIG. 6 is a graph showing the relationship between the annealing treatment temperature and the operating resistance value of the detection element before and after exposure to high-concentration hydrogen. As a high-concentration hydrogen exposure condition, the operation of spraying pure hydrogen gas on the detection element for 5 seconds was repeated three times.

各アニール処理温度で10秒間アニールした各検知素子に上記条件で高濃度水素を暴露し、その前後の空気中のセンサ出力(ゼロ点)の変化量を比較した結果、アニール処理条件が700℃-10sec.の検知素子は高濃度水素暴露後に検知素子の抵抗値が低下するが、アニール処理温度800℃以上(アニール処理時間は10sec.)であれば高濃度水素暴露後もほとんど変化しない(検知素子が高温に曝されても検知素子の抵抗値が変化しない)ことが確認された。故に、検知素子に800℃以上の高温を予め経験させておけば、それ以降、例えば使用時に高濃度水素中に曝された場合でも検知素子の抵抗値は変化せず、水素検知精度に影響しないことが確認できた。 High-concentration hydrogen was exposed to each detection element annealed for 10 seconds at each annealing treatment temperature under the above conditions, and the amount of change in the sensor output (zero point) in the air before and after that was compared. 10 sec. The resistance value of the detection element decreases after exposure to high-concentration hydrogen, but if the annealing treatment temperature is 800 ° C or higher (annealing time is 10 sec.), There is almost no change even after exposure to high-concentration hydrogen (the detection element has a high temperature). It was confirmed that the resistance value of the detection element does not change even when exposed to. Therefore, if the detection element is exposed to a high temperature of 800 ° C. or higher in advance, the resistance value of the detection element does not change even when exposed to high-concentration hydrogen during use, and the hydrogen detection accuracy is not affected. I was able to confirm that.

本発明が解決しようとする課題は、接触燃焼式水素ガスセンサを使用中に高濃度の水素暴露などの外的環境要因によって素子抵抗値が低下してしまう(検知精度が低下する)ことがないように、予め検知素子(Pt線)の抵抗値を安定化することにある。これを解決するには、Pt線内の結晶状態を安定化(再結晶化)すればよく、図5に示すように、例えばアニール処理温度1000℃においては4秒間程度アニールすればよいことがわかる。なお、高温で長時間のアニール処理を行った場合は、Pt線の粒成長が促進されてしまい、結晶界面にすべり面が生じて断線のリスクが高まるので処理時間と処理温度は適正に管理する必要がある。 The problem to be solved by the present invention is to prevent the element resistance value from decreasing (detection accuracy decreases) due to external environmental factors such as high-concentration hydrogen exposure while using the contact combustion type hydrogen gas sensor. The purpose is to stabilize the resistance value of the detection element (Pt wire) in advance. In order to solve this, it is sufficient to stabilize (recrystallize) the crystal state in the Pt wire, and as shown in FIG. 5, it can be seen that annealing is performed for about 4 seconds at, for example, an annealing treatment temperature of 1000 ° C. .. If the annealing treatment is performed at a high temperature for a long time, the grain growth of the Pt wire is promoted, a slip surface is generated at the crystal interface, and the risk of disconnection increases. Therefore, the treatment time and the treatment temperature are appropriately controlled. There is a need.

[Pt線断面のEBSD法による解析]
図7に各アニール処理温度の検出素子断面のPt線部分をEBSD法で解析した結果(KAM,GOS)を示す。
ここで、EBSD法による解析とは、金属等の結晶性材料における局所領域の結晶方位や結晶構造の解析を走査電子顕微鏡(SEM:Scanning Electron Microscope)による電子線後方散乱解析法(EBSD:Electron BackScattered Diffraction)法を用いて行うものである。解析方法としては、上述した検知素子1の製造方法により各アニール処理温度(アニール処理時間は10sec.)でアニール処理された検出素子をそれぞれ製造し、その担体部に覆われたコイル部分であるコイル部を、コイル部の軸心方向に沿って切断し、その切断面の一つについてEBSD法による解析を行った。測定条件は、加速電圧:15kV、測定間隔:1μm、測定領域(Pt線の直径):20μmで行った。
[Analysis of Pt line cross section by EBSD method]
FIG. 7 shows the results (KAM, GOS) of analyzing the Pt line portion of the cross section of the detection element of each annealing treatment temperature by the EBSD method.
Here, the analysis by the EBSD method is an electron backscatter diffraction method (EBSD: Electron Backscattered) using a scanning electron microscope (SEM) for analysis of the crystal orientation and crystal structure of a local region in a crystalline material such as a metal. It is performed by using the Diffraction) method. As an analysis method, a detection element that has been annealed at each annealing treatment temperature (annealing time is 10 sec.) Is manufactured by the above-mentioned manufacturing method of the detection element 1, and a coil that is a coil portion covered with a carrier portion thereof is manufactured. The portion was cut along the axial direction of the coil portion, and one of the cut surfaces was analyzed by the EBSD method. The measurement conditions were an acceleration voltage of 15 kV, a measurement interval of 1 μm, and a measurement region (Pt wire diameter): 20 μm.

また、EBSD法によれば、局所方位差平均(KAM:Kernel Averaged Misorientation)及び結晶粒方位分散(GOS:Grain Orientation Spread)の各値を測定することができる。KAMは、EBSDで得られた画像情報から注目するピクセルと隣接ピクセルとの方位差の平均の値であり、微小領域の塑性ひずみ勾配を表す指標として用いられる。GOSは、結晶方位差を表す指標であり、結晶粒子内の全域における方位差の平均値を示す。GOSはEBSD法を用いてPt線断面の結晶方位を測定して得られる歪の大きさを表す指標ともなり得る。 Further, according to the EBSD method, each value of the local orientation difference average (KAM: Kernel Orientation Measurement) and the crystal grain orientation dispersion (GOS: Grain Orientation Spread) can be measured. KAM is an average value of the orientation difference between the pixel of interest and the adjacent pixel from the image information obtained by EBSD, and is used as an index showing the plastic strain gradient in a minute region. GOS is an index showing the crystal orientation difference, and shows the average value of the orientation difference in the entire area in the crystal particles. GOS can also be an index showing the magnitude of strain obtained by measuring the crystal orientation of the Pt line cross section using the EBSD method.

次に、EBSD解析で得られたKAM及びGOSの測定結果について説明する。 Next, the measurement results of KAM and GOS obtained by EBSD analysis will be described.

[局所方位差平均(KAM)と結晶粒方位分散(GOS)]
図7は、各アニール処理温度(アニール処理時間は10sec.)におけるPt線断面に基づいて測定された結果を元に、KAM及びGOSの解析結果を示したものである。KAM及びGOSの各アニール処理温度における解析結果は、図6中にも示しているが、図6中のKAM及びGOS数値をまとめたものが以下の表1になる。
[Local orientation difference average (KAM) and grain orientation dispersion (GOS)]
FIG. 7 shows the analysis results of KAM and GOS based on the results measured based on the Pt line cross section at each annealing treatment temperature (annealing treatment time is 10 sec.). The analysis results at each annealing treatment temperature of KAM and GOS are also shown in FIG. 6, and Table 1 below summarizes the KAM and GOS numerical values in FIG.

Figure 0007080848000002
Figure 0007080848000002

図8は、上記表1に示したKAMの測定結果をグラフ化したものである。KAMは微小領域の塑性ひずみ勾配を数値化したものであることから、KAMが小さくなる程、隣接する結晶間の塑性ひずみが解消されていることを示しており、1100℃(処理時間10sec.)のアニール処理では、極端に低下することから、KAMは粒成長の進行度合いを判断する指標となることがわかる。また、また700~1000℃のアニールでは、KAMは大差がないことから、700℃(処理時間10sec.)のアニールでも結晶方位が大きく異なるような塑性歪みは解消されていることがわかる。それ故、Pt線内部に極端な塑性歪みがない(解消されている)ことを判断する指標としてKAMを用いる場合、その数値は0.6~0.9の範囲にあることことが好ましい。 FIG. 8 is a graph of the measurement results of KAM shown in Table 1 above. Since KAM is a numerical value of the plastic strain gradient in a minute region, it is shown that the smaller the KAM, the more the plastic strain between adjacent crystals is eliminated, and the temperature is 1100 ° C. (treatment time: 10 sec.). It can be seen that KAM is an index for determining the degree of progress of grain growth because it is extremely lowered in the annealing treatment of. Further, since there is no big difference in KAM in the annealing at 700 to 1000 ° C., it can be seen that the plastic strain in which the crystal orientation is significantly different is eliminated even in the annealing at 700 ° C. (treatment time: 10 sec.). Therefore, when KAM is used as an index for determining that there is no (eliminate) extreme plastic strain inside the Pt line, the value is preferably in the range of 0.6 to 0.9.

一方、図9はGOSの測定結果をグラフ化したものである。GOSは結晶粒子内の全域における方位差の平均値であることから、観察したPt線断面全体の再結晶や粒成長の進行度合いを数値化したものといえる。すなわち、GOSが大きくなる程、再結晶や粒成長が進行していると判断できる。図4及び図5及び表1に示した結果とを合わせて考慮すると、図4及び図5には開示していないが、図9に示すアニール処理温度が1100℃(アニール処理時間10sec.)のようにGOSが2を超えたものは、粒成長が進み過ぎていると考えられるため、その場合は粒界に境界ができて高抵抗化するとともに結晶界面のずれやすべりが生じ易くなるため、Pt線の強度が低下するおそれがあり好ましくない。また、図4及び図5に開示された1050℃(アニール処理時間10sec.)のGOSは、図9に示すグラフから2.0近傍であると外挿することができる。すなわち、GOSの上限値としては、残留応力が緩和された結晶状態となる1050℃(アニール処理時間10sec.)に相当する2.0以下であることが好ましい。なお、GOSの測定値をみると700℃、800℃、900℃ではほとんど変化せず、同じような結晶状態であると考えられる。また、図9には開示されていないが、アニール処理温度が600℃(アニール処理時間10sec.)では理論上想定される活性エネルギーから考えて、再結晶や粒成長が進行することは考えられず、GOSは1.0よりも小さい値になると推定される。これらにより、GOSの下限値としては、残留応力が緩和された結晶状態となる1.0以上であること好ましい。
以上の結果により、Pt線は、Ptの結晶方位差を表す指標である結晶粒方位分散(GOS)が1.0~2.0であることが好ましい。
なお、上記EBSD法による解析では、容易に比較検討できるようにアニール処理時間を、10sec.と設定したが、再結晶や粒成長の進行は与えられる活性化エネルギーの大きさと関係があるため、アニール処理温度の高低とアニール処理時間の長短によって活性化エネルギーを制御することができる。具体的には、図4に示すようにアニール処理温度がアニール処理時間よりも再結晶や粒成長の進行に対する寄与度は高いといえる。また、アニール処理温度とアニール処理時間では、結晶の状態を直接的に表せないが、KAM及びGOSという指標を用いることで結晶状態を数値化できるため、結晶状態を定量的に判断できるという有利な効果を有している。
On the other hand, FIG. 9 is a graph of the measurement results of GOS. Since GOS is the average value of the orientation difference in the entire area of the crystal particles, it can be said that the degree of progress of recrystallization and grain growth of the entire observed Pt line cross section is quantified. That is, it can be determined that the larger the GOS, the more recrystallization and grain growth are progressing. Considering the results shown in FIGS. 4 and 5 and Table 1, the annealing treatment temperature shown in FIG. 9 is 1100 ° C. (annealing treatment time 10 sec.), Although not disclosed in FIGS. 4 and 5. As described above, when the GOS exceeds 2, it is considered that the grain growth has progressed too much. In that case, a boundary is formed at the grain boundary to increase the resistance, and the crystal interface is liable to shift or slip. It is not preferable because the strength of the Pt wire may decrease. Further, the GOS at 1050 ° C. (annealing time 10 sec.) Disclosed in FIGS. 4 and 5 can be extrapolated from the graph shown in FIG. 9 when it is in the vicinity of 2.0. That is, the upper limit of GOS is preferably 2.0 or less, which corresponds to 1050 ° C. (annealing time 10 sec.) In which the residual stress is relaxed and becomes a crystalline state. Looking at the measured values of GOS, it is considered that there is almost no change at 700 ° C., 800 ° C., and 900 ° C., and the crystal state is the same. Further, although not disclosed in FIG. 9, when the annealing treatment temperature is 600 ° C. (annealing treatment time 10 sec.), Recrystallization and grain growth are not considered to proceed in view of the theoretically assumed active energy. , GOS is estimated to be less than 1.0. As a result, the lower limit of GOS is preferably 1.0 or more, which is a crystalline state in which the residual stress is relaxed.
Based on the above results, it is preferable that the Pt line has a grain orientation dispersion (GOS) of 1.0 to 2.0, which is an index indicating the crystal orientation difference of Pt.
In the analysis by the EBSD method, the annealing treatment time was set to 10 sec. However, since the progress of recrystallization and grain growth is related to the magnitude of the applied activation energy, the activation energy can be controlled by the height of the annealing treatment temperature and the length of the annealing treatment time. Specifically, as shown in FIG. 4, it can be said that the annealing treatment temperature contributes more to the progress of recrystallization and grain growth than the annealing treatment time. Further, although the crystal state cannot be directly expressed by the annealing temperature and the annealing time, the crystal state can be quantified by using the indexes of KAM and GOS, which is advantageous in that the crystal state can be quantitatively determined. Has an effect.

[Pt結晶粒の粒子径分布]
図10は、EBSD法を用いて、各アニール処理温度(アニール処理時間は10sec.)におけるPt線断面を観察した時のPt結晶粒の粒子径分布の測定結果を示したものである。図8における左側の画像列は各アニール処理温度におけるPt線断面の粒子径分布を結晶の方位(向き)毎に色を分けて表示したものである。また、各粒子径分布に対応する右側の棒グラフは、粒子径分布の色分けに対応して粒度分布を表示したものである。当該粒度分布の棒グラフの縦軸が、Pt線断面積に占めるPt粒子の面積率(Area Fraction)であり、横軸が粒子径(Grain Size[μm])である。各アニール処理温度におけるPt線断面の粒度分布を比較すると、アニール処理温度が700℃~1000℃においては、Pt粒子の最小粒子径である粒子径0.5μmから粒子径5.0μmを合わせた粒度分布が全体の70%以上を占めている。一方、アニール処理温度が1100℃においては、Pt粒子の最小粒子径である粒子径0.5μmから粒子径5.0μmの粒子の面積率が非常に少ないが、粒子径18μm近傍の粒子の面積率が80%を超えている。この場合、粒成長がかなり進んだものと考えられる。粒成長が進んだものは、粒界に境界ができて高抵抗化するとともに結晶界面のずれやすべりが生じ易くなるため、Pt線の強度が低下するおそれがあり、センサを構成する場合に好ましくない。このため、Pt線断面を観察した時のPt結晶粒の粒子径分布に占める粒子径が0.5~5μmの割合が全体の70%以上であることが好ましい。
[Particle size distribution of Pt crystal grains]
FIG. 10 shows the measurement results of the particle size distribution of Pt crystal grains when observing the Pt line cross section at each annealing treatment temperature (annealing treatment time is 10 sec.) Using the EBSD method. The image column on the left side in FIG. 8 shows the particle size distribution of the Pt line cross section at each annealing treatment temperature in different colors for each crystal orientation (orientation). The bar graph on the right side corresponding to each particle size distribution shows the particle size distribution corresponding to the color coding of the particle size distribution. The vertical axis of the bar graph of the particle size distribution is the area ratio (Area Fraction) of the Pt particles in the Pt line cross-sectional area, and the horizontal axis is the particle size (Grain Size [μm]). Comparing the particle size distributions of the Pt line cross sections at each annealing treatment temperature, when the annealing treatment temperature is 700 ° C to 1000 ° C, the particle size is the sum of the particle size of 0.5 μm, which is the minimum particle size of Pt particles, and the particle size of 5.0 μm. The distribution accounts for more than 70% of the total. On the other hand, when the annealing treatment temperature is 1100 ° C., the area ratio of the particles having a particle size of 0.5 μm to 5.0 μm, which is the minimum particle size of the Pt particles, is very small, but the area ratio of the particles in the vicinity of the particle size of 18 μm is very small. Is over 80%. In this case, it is considered that the grain growth has progressed considerably. If the grain growth is advanced, a boundary is formed at the grain boundary to increase the resistance, and the crystal interface is liable to shift or slip, so that the strength of the Pt wire may decrease, which is preferable when constructing a sensor. do not have. Therefore, it is preferable that the ratio of the particle size to the particle size distribution of the Pt crystal grains when observing the Pt line cross section is 0.5 to 5 μm is 70% or more of the whole.

以上のように、本実施形態の接触燃焼式水素ガスセンサ100は、センサの製造段階で、Pt線をコイルとして有する検知素子1に高温を経験させるアニール処理を行うことでPt線11内部結晶方位を再配列させ、加工応力を解消することができるため、使用時(例えば、高濃度水素ガスにさらされた際の高温時)の検知素子1の抵抗値が変化することを抑制することができる。また、そのようにアニール処理されたPt線11は、塑性歪みや結晶粒界近傍の欠陥、および粒界毎の不均一な分布状態の大きさを表す指標である局所方位差平均(KAM:Kernel Averaged Misorientation)が0.6~0.9の範囲内であること、あるいは結晶方位差を表す指標である結晶粒方位分散(GOS:Grain Orientation Spread)が1.0~2.0の範囲内であることを本願発明者が見出したものである。KAM及びGOSのような指標を上述した接触燃焼式水素ガスセンサ100の製造方法における検知素子1のアニール処理工程に適用することで、本願発明の効果を奏する接触燃焼式水素ガスセンサ100を提供することができる。 As described above, in the contact combustion type hydrogen gas sensor 100 of the present embodiment, the internal crystal orientation of the Pt wire 11 is determined by subjecting the detection element 1 having the Pt wire as a coil to an annealing process at the sensor manufacturing stage. Since it can be rearranged and the machining stress can be eliminated, it is possible to suppress the change in the resistance value of the detection element 1 during use (for example, at a high temperature when exposed to high-concentration hydrogen gas). Further, the Pt wire 11 thus annealed is a local azimuth difference average (KAM: Kernel) which is an index showing the magnitude of plastic strain, defects in the vicinity of crystal grain boundaries, and non-uniform distribution state at each grain boundary. The Averaged Missionation) is in the range of 0.6 to 0.9, or the grain orientation dispersion (GOS), which is an index indicating the crystal orientation difference, is in the range of 1.0 to 2.0. The inventor of the present application has found that there is. By applying an index such as KAM and GOS to the annealing process of the detection element 1 in the above-mentioned manufacturing method of the contact combustion type hydrogen gas sensor 100, it is possible to provide the contact combustion type hydrogen gas sensor 100 which exhibits the effect of the present invention. can.

以上のように、本実施形態に係る接触燃焼式水素ガスセンサ100によれば、センサ使用時に高濃度水素中にさらされて高温になる場合でも応力緩和による抵抗値の変化を抑えることができる。これにより、水素ガス検知精度が向上した接触燃焼式水素ガスセンサ100を実現することができる。 As described above, according to the contact combustion type hydrogen gas sensor 100 according to the present embodiment, it is possible to suppress the change in the resistance value due to stress relaxation even when the sensor is exposed to high-concentration hydrogen and becomes high in temperature. This makes it possible to realize a contact combustion type hydrogen gas sensor 100 with improved hydrogen gas detection accuracy.

また、本実施形態に係る接触燃焼式水素ガスセンサ100は、例えば、FCV等の燃料電池を搭載した車両(乗用車、トラック、作業車両等)、船舶、航空機、電車、及び移動型ロボット等に搭載可能であり、燃料電池から漏れる水素ガスを検知することができる。 Further, the contact combustion type hydrogen gas sensor 100 according to the present embodiment can be mounted on, for example, a vehicle (passenger vehicle, truck, work vehicle, etc.) equipped with a fuel cell such as FCV, a ship, an aircraft, a train, a mobile robot, or the like. Therefore, hydrogen gas leaking from the fuel cell can be detected.

本発明は、水素ガスの燃焼熱に応じて抵抗値が変化する検知素子を備えた接触燃焼式水素ガスセンサに利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for a contact combustion type hydrogen gas sensor provided with a detection element whose resistance value changes according to the combustion heat of hydrogen gas.

1 検知素子
2 補償素子
11 Pt線
11a コイル部
12 担体部
100 接触燃焼式水素ガスセンサ
1 Detection element 2 Compensation element 11 Pt wire 11a Coil part 12 Carrier part 100 Contact combustion type hydrogen gas sensor

Claims (7)

水素ガスを検知する接触燃焼式水素ガスセンサであって、
コイル状のPt線と前記Pt線を覆う担体部とを有する検知素子を備え、
前記Pt線は、Ptの結晶粒全体の方位差と変形量を表す指標である結晶粒方位分散(GOS:Grain Orientation Spread)が1.0~2.0である接触燃焼式水素ガスセンサ。
It is a contact combustion type hydrogen gas sensor that detects hydrogen gas.
A detection element having a coiled Pt wire and a carrier portion covering the Pt wire is provided.
The Pt line is a contact combustion type hydrogen gas sensor having a crystal grain orientation dispersion (GOS: Grain Orientation Spread) of 1.0 to 2.0, which is an index showing the orientation difference and the amount of deformation of the entire crystal grain of Pt.
前記Pt線は、Ptの塑性ひずみや結晶粒界近傍の欠陥、および粒界毎の不均一な分布状態を表す指標であるKAM(Kernel Averaged Misorientation)が0.6~0.9である請求項1に記載の接触燃焼式水素ガスセンサ。 A claim that the Pt line has a KAM (Kernel Averaged Missionation) of 0.6 to 0.9, which is an index showing the plastic strain of Pt, defects near the grain boundaries, and a non-uniform distribution state at each grain boundary. The contact combustion type hydrogen gas sensor according to 1. 前記Pt線断面を観察した時のPt結晶粒の粒子径分布に占める粒子径が0.5~5μmの割合が全体の70%以上である請求項1または請求項2に記載の接触燃焼式水素ガスセンサ。 The contact combustion hydrogen according to claim 1 or 2, wherein the ratio of the particle size of the Pt crystal grains to the particle size distribution when observing the Pt line cross section is 70% or more of the whole. Gas sensor. 前記検知素子は、前記Pt線に電流を流すことで加熱され、その加熱温度と加熱時間を制御することで前記Pt線がアニール処理される請求項1~3の何れか一項に記載の接触燃焼式水素ガスセンサ。 The contact according to any one of claims 1 to 3, wherein the detection element is heated by passing an electric current through the Pt wire, and the Pt wire is annealed by controlling the heating temperature and the heating time. Combustion type hydrogen gas sensor. 請求項1~4の何れか一項に記載の接触燃焼式水素ガスセンサであって、
前記接触燃焼式水素ガスセンサは、車載用である接触燃焼式水素ガスセンサ。
The contact combustion type hydrogen gas sensor according to any one of claims 1 to 4.
The contact combustion type hydrogen gas sensor is a contact combustion type hydrogen gas sensor for vehicles.
コイル状のPt線と前記Pt線を覆う担体部とを有する検知素子を備える接触燃焼式水素ガスセンサの製造方法であって、
前記Pt線に電流を流すことで加熱して、前記Pt線をアニール処理し、
前記アニール処理後のPt線は、Ptの結晶方位差を表す指標である結晶粒方位分散(GOS:Grain Orientation Spread)が1.0~2.0である接触燃焼式水素ガスセンサの製造方法。
A method for manufacturing a contact combustion type hydrogen gas sensor including a detection element having a coiled Pt wire and a carrier portion covering the Pt wire.
The Pt wire is heated by passing an electric current through the Pt wire to anneal the Pt wire.
The Pt wire after the annealing treatment is a method for manufacturing a contact combustion type hydrogen gas sensor in which the grain orientation dispersion (GOS: Grain Orientation Spread), which is an index indicating the crystal orientation difference of Pt, is 1.0 to 2.0.
前記アニール処理後のPt線は、Ptの塑性ひずみや結晶粒界近傍の欠陥、および粒界毎の不均一な分布状態を表す指標であるKAM(Kernel Averaged Misorientation)が0.6~0.9である請求項6に記載の接触燃焼式水素ガスセンサの製造方法。 The Pt wire after the annealing treatment has a KAM (Kernel Used Missionation) of 0.6 to 0.9, which is an index showing the plastic strain of Pt, defects near the grain boundaries, and a non-uniform distribution state at each grain boundary. The method for manufacturing a contact combustion type hydrogen gas sensor according to claim 6.
JP2019081325A 2019-04-22 2019-04-22 Manufacturing method of contact combustion type hydrogen gas sensor and contact combustion type hydrogen gas sensor Active JP7080848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019081325A JP7080848B2 (en) 2019-04-22 2019-04-22 Manufacturing method of contact combustion type hydrogen gas sensor and contact combustion type hydrogen gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019081325A JP7080848B2 (en) 2019-04-22 2019-04-22 Manufacturing method of contact combustion type hydrogen gas sensor and contact combustion type hydrogen gas sensor

Publications (2)

Publication Number Publication Date
JP2020176991A JP2020176991A (en) 2020-10-29
JP7080848B2 true JP7080848B2 (en) 2022-06-06

Family

ID=72936737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019081325A Active JP7080848B2 (en) 2019-04-22 2019-04-22 Manufacturing method of contact combustion type hydrogen gas sensor and contact combustion type hydrogen gas sensor

Country Status (1)

Country Link
JP (1) JP7080848B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020002865A1 (en) 2000-02-10 2002-01-10 Mukul Kumar Intergranular degradation assessment via random grain boundary network analysis
JP2007294870A (en) 2006-03-30 2007-11-08 Mitsui Mining & Smelting Co Ltd Thin-film sensor, thin-film sensor module, and method for manufacturing the thin-film sensor
JP2008249494A (en) 2007-03-30 2008-10-16 Fis Inc Hydrogen gas sensor
JP2015214015A (en) 2014-04-23 2015-12-03 三菱マテリアル株式会社 Surface-coated cutting tool of which hard coating layer exhibit superior chipping resistance
JP2018070908A (en) 2016-10-24 2018-05-10 Dowaメタルテック株式会社 Cu-Zr-Sn-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD AND CONDUCTIVE MEMBER

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687021B2 (en) * 1988-10-29 1994-11-02 日本碍子株式会社 Manufacturing method of detection element
JP3696310B2 (en) * 1994-12-01 2005-09-14 財団法人電気磁気材料研究所 Electrical resistance alloy having large temperature coefficient of resistance, manufacturing method thereof and sensor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020002865A1 (en) 2000-02-10 2002-01-10 Mukul Kumar Intergranular degradation assessment via random grain boundary network analysis
JP2007294870A (en) 2006-03-30 2007-11-08 Mitsui Mining & Smelting Co Ltd Thin-film sensor, thin-film sensor module, and method for manufacturing the thin-film sensor
JP2008249494A (en) 2007-03-30 2008-10-16 Fis Inc Hydrogen gas sensor
JP2015214015A (en) 2014-04-23 2015-12-03 三菱マテリアル株式会社 Surface-coated cutting tool of which hard coating layer exhibit superior chipping resistance
JP2018070908A (en) 2016-10-24 2018-05-10 Dowaメタルテック株式会社 Cu-Zr-Sn-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD AND CONDUCTIVE MEMBER

Also Published As

Publication number Publication date
JP2020176991A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP4580405B2 (en) Hydrogen gas sensor
Delville et al. Microstructure changes during non-conventional heat treatment of thin Ni–Ti wires by pulsed electric current studied by transmission electron microscopy
US20090035184A1 (en) Hydrogen gas sensor
WO2008105966A2 (en) High temperature thermocouple design and fabrication
US9683959B2 (en) Method for setting temperature rise profile of sensor element of gas sensor
JP7080848B2 (en) Manufacturing method of contact combustion type hydrogen gas sensor and contact combustion type hydrogen gas sensor
Kim et al. Temperature effect on the creep behavior of alloy 617 in air and helium environments
JP6472168B2 (en) Contact combustion type gas sensor
US20180252595A1 (en) Temperature sensor
US20120018413A1 (en) Method of heat treatment and/or inspection of functional mechanical properties, particularly transformation strain and/or strength, of shape memory alloy filaments and apparatus for the application of this method
Bíró et al. The critical impact of temperature gradients on Pt filament failure
JPH08122159A (en) Test piece temperature controller of ultra-high-temperature strength testing machine
RU2538419C1 (en) Method of determination of ultimate tensile strength of dielectric materials during induction heat
JP5203025B2 (en) Heating device and hydrogen analyzer using the same
Khammass Hussein Analysis and optimization of resistance spot welding parameter of dissimilar metals mild steel and aluminum using design of experiment method
US10989607B2 (en) Thermocouple
JP6849343B2 (en) Gas sensor recovery processing method
Gabb et al. Fatigue failure modes of the grain size transition zone in a dual microstructure disk
JP4146766B2 (en) Ceramic heater
TWI752075B (en) Thermocouple and method for reducing drift of thermocouple
Echsler et al. Oxidation behaviour of Fe‐Cr‐Al alloys during resistance and furnace heating
EP3376215B1 (en) Method of removing oil from an assebly including a gas sensor
JP2017156270A (en) Surface composition discrimination method of steel plate, surface composition discrimination device, manufacturing method, and manufacturing apparatus
Ferree et al. Evaluation of Thermocouples Embedded Using Additive Manufacturing
US8153187B2 (en) Method for oxidising a thermocouple sheath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220525

R150 Certificate of patent or registration of utility model

Ref document number: 7080848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150