JP7080483B2 - Variable magnification imaging optical system - Google Patents

Variable magnification imaging optical system Download PDF

Info

Publication number
JP7080483B2
JP7080483B2 JP2018144102A JP2018144102A JP7080483B2 JP 7080483 B2 JP7080483 B2 JP 7080483B2 JP 2018144102 A JP2018144102 A JP 2018144102A JP 2018144102 A JP2018144102 A JP 2018144102A JP 7080483 B2 JP7080483 B2 JP 7080483B2
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
group
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018144102A
Other languages
Japanese (ja)
Other versions
JP2020020948A (en
JP2020020948A5 (en
Inventor
典行 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2018144102A priority Critical patent/JP7080483B2/en
Publication of JP2020020948A publication Critical patent/JP2020020948A/en
Publication of JP2020020948A5 publication Critical patent/JP2020020948A5/ja
Application granted granted Critical
Publication of JP7080483B2 publication Critical patent/JP7080483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、スチルカメラ、ビデオカメラ等に用いられる変倍結像光学系に関し、特に望遠端の画角が狭く、変倍率が大きく、更に防振機能を備えた変倍結像光学系に関するものである。 The present invention relates to a variable magnification imaging optical system used in a still camera, a video camera, etc., and particularly to a variable magnification imaging optical system having a narrow angle of view at the telephoto end, a large variable magnification, and an anti-vibration function. Is.

デジタルスチルカメラ等に用いられる結像光学系への防振機能の搭載が進んでおり、超望遠レンズを用いた写真撮影でも手振れによる失敗を減少させることが可能となってきた。これによって超望遠での撮影がより身近なものとなり、超望遠レンズの需要が増している。超望遠レンズ需要の増大に伴いより多くの被写体に対応できる大きな変倍比が求められ、また近年のデジタルカメラの画素数増加やローパスフィルタレス化に伴い結像性能の向上も求められている。 Anti-vibration functions are being increasingly installed in imaging optical systems used in digital still cameras and the like, and it has become possible to reduce failures due to camera shake even when taking photographs using a super-telephoto lens. This makes shooting at super-telephoto more familiar, and the demand for super-telephoto lenses is increasing. With the increase in demand for super-telephoto lenses, a large magnification ratio that can handle more subjects is required, and with the recent increase in the number of pixels of digital cameras and the shift to low-pass filters, improvement in imaging performance is also required.

特許文献1乃至2は、望遠端における半画角が2.5度程度乃至それ以下となる変倍比の大きな、防振機能を備えた変倍結像光学系の例が記載されている。 Patent Documents 1 and 2 describe an example of a variable magnification imaging optical system having a vibration-proof function and having a large scaling ratio of about 2.5 degrees or less at a half angle of view at the telephoto end.

特開2011-39260号公報Japanese Unexamined Patent Publication No. 2011-39260 特開2016-142795号公報Japanese Unexamined Patent Publication No. 2016-142795

望遠端の画角が狭い超望遠の光学系においては、焦点距離がイメージャ対角長に対して長くなり、これに伴って光学系全長が大きくなる傾向がある。このため、全長の小型化が課題になる。全長の小型化のために望遠型の屈折力配置を強めて後方のレンズ群の結像倍率を大きくすると、必然的に前群の諸元の変化に対して光線到達位置の変化が大きくなる。このため全系の設計値での収差補正が難しくなるほか、製造誤差による収差変動も大きく、製品の光学性能を担保することが難しい。 In a super-telephoto optical system with a narrow angle of view at the telephoto end, the focal length tends to be longer with respect to the diagonal length of the imager, and the total length of the optical system tends to increase accordingly. Therefore, miniaturization of the total length becomes an issue. If the telephoto type refractive power arrangement is strengthened to increase the image magnification of the rear lens group in order to reduce the overall length, the change in the ray arrival position inevitably becomes large with respect to the change in the specifications of the front group. For this reason, it is difficult to correct aberrations based on the design values of the entire system, and aberration fluctuations due to manufacturing errors are large, making it difficult to guarantee the optical performance of the product.

さらに超望遠の光学系において変倍比を大きくしようとすると、広角端と望遠端で後群倍率の変化が著しく、製造誤差に対する収差変動も異なる。高倍率の変倍結像光学系では変倍の全域で良好な光学性能を得るため全系を4以上の群から構成し、各群の移動軌跡を最適化する手法をとることが多い。ここで全系を構成する各群の広角端および望遠端での製造誤差に対する収差変動感度の関係は一定ではなく、製造誤差を含む実際の製品において望遠端の性能が良好であればすなわち広角端の性能も良好である、とは限らない。上記の通り、超望遠かつ高変倍比の変倍結像光学系においては、設計性能および製造誤差感度の双方の観点から、製品の変倍域全域にわたる性能の担保が困難である。 Furthermore, when an attempt is made to increase the magnification ratio in a super-telephoto optical system, the rear group magnification changes significantly between the wide-angle end and the telephoto end, and the aberration fluctuation due to manufacturing error also differs. In high-magnification variable-magnification imaging optical systems, in order to obtain good optical performance over the entire range of variable magnification, the entire system is often composed of four or more groups, and a method of optimizing the movement trajectory of each group is often used. Here, the relationship between the aberration fluctuation sensitivity and the manufacturing error at the wide-angle end and the telephoto end of each group constituting the entire system is not constant, and if the performance of the telephoto end is good in the actual product including the manufacturing error, that is, the wide-angle end. Performance is not always good. As described above, in a super-telephoto and high-magnification ratio variable-magnification imaging optical system, it is difficult to guarantee the performance over the entire variable-magnification range of the product from the viewpoints of both design performance and manufacturing error sensitivity.

引用文献1に記載の高変倍比ズームレンズは、高い変倍比と、十分なレベルの収差補正を達成しているが、この手段としてズーム時に移動する群が7つと多いため誤差要素も多い。特に第4レンズ群から第6レンズ群は、光軸に対するティルトやシフトに伴うコマ収差および像面ティルトの感度が大きく、製造誤差を考慮した上での性能の期待値が低く、近年の要求水準を満足しない。各群の各種収差への感度は、群ごと、焦点距離域、偏芯の種類によって異なるため、偏芯調整を考慮しても変倍の全域で良好な性能を達成することが難しい。 The high magnification ratio zoom lens described in Cited Document 1 achieves a high magnification ratio and a sufficient level of aberration correction, but as a means of this, there are many error factors because there are as many as seven groups that move during zooming. .. In particular, the 4th to 6th lens groups have high sensitivity of coma aberration and image plane tilt due to tilt and shift with respect to the optical axis, and the expected value of performance in consideration of manufacturing error is low, which is a required level in recent years. Not satisfied. Since the sensitivity of each group to various aberrations differs depending on the group, focal length range, and type of eccentricity, it is difficult to achieve good performance over the entire range of magnification even when eccentricity adjustment is taken into consideration.

引用文献2に記載のズームレンズは、非常に高い変倍比を達成している。しかしながら、特に第1レンズ群単体での望遠端におけるコマ収差の発生が顕著に大きい。第1レンズ群は径が大きくて重量が重く、かつ変倍に伴う移動量が大きいため、望遠端における第1レンズ群の偏芯の変動の抑制が困難で望遠端で偏芯コマ収差が発生しやすい。偏芯コマ収差は画面全域にわたって一様な方向のフレアを生じるため結像性能を著しく劣化させる。このため、当該文献記載のズームレンズでは製造時の結像性能の担保が困難である。 The zoom lens described in Cited Document 2 achieves a very high magnification ratio. However, the occurrence of coma aberration is remarkably large especially at the telephoto end of the first lens group alone. Since the first lens group has a large diameter and is heavy, and the amount of movement due to scaling is large, it is difficult to suppress the fluctuation of the eccentricity of the first lens group at the telephoto end, and eccentric coma aberration occurs at the telephoto end. It's easy to do. Eccentric coma causes flare in a uniform direction over the entire screen, which significantly deteriorates imaging performance. Therefore, it is difficult to guarantee the imaging performance at the time of manufacture with the zoom lens described in the document.

本発明はこのような状況に鑑みて成されたものであり、小型であり製造時に作業性が良く光学性能調整が可能であり、変倍の全域において良好な光学性能と防振性能とを有する超望遠域を含む高変倍比の防振機能を備えた変倍結像光学系を提供することを目的とする。 The present invention has been made in view of such a situation, is small in size, has good workability at the time of manufacturing, can adjust optical performance, and has good optical performance and anti-vibration performance in the entire range of magnification change. It is an object of the present invention to provide a variable magnification imaging optical system having a vibration isolation function having a high variable magnification ratio including a super-telephoto range.

前述の課題を解決するための第1の発明は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成され、開口絞りSは前記第4レンズ群G4の内部あるいは近傍に配置され、広角端から望遠端への変倍に際し、各レンズ群の間の空気間隔が変化し、前記第1レンズ群G1は物体側へ移動し、前記第2レンズ群G2は像側へ移動し、前記第3レンズ群G3は変倍及び合焦に際して像面に対して移動せず、前記第3レンズ群G3は物体側より順に正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、前記G3b群を光軸と直する方向に変位させることによって防振を行い、前記第1レンズ群G1は負レンズL1と正レンズL2とからなる接合レンズ、および正レンズL3から構成され、下記の条件式を満足することを特徴とする変倍結像光学系
(1)0.30<f1/ft<0.55
(2)8.2<|ft/f2|<10.7
(3)-0.85<{(n2-n1)/r2}/{(n1-1)/r1}<-0.50
(4)0.50<r3/bf1<2.00
fi:前記第iレンズ群の合成焦点距離
ft:望遠端かつ無限遠合焦状態における光学系全系の合成焦点距離
ri:光学系の物体側から第i番目の光学面の曲率半径
ni:光学系の物体側から第i番目と第i+1番目の光学面の間の媒質のd線(波長587.56nm)屈折率
bf1:前記負レンズL
The first invention for solving the above-mentioned problems is to obtain a first lens group G1 having a positive refractive force, a second lens group G2 having a negative refractive force, and a negative refractive force in order from the object side. It is composed of a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power. The aperture aperture S is arranged inside or near the fourth lens group G4, and when scaling from the wide-angle end to the telephoto end, the air spacing between the lens groups changes, and the first lens group G1 is on the object side. The second lens group G2 moves to the image side, the third lens group G3 does not move with respect to the image plane during scaling and focusing, and the third lens group G3 moves in order from the object side. It is composed of a third lens group front group G3a having a positive refractive force and a third lens group rear group G3b having a negative refractive force, and vibration isolation is provided by shifting the G3b group in a direction orthogonal to the optical axis. The first lens group G1 is composed of a junction lens composed of a negative lens L1 and a positive lens L2, and a positive lens L3, and is characterized by satisfying the following conditional expression (1). ) 0.30 <f1 / ft <0.55
(2) 8.2 << | ft / f2 | <10.7
(3) -0.85 <{(n2-n1) / r2} / {(n1-1) / r1} <-0.50
(4) 0.50 <r3 / bf1 <2.00
fi: Synthetic focal length of the i-th lens group ft: Synthetic focal length of the entire optical system in the telephoto end and infinite focus state ri: Radius of curvature of the i-th optical surface of the optical system from the object side ni: Optical The d-line (focal length 587.56 nm) refractive index of the medium between the i-th and i + 1-th optical planes from the object side of the system bf1: The negative lens L

第2の発明は、下記条件式を満足することを特徴とする第1の発明に記載の変倍結像光学系
(5)0.30<ht/r2<0.45
ht:望遠端かつ無限遠合焦状態における入射瞳の半径
ri:光学系の物体側から第i番目の光学面の曲率半径
The second invention is the variable magnification imaging optical system according to the first invention, which satisfies the following conditional expression (5) 0.30 <ht / r2 <0.45.
ht: Radius of the entrance pupil at the telephoto end and in the in-focus state at infinity ri: Radius of curvature of the i-th optical surface from the object side of the optical system

第3の発明は、下記条件式を満足することを特徴とする第1の発明又は第2の発明に記載の変倍結像光学系
(6)8.50<ft/fw
(7)0.55<LT/ft<0.85
ft:望遠端かつ無限遠合焦状態における光学系全系の合成焦点距離
fw:広角端かつ無限遠合焦状態における光学系全系の合成焦点距離
LT:望遠端かつ無限遠合焦状態における光学系の最も物体側の光学面から像までの長さ
The third invention is the variable magnification imaging optical system according to the first invention or the second invention, which satisfies the following conditional expression (6) 8.50 <ft / fw.
(7) 0.55 <LT / ft <0.85
ft: Synthetic focal length of the entire optical system in the telephoto end and infinity focus state fw: Synthetic focal length of the entire optical system in the wide-angle end and infinity focus state LT: Optical in the telephoto end and infinity focus state The length from the optical plane on the most object side of the system to the image

第4の発明は、前記第2レンズ群G2は、少なくとも1枚ずつの正レンズと負レンズを有することを特徴とする第1の発明乃至第3の発明のいずれかに記載の変倍結像光学系 A fourth aspect of the invention is the variable magnification imaging according to any one of the first to third inventions, wherein the second lens group G2 has at least one positive lens and one negative lens. Optical system

第5の発明は、無限遠方から近距離への合焦に際して、前記第5レンズ群G5と前記第6レンズ群G6の群間隔が変化することを特徴とする第1の発明乃至第4の発明のいずれかに記載の変倍結像光学系 The fifth aspect of the invention is the first to fourth inventions, characterized in that the group spacing between the fifth lens group G5 and the sixth lens group G6 changes when focusing from an infinite distance to a short distance. The variable magnification imaging optical system described in any of the above.

第6の発明は、下記条件式を満足することを特徴とする第5の発明に記載の変倍結像光学系
(8)2.0<β6<4.0
β6:前記第6レンズ群G6の望遠端かつ無限遠合焦状態における結像倍率
The sixth invention is the variable magnification imaging optical system (8) 2.0 <β6 <4.0 according to the fifth invention, which satisfies the following conditional expression.
β6: Imaging magnification of the sixth lens group G6 at the telephoto end and in infinity in focus.

第7の発明は、無限遠方から近距離への合焦に際して、前記第6レンズ群G6が移動することを特徴とする第5の発明又は第6の発明に記載の変倍結像光学系 The seventh invention is the variable magnification imaging optical system according to the fifth invention or the sixth invention, wherein the sixth lens group G6 moves when focusing from an infinite distance to a short distance.

第8の発明は、下記の条件式を満足することを特徴とする第1の発明乃至第7の発明のいずれかに記載の変倍結像光学系
(9)2.5<f3/f2<6.0
(10)1.00<|f3a/f3b|<2.50
fi :前記第iレンズ群の合成焦点距離
f3a:前記第3レンズ群前群G3aの合成焦点距離
f3b:前記第3レンズ群後群G3b群の合成焦点距離
The eighth invention is the variable magnification imaging optical system according to any one of the first to seventh inventions, which is characterized by satisfying the following conditional expression (9) 2.5 <f3 / f2 <. 6.0
(10) 1.00 << | f3a / f3b | <2.50
fi: Composite focal length of the i-th lens group f3a: Composite focal length of the third lens group front group G3a f3b: Composite focal length of the third lens group rear group G3b group

第9の発明は、下記の条件式を満足することを特徴とする第1の発明乃至第8の発明のいずれかに記載の変倍結像光学系
(11)-1.50<β3b<-0.50
(12)0.85<f2/f3b<2.00
β3b:望遠端かつ無限遠合焦状態における前記第3レンズ群後群G3bの結像倍率
fi :前記第iレンズ群の合成焦点距離
f3b:前記第3レンズ群後群G3b群の合成焦点距離
The ninth invention is the variable magnification imaging optical system (11) -1.50 <β3b <− according to any one of the first invention to the eighth invention, which is characterized by satisfying the following conditional expression. 0.50
(12) 0.85 <f2 / f3b <2.00
β3b: Imaging magnification fi of the third lens group rear group G3b at the telephoto end and infinite focus state: synthetic focal length f3b of the i-th lens group: synthetic focal length of the third lens group rear group G3b group

本発明は、小型であり製造時に作業性が良く光学性能調整が可能であり、変倍の全域において良好な光学性能と防振性能とを有する超望遠域を含む高変倍比の防振機能を備えた変倍結像光学系を提供することが可能となる。 INDUSTRIAL APPLICABILITY The present invention has a high-magnification ratio anti-vibration function including a super-telephoto range, which is compact, has good workability at the time of manufacture, and can adjust optical performance, and has good optical performance and anti-vibration performance over the entire range of scaling. It is possible to provide a variable magnification imaging optical system equipped with the above.

本発明の防振機能を備えた変倍結像光学系の実施例1に係るレンズ構成図である。It is a lens block diagram which concerns on Example 1 of the variable magnification imaging optical system provided with the vibration isolation function of this invention. 実施例1の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the first embodiment. 実施例1の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 1 at the time of focusing at a finite long distance. 実施例1の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 1 at the time of finite short-distance focusing. 実施例1の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the first embodiment. 実施例1の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite long-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the first embodiment. 実施例1の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having a vibration-proof function according to the first embodiment. 実施例1の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 1 and infinity focusing. 実施例1の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 1. 実施例1の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the first embodiment. 実施例1の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the first embodiment. 実施例1の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 1. FIG. 実施例1の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the first embodiment. 実施例1の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the first embodiment. 実施例1の防振機能を備えた変倍結像光学系の中間、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at infinity in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 1. 実施例1の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the first embodiment. 実施例1の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 1 at the time of focusing at a finite long distance. 実施例1の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 1 at the time of finite short-distance focusing. 実施例1の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the first embodiment. 実施例1の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 1 at the time of focusing at a finite long distance. 実施例1の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 1 at the time of finite short-distance focusing. 実施例1の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 1 and when the optical axis is tilted at infinity. 本発明の防振機能を備えた変倍結像光学系の実施例2に係るレンズ構成図である。It is a lens block diagram which concerns on Example 2 of the variable magnification imaging optical system provided with the vibration isolation function of this invention. 実施例2の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end, infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of Example 2. 実施例2の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 2 at the time of focusing at a finite long distance. 実施例2の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 2 at the time of finite short-distance focusing. 実施例2の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment. 実施例2の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment at a finite long-distance focusing. 実施例2の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the second embodiment. 実施例2の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 2 and infinity focusing. 実施例2の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment. 実施例2の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment. 実施例2の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の縦収差図である。FIG. 3 is a longitudinal aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment. 実施例2の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 2. FIG. 実施例2の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment. 実施例2の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment. 実施例2の防振機能を備えた変倍結像光学系の中間、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at infinity in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment. 実施例2の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment. 実施例2の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment, and at the time of focusing at a finite long distance. 実施例2の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment, and at the time of finite short-distance focusing. 実施例2の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment. 実施例2の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 2 at the time of focusing at a finite long distance. 実施例2の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 2 at the time of finite short-distance focusing. 実施例2の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of the second embodiment and infinity. 本発明の防振機能を備えた変倍結像光学系の実施例3に係るレンズ構成図である。It is a lens block diagram which concerns on Example 3 of the variable magnification imaging optical system provided with the vibration isolation function of this invention. 実施例3の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の縦収差図である。FIG. 3 is a longitudinal aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の縦収差図である。FIG. 3 is a longitudinal aberration diagram at a wide-angle end and a finite long-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の縦収差図である。FIG. 3 is a longitudinal aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 3 is a lateral aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の横収差図である。It is a lateral aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 3 at the time of finite long-distance focusing. 実施例3の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の横収差図である。FIG. 3 is a lateral aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having a vibration-proof function according to the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 3 and infinity focusing. 実施例3の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の縦収差図である。FIG. 3 is a longitudinal aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の縦収差図である。FIG. 3 is a longitudinal aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 3. FIG. 実施例3の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の横収差図である。FIG. 3 is a lateral aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の横収差図である。FIG. 3 is a lateral aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の中間、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at infinity in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 3 at the time of focusing at a finite long distance. 実施例3の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 3 at the time of finite short-distance focusing. 実施例3の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 3 is a lateral aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the third embodiment. 実施例3の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 3 at the time of focusing at a finite long distance. 実施例3の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 3 at the time of finite short-distance focusing. 実施例3の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 3 and infinity focusing. 本発明の防振機能を備えた変倍結像光学系の実施例4に係るレンズ構成図である。It is a lens block diagram which concerns on Example 4 of the variable magnification imaging optical system provided with the vibration isolation function of this invention. 実施例4の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end, infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of Example 4. 実施例4の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 4, and at the time of focusing at a finite long distance. 実施例4の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the fourth embodiment. 実施例4の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the fourth embodiment. 実施例4の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite long-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the fourth embodiment. 実施例4の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the fourth embodiment. 実施例4の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 4 and infinity focusing. 実施例4の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 4. 実施例4の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the fourth embodiment. 実施例4の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of the middle and finite short-distance focusing of the variable magnification imaging optical system provided with the vibration isolation function of Example 4. 実施例4の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 4. FIG. 実施例4の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the fourth embodiment. 実施例4の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the fourth embodiment. 実施例4の防振機能を備えた変倍結像光学系の中間、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at infinity in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the fourth embodiment. 実施例4の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the fourth embodiment. 実施例4の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 4, and at the time of focusing at a finite long distance. 実施例4の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 4, and at the time of finite short-distance focusing. 実施例4の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the fourth embodiment. 実施例4の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 4, and at the time of focusing at a finite long distance. 実施例4の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 4, and at the time of finite short-distance focusing. 実施例4の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 4 and infinity focusing. 本発明の防振機能を備えた変倍結像光学系の実施例5に係るレンズ構成図である。It is a lens block diagram which concerns on Example 5 of the variable magnification imaging optical system provided with the vibration isolation function of this invention. 実施例5の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at a wide-angle end and a finite long-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite long-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 5 and infinity focusing. 実施例5の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 5. 実施例5の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 5. 実施例5の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の中間、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at infinity in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 5. 実施例5の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 5, and at the time of focusing at a finite long distance. 実施例5の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 5, and at the time of finite short-distance focusing. 実施例5の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the fifth embodiment. 実施例5の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 5, and at the time of focusing at a finite long distance. 実施例5の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 5, and at the time of finite short-distance focusing. 実施例5の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 5 and infinity focusing. 本発明の防振機能を備えた変倍結像光学系の実施例6に係るレンズ構成図である。It is a lens block diagram which concerns on Example 6 of the variable magnification imaging optical system provided with the vibration isolation function of this invention. 実施例6の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end, infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of Example 6. 実施例6の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の縦収差図である。FIG. 3 is a longitudinal aberration diagram at a wide-angle end and a finite long-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the sixth embodiment. 実施例6の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 6 at the time of finite short-distance focusing. 実施例6の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the wide-angle end, infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of Example 6. 実施例6の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の横収差図である。It is a lateral aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 6 at the time of focusing at a finite long distance. 実施例6の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the sixth embodiment. 実施例6の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 6 and infinity focusing. 実施例6の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 6. 実施例6の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the sixth embodiment. 実施例6の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of the middle and finite short-distance focusing of the variable magnification imaging optical system provided with the vibration isolation function of Example 6. 実施例6の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 6. 実施例6の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the sixth embodiment. 実施例6の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the sixth embodiment. 実施例6の防振機能を備えた変倍結像光学系の中間、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at infinity in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the sixth embodiment. 実施例6の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the sixth embodiment. 実施例6の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 6 at the time of focusing at a finite long distance. 実施例6の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 6 at the time of finite short-distance focusing. 実施例6の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of Example 6. 実施例6の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 6 at the time of focusing at a finite long distance. 実施例6の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 6 at the time of finite short-distance focusing. 実施例6の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 6 and infinity focusing. 本発明の防振機能を備えた変倍結像光学系の実施例7に係るレンズ構成図である。It is a lens block diagram which concerns on Example 7 of the variable magnification imaging optical system provided with the vibration isolation function of this invention. 実施例7の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the seventh embodiment. 実施例7の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 7, and at the time of focusing at a finite long distance. 実施例7の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the seventh embodiment. 実施例7の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the seventh embodiment. 実施例7の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite long-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the seventh embodiment. 実施例7の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the seventh embodiment. 実施例7の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 7 and infinity focusing. 実施例7の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 7. 実施例7の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the seventh embodiment. 実施例7の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the seventh embodiment. 実施例7の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 7. FIG. 実施例7の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the seventh embodiment. 実施例7の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the seventh embodiment. 実施例7の防振機能を備えた変倍結像光学系の中間、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at infinity in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 7. 実施例7の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the seventh embodiment. 実施例7の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of the seventh embodiment, and at the time of focusing at a finite long distance. 実施例7の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 7, and at the time of finite short-distance focusing. 実施例7の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of Example 7. 実施例7の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 7, and at the time of focusing at a finite long distance. 実施例7の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 7, and at the time of finite short-distance focusing. 実施例7の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the telephoto end of the variable magnification imaging optical system having the vibration isolation function according to the seventh embodiment and when the optical axis is tilted at infinity. 本発明の防振機能を備えた変倍結像光学系の実施例8に係るレンズ構成図である。It is a lens block diagram which concerns on Example 8 of the variable magnification imaging optical system provided with the vibration isolation function of this invention. 実施例8の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end, infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of Example 8. 実施例8の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 8 at the time of focusing at a finite long distance. 実施例8の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 8 at the time of finite short-distance focusing. 実施例8の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the wide-angle end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the eighth embodiment. 実施例8の防振機能を備えた変倍結像光学系の広角端、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite long-distance focusing of a variable-magnification imaging optical system having an anti-vibration function according to the eighth embodiment. 実施例8の防振機能を備えた変倍結像光学系の広角端、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at a wide-angle end and a finite short-distance focusing of a variable-magnification imaging optical system having a vibration-proof function according to the eighth embodiment. 実施例8の防振機能を備えた変倍結像光学系の広角端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the wide-angle end of the variable magnification imaging optical system provided with the vibration isolation function of Example 8 and infinity focusing. 実施例8の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 8. 実施例8の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the eighth embodiment. 実施例8の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the eighth embodiment. 実施例8の防振機能を備えた変倍結像光学系の中間、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the time of infinity focusing in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 8. 実施例8の防振機能を備えた変倍結像光学系の中間、有限遠距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite long distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the eighth embodiment. 実施例8の防振機能を備えた変倍結像光学系の中間、有限近距離合焦時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of focusing at a finite short distance in the middle of the variable magnification imaging optical system provided with the vibration isolation function of the eighth embodiment. 実施例8の防振機能を備えた変倍結像光学系の中間、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at infinity in the middle of the variable magnification imaging optical system provided with the vibration isolation function of Example 8. 実施例8の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of the eighth embodiment. 実施例8の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 8 at the time of focusing at a finite long distance. 実施例8の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の縦収差図である。It is a longitudinal aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 8 at the time of finite short-distance focusing. 実施例8の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end and infinity focusing of the variable magnification imaging optical system provided with the vibration isolation function of Example 8. 実施例8の防振機能を備えた変倍結像光学系の望遠端、有限遠距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 8 at the time of focusing at a finite long distance. 実施例8の防振機能を備えた変倍結像光学系の望遠端、有限近距離合焦時の横収差図である。It is a lateral aberration diagram at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 8 at the time of finite short-distance focusing. 実施例8の防振機能を備えた変倍結像光学系の望遠端、無限遠合焦時に光軸が0.4度傾いた状態で防振を行った際の横収差図である。FIG. 5 is a lateral aberration diagram when vibration isolation is performed in a state where the optical axis is tilted by 0.4 degrees at the telephoto end of the variable magnification imaging optical system provided with the vibration isolation function of Example 8 and infinity focusing.

物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成され、開口絞りSは前記第4レンズ群G4の内部あるいは近傍に配置され広角端から望遠端への変倍に際し、各レンズ群の間の空気間隔が変化し、前記第1レンズ群G1は物体側へ移動し、前記第2レンズ群G2は像側へ移動し、前記第3レンズ群G3は変倍及び合焦に際して像面に対して移動せず、前記第3レンズ群G3は物体側より順に正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、前記G3b群を光軸と直する方向に変位させることによって防振を行い、前記第1レンズ群G1は負レンズL1と正レンズL2とからなる接合レンズ、および正レンズL3から構成される構成とする変倍結像光学系。 From the object side, the first lens group G1 having a positive refractive force, the second lens group G2 having a negative refractive force, the third lens group G3 having a negative refractive force, and the positive refractive force. It is composed of a fourth lens group G4, a fifth lens group G5 having a positive refractive force, and a sixth lens group G6 having a negative refractive force, and the aperture aperture S is inside or near the fourth lens group G4. When scaling from the wide-angle end to the telephoto end, the air spacing between each lens group changes, the first lens group G1 moves to the object side, and the second lens group G2 moves to the image side. The third lens group G3 moves and does not move with respect to the image plane during scaling and focusing, and the third lens group G3 and the third lens group front group G3a having a positive refractive force in order from the object side. It is composed of a third lens group rear group G3b having a negative refractive force, and vibration isolation is performed by shifting the G3b group in a direction orthogonal to the optical axis, and the first lens group G1 is positive with the negative lens L1. A variable magnification imaging optical system including a junction lens composed of a lens L2 and a positive lens L3.

焦点距離の長い領域を含む変倍結像光学系においては各群の移動量が大きい傾向がある。また変倍比の大きい変倍結像光学系においても同様に各群の移動量が大きい傾向がある。 In a variable magnification imaging optical system including a region having a long focal length, the amount of movement of each group tends to be large. Further, even in a variable magnification imaging optical system having a large magnification ratio, the amount of movement of each group tends to be large as well.

イメージセンサ対角線長に対して焦点距離の長い変倍領域を含む変倍結像光学系においては、全長の短縮のために第1レンズ群G1を正の屈折力、第2レンズ群G2を負の屈折力とした正先行型の構成をとることが好ましく、望遠端における光学系全長を焦点距離に比して短くすることで光学系の小型化及び各レンズ群の移動量の削減に寄与する。 In a variable magnification imaging optical system that includes a variable magnification region with a long focal length with respect to the diagonal length of the image sensor, the first lens group G1 has a positive refractive power and the second lens group G2 has a negative power in order to shorten the total length. It is preferable to adopt a positive-preceding type configuration with a refractive power, and shortening the total length of the optical system at the telephoto end with respect to the focal length contributes to miniaturization of the optical system and reduction of the amount of movement of each lens group.

次に、広角端から望遠端への変倍に際しては、第1レンズ群G1と第2レンズ群G2の間隔を拡大するように第1レンズ群G1及び第2レンズ群G2の少なくともいずれか移動させることで、第2レンズ群G2の結像倍率が大きくなって光学系全体の焦点距離を延ばすことができる。 Next, when scaling from the wide-angle end to the telephoto end, at least one of the first lens group G1 and the second lens group G2 is moved so as to widen the distance between the first lens group G1 and the second lens group G2. As a result, the image magnification of the second lens group G2 becomes large, and the focal length of the entire optical system can be extended.

また、径が大きく重量が増大しがちな第1レンズ群の移動量が大きくなると、移動機構に大きな負担がかかり、第1レンズ群の偏芯誤差が生じやすくなり、さらには変倍操作にも大きな力が要求されるため好ましくない。 In addition, if the amount of movement of the first lens group, which tends to have a large diameter and increase in weight, becomes large, a large burden is placed on the movement mechanism, an eccentricity error of the first lens group is likely to occur, and further, a scaling operation is also possible. It is not preferable because a large force is required.

一方で第1レンズ群G1の移動量を抑制して第2レンズ群G2の移動量を増大させれば広角端における光学系全長が大きくなって、広角端における画面周辺での口径食を避けるために第1レンズ群G1および第2レンズ群G2の径を大きく設定する必要が出てきて光学系全体の重量が増加してしまう。 On the other hand, if the amount of movement of the first lens group G1 is suppressed and the amount of movement of the second lens group G2 is increased, the total length of the optical system at the wide-angle end becomes large, and vignetting around the screen at the wide-angle end is avoided. In addition, it becomes necessary to set the diameters of the first lens group G1 and the second lens group G2 to be large, which increases the weight of the entire optical system.

従って、本発明の変倍結像光学系においては、長焦点・高変倍を両立させるために広角端から望遠端への変倍に伴って第1レンズ群G1を物体側に、第2レンズ群G2を像側にそれぞれ移動させる構成とすることで、第1レンズ群G1の移動量抑制と、広角端での全長短縮およびそれに伴う第1レンズ群G1と第2レンズ群G2の径の抑制を図っている。 Therefore, in the variable magnification imaging optical system of the present invention, in order to achieve both long focus and high magnification, the first lens group G1 is placed on the object side and the second lens is set as the magnification changes from the wide-angle end to the telephoto end. By moving the group G2 to the image side, the movement amount of the first lens group G1 is suppressed, the total length is shortened at the wide-angle end, and the diameters of the first lens group G1 and the second lens group G2 are suppressed accordingly. I am trying.

第3レンズ群G3は第2レンズ群G2と同様に負の屈折力を持ち、変倍に際して像面に対し静止している。これは後述する防振のためである。 The third lens group G3 has a negative refractive power like the second lens group G2, and is stationary with respect to the image plane at the time of scaling. This is for vibration isolation, which will be described later.

第4レンズ群G4、第5レンズ群G5および第6レンズ群G6は、その合成屈折力が変倍の全域で正であり結像作用を担うとともに、変倍時に各群の間隔を変化させながら物体側に移動することにより第1レンズ群G1と第2レンズ群G2及び第3レンズ群G3の間隔変化による変倍に伴う焦点位置移動および非点収差をはじめとする各収差変動を補正するとともに全系として高い変倍率を得るための補助的な変倍作用を担う。 The 4th lens group G4, the 5th lens group G5, and the 6th lens group G6 have a positive combined refraction force over the entire range of scaling and are responsible for imaging action, while changing the spacing between the groups during scaling. By moving to the object side, each aberration fluctuation such as focal position movement and astigmatism due to the change in the distance between the first lens group G1, the second lens group G2, and the third lens group G3 is corrected. It plays an auxiliary scaling effect to obtain a high scaling factor as a whole system.

超望遠の正先行型変倍結像光学系においては、変倍を担って望遠端において大きな結像倍率を有し、かつ第1レンズ群G1の収斂作用によって軸上光束が収束して入射する、負の屈折力を有するレンズ群の全体または一部を防振群とすることで、偏芯コマ収差の変動を避けつつ大きな像変位量を得られ、望遠端において良好な防振性能を得られることが知られている。一方で防振群として用いるにはこの群に駆動機構を設け、その制御配線をつなぐ必要がある。制御配線をつなぐにあたっては防振群の変倍や合焦に際しての移動量が少ない方がよく、静止していることが最も望ましい。 In a super-telephoto positive-preceding variable-magnification optical system, the optical light beam on the axis converges and is incident due to the converging action of the first lens group G1 and has a large image-gathering magnification at the telephoto end. By using the whole or part of the lens group with negative refraction as the anti-vibration group, a large image displacement can be obtained while avoiding fluctuations in eccentric coma, and good anti-vibration performance can be obtained at the telephoto end. It is known to be. On the other hand, in order to use it as a vibration isolation group, it is necessary to provide a drive mechanism in this group and connect its control wiring. When connecting the control wiring, it is better that the amount of movement during scaling and focusing of the vibration isolation group is small, and it is most desirable that the vibration isolation group is stationary.

本発明においては第3レンズ群G3の全体としての屈折力を弱めて変倍に際して静止させるとともに、防振群の結像倍率を大きくして十分な像変位量を確保するため、第3レンズ群G3を正の屈折力を有する第3レンズ群前群G3a及び負の屈折力を有する第3レンズ群後群G3bから構成し、第3レンズ群後群G3bを光軸と直する方向に変位させることによって防振を行う構成とした。正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bを近接させることで第3レンズ群G3全体の屈折力を弱めつつ第3レンズ群前群G3aの収斂作用によって第3レンズ群後群G3bの結像倍率を大きくすることで第3レンズ群G3を変倍に際して固定しながら、防振群である第3レンズ群後群G3bの結像倍率を大きくし、駆動機構と制御配線の設置と十分な防振性能の獲得を実現した。 In the present invention, in order to weaken the optical power of the third lens group G3 as a whole and make it stand still at the time of scaling, and to increase the image magnification of the vibration isolation group to secure a sufficient amount of image displacement, the third lens group G3 is composed of a third lens group front group G3a having a positive refractive power and a third lens group rear group G3b having a negative refractive power, and the third lens group rear group G3b is displaced in a direction orthogonal to the optical axis. It is configured to be vibration-proof by making it. By bringing the third lens group front group G3a having a positive refractive power and the third lens group rear group G3b having a negative refractive power close to each other, the refractive power of the entire third lens group G3 is weakened and the third lens group front group. By increasing the image magnification of the third lens group rear group G3b by the converging action of G3a, the image magnification of the third lens group rear group G3b, which is the vibration isolation group, is fixed while the third lens group G3 is fixed at the time of scaling. The size of the lens has been increased, the drive mechanism and control wiring have been installed, and sufficient anti-vibration performance has been achieved.

一方、近年では製造誤差によって発生する偏芯に伴う光学系の結像性能低下を補正するため、光学系の一部に故意に偏芯を発生させて全系での収差を打ち消す、偏芯調整が行われることが多い。特に製造誤差による偏芯によって発生しやすい像面のティルトや、偏芯コマ収差を補正することで、製品の結像性能を大幅に向上させることができる。 On the other hand, in recent years, in order to correct the deterioration of the imaging performance of the optical system due to the eccentricity caused by the manufacturing error, the eccentricity adjustment that intentionally generates the eccentricity in a part of the optical system to cancel the aberration in the whole system. Is often done. In particular, by correcting the tilt of the image plane and the eccentric coma aberration that are likely to occur due to eccentricity due to manufacturing errors, the imaging performance of the product can be significantly improved.

特に高変倍率の変倍結像光学系においては、変倍域全域での設計上の性能を担保するために可動群が多くなる傾向にある。すなわち製造誤差の発生要因も多いため、偏芯調整の必要性も高い。また、広角端と望遠端での各群倍率が大きく変化するため、各群の偏芯時の諸収差の変動量も広角端と望遠端で大きく変化する。変倍の全域、また画面の全域にて十分に良好な画質を実現するため、複数の変倍位置で、複数の種の偏芯に伴う収差を調整することが望ましい。 In particular, in a high-magnification variable-magnification imaging optical system, the number of movable groups tends to increase in order to ensure design performance over the entire variable-magnification range. That is, since there are many factors that cause manufacturing errors, there is a high need for eccentricity adjustment. Further, since the magnification of each group at the wide-angle end and the telephoto end changes greatly, the amount of fluctuation of various aberrations at the time of eccentricity of each group also changes greatly at the wide-angle end and the telephoto end. In order to achieve sufficiently good image quality over the entire range of magnification and the entire area of the screen, it is desirable to adjust aberrations associated with multiple types of eccentricity at multiple magnification positions.

しかし一般的に、ある光学系の一部の偏芯に伴い、複数の変倍位置において複数種の収差変動を発生させる。 However, in general, with the eccentricity of a part of an optical system, a plurality of types of aberration fluctuations are generated at a plurality of variable magnification positions.

例えば、第1の調整部の偏芯調整により第1の収差を補正しようとしたとき、第1の収差とともに第2の収差の変動が発生する。この第2の収差の変動を補正するための第2の調整部を偏芯調整したときに第1の収差の変動が発生すれば、再び第1の調整部の調整が必要となり、所望の性能を得るまでに手間がかかって組立コストが増大してしまう。 For example, when an attempt is made to correct the first aberration by adjusting the eccentricity of the first adjustment unit, fluctuations in the second aberration occur together with the first aberration. If the fluctuation of the first aberration occurs when the eccentric adjustment of the second adjusting portion for correcting the fluctuation of the second aberration occurs, the adjustment of the first adjusting portion is required again, and the desired performance is obtained. It takes time and effort to obtain the above, and the assembly cost increases.

このように、変倍結像光学系の偏芯調整において変倍及び画面の全域において良好な性能を得ようとすれば、少なくとも1か所の調整部においてなるべく1つの変倍位置かつ1つの種の収差に対して変化を生じ、他の変倍位置または他の種の収差への影響が無視できるように構成し、この1か所の調整部を最後に調整することにより偏芯調整を終了するように光学系が設計されることが望ましい。 In this way, if good performance is to be obtained in the eccentricity adjustment of the variable magnification imaging optical system over the entire range of the variable magnification and the screen, one variable magnification position and one species can be obtained in at least one adjustment unit. The eccentricity adjustment is completed by making a change in the aberration of the optics and ignoring the influence on other scaling positions or other types of aberrations, and finally adjusting this one adjustment part. It is desirable that the optical system be designed so that it does.

第2レンズ群G2は望遠端において大きな倍率を持つため、第1レンズ群G1及び第2レンズ群G2の間隔変化は結像位置の変化に大きな影響を与える。このため、光学系の上下において非対称な間隔変化を起こす、すなわち第1レンズ群G1ないし第2レンズ群G2を光軸と直交する軸周りにティルトさせることで、像面をティルトさせることができる。広角端においては第2レンズ群G2の倍率が低く、上記作用は弱くなる。 Since the second lens group G2 has a large magnification at the telephoto end, the change in the distance between the first lens group G1 and the second lens group G2 has a great influence on the change in the imaging position. Therefore, the image plane can be tilted by causing an asymmetric interval change in the vertical direction of the optical system, that is, by tilting the first lens group G1 or the second lens group G2 around an axis orthogonal to the optical axis. At the wide-angle end, the magnification of the second lens group G2 is low, and the above action is weakened.

一方、特に第4レンズ群G4より像側のレンズ群は、第3レンズ群G3を固定とするために移動量が制限され、自身の倍率及び自身より像側のレンズ群の合成結像倍率の変化が少ないため、広角端と望遠端で収差変動の感度変化も少ない。第4レンズG4群以降のレンズ群を用いて広角端の収差の偏芯調整をした後に、第1レンズ群G1ないし第2レンズ群G2のティルトによる望遠端の像面ティルト調整を行うことで、なるべく少ない工数で広角端と望遠端の性能を最適に調整することができる。特に光学系のもっとも外側にあって全系組立後に最も平易に外せる第1レンズ群G1をティルトさせることによって、作業性良く製品の性能を向上させることができる。 On the other hand, in particular, the lens group on the image side of the 4th lens group G4 has a limited amount of movement because the third lens group G3 is fixed, and the magnification of itself and the combined image magnification of the lens group on the image side of itself are limited. Since there is little change, there is little change in the sensitivity of aberration fluctuations at the wide-angle end and the telephoto end. After adjusting the eccentricity of the aberration at the wide-angle end using the lens group after the 4th lens group G4, the image plane tilt adjustment at the telephoto end is performed by tilting the first lens group G1 or the second lens group G2. The performance at the wide-angle end and the telephoto end can be optimally adjusted with as few steps as possible. In particular, by tilting the first lens group G1 which is on the outermost side of the optical system and can be easily removed after assembling the entire system, the performance of the product can be improved with good workability.

しかしながら第1レンズ群G1においては軸上光束径が大きいため、ティルトに伴う偏芯コマ収差の変動も起きやすい。十分な偏芯コマ収差感度低減を図らなければその変動が無視できず、偏芯調整後に十分な性能を担保することができない。 However, since the axial luminous flux diameter is large in the first lens group G1, fluctuations in eccentric coma due to tilt are likely to occur. Unless the sensitivity of eccentric coma aberration is sufficiently reduced, the fluctuation cannot be ignored, and sufficient performance cannot be guaranteed after eccentricity adjustment.

まず十分な球面収差補正を施すために、第1レンズ群G1は正の屈折力を有するレンズエレメントを分割して2枚で構成し、それぞれのエレメントでの球面収差発生を抑制しつつ、1枚の負レンズを配して正レンズで発生する負の球面収差を打ち消す構成とした。超望遠域で問題となりやすい軸上及び倍率色収差を補正するため、第1レンズ群G1の正レンズには可能な限り低分散な硝材を用いることが望ましく、そのような硝材の屈折率は低い傾向がある。一方で第1レンズ群G1中の負レンズには十分に高分散な硝材が望ましく、そのような硝材の屈折率は高い傾向がある。このような屈折率の組み合わせは球面収差の補正のためにも好ましい。 First, in order to sufficiently correct spherical aberration, the first lens group G1 is composed of two lens elements having a positive refractive force, and one lens element while suppressing the occurrence of spherical aberration in each element. The negative spherical aberration generated by the positive lens is canceled by arranging the negative lens of. In order to correct axial and chromatic aberration of magnification, which tends to be a problem in the super-telephoto range, it is desirable to use a glass material with as low dispersion as possible for the positive lens of the first lens group G1, and the refractive index of such glass material tends to be low. There is. On the other hand, a sufficiently highly dispersed glass material is desirable for the negative lens in the first lens group G1, and the refractive index of such a glass material tends to be high. Such a combination of refractive indexes is also preferable for correcting spherical aberration.

また、低屈折率低分散の硝材は摩耗度が大きく傷がつきやすい傾向にあるので、実用上は負レンズを最も物体側に配置して使用時に最も物体側の光学面に傷がつかないようにすることが望ましい。近接して配置した負レンズおよび正レンズはその相対の偏芯によって偏芯コマ収差を生じやすいため、接合レンズとして組み立て精度を向上させることが望ましい。したがって、第1レンズ群G1を負レンズL1と正レンズL2からなる接合レンズおよび正レンズL3から構成することが望ましい。 In addition, since glass materials with a low refractive index and low dispersion tend to have a high degree of wear and are easily scratched, practically, the negative lens should be placed closest to the object so that the optical surface on the object side is not scratched when used. Is desirable. Since negative lenses and positive lenses arranged in close proximity are prone to eccentric coma due to their relative eccentricity, it is desirable to improve the assembly accuracy as a junction lens. Therefore, it is desirable that the first lens group G1 is composed of a junction lens composed of a negative lens L1 and a positive lens L2 and a positive lens L3.

このような構成の第1レンズ群G1においては、負レンズL1と正レンズL2の接合面R2が物体側に凸の形状となって比較的強い光束発散作用を持ち、軸外において外方のコマ収差を発生させる。負レンズL1と正レンズL2の接合レンズ全体としてコマ収差の残存量が大きければ、第1レンズ群G1をティルトさせたときに全系において生じる偏芯コマ収差も大きくなりやすい。第1レンズ群を通過する軸上光束の径が大きくなり、第2レンズ群G2以降の合成系の結像倍率の大きい望遠端において、この偏芯コマの影響はより顕著となる。したがって接合面R2で発生するコマ収差を第1レンズ群G1内で補正しなければならない。 In the first lens group G1 having such a configuration, the junction surface R2 of the negative lens L1 and the positive lens L2 has a convex shape toward the object side and has a relatively strong luminous flux divergence action, and is an outer coma off the axis. Generates aberrations. If the residual amount of coma aberration is large as a whole of the junction lens of the negative lens L1 and the positive lens L2, the eccentric coma aberration that occurs in the whole system when the first lens group G1 is tilted tends to be large. The diameter of the axial luminous flux passing through the first lens group becomes large, and the influence of this eccentric coma becomes more remarkable at the telephoto end where the image magnification of the composite system after the second lens group G2 is large. Therefore, the coma aberration generated on the junction surface R2 must be corrected in the first lens group G1.

本発明においては負レンズL1の物体側面R1を物体側凸としてその曲率を強くし、この面で内方のコマ収差を発生させることで、負レンズL1と正レンズL2の接合面R2で発生するコマ収差をほぼ打ち消す構成とすることで、第1レンズ群G1のコマ収差を補正し、第1レンズ群G1のティルトによる望遠端の像面ティルト補正を行った際の偏芯コマ収差の発生を抑制した。 In the present invention, the object side surface R1 of the negative lens L1 is made convex toward the object to increase its curvature, and inward coma is generated on this surface, so that it is generated at the junction surface R2 between the negative lens L1 and the positive lens L2. By configuring the configuration to almost cancel the coma aberration, the coma aberration of the first lens group G1 is corrected, and the occurrence of eccentric coma aberration when the image plane tilt correction at the telephoto end is performed by the tilt of the first lens group G1 is generated. Suppressed.

負レンズL1の物体側面R1と負レンズL1と正レンズL2の接合面R2で発生するコマ収差を打ち消しても、第1レンズ群G1内の別の面でコマ収差が発生してしまえば第1レンズ群G1のコマ収差は残存してしまう。本発明では更に正レンズL2の像側面R3を通過する軸上マージナル光線が、正レンズL2の像側面R3の面法線となす角を小さくすることで軸上近傍において球面収差とコマ収差の発生を抑える構成とした。 Even if the coma aberration generated on the object side surface R1 of the negative lens L1 and the junction surface R2 of the negative lens L1 and the positive lens L2 is canceled, if the coma aberration occurs on another surface in the first lens group G1, the first The coma aberration of the lens group G1 remains. In the present invention, the axial marginal ray passing through the image side surface R3 of the positive lens L2 further reduces the angle formed by the surface normal of the image side surface R3 of the positive lens L2, so that spherical aberration and coma aberration are generated in the vicinity of the axis. It was configured to suppress.

更に正レンズL3でのコマ収差発生を抑えるためには、正レンズL3の物体側レンズ面R4を通過する前後の軸上マージナル光線の偏角と、正レンズL3の像側レンズ面R5を通過する前後の軸上マージナル光線の偏角とを、略等しく設定することが望ましい。 Further, in order to suppress the occurrence of coma aberration in the positive lens L3, the deviation angle of the axial marginal light rays before and after passing through the object-side lens surface R4 of the positive lens L3 and the image-side lens surface R5 of the positive lens L3 are passed. It is desirable to set the deviation angles of the marginal rays on the front and back axes to be approximately equal.

以下の条件式を満足するよう構成されている。
(1)0.30<f1/ft<0.55
(2)8.2<|ft/f2|<10.7
(3)-0.85<{(n2-n1)/r2}/{(n1-1)/r1}<-0.50
(4)0.50<r3/bf1<2.00
fi:前記第iレンズ群の合成焦点距離
ft:望遠端かつ無限遠合焦状態における光学系全系の合成焦点距離
ri:光学系の物体側から第i番目の光学面の曲率半径
ni:光学系の物体側から第i番目と第i+1番目の光学面の間の媒質のd線(波長587.56nm)屈折率
bf1:前記負レンズL1と前記正レンズL2からなる接合レンズのもっとも像側の面頂点から当該接合レンズの像側焦点までの距離
It is configured to satisfy the following conditional expression.
(1) 0.30 <f1 / ft <0.55
(2) 8.2 << | ft / f2 | <10.7
(3) -0.85 <{(n2-n1) / r2} / {(n1-1) / r1} <-0.50
(4) 0.50 <r3 / bf1 <2.00
fi: Synthetic focal distance of the i-th lens group ft: Synthetic focal distance of the entire optical system in the telephoto end and infinite focus state ri: Radius of curvature of the i-th optical surface of the optical system from the object side ni: Optical The d-line (wavelength 587.56 nm) refractive index bf1: of the medium between the i-th and i + 1-th optical planes from the object side of the system, which is the most image-side of the junction lens composed of the negative lens L1 and the positive lens L2. Distance from the surface apex to the image side focal point of the junction lens

本発明の変倍結像光学系の満たすべき条件式(1)は、望遠端における全系の合成焦点距離と第1レンズ群の合成焦点距離の関係を規定し、光学系の全長短縮と鏡筒の軽量化に関して望ましい範囲を示したものである。 The conditional equation (1) to be satisfied by the variable magnification imaging optical system of the present invention defines the relationship between the combined focal length of the entire system at the telephoto end and the combined focal length of the first lens group, and shortens the total length of the optical system and mirrors. It shows the desirable range for weight reduction of the cylinder.

条件式(1)の上限を上回って第1レンズ群G1の焦点距離が全系の合成焦点距離に対して長くなると、望遠端における光学系全長が長くなって第1レンズ群G1の移動量が増加し移動機構に負荷がかかり、第1レンズ群G1の偏芯が生じやすくなるために鏡筒の強度が求められて鏡筒重量が増加し、また変倍操作に難が出る。 When the focal length of the first lens group G1 becomes longer than the combined focal length of the entire system beyond the upper limit of the conditional equation (1), the total length of the optical system at the telephoto end becomes longer and the amount of movement of the first lens group G1 increases. The increase causes a load on the moving mechanism, and eccentricity of the first lens group G1 is likely to occur. Therefore, the strength of the lens barrel is required, the weight of the lens barrel increases, and the scaling operation becomes difficult.

条件式(1)の下限を下回って第1レンズ群G1の焦点距離が全系の合成焦点距離に対して短くなると、望遠端における第2レンズ群G2以降の合成系の結像倍率が高くなりすぎて望遠端における軸上色収差等諸収差の補正が難しくなるほか、第1レンズ群G1の製造誤差に対する収差変動が大きくなって製品の性能を担保することが難しい。 When the focal length of the first lens group G1 is shorter than the lower limit of the conditional equation (1) with respect to the composite focal length of the entire system, the image magnification of the composite system after the second lens group G2 at the telephoto end becomes higher. In addition to making it difficult to correct various aberrations such as axial chromatic aberration at the telephoto end, it is difficult to ensure product performance due to large aberration fluctuations with respect to manufacturing errors in the first lens group G1.

なお、条件式(1)について、望ましくはその下限値を0.34に、より望ましくは下限値を0.37に、また上限値を0.52に、より望ましくは上限値を0.49に規定することで、前述の効果をより確実にすることができる。 Regarding the conditional expression (1), the lower limit value is preferably set to 0.34, the lower limit value is set to 0.37, the upper limit value is set to 0.52, and the upper limit value is set to 0.49. By prescribing, the above-mentioned effect can be further ensured.

本発明の変倍結像光学系の満たすべき条件式(2)は、望遠端における全系の合成焦点距離と第2レンズ群G2の合成焦点距離の関係を規定し、第1レンズ群G1及び第2レンズ群G2の移動量の削減に関して望ましい範囲を示したものである。 The conditional equation (2) to be satisfied in the variable magnification imaging optical system of the present invention defines the relationship between the combined focal length of the entire system at the telephoto end and the combined focal length of the second lens group G2, and defines the first lens group G1 and the combined focal length. It shows a desirable range regarding the reduction of the movement amount of the 2nd lens group G2.

条件式(2)の上限を上回って第2レンズ群G2の負の屈折力が強くなると、第2レンズ群G2において発生する色収差や球面収差等の発生が大きくなって変倍時の収差変動が大きくなりやすい。 When the negative refractive power of the second lens group G2 becomes stronger than the upper limit of the conditional equation (2), the occurrence of chromatic aberration, spherical aberration, etc. generated in the second lens group G2 becomes large, and the aberration fluctuation at the time of scaling increases. It tends to grow.

条件式(2)の下限を下回って第2レンズ群G2の負の屈折力が弱くなると、変倍に要する第1レンズ群G1と第2レンズ群G2の間隔変化量が大きくなりすぎて第1レンズ群G1及び第2レンズ群G2の移動量が増加する。 When the negative refractive power of the second lens group G2 becomes weaker than the lower limit of the conditional equation (2), the amount of change in the distance between the first lens group G1 and the second lens group G2 required for scaling becomes too large, and the first lens group G2 becomes the first. The amount of movement of the lens group G1 and the second lens group G2 increases.

なお、条件式(2)について、望ましくはその下限値を8.3に、また上限値を10.00に規定することで、前述の効果をより確実にすることができる。 With regard to the conditional expression (2), preferably, the lower limit value is set to 8.3 and the upper limit value is set to 10.00, so that the above-mentioned effect can be further ensured.

本発明の変倍結像光学系の満たすべき条件式(3)および(4)は、第1レンズ群を構成する負レンズL1および正レンズL2の曲率半径や硝材の屈折率を規定し、第1レンズ群のコマ収差を良好に補正し、ひいては第1レンズ群をティルトさせて望遠端における製造誤差による像面のティルトを補正するために好ましい範囲を示したものである。 The conditional equations (3) and (4) to be satisfied in the variable magnification imaging optical system of the present invention define the radius of curvature of the negative lens L1 and the positive lens L2 constituting the first lens group and the refractive index of the glass material. It shows a preferable range for correcting the coma of one lens group satisfactorily and, by extension, tilting the first lens group to correct the tilt of the image plane due to the manufacturing error at the telephoto end.

条件式(3)の上限を上回ると負レンズL1通過前後での軸上マージナル光線の偏角が小さくなってしまい、負レンズL1が第1レンズ群G1の球面収差、軸上および倍率の色収差の補正に寄与しなくなるため、第1レンズ群G1全体として適切な光学性能を得られない。 If the upper limit of the conditional equation (3) is exceeded, the deviation angle of the axial marginal ray before and after passing through the negative lens L1 becomes small, and the negative lens L1 causes spherical aberration, axial aberration and chromatic aberration of magnification of the first lens group G1. Since it does not contribute to the correction, appropriate optical performance cannot be obtained for the first lens group G1 as a whole.

条件式(3)の下限を下回ると負レンズL1の物体側面R1で発生するコマ収差が小さくなって、負レンズL1と正レンズL2の接合面R2の発生させるコマ収差の和を打ち消すことができなくなり、第1レンズ群G1をティルトさせて望遠端における製造誤差による像面のティルトを補正する際に副作用として発生する偏芯コマ収差を抑制することが難しい。 Below the lower limit of the conditional equation (3), the coma aberration generated on the object side surface R1 of the negative lens L1 becomes small, and the sum of the coma aberrations generated by the junction surface R2 of the negative lens L1 and the positive lens L2 can be canceled. It is difficult to suppress the eccentric coma aberration that occurs as a side effect when the first lens group G1 is tilted to correct the tilt of the image plane due to the manufacturing error at the telephoto end.

なお、条件式(3)について、望ましくはその下限値を-0.80に、また上限値を-0.65に規定することで、前述の効果をより確実にすることができる In the conditional expression (3), preferably, the lower limit value is set to -0.80 and the upper limit value is set to -0.65, so that the above-mentioned effect can be further ensured.

条件式(4)の上限ないし下限を超えると正レンズL2の像側面R3通過前後での軸上マージナル光線の偏角が大きくなって球面収差およびコマ収差を発生させてしまい、第1レンズ群G1をティルトさせて望遠端における製造誤差による像面のティルトを補正する際に副作用として発生する偏芯コマ収差を抑制することが難しい。 If the upper limit or the lower limit of the conditional equation (4) is exceeded, the deviation angle of the axial marginal light before and after passing through the image side surface R3 of the positive lens L2 becomes large, causing spherical aberration and coma aberration, and the first lens group G1. It is difficult to suppress the eccentric coma aberration that occurs as a side effect when tilting the lens to correct the tilt of the image plane due to the manufacturing error at the telephoto end.

なお、条件式(4)について、望ましくはその下限値を0.60に、より望ましくは下限値を0.67に、また上限値を1.95に、より望ましくは上限値を1.92に規定することで、前述の効果をより確実にすることができる。 Regarding the conditional expression (4), the lower limit value is preferably set to 0.60, the lower limit value is set to 0.67, the upper limit value is set to 1.95, and the upper limit value is set to 1.92. By prescribing, the above-mentioned effect can be made more certain.

また、本発明は以下の条件式を満足するよう構成される。
(5)0.30<ht/r2<0.45
ただし、
ht:望遠端かつ無限遠合焦状態における入射瞳の半径
ri:光学系の物体側から第i番目の光学面の曲率半径
Further, the present invention is configured to satisfy the following conditional expression.
(5) 0.30 <ht / r2 <0.45
however,
ht: Radius of the entrance pupil at the telephoto end and in the in-focus state at infinity ri: Radius of curvature of the i-th optical surface from the object side of the optical system

条件式(5)は負レンズL1と正レンズL2の接合面R2の曲率半径と、望遠端における入射瞳半径の比を規定し、本発明の構成が特に効果を発揮する条件を示したものである。 Conditional expression (5) defines the ratio of the radius of curvature of the junction surface R2 of the negative lens L1 and the positive lens L2 to the radius of the entrance pupil at the telephoto end, and shows the conditions under which the configuration of the present invention is particularly effective. be.

条件式(5)の下限を下回って入射瞳の半径が小さくなると負レンズL1と正レンズL2の接合面R2で発生するコマ収差がそもそも小さくなって、第1レンズ群G1のティルトに伴う偏芯コマ収差の変動が深刻な問題とならないが、負レンズL1と正レンズL2の接合面R2による球面収差や軸上および倍率色収差の補正効果が得られなくなるので、特に入射瞳径の大きくなる望遠端において全系の収差を補正することが困難となり、あるいは望遠端において光学全長を短縮することが困難となる。 When the radius of the incident pupil becomes smaller than the lower limit of the conditional equation (5), the coma aberration generated at the junction surface R2 of the negative lens L1 and the positive lens L2 becomes smaller in the first place, and the eccentricity accompanying the tilt of the first lens group G1 becomes smaller. Fluctuations in coma aberration are not a serious problem, but the effect of correcting spherical aberration and axial and magnification chromatic aberrations due to the junction surface R2 of the negative lens L1 and the positive lens L2 cannot be obtained, so the telephoto end where the incident pupil diameter is particularly large. In, it becomes difficult to correct the aberration of the whole system, or it becomes difficult to shorten the total optical length at the telephoto end.

条件式(5)の上限を上回って入射瞳の半径が大きくなって曲率半径に接近すると、負レンズL1と正レンズL2の接合面R2で発生するコマ収差が大きくなりすぎてそもそも光学系全系としての補正すら困難となって光学系の性能が著しく低下する。 When the radius of the entrance pupil becomes larger than the upper limit of the conditional equation (5) and approaches the radius of curvature, the coma aberration generated at the junction surface R2 of the negative lens L1 and the positive lens L2 becomes too large, and the entire optical system is used in the first place. Even the correction is difficult, and the performance of the optical system is significantly reduced.

なお、条件式(5)について、望ましくはその下限値を0.32に、また上限値を0.40に規定することで、前述の効果をより確実にすることができる。 In the conditional expression (5), preferably, the lower limit value is set to 0.32 and the upper limit value is set to 0.40, so that the above-mentioned effect can be further ensured.

また、本発明は以下の条件式を満足するよう構成される。
(6)8.50<ft/fw
(7)0.55<LT/ft<0.85
ただし、
ft:望遠端かつ無限遠合焦状態における光学系全系の合成焦点距離
fw:広角端端かつ無限遠合焦状態における光学系全系の合成焦点距離
LT:望遠端かつ無限遠合焦状態における光学系の最も物体側の光学面から像までの長さ
Further, the present invention is configured to satisfy the following conditional expression.
(6) 8.50 <ft / fw
(7) 0.55 <LT / ft <0.85
however,
ft: Synthetic focal length of the entire optical system in the telephoto end and infinity focus state fw: Synthetic focal length of the entire optical system in the wide-angle end and infinity focus state LT: In the telephoto end and infinity focus state The length from the optical surface on the most object side of the optical system to the image

条件式(6)は本発明の光学系の変倍結像光学系の目指すべき変倍比を規定するものである。 Conditional expression (6) defines the scaling ratio to be aimed at in the variable magnification imaging optical system of the optical system of the present invention.

本条件式(6)は仕様に属するべきものであるが、本発明において解決されるべき問題点は変倍比が大きいほど顕著に発生するものであって、本発明の構成の前提となる条件である。条件式(6)の下限を下回れば所望の変倍比を達成できないが本発明の解決すべき課題も大幅に緩和される。 The conditional expression (6) should belong to the specification, but the problem to be solved in the present invention becomes more remarkable as the scaling ratio is larger, and is a precondition for the configuration of the present invention. Is. If the ratio is below the lower limit of the conditional expression (6), the desired scaling ratio cannot be achieved, but the problem to be solved by the present invention is also greatly alleviated.

なお、条件式(6)について、望ましくはその下限値を9.0に規定することで、前述の効果をより確実にすることができる。 It should be noted that, preferably, by defining the lower limit value of the conditional expression (6) at 9.0, the above-mentioned effect can be further ensured.

条件式(7)は本発明の光学系の変倍結像光学系の目指すべき光学系全長を規定するものである。 The conditional expression (7) defines the total length of the optical system to be aimed at by the variable magnification imaging optical system of the optical system of the present invention.

本条件式(7)は仕様に属するものであるが、単に超望遠域の画角を達成するだけならば像高の低い部分を拡大しても達成可能ながら斯様な方法論に基づく光学系は最大像高に対して光学系全長が長くなりがちで鏡筒全体も大型化してしまい、本発明の目的に逆行する。 Although this conditional equation (7) belongs to the specification, an optical system based on such a methodology can be achieved even if the low image height portion is enlarged if the angle of view in the super-telephoto range is simply achieved. The total length of the optical system tends to be longer than the maximum image height, and the entire lens barrel also becomes large, which goes against the object of the present invention.

本条件式(7)を満たすことで所望の光学性能を達成することができる。 The desired optical performance can be achieved by satisfying this conditional expression (7).

条件式(7)の上限を超えると、光学系全長が長くなりすぎ、鏡筒重量も過大になる。 If the upper limit of the conditional expression (7) is exceeded, the total length of the optical system becomes too long and the weight of the lens barrel becomes excessive.

一方、条件式(7)の下限を超えると光学系の誤差に対する収差変動感度が大きくなりすぎ、偏芯調整群の感度も高くなるため調整誤差に対する許容度も低くなってしまうため、偏芯調整を鑑みた上でも製品性能の期待値が低くなり過ぎる。 On the other hand, if the lower limit of the conditional expression (7) is exceeded, the aberration fluctuation sensitivity with respect to the error of the optical system becomes too large, and the sensitivity of the eccentricity adjustment group also becomes high, so that the tolerance for the adjustment error becomes low. Even in consideration of the above, the expected value of product performance is too low.

なお、条件式(7)について、望ましくはその下限値を0.60に、また上限値を0.83に規定することで、前述の効果をより確実にすることができる。 In the conditional expression (7), preferably, the lower limit value is set to 0.60 and the upper limit value is set to 0.83, so that the above-mentioned effect can be further ensured.

また、本発明の変倍結像光学系は、第2レンズ群G2は、少なくとも1枚ずつの正レンズと負レンズを有する構成をとる。 Further, in the variable magnification imaging optical system of the present invention, the second lens group G2 has at least one positive lens and one negative lens.

光学系の変倍比を大きくすると、第2レンズ群G2は広角端から望遠端への変倍によって大きくその結像倍率が変化し、第2レンズ群G2の結像倍率の変化に伴って第2レンズ群G2を通過する軸上マージナル光線または軸外主光線の高さが大きく変化するため、第2レンズ群G2の作用によって発生する軸上色収差および倍率色収差、コマ収差や非点収差といった諸収差の変倍に伴う変動が発生しやすい。 When the chromatic aberration ratio of the optical system is increased, the image magnification of the second lens group G2 changes greatly due to the chromatic aberration from the wide-angle end to the telephoto end, and the image magnification of the second lens group G2 changes. Since the height of the axial marginal ray or the off-axis main ray passing through the two lens group G2 changes greatly, various factors such as axial chromatic aberration, chromatic aberration of magnification, coma, and astigmatism generated by the action of the second lens group G2. Fluctuations due to chromatic aberration are likely to occur.

従って、変倍に伴うこれらの諸収差の変動を抑制するためには、第2レンズ群G2を少なくとも一枚ずつの正レンズと負レンズを含むように構成し、第2レンズ群単体としての収差発生を抑制することが望ましい。 Therefore, in order to suppress fluctuations in these various aberrations due to scaling, the second lens group G2 is configured to include at least one positive lens and one negative lens, and the aberration as a single second lens group. It is desirable to suppress the occurrence.

また、本発明は、無限遠方から近距離への合焦に際して、第5レンズ群G5と第6レンズ群G6の群間隔が変換する構成をとる。 Further, the present invention has a configuration in which the group spacing of the fifth lens group G5 and the sixth lens group G6 is converted when focusing from an infinite distance to a short distance.

第6レンズ群G6は全長の短縮のために望遠端において結像倍率が大きくなるので、第5レンズ群G5と第6レンズ群G6の間隔の変化に対する結像点の位置変化の感度が高い。また第5レンズ群G5ないし第6レンズ群G6は光学系の比較的像側に位置するため、通過する光束が十分に収斂しておりその外径を小さくできる。従って、第5レンズ群G5ないし第6レンズ群G6のいずれかを光軸方向に移動させてその間隔を変化させ、無限遠方から近距離への合焦を行う構成とすることで、合焦群の移動量および重量を削減できて迅速な合焦に寄与する。 Since the image magnification of the sixth lens group G6 is increased at the telephoto end due to the shortening of the total length, the sensitivity of the position change of the imaging point to the change of the distance between the fifth lens group G5 and the sixth lens group G6 is high. Further, since the fifth lens group G5 to the sixth lens group G6 are located relatively on the image side of the optical system, the passing light flux is sufficiently converged and the outer diameter thereof can be reduced. Therefore, by moving any of the 5th lens group G5 to the 6th lens group G6 in the optical axis direction to change the interval, and focusing from infinity to a short distance, the focusing group is performed. It can reduce the amount of movement and weight of the lens and contribute to quick focusing.

また、本発明は以下の条件式を満足するよう構成される。
(8)2.0<β6<4.0
ただし、
β6:第6レンズ群G6の望遠端かつ無限遠合焦状態における結像倍率
Further, the present invention is configured to satisfy the following conditional expression.
(8) 2.0 <β6 <4.0
however,
β6: Imaging magnification of the 6th lens group G6 at the telephoto end and in infinity in focus

条件式(8)は第6レンズ群G6の結像倍率を規定し、近距離への合焦する際の合焦群の移動量に関して好ましい範囲を示したものである。 The conditional expression (8) defines the image magnification of the sixth lens group G6, and indicates a preferable range with respect to the amount of movement of the focusing group when focusing at a short distance.

条件式(8)の下限を下回ると第6レンズ群G6の倍率が小さくなりすぎて、合焦に際しての合焦群の移動量が大きくなりすぎ、また光学系の全長が長くなって製品の小型化を阻害する。 If it falls below the lower limit of the conditional expression (8), the magnification of the sixth lens group G6 becomes too small, the amount of movement of the focusing group at the time of focusing becomes too large, and the total length of the optical system becomes long, so that the product is compact. Inhibits the formation.

条件式(8)の上限を上回ると第6レンズ群G6の倍率が大きくなりすぎて、合焦群の位置精度に非常に高いレベルが求められるほか、前の群で発生する収差が拡大されるため収差補正が難しくなり、また製造誤差に対する結像性能低下も大きくなりがちとなる。 If the upper limit of the conditional expression (8) is exceeded, the magnification of the sixth lens group G6 becomes too large, a very high level of position accuracy of the in-focus group is required, and the aberration generated in the previous group is enlarged. Therefore, it becomes difficult to correct the aberration, and the deterioration of the imaging performance due to the manufacturing error tends to be large.

なお、条件式(8)について、望ましくはその下限値を2.3に、また上限値を3.5に規定することで、前述の効果をより確実にすることができる。 In the conditional expression (8), preferably, the lower limit value is set to 2.3 and the upper limit value is set to 3.5, so that the above-mentioned effect can be further ensured.

また、本発明の変倍結像光学系は、無限遠方から近距離への合焦に際して、第6レンズ群G6が移動する構成をとる。 Further, the variable magnification imaging optical system of the present invention has a configuration in which the sixth lens group G6 moves when focusing from an infinite distance to a short distance.

第6レンズ群G6においては正の屈折力を有する第5レンズ群G5の収斂作用によって軸上近軸光線高が低くなり、製造誤差によって偏芯が生じても偏芯コマ収差が発生しづらい。変倍時と合焦時の両方でレンズ群を移動させるためには機構が複雑化し誤差の要因が多くなるので、収差感度の低い第6レンズ群を合焦時に移動させる方が好ましい。 In the sixth lens group G6, the on-axis paraxial ray height becomes low due to the converging action of the fifth lens group G5 having a positive refractive power, and even if eccentricity occurs due to a manufacturing error, eccentric coma aberration is unlikely to occur. In order to move the lens group both at the time of scaling and at the time of focusing, the mechanism becomes complicated and the cause of error increases. Therefore, it is preferable to move the sixth lens group having low aberration sensitivity at the time of focusing.

また、本発明は以下の条件式を満足するよう構成される。
(9)2.50<f3/f2<6.00
(10)1.00<|f3a/f3b|<2.50
ただし、
fi:第iレンズ群の合成焦点距離
f3a:前記第3レンズ群前群G3aの合成焦点距離
f3b:前記第3レンズ群後群G3bの合成焦点距離
Further, the present invention is configured to satisfy the following conditional expression.
(9) 2.50 <f3 / f2 <6.00
(10) 1.00 << | f3a / f3b | <2.50
however,
fi: Synthetic focal length of the i-th lens group f3a: Synthetic focal length of the third lens group front group G3a f3b: Synthetic focal length of the third lens group rear group G3b

前述のように、第3レンズ群G3は変倍時に静止させる。このためには第3レンズ群G3全体として屈折力を弱めて収差発生が少なくなるように設定すると第3レンズ群G3に起因する諸収差の変倍に伴う変動が少なくできるので好ましい。 As described above, the third lens group G3 is stationary at the time of scaling. For this purpose, it is preferable to weaken the refractive power of the third lens group G3 as a whole so that the occurrence of aberrations is reduced, because the fluctuations due to the scaling of various aberrations caused by the third lens group G3 can be reduced.

条件式(9)は第3レンズ群G3と第2レンズ群G2の焦点距離の比を規定し、第3レンズ群G3全体を変倍時に静止させるために好ましい範囲を示したものである。 The conditional expression (9) defines the ratio of the focal lengths of the third lens group G3 and the second lens group G2, and shows a preferable range for making the entire third lens group G3 stationary at the time of scaling.

条件式(9)の下限を下回って第3レンズ群G3の屈折力が強くなると、第3レンズ群G3での収差発生を抑制することが難しくなって、変倍に伴う光学性能変化が大きくなってしまう。 If the refractive power of the third lens group G3 becomes stronger below the lower limit of the conditional expression (9), it becomes difficult to suppress the occurrence of aberration in the third lens group G3, and the change in optical performance due to scaling becomes large. It ends up.

条件式(9)の上限を上回って第3レンズ群G3の屈折力が弱くなると、負の屈折力を維持するため第2レンズ群G2の屈折力が強くなって、負の屈折力が光学系の物体寄りに遷移してレトロフォーカス型屈折力配置が強くなるので光学系の全長の短縮が難しい。 When the upper limit of the conditional equation (9) is exceeded and the refractive power of the third lens group G3 becomes weaker, the refractive power of the second lens group G2 becomes stronger in order to maintain the negative refractive power, and the negative refractive power becomes the optical system. It is difficult to shorten the total length of the optical system because the retrofocus type refractive power arrangement becomes stronger as it shifts toward the object.

なお、条件式(9)について、望ましくはその下限値を2.8に、また上限値を5.8に規定することで、前述の効果をより確実にすることができる。 With regard to the conditional expression (9), preferably, the lower limit value is set to 2.8 and the upper limit value is set to 5.8, so that the above-mentioned effect can be further ensured.

条件式(10)は第3レンズ群G3内の第3レンズ群前群G3aと第3レンズ群後群G3bの屈折力の比を規定し、第3レンズ群G3を変倍時に固定しつつ第3レンズ群後群G3bを防振群として実効的に機能させるために好ましい範囲を示したものである。 Conditional expression (10) defines the ratio of the refractive powers of the third lens group front group G3a and the third lens group rear group G3b in the third lens group G3, and the third lens group G3 is fixed at the time of scaling. The rear group G3b of the three lens groups shows a preferable range in order to effectively function as the vibration isolation group.

条件式(10)の上限を上回って第3レンズ群後群G3bの負の屈折力が強くなると、第3レンズ群G3全体の屈折力を抑制することが困難となり、変倍時に収差変動が生じる。また、第3レンズ群後群G3bを光軸直交方向にシフトさせた際に発生する非点収差やコマ収差の変動も大きくなって実効的な防振性能が得られない。 If the negative refractive power of the rear group G3b of the third lens group becomes stronger than the upper limit of the conditional expression (10), it becomes difficult to suppress the refractive power of the entire third lens group G3, and aberration fluctuation occurs at the time of scaling. .. Further, the variation of astigmatism and coma generated when the rear group G3b of the third lens group is shifted in the direction orthogonal to the optical axis becomes large, and effective anti-vibration performance cannot be obtained.

条件式(10)の下限を下回って第3レンズ群後群G3bの負の屈折力が弱くなると、第3レンズ群後群G3bを光軸直交方向にシフトさせた際に発生する横方向の像変位が小さくなるので、実効的な防振性能が得られない。または、必要な第3レンズ群後群G3bのシフト量が大きくなって鏡筒を径方向に大型化させてしまう。 When the negative refractive power of the rear group G3b of the third lens group becomes weaker below the lower limit of the conditional equation (10), a lateral image generated when the rear group G3b of the third lens group is shifted in the direction orthogonal to the optical axis. Since the displacement is small, effective anti-vibration performance cannot be obtained. Alternatively, the required shift amount of the rear group G3b of the third lens group becomes large, and the lens barrel becomes large in the radial direction.

なお、条件式(10)について、望ましくはその下限値を1.1に、より望ましくは下限値を1.3に、また上限値を1.9に、より望ましくは上限値を1.65に規定することで、前述の効果をより確実にすることができる。 Regarding the conditional expression (10), the lower limit is preferably 1.1, the lower limit is 1.3, the upper limit is 1.9, and the upper limit is 1.65. By prescribing, the above-mentioned effect can be made more certain.

また、本発明は以下の条件式を満足するよう構成される。
(11)-1.50<β3b<-0.50
(12)0.85<f2/f3b<2.00
ただし、
β3b:望遠端かつ無限遠合焦状態における3b群の結像倍率
fi:前記第iレンズ群の合成焦点距離
f3b:前記第3レンズ群後群G3bの合成焦点距離
Further, the present invention is configured to satisfy the following conditional expression.
(11) -1.50 <β3b <-0.50
(12) 0.85 <f2 / f3b <2.00
however,
β3b: Imaging magnification of the 3b group at the telephoto end and in focus at infinity fi: Composite focal length of the i-th lens group f3b: Composite focal length of the rear group G3b of the third lens group

第3レンズ群G3全体としての屈折力を抑制する一方で、防振に用いる第3レンズ群後群G3bの光軸直交方向のシフトに対する像の変位量を大きくするため、第3レンズ群後群G3bには一定以上の屈折力を持たせる必要がある。 In order to suppress the refractive power of the third lens group G3 as a whole and to increase the amount of displacement of the image of the third lens group rear group G3b used for vibration isolation with respect to the shift in the direction orthogonal to the optical axis, the third lens group rear group It is necessary to give G3b a certain level of refractive power or more.

条件式(11)は第3レンズ群後群G3bの望遠端における結像倍率を規定し、第3レンズ群後群G3bを防振に用いるにあたっての好ましい範囲を示したものである。 The conditional expression (11) defines the image magnification at the telephoto end of the rear group G3b of the third lens group, and shows a preferable range when the rear group G3b of the third lens group is used for vibration isolation.

条件式(11)の上限を上回って第3レンズ群後群G3bの結像倍率の絶対値が小さくなると、第3レンズ群後群G3bの光軸直交方向のシフトに伴う横方向の像変位量が小さくなるので、実効的な防振性能が得られない。または必要な第3レンズ群後群G3bのシフト量が大きくなって鏡筒を径方向に大型化させてしまう。 When the absolute value of the image magnification of the rear group G3b of the third lens group becomes smaller than the upper limit of the conditional equation (11), the amount of lateral image displacement due to the shift of the rear group G3b of the third lens group in the direction orthogonal to the optical axis Is small, so effective anti-vibration performance cannot be obtained. Alternatively, the required shift amount of the rear group G3b of the third lens group becomes large, and the lens barrel becomes large in the radial direction.

条件式(11)の下限を下回って第3レンズ群後群G3bの結像倍率の絶対値が大きくなると、第3レンズ群後群G3bの光軸直交方向のシフトに伴う横方向の像変位量が大きくなり過ぎて、第3レンズ群後群G3bの位置制御の分解能に非常に高いものが要求され、結果として防振性能が低下してしまう。 When the absolute value of the imaging magnification of the rear group G3b of the third lens group becomes larger than the lower limit of the conditional expression (11), the amount of lateral image displacement due to the shift of the rear group G3b of the third lens group in the direction perpendicular to the optical axis is large. Is too large, and a very high resolution of the position control of the rear group G3b of the third lens group is required, and as a result, the anti-vibration performance is deteriorated.

なお、条件式(11)について、望ましくはその下限値を-1.30に、また上限値を-0.65に規定することで、前述の効果をより確実にすることができる。 In the conditional expression (11), preferably, the lower limit value is set to -1.30 and the upper limit value is set to -0.65, so that the above-mentioned effect can be further ensured.

次に、条件式(12)は第3レンズ群後群G3bの第2レンズ群G2に対する焦点距離を規定し、第3レンズ群後群G3bを防振に用いるにあたっての好ましい範囲を示したものである。 Next, the conditional expression (12) defines the focal length of the rear group G3b of the third lens group with respect to the second lens group G2, and shows a preferable range for using the rear group G3b of the third lens group for vibration isolation. be.

条件式(12)の上限を上回って第3レンズ群後群G3bの屈折力が強くなると、第3レンズ群後群G3bの光軸直交方向のシフトに伴う横方向の像変位量が大きくなり過ぎて、第3レンズ群後群G3bの位置制御の分解能に非常に高いものが要求される。結果として防振性能が低下してしまう。 When the refractive power of the rear group G3b of the third lens group becomes stronger than the upper limit of the conditional equation (12), the amount of lateral image displacement due to the shift of the rear group G3b of the third lens group in the direction orthogonal to the optical axis becomes too large. Therefore, a very high resolution for position control of the rear group G3b of the third lens group is required. As a result, the anti-vibration performance deteriorates.

条件式(12)の下限を下回って第3レンズ群後群G3bの屈折力が弱くなると、第3レンズ群後群G3bの光軸直交方向のシフトに伴う横方向の像変位量が小さくなるので、実効的な防振性能が得られず、または必要な第3レンズ群後群G3bのシフト量が大きくなって鏡筒が径方向に大型化し好ましくない。 When the refractive power of the rear group G3b of the third lens group becomes weaker below the lower limit of the conditional equation (12), the amount of lateral image displacement due to the shift of the rear group G3b of the third lens group in the direction orthogonal to the optical axis becomes smaller. However, effective anti-vibration performance cannot be obtained, or the required shift amount of the rear group G3b of the third lens group becomes large, and the lens barrel becomes large in the radial direction, which is not preferable.

なお、条件式(12)について、望ましくはその下限値を0.95に、また上限値を1.50に規定することで、前述の効果をより確実にすることができる。 In the conditional expression (12), preferably, the lower limit value is set to 0.95 and the upper limit value is set to 1.50, so that the above-mentioned effect can be further ensured.

次に、本発明の防振機能を備えた変倍結像光学系に係る各実施例のレンズ構成と具体的な数値データについて説明する。尚、以下の説明ではレンズ構成を物体側から像側の順番で記載する。 Next, the lens configuration and specific numerical data of each embodiment of the variable magnification imaging optical system having the vibration isolation function of the present invention will be described. In the following description, the lens configuration will be described in order from the object side to the image side.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りSの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長λ=587.56nm)に対する屈折率、νdはd線に対するアッベ数を示す。またBFはバックフォーカスを表す。 In [plane data], the surface number is the number of the lens surface or aperture stop S counted from the object side, r is the refractive index of each surface, d is the distance between each surface, and nd is the d line (wavelength λ = 587.56 nm). Refractive index with respect to, νd indicates the Abbe number with respect to the d line. BF represents back focus.

面番号を付した(絞り)は、その位置に開口絞りSが位置していることを示している。平面または開口絞りに対する曲率半径には∞(無限大)を記入している。 The numbered surface (aperture) indicates that the aperture diaphragm S is located at that position. ∞ (infinity) is entered for the radius of curvature for a plane or aperture stop.

[各種データ]には、焦点距離等の値を示している。 [Various data] shows values such as focal length.

[可変間隔データ]には、各撮影距離状態における可変間隔及びBF(バックフォーカス)の値を示している。 [Variable interval data] shows the values of the variable interval and the BF (back focus) in each shooting distance state.

[レンズ群データ]には、各レンズ群を構成する最も物体側のレンズ面番号及びレンズ群全体の合成焦点距離を示している。 [Lens group data] shows the lens surface number on the most object side constituting each lens group and the combined focal length of the entire lens group.

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 In all the following specification values, the focal length f, the radius of curvature r, the lens surface spacing d, and other length units are described in millimeters (mm) unless otherwise specified, but optics. The system is not limited to this because the same optical performance can be obtained in both proportional expansion and proportional reduction.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、ΔS、ΔMはそれぞれサジタル像面、メリジオナル像面を表している。 Further, in the aberration diagram corresponding to each embodiment, d, g, and C represent the d-line, g-line, and C-line, respectively, and ΔS and ΔM represent the sagittal image plane and the meridional image plane, respectively.

さらに図1、23、45、67、89、111、133、155に示すレンズ構成図において、Sは開口絞り、Iは像面、中心を通る一点鎖線は光軸である。 Further, in the lens configuration diagram shown in FIGS. 1, 23, 45, 67, 89, 111, 133, and 155, S is an aperture diaphragm, I is an image plane, and the alternate long and short dash line passing through the center is an optical axis.

図1は、本発明の実施例1の防振機能を備えた変倍結像光学系のレンズ構成図である。 FIG. 1 is a lens configuration diagram of a variable magnification imaging optical system having a vibration isolation function according to a first embodiment of the present invention.

物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5、負の屈折力を有する第6レンズ群G6が配置されて構成される。 From the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a negative refractive power, and the fourth lens having a positive refractive power. The group G4, the fifth lens group G5 having a positive refractive power, and the sixth lens group G6 having a negative refractive power are arranged and configured.

第1レンズ群G1は、物体側へ凸面を向けた負メニスカスレンズL1と物体側へ凸面を向けた正メニスカスレンズL2からなる接合レンズと、物体側へ凸面を向けた平凸レンズL3から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The first lens group G1 is composed of a junction lens consisting of a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, and a plano-convex lens L3 having a convex surface facing the object side. It moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

第2レンズ群G2は、両凸レンズL4と両凹レンズL5からなる接合レンズと、物体側へ凸面を向けた負メニスカスレンズL6から構成され、広角端から望遠端への変倍に際して物体側から像側へ移動する。 The second lens group G2 is composed of a junction lens consisting of a biconvex lens L4 and a biconcave lens L5, and a negative meniscus lens L6 with a convex surface facing the object side. Move to.

第3レンズ群G3は、正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、変倍に際して像面に対し固定されている。 The third lens group G3 is composed of a third lens group front group G3a having a positive refractive power and a third lens group rear group G3b having a negative refractive power, and is fixed to the image plane at the time of scaling.

第3レンズ群前群G3aは、両凸レンズL7と物体側に凸面を向けた正メニスカスレンズL8より構成される。 The front group G3a of the third lens group is composed of a biconvex lens L7 and a positive meniscus lens L8 with a convex surface facing the object side.

第3レンズ群後群G3bは、両凹レンズL9と、両凹レンズL10と両凸レンズL11の接合レンズから構成されており、防振に際して光軸と直交する方向に駆動される。 The rear group G3b of the third lens group is composed of a biconcave lens L9, a biconcave lens L10, and a junction lens of the biconvex lens L11, and is driven in a direction orthogonal to the optical axis during vibration isolation.

第4レンズ群G4は、両凸レンズG12と、両凸レンズG13と両凹レンズG14の接合レンズと、物体側に凸面を向けた正メニスカスレンズL15と、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17と像側に凸面を向けた負メニスカスレンズL18の接合レンズから構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fourth lens group G4 includes a biconvex lens G12, a junction lens of a biconvex lens G13 and a biconcave lens G14, a positive meniscus lens L15 having a convex surface facing the object side, and a negative meniscus lens L16 having a convex surface facing the object side. It is composed of a junction lens of a biconvex lens L17 and a negative meniscus lens L18 with a convex surface facing the image side, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

また、第4レンズ群G4中の両凹レンズG14と、正メニスカスレンズL15の間の空気間隔中に開口絞りSを備える。 Further, an aperture diaphragm S is provided in the air gap between the biconcave lens G14 in the fourth lens group G4 and the positive meniscus lens L15.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL19と、両凸レンズL20と、両凸レンズL21から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fifth lens group G5 is composed of a negative meniscus lens L19 having a convex surface facing the object side, a biconvex lens L20, and a biconvex lens L21, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end. ..

第6レンズ群G6は、像側に凸面を向けた正メニスカスレンズL22と、両凹レンズL23と、両凹レンズL24と両凸レンズL25の接合レンズから構成され、広角端から望遠端への変倍に際して像側から望遠側へ移動し、無限遠から近距離へのフォーカシングに際して物体側から像側へ移動する。 The sixth lens group G6 is composed of a positive meniscus lens L22 with a convex surface facing the image side, a biconcave lens L23, and a junction lens of a biconcave lens L24 and a biconvex lens L25. It moves from the side to the telephoto side, and moves from the object side to the image side when focusing from infinity to a short distance.

続いて、以下に実施例1に係る変倍結像光学系の諸元値を示す。
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
1 191.4478 3.0000 1.87071 40.73
2 113.3602 10.0505 1.49700 81.61
3 1000.0000 0.1500
4 125.6151 10.1084 1.43700 95.10
5 ∞ d5
6 133.4879 4.4571 1.80518 25.46
7 -498.8095 1.5000 1.87071 40.73
8 74.0328 3.2320
9 457.8311 1.5000 1.87071 40.73
10 68.7453 d10
11 96.7106 3.6537 1.60342 38.01
12 -537.0800 7.8844
13 51.0188 3.2604 1.51742 52.15
14 123.3817 4.8080
15 -490.1727 0.9000 1.75700 47.82
16 63.0806 4.1944
17 -48.5730 1.0000 1.61997 63.88
18 88.4615 3.1979 1.85478 24.80
19 -307.1652 d19
20 305.1027 3.5176 1.80610 33.27
21 -139.8486 0.5148
22 84.3581 3.8214 1.59349 67.00
23 -182.5452 1.0000 1.84666 23.78
24 811.1016 7.9000
25(絞り) ∞ 7.9164
26 48.7235 3.8942 1.58913 61.25
27 183.5032 0.1500
28 67.2019 0.9000 1.95375 32.32
29 39.2014 2.0725
30 53.4025 6.1050 1.43700 95.10
31 -53.4025 1.0000 1.91082 35.25
32 -308.2583 d32
33 251.9085 0.9000 1.87071 40.73
34 71.7942 10.0309
35 303.8818 4.2555 1.56883 56.04
36 -89.4946 0.1500
37 59.1502 4.3580 1.62041 60.34
38 -376.9348 d38
39 -216.5223 2.9225 1.67300 38.15
40 -72.3284 0.7528
41 -151.7296 1.0000 1.43700 95.10
42 44.3172 19.9501
43 -35.2519 0.9000 1.95375 32.32
44 118.4711 4.3638 1.85478 24.80
45 -51.0206 BF
像面 ∞

[各種データ]
ズーム比 9.31
広角 中間 望遠
焦点距離 62.03 183.64 577.73
Fナンバー 4.48 5.55 6.50
全画角2ω 39.35 13.32 4.23
像高Y 21.63 21.63 21.63
レンズ全長 307.89 364.39 407.88

[可変間隔データ]
広角
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 4.4174 4.4174 4.4174
d10 34.7575 34.7575 34.7575
d19 51.3574 51.3574 51.3574
d32 10.3019 10.3019 10.3019
d38 2.1949 2.2771 2.6364
BF 53.5844 53.5021 53.1429

中間
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 81.0011 81.0011 81.0011
d10 14.6816 14.6816 14.6816
d19 26.1367 26.1367 26.1367
d32 6.2172 6.2172 6.2172
d38 7.8423 8.3089 10.2351
BF 77.2424 76.7756 74.8497

望遠
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 134.6875 134.6875 134.6875
d10 4.4816 4.4816 4.4816
d19 2.013 2.013 2.013
d32 12.3614 12.3614 12.3614
d38 4.389 7.7134 20.2935
BF 98.6753 95.3509 82.7706

[レンズ群データ]
群 始面 焦点距離
G1 1 237.55
G2 6 -60.92
G3 11 -246.41
G4 20 66.30
G5 33 72.87
G6 39 -57.90
G3a 11 76.82
G3b 15 -47.40
Subsequently, the specification values of the variable magnification imaging optical system according to the first embodiment are shown below.
Numerical Example 1
Unit: mm
[Surface data]
Face number rd nd vd
1 191.4478 3.0000 1.87071 40.73
2 113.3602 10.0505 1.49700 81.61
3 1000.0000 0.1500
4 125.6151 10.1084 1.43700 95.10
5 ∞ d5
6 133.4879 4.4571 1.80518 25.46
7 -498.8095 1.5000 1.87071 40.73
8 74.0328 3.2320
9 457.8311 1.5000 1.87071 40.73
10 68.7453 d10
11 96.7106 3.6537 1.60342 38.01
12 -537.0800 7.8844
13 51.0188 3.2604 1.51742 52.15
14 123.3817 4.8080
15 -490.1727 0.9000 1.75700 47.82
16 63.0806 4.1944
17 -48.5730 1.0000 1.61997 63.88
18 88.4615 3.1979 1.85478 24.80
19 -307.1652 d19
20 305.1027 3.5176 1.80610 33.27
21 -139.8486 0.5148
22 84.3581 3.8214 1.59349 67.00
23 -182.5452 1.0000 1.84666 23.78
24 811.1016 7.9000
25 (Aperture) ∞ 7.9164
26 48.7235 3.8942 1.58913 61.25
27 183.5032 0.1500
28 67.2019 0.9000 1.95375 32.32
29 39.2014 2.0725
30 53.4025 6.1050 1.43700 95.10
31 -53.4025 1.0000 1.91082 35.25
32 -308.2583 d32
33 251.9085 0.9000 1.87071 40.73
34 71.7942 10.0309
35 303.8818 4.2555 1.56883 56.04
36 -89.4946 0.1500
37 59.1502 4.3580 1.62041 60.34
38 -376.9348 d38
39 -216.5223 2.9225 1.67300 38.15
40 -72.3284 0.7528
41 -151.7296 1.0000 1.43700 95.10
42 44.3172 19.9501
43 -35.2519 0.9000 1.95375 32.32
44 118.4711 4.3638 1.85478 24.80
45 -51.0206 BF
Image plane ∞

[Various data]
Zoom ratio 9.31
Wide-angle medium telephoto focal length 62.03 183.64 577.73
F number 4.48 5.55 6.50
Full angle of view 2ω 39.35 13.32 4.23
Image height Y 21.63 21.63 21.63
Lens total length 307.89 364.39 407.88

[Variable interval data]
Wide angle
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 4.4174 4.4174 4.4174
d10 34.7575 34.7575 34.7575
d19 51.3574 51.3574 51.3574
d32 10.3019 10.3019 10.3019
d38 2.1949 2.2771 2.6364
BF 53.5844 53.5021 53.1429

Intermediate
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 81.0011 81.0011 81.0011
d10 14.6816 14.6816 14.6816
d19 26.1367 26.1367 26.1367
d32 6.2172 6.2172 6.2172
d38 7.8423 8.3089 10.2351
BF 77.2424 76.7756 74.8497

Telephoto
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 134.6875 134.6875 134.6875
d10 4.4816 4.4816 4.4816
d19 2.013 2.013 2.013
d32 12.3614 12.3614 12.3614
d38 4.389 7.7134 20.2935
BF 98.6753 95.3509 82.7706

[Lens group data]
Focal length
G1 1 237.55
G2 6 -60.92
G3 11 -246.41
G4 20 66.30
G5 33 72.87
G6 39 -57.90
G3a 11 76.82
G3b 15 -47.40

図23は、本発明の実施例2の結像光学系のレンズ構成図である。 FIG. 23 is a lens configuration diagram of the imaging optical system according to the second embodiment of the present invention.

物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5、負の屈折力を有する第6レンズ群G6が配置されて構成される。 From the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a negative refractive power, and the fourth lens having a positive refractive power. The group G4, the fifth lens group G5 having a positive refractive power, and the sixth lens group G6 having a negative refractive power are arranged and configured.

第1レンズ群G1は、物体側へ凸面を向けた負メニスカスレンズL1と物体側へ凸面を向けた正メニスカスレンズL2からなる接合レンズと、物体側へ凸面を向けた正メニスカスレンズレンズL3から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The first lens group G1 is composed of a junction lens consisting of a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens lens L3 having a convex surface facing the object side. It moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

第2レンズ群G2は、両凸レンズL4と両凹レンズL5からなる接合レンズと、両凹レンズL6から構成され、広角端から望遠端への変倍に際して物体側から像側へ移動する。 The second lens group G2 is composed of a junction lens composed of a biconvex lens L4 and a biconcave lens L5, and a biconcave lens L6, and moves from the object side to the image side when scaling from the wide-angle end to the telephoto end.

第3レンズ群G3は、正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、変倍に際して像面に対し固定されている。 The third lens group G3 is composed of a third lens group front group G3a having a positive refractive power and a third lens group rear group G3b having a negative refractive power, and is fixed to the image plane at the time of scaling.

第3レンズ群前群G3aは物体側より順に、像側に凸面を向けた正メニスカスレンズL7と物体側に凸面を向けた正メニスカスレンズL8より構成される。 The front group G3a of the third lens group is composed of a positive meniscus lens L7 having a convex surface facing the image side and a regular meniscus lens L8 having a convex surface facing the object side in order from the object side.

第3レンズ群後群G3bは物体側より順に、両凹レンズL9と、両凹レンズL10と両凸レンズL11の接合レンズから構成されており、防振に際して光軸と直交する方向に駆動される。 The rear group G3b of the third lens group is composed of a biconcave lens L9, a biconcave lens L10, and a junction lens of the biconvex lens L11 in order from the object side, and is driven in a direction orthogonal to the optical axis for vibration isolation.

第4レンズ群G4は、両凸レンズG12と、両凸レンズG13と両凹レンズG14の接合レンズと、物体側に凸面を向けた正メニスカスレンズL15と、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17と像側に凸面を向けた負メニスカスレンズL18の接合レンズから構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fourth lens group G4 includes a biconvex lens G12, a junction lens of a biconvex lens G13 and a biconcave lens G14, a positive meniscus lens L15 having a convex surface facing the object side, and a negative meniscus lens L16 having a convex surface facing the object side. It is composed of a junction lens of a biconvex lens L17 and a negative meniscus lens L18 with a convex surface facing the image side, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

また、第4レンズ群中の両凹レンズG14と、正メニスカスレンズL15の間の空気間隔中に開口絞りSを備える。 Further, an aperture diaphragm S is provided in the air gap between the biconcave lens G14 in the fourth lens group and the positive meniscus lens L15.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL19と、両凸レンズL20と、物体側に凸面を向けた正メニスカスレンズL21から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fifth lens group G5 is composed of a negative meniscus lens L19 having a convex surface facing the object side, a biconvex lens L20, and a positive meniscus lens L21 having a convex surface facing the object side. Move from the image side to the object side.

第6レンズ群G6は、像側に凸面を向けた正メニスカスレンズL22と、両凹レンズL23と、像側に凸面を向けた負メニスカスレンズL24と像側に凸面を向けた正メニスカスレンズL25の接合レンズから構成され、広角端から望遠端への変倍に際して像側から望遠側へ移動し、無限遠から近距離へのフォーカシングに際して物体側から像側へ移動する。 The sixth lens group G6 is a junction of a positive meniscus lens L22 having a convex surface facing the image side, a biconcave lens L23, a negative meniscus lens L24 having a convex surface facing the image side, and a positive meniscus lens L25 having a convex surface facing the image side. It is composed of a lens and moves from the image side to the telephoto side when scaling from the wide-angle end to the telephoto end, and moves from the object side to the image side when focusing from infinity to a short distance.

続いて、以下に実施例2に係る変倍結像光学系の諸元値を示す。
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
1 183.9776 3.0000 1.87071 40.73
2 111.6695 9.2434 1.49700 81.61
3 1038.7357 0.1500
4 124.1632 8.8849 1.43700 95.10
5 11713.5228 (d5)
6 260.4098 5.4297 1.80518 25.46
7 -136.5425 1.5000 1.87071 40.73
8 51.5497 5.7567
9 -1915.0039 1.5000 1.87071 40.73
10 356.5338 (d10)
11 -289.1074 3.5298 1.58267 46.42
12 -79.3512 0.1500
13 43.9807 3.2535 1.55032 75.50
14 108.8223 4.8012
15 -255.4092 0.9000 1.72916 54.67
16 65.2039 3.7710
17 -45.0305 1.0000 1.59522 67.73
18 100.1168 2.9967 1.85478 24.80
19 -204.2069 (d19)
20 249.0594 3.4298 1.80000 29.84
21 -151.6575 0.1500
22 108.2241 3.6712 1.62041 60.29
23 -105.6058 1.0000 1.84666 23.78
24 -1920.6391 7.9000
25(絞り) ∞ 11.8488
26 52.3784 3.6236 1.60738 56.82
27 208.1356 0.1500
28 69.6524 0.9000 1.95375 32.32
29 42.3726 1.7616
30 52.3700 5.6639 1.43700 95.10
31 -52.3700 1.0000 1.91082 35.25
32 -329.3310 (d32)
33 189.2374 0.9000 1.87071 40.73
34 68.1615 12.8928
35 211.1402 5.0154 1.55032 75.50
36 -79.2839 0.1500
37 54.2332 4.3821 1.61772 49.81
38 658.9183 (d38)
39 -203.4089 3.2142 1.66672 48.32
40 -66.1828 0.6308
41 -246.7154 1.0000 1.43700 95.10
42 36.3220 16.6535
43 -28.4439 0.9000 1.95375 32.32
44 -124.5438 3.6090 1.84666 23.78
45 -38.6568 (BF)
像面 ∞

[各種データ]
ズーム比 9.46
広角 中間 望遠
焦点距離 51.58 162.07 488.17
Fナンバー 4.46 5.55 6.51
全画角2ω 46.99 15.03 4.99
像高Y 21.63 21.63 21.63
レンズ全長 307.18 358.10 402.20

[可変間隔データ]
広角
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 5.4721 5.4721 5.4721
d10 40.6626 40.6626 40.6626
d19 53.4398 53.4398 53.4398
d32 5.6835 5.6835 5.6835
d38 2.6085 2.6697 2.9376
BF 53.0015 52.9402 52.6723

中間
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 81.2387 81.2387 81.2387
d10 15.8150 15.8150 15.8150
d19 26.4382 26.4382 26.4382
d32 2.6850 2.6850 2.6850
d38 7.5629 7.9448 9.5227
BF 78.0474 77.6658 76.0876

望遠
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 131.8230 131.8230 131.8230
d10 9.3250 9.3250 9.3250
d19 2.0000 2.0000 2.0000
d32 9.2546 9.2546 9.2546
d38 5.4174 7.9614 17.4802
BF 98.0614 95.5177 85.9986

[レンズ群データ]
群 始面 焦点距離
G1 1 229.00
G2 6 -58.11
G3 11 -190.43
G4 20 66.71
G5 33 70.21
G6 39 -60.22
G3a 11 76.72
G3b 15 -48.65
Subsequently, the specification values of the variable magnification imaging optical system according to the second embodiment are shown below.
Numerical Example 2
Unit: mm
[Surface data]
Face number rd nd vd
1 183.9776 3.0000 1.87071 40.73
2 111.6695 9.2434 1.49700 81.61
3 1038.7357 0.1500
4 124.1632 8.8849 1.43700 95.10
5 11713.5228 (d5)
6 260.4098 5.4297 1.80518 25.46
7 -136.5425 1.5000 1.87071 40.73
8 51.5497 5.7567
9 -1915.0039 1.5000 1.87071 40.73
10 356.5338 (d10)
11 -289.1074 3.5298 1.58267 46.42
12 -79.3512 0.1500
13 43.9807 3.2535 1.55032 75.50
14 108.8223 4.8012
15 -255.4092 0.9000 1.72916 54.67
16 65.2039 3.7710
17 -45.0305 1.0000 1.59522 67.73
18 100.1168 2.9967 1.85478 24.80
19 -204.2069 (d19)
20 249.0594 3.4298 1.80000 29.84
21 -151.6575 0.1500
22 108.2241 3.6712 1.62041 60.29
23 -105.6058 1.0000 1.84666 23.78
24-1920.6391 7.9000
25 (Aperture) ∞ 11.8488
26 52.3784 3.6236 1.60738 56.82
27 208.1356 0.1500
28 69.6524 0.9000 1.95375 32.32
29 42.3726 1.7616
30 52.3700 5.6639 1.43700 95.10
31 -52.3700 1.0000 1.91082 35.25
32 -329.3310 (d32)
33 189.2374 0.9000 1.87071 40.73
34 68.1615 12.8928
35 211.1402 5.0154 1.55032 75.50
36 -79.2839 0.1500
37 54.2332 4.3821 1.61772 49.81
38 658.9183 (d38)
39 -203.4089 3.2142 1.66672 48.32
40 -66.1828 0.6308
41 -246.7154 1.0000 1.43700 95.10
42 36.3220 16.6535
43 -28.4439 0.9000 1.95375 32.32
44 -124.5438 3.6090 1.84666 23.78
45 -38.6568 (BF)
Image plane ∞

[Various data]
Zoom ratio 9.46
Wide-angle medium telephoto focal length 51.58 162.07 488.17
F number 4.46 5.55 6.51
Full angle of view 2ω 46.99 15.03 4.99
Image height Y 21.63 21.63 21.63
Lens total length 307.18 358.10 402.20

[Variable interval data]
Wide angle
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 5.4721 5.4721 5.4721
d10 40.6626 40.6626 40.6626
d19 53.4398 53.4398 53.4398
d32 5.6835 5.6835 5.6835
d38 2.6085 2.6697 2.9376
BF 53.0015 52.9402 52.6723

Intermediate
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 81.2387 81.2387 81.2387
d10 15.8150 15.8150 15.8150
d19 26.4382 26.4382 26.4382
d32 2.6850 2.6850 2.6850
d38 7.5629 7.9448 9.5227
BF 78.0474 77.6658 76.0876

Telephoto
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 131.8230 131.8230 131.8230
d10 9.3250 9.3250 9.3250
d19 2.0000 2.0000 2.0000
d32 9.2546 9.2546 9.2546
d38 5.4174 7.9614 17.4802
BF 98.0614 95.5177 85.9986

[Lens group data]
Focal length
G1 1 229.00
G2 6 -58.11
G3 11 -190.43
G4 20 66.71
G5 33 70.21
G6 39 -60.22
G3a 11 76.72
G3b 15 -48.65

図45は、本発明の実施例3の結像光学系のレンズ構成図である。 FIG. 45 is a lens configuration diagram of the imaging optical system according to the third embodiment of the present invention.

物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5、負の屈折力を有する第6レンズ群G6が配置されて構成される。 From the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a negative refractive power, and the fourth lens having a positive refractive power. The group G4, the fifth lens group G5 having a positive refractive power, and the sixth lens group G6 having a negative refractive power are arranged and configured.

第1レンズ群G1は、物体側へ凸面を向けた負メニスカスレンズL1と物体側へ凸面を向けた正メニスカスレンズL2からなる接合レンズと、物体側へ凸面を向けた正メニスカスレンズレンズL3から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The first lens group G1 is composed of a junction lens consisting of a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens lens L3 having a convex surface facing the object side. It moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4と物体側に凸面を向けた負メニスカスレンズL5からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL6から構成され、広角端から望遠端への変倍に際して物体側から像側へ移動する。 The second lens group G2 is composed of a junction lens consisting of a positive meniscus lens L4 having a convex surface facing the object side, a negative meniscus lens L5 having a convex surface facing the object side, and a negative meniscus lens L6 having a convex surface facing the object side. , Moves from the object side to the image side when scaling from the wide-angle end to the telephoto end.

第3レンズ群G3は物体側から順に、正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、変倍に際して像面に対し固定されている。 The third lens group G3 is composed of a third lens group front group G3a having a positive refractive power and a third lens group rear group G3b having a negative refractive power in order from the object side, and is fixed to the image plane at the time of scaling. Has been done.

第3レンズ群前群G3aは、両凸レンズL7と物体側に凸面を向けた正メニスカスレンズL8より構成される。 The front group G3a of the third lens group is composed of a biconvex lens L7 and a positive meniscus lens L8 with a convex surface facing the object side.

第3レンズ群後群G3bは、両凹レンズL9と、両凹レンズL10と両凸レンズL11の接合レンズから構成されており、防振に際して光軸と直交する方向に駆動される。 The rear group G3b of the third lens group is composed of a biconcave lens L9, a biconcave lens L10, and a junction lens of the biconvex lens L11, and is driven in a direction orthogonal to the optical axis during vibration isolation.

第4レンズ群G4は、両凸レンズG12と、両凸レンズG13と両凹レンズG14の接合レンズと、物体側に凸面を向けた正メニスカスレンズL15と、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17と像側に凸面を向けた負メニスカスレンズL18の接合レンズから構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fourth lens group G4 includes a biconvex lens G12, a junction lens of a biconvex lens G13 and a biconcave lens G14, a positive meniscus lens L15 having a convex surface facing the object side, and a negative meniscus lens L16 having a convex surface facing the object side. It is composed of a junction lens of a biconvex lens L17 and a negative meniscus lens L18 with a convex surface facing the image side, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

また、第4レンズ群G4中の両凹レンズG14と、正メニスカスレンズL15の間の空気間隔中に開口絞りSを備える。 Further, an aperture diaphragm S is provided in the air gap between the biconcave lens G14 in the fourth lens group G4 and the positive meniscus lens L15.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL19と、両凸レンズL20と、両凸レンズL21から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fifth lens group G5 is composed of a negative meniscus lens L19 having a convex surface facing the object side, a biconvex lens L20, and a biconvex lens L21, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end. ..

第6レンズ群G6は、像側に凸面を向けた正メニスカスレンズL22と、両凹レンズL23と、像側に凸面を向けた負メニスカスレンズL24から構成され、広角端から望遠端への変倍に際して像側から望遠側へ移動し、無限遠から近距離へのフォーカシングに際して物体側から像側へ移動する。 The sixth lens group G6 is composed of a positive meniscus lens L22 with a convex surface facing the image side, a biconcave lens L23, and a negative meniscus lens L24 with a convex surface facing the image side. It moves from the image side to the telephoto side, and moves from the object side to the image side when focusing from infinity to a short distance.

続いて、以下に実施例3に係る変倍結像光学系の諸元値を示す。
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
1 180.3873 3.0000 1.87071 40.73
2 107.4126 9.1595 1.49700 81.61
3 1500.0000 0.1500
4 112.9244 8.5645 1.43700 95.10
5 1719.2821 (d5)
6 173.2640 3.3027 1.80809 22.76
7 904.2710 1.5000 1.87071 40.73
8 50.9405 5.1528
9 247.9259 1.5000 1.87071 40.73
10 97.8521 (d10)
11 601.2607 4.0012 1.62004 36.30
12 -120.8642 6.5594
13 41.5067 3.6039 1.51742 52.15
14 115.5161 4.7897
15 -692.5670 0.9000 1.72916 54.67
16 56.4878 4.0080
17 -43.1576 1.0000 1.59522 67.73
18 82.8474 3.0520 1.85478 24.80
19 -277.0573 (d19)
20 395.7015 2.9293 1.80420 46.50
21 -210.1387 0.1535
22 60.7452 4.2868 1.61997 63.88
23 -129.1969 1.0000 1.85025 30.05
24 385.3962 3.9000
25(絞り) ∞ 19.6439
26 60.9906 3.9364 1.60311 60.69
27 348.1042 0.1500
28 55.0197 0.9000 1.95375 32.32
29 36.3686 2.0483
30 49.6729 5.7977 1.43700 95.10
31 -49.6729 1.0000 1.91082 35.25
32 -197.6641 (d32)
33 487.0709 0.9000 1.88300 40.80
34 82.0305 1.0231
35 246.6120 3.9357 1.55032 75.50
36 -120.5742 0.1502
37 60.2847 10.4257 1.62004 36.30
38 -284.1651 (d38)
39 -184.5937 3.1443 1.67270 32.17
40 -60.4393 1.2634
41 -82.7876 1.0000 1.43700 95.10
42 38.9711 11.9188
43 -31.3723 0.9000 1.65844 50.85
44 -41.3921 (BF)
像面 ∞

[各種データ]
ズーム比 9.59
広角 中間 望遠
焦点距離 51.50 159.72 493.91
Fナンバー 4.41 5.57 6.55
全画角2ω 46.31 15.22 4.94
像高Y 21.63 21.63 21.63
レンズ全長 295.25 343.87 384.36

[可変間隔データ]
広角
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 4.0000 4.0000 4.0000
d10 34.0008 34.0008 34.0008
d19 52.6627 52.6627 52.6627
d32 7.2938 7.2938 7.2938
d38 2.1409 2.2214 2.5729
BF 54.5048 54.4242 54.0728

中間
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 74.0285 74.0285 74.0285
d10 12.5874 12.5874 12.5874
d19 26.6098 26.6098 26.6098
d32 3.5463 3.5463 3.5463
d38 7.8799 8.3759 10.4435
BF 78.5663 78.0704 76.0025

望遠
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 122.2674 122.2674 122.2674
d10 4.8365 4.8365 4.8365
d19 2.0000 2.0000 2.0000
d32 11.1149 11.1149 11.1149
d38 4.2034 7.6861 21.638
BF 99.2839 95.801 81.8491

[レンズ群データ]
群 始面 焦点距離
G1 1 216.79
G2 6 -55.97
G3 11 -251.12
G4 20 66.14
G5 33 93.87
G6 39 -70.49
G3a 11 71.51
G3b 15 -46.02
Subsequently, the specification values of the variable magnification imaging optical system according to the third embodiment are shown below.
Numerical Example 3
Unit: mm
[Surface data]
Face number rd nd vd
1 180.3873 3.0000 1.87071 40.73
2 107.4126 9.1595 1.49700 81.61
3 1500.0000 0.1500
4 112.9244 8.5645 1.43700 95.10
5 1719.2821 (d5)
6 173.2640 3.3027 1.80809 22.76
7 904.2710 1.5000 1.87071 40.73
8 50.9405 5.1528
9 247.9259 1.5000 1.87071 40.73
10 97.8521 (d10)
11 601.2607 4.0012 1.62004 36.30
12 -120.8642 6.5594
13 41.5067 3.6039 1.51742 52.15
14 115.5161 4.7897
15 -692.5670 0.9000 1.72916 54.67
16 56.4878 4.0080
17 -43.1576 1.0000 1.59522 67.73
18 82.8474 3.0520 1.85478 24.80
19 -277.0573 (d19)
20 395.7015 2.9293 1.80420 46.50
21 -210.1387 0.1535
22 60.7452 4.2868 1.61997 63.88
23 -129.1969 1.0000 1.85025 30.05
24 385.3962 3.9000
25 (Aperture) ∞ 19.6439
26 60.9906 3.9364 1.60311 60.69
27 348.1042 0.1500
28 55.0197 0.9000 1.95375 32.32
29 36.3686 2.0483
30 49.6729 5.7977 1.43700 95.10
31 -49.6729 1.0000 1.91082 35.25
32 -197.6641 (d32)
33 487.0709 0.9000 1.88300 40.80
34 82.0305 1.0231
35 246.6120 3.9357 1.55032 75.50
36 -120.5742 0.1502
37 60.2847 10.4257 1.62004 36.30
38 -284.1651 (d38)
39 -184.5937 3.1443 1.67270 32.17
40 -60.4393 1.2634
41 -82.7876 1.0000 1.43700 95.10
42 38.9711 11.9188
43 -31.3723 0.9000 1.65844 50.85
44 -41.3921 (BF)
Image plane ∞

[Various data]
Zoom ratio 9.59
Wide-angle medium telephoto focal length 51.50 159.72 493.91
F number 4.41 5.57 6.55
Full angle of view 2ω 46.31 15.22 4.94
Image height Y 21.63 21.63 21.63
Lens total length 295.25 343.87 384.36

[Variable interval data]
Wide angle
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 4.0000 4.0000 4.0000
d10 34.0008 34.0008 34.0008
d19 52.6627 52.6627 52.6627
d32 7.2938 7.2938 7.2938
d38 2.1409 2.2214 2.5729
BF 54.5048 54.4242 54.0728

Intermediate
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 74.0285 74.0285 74.0285
d10 12.5874 12.5874 12.5874
d19 26.6098 26.6098 26.6098
d32 3.5463 3.5463 3.5463
d38 7.8799 8.3759 10.4435
BF 78.5663 78.0704 76.0025

Telephoto
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 122.2674 122.2674 122.2674
d10 4.8365 4.8365 4.8365
d19 2.0000 2.0000 2.0000
d32 11.1149 11.1149 11.1149
d38 4.2034 7.6861 21.638
BF 99.2839 95.801 81.8491

[Lens group data]
Focal length
G1 1 216.79
G2 6 -55.97
G3 11 -251.12
G4 20 66.14
G5 33 93.87
G6 39 -70.49
G3a 11 71.51
G3b 15 -46.02

図67は、本発明の実施例4の結像光学系のレンズ構成図である。 FIG. 67 is a lens configuration diagram of the imaging optical system according to the fourth embodiment of the present invention.

物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5、負の屈折力を有する第6レンズ群G6が配置されて構成される。 From the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a negative refractive power, and the fourth lens having a positive refractive power. The group G4, the fifth lens group G5 having a positive refractive power, and the sixth lens group G6 having a negative refractive power are arranged and configured.

第1レンズ群G1は、物体側へ凸面を向けた負メニスカスレンズL1と物体側へ凸面を向けた正メニスカスレンズL2からなる接合レンズと、物体側へ凸面を向けた正メニスカスレンズレンズL3から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The first lens group G1 is composed of a junction lens consisting of a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens lens L3 having a convex surface facing the object side. It moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

第2レンズ群G2は、物体側へ凸面を向けた正メニスカスレンズL4と物体側へ凸面を向けた負メニスカスレンズL5からなる接合レンズと、物体側へ凸面を向けた負メニスカスレンズL6から構成され、広角端から望遠端への変倍に際して物体側から像側へ移動する。 The second lens group G2 is composed of a junction lens consisting of a positive meniscus lens L4 having a convex surface facing the object side, a negative meniscus lens L5 having a convex surface facing the object side, and a negative meniscus lens L6 having a convex surface facing the object side. , Moves from the object side to the image side when scaling from the wide-angle end to the telephoto end.

第3レンズ群G3は、正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、変倍に際して像面に対し固定されている。 The third lens group G3 is composed of a third lens group front group G3a having a positive refractive power and a third lens group rear group G3b having a negative refractive power, and is fixed to the image plane at the time of scaling.

第3レンズ群前群G3aは、両凸レンズL7と物体側に凸面を向けた正メニスカスレンズL8より構成される。 The front group G3a of the third lens group is composed of a biconvex lens L7 and a positive meniscus lens L8 with a convex surface facing the object side.

第3レンズ群後群G3bは、両凹レンズL9と、両凹レンズL10と両凸レンズL11の接合レンズから構成されており、防振に際して光軸と直交する方向に駆動される。 The rear group G3b of the third lens group is composed of a biconcave lens L9, a biconcave lens L10, and a junction lens of the biconvex lens L11, and is driven in a direction orthogonal to the optical axis during vibration isolation.

第4レンズ群G4は、両凸レンズG12と、両凸レンズG13と両凹レンズG14の接合レンズと、物体側に凸面を向けた正メニスカスレンズL15と、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17と像側に凸面を向けた負メニスカスレンズL18の接合レンズから構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fourth lens group G4 includes a biconvex lens G12, a junction lens of a biconvex lens G13 and a biconcave lens G14, a positive meniscus lens L15 having a convex surface facing the object side, and a negative meniscus lens L16 having a convex surface facing the object side. It is composed of a junction lens of a biconvex lens L17 and a negative meniscus lens L18 with a convex surface facing the image side, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

また、第4レンズ群G4中の両凹レンズG14と、正メニスカスレンズL15の間の空気間隔中に開口絞りSを備える。 Further, an aperture diaphragm S is provided in the air gap between the biconcave lens G14 in the fourth lens group G4 and the positive meniscus lens L15.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL19と、両凸レンズL20と、両凸レンズL21から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fifth lens group G5 is composed of a negative meniscus lens L19 having a convex surface facing the object side, a biconvex lens L20, and a biconvex lens L21, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end. ..

第6レンズ群G6は、両凸レンズL22と、両凹レンズL23と、像側に凸面を向けた負メニスカスレンズL24と像側に凸面を向けた正メニスカスレンズL25の接合レンズから構成され、広角端から望遠端への変倍に際して像側から望遠側へ移動し、無限遠から近距離へのフォーカシングに際して物体側から像側へ移動する。 The sixth lens group G6 is composed of a biconvex lens L22, a biconcave lens L23, a negative meniscus lens L24 with a convex surface facing the image side, and a positive meniscus lens L25 with a convex surface facing the image side. It moves from the image side to the telephoto side when scaling to the telephoto end, and moves from the object side to the image side when focusing from infinity to a short distance.

続いて、以下に実施例4に係る変倍結像光学系の諸元値を示す。
数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
1 171.9924 3.0000 1.87071 40.73
2 106.9087 10.5044 1.49700 81.61
3 737.3729 0.1500
4 120.5906 10.0362 1.43700 95.10
5 3220.6046 (d5)
6 140.6883 2.9241 1.80518 25.46
7 375.3061 1.5000 1.87071 40.73
8 56.3665 3.7501
9 212.5784 1.5000 1.87071 40.73
10 78.0206 (d10)
11 82.2798 4.4358 1.64769 33.84
12 -763.8860 6.3116
13 46.7524 3.3924 1.51742 52.15
14 92.4670 5.4909
15 -3552.1258 0.9000 1.74320 49.34
16 57.4220 4.3820
17 -45.6440 1.0000 1.61997 63.88
18 84.2074 3.1611 1.84666 23.78
19 -345.4298 (d19)
20 379.2215 5.6272 1.80420 46.50
21 -111.5690 0.1500
22 80.1576 3.8547 1.51742 52.15
23 -164.2052 1.0000 1.92119 23.96
24 493.2938 7.9000
25(絞り) ∞ 5.0000
26 36.7697 4.5935 1.49700 81.61
27 117.0459 3.7180
28 40.9541 0.9000 1.95375 32.32
29 29.6940 2.8838
30 53.8220 5.4378 1.43700 95.10
31 -53.8220 1.0000 1.91082 35.25
32 -366.1637 (d32)
33 249.9802 0.9000 1.87071 40.73
34 79.1212 7.3074
35 185.5004 3.1609 1.54814 45.82
36 -91.3091 0.1500
37 55.9557 4.0714 1.54814 45.82
38 -1561.2362 (d38)
39 1304.8163 3.2247 1.62004 36.30
40 -72.7317 1.2945
41 -91.9317 1.0000 1.49700 81.61
42 35.4876 15.1550
43 -33.8892 0.9000 1.95375 32.32
44 -82.7667 2.8209 1.85478 24.80
45 -42.4486 (BF)
像面 ∞

[各種データ]
ズーム比 9.32
広角 中間 望遠
焦点距離 62.05 177.71 578.40
Fナンバー 4.43 5.50 6.50
全画角2ω 38.92 13.71 4.21
像高Y 21.63 21.63 21.63
レンズ全長 297.68 349.57 393.58

[可変間隔データ]
広角
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 4.0000 4.0000 4.0000
d10 33.2448 33.2448 33.2448
d19 51.3427 51.3427 51.3427
d32 6.6721 6.6721 6.6721
d38 3.3073 3.3949 3.7767
BF 54.6218 54.5341 54.1524

中間
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 76.3056 76.3056 76.3056
d10 12.8328 12.8328 12.8328
d19 28.2208 28.2208 28.2208
d32 2.0000 2.0000 2.0000
d38 7.7754 8.248 10.2056
BF 77.9479 77.4752 75.5178

望遠
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 129.1227 129.1227 129.1227
d10 4.0283 4.0283 4.0283
d19 2.0000 2.0000 2.0000
d32 12.4798 12.4798 12.4798
d38 1.9972 5.6345 19.8088
BF 99.4669 95.8297 81.6552

[レンズ群データ]
群 始面 焦点距離
G1 1 229.42
G2 6 -60.27
G3 11 -327.21
G4 20 64.60
G5 33 78.45
G6 39 -61.61
G3a 11 71.46
G3b 15 -45.68
Subsequently, the specification values of the variable magnification imaging optical system according to the fourth embodiment are shown below.
Numerical Example 4
Unit: mm
[Surface data]
Face number rd nd vd
1 171.9924 3.0000 1.87071 40.73
2 106.9087 10.5044 1.49700 81.61
3 737.3729 0.1500
4 120.5906 10.0362 1.43700 95.10
5 3220.6046 (d5)
6 140.6883 2.9241 1.80518 25.46
7 375.3061 1.5000 1.87071 40.73
8 56.3665 3.7501
9 212.5784 1.5000 1.87071 40.73
10 78.0206 (d10)
11 82.2798 4.4358 1.64769 33.84
12 -763.8860 6.3116
13 46.7524 3.3924 1.51742 52.15
14 92.4670 5.4909
15 -3552.1258 0.9000 1.74320 49.34
16 57.4220 4.3820
17 -45.6440 1.0000 1.61997 63.88
18 84.2074 3.1611 1.84666 23.78
19 -345.4298 (d19)
20 379.2215 5.6272 1.80420 46.50
21 -111.5690 0.1500
22 80.1576 3.8547 1.51742 52.15
23 -164.2052 1.0000 1.92119 23.96
24 493.2938 7.9000
25 (Aperture) ∞ 5.0000
26 36.7697 4.5935 1.49700 81.61
27 117.0459 3.7180
28 40.9541 0.9000 1.95375 32.32
29 29.6940 2.8838
30 53.8220 5.4378 1.43700 95.10
31 -53.8220 1.0000 1.91082 35.25
32 -366.1637 (d32)
33 249.9802 0.9000 1.87071 40.73
34 79.1212 7.3074
35 185.5004 3.1609 1.54814 45.82
36 -91.3091 0.1500
37 55.9557 4.0714 1.54814 45.82
38 -1561.2362 (d38)
39 1304.8163 3.2247 1.62004 36.30
40 -72.7317 1.2945
41 -91.9317 1.0000 1.49700 81.61
42 35.4876 15.1550
43 -33.8892 0.9000 1.95375 32.32
44 -82.7667 2.8209 1.85478 24.80
45 -42.4486 (BF)
Image plane ∞

[Various data]
Zoom ratio 9.32
Wide-angle medium telephoto focal length 62.05 177.71 578.40
F number 4.43 5.50 6.50
Full angle of view 2ω 38.92 13.71 4.21
Image height Y 21.63 21.63 21.63
Lens total length 297.68 349.57 393.58

[Variable interval data]
Wide angle
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 4.0000 4.0000 4.0000
d10 33.2448 33.2448 33.2448
d19 51.3427 51.3427 51.3427
d32 6.6721 6.6721 6.6721
d38 3.3073 3.3949 3.7767
BF 54.6218 54.5341 54.1524

Intermediate
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 76.3056 76.3056 76.3056
d10 12.8328 12.8328 12.8328
d19 28.2208 28.2208 28.2208
d32 2.0000 2.0000 2.0000
d38 7.7754 8.248 10.2056
BF 77.9479 77.4752 75.5178

Telephoto
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 129.1227 129.1227 129.1227
d10 4.0283 4.0283 4.0283
d19 2.0000 2.0000 2.0000
d32 12.4798 12.4798 12.4798
d38 1.9972 5.6345 19.8088
BF 99.4669 95.8297 81.6552

[Lens group data]
Focal length
G1 1 229.42
G2 6 -60.27
G3 11 -327.21
G4 20 64.60
G5 33 78.45
G6 39 -61.61
G3a 11 71.46
G3b 15 -45.68

図89は、本発明の実施例5の結像光学系のレンズ構成図である。 FIG. 89 is a lens configuration diagram of the imaging optical system according to the fifth embodiment of the present invention.

物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5、負の屈折力を有する第6レンズ群G6が配置されて構成される。 From the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a negative refractive power, and the fourth lens having a positive refractive power. The group G4, the fifth lens group G5 having a positive refractive power, and the sixth lens group G6 having a negative refractive power are arranged and configured.

第1レンズ群G1は、物体側へ凸面を向けた負メニスカスレンズL1と物体側へ凸面を向けた正メニスカスレンズL2からなる接合レンズと、物体側へ凸面を向けた正メニスカスレンズレンズL3から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The first lens group G1 is composed of a junction lens consisting of a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens lens L3 having a convex surface facing the object side. It moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

第2レンズ群G2は、両凸レンズL4と両凹レンズL5からなる接合レンズと、物体側へ凸面を向けた負メニスカスレンズL6から構成され、広角端から望遠端への変倍に際して物体側から像側へ移動する。 The second lens group G2 is composed of a junction lens consisting of a biconvex lens L4 and a biconcave lens L5, and a negative meniscus lens L6 with a convex surface facing the object side. Move to.

第3レンズ群G3は物体側から順に、正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、変倍に際して像面に対し固定されている。 The third lens group G3 is composed of a third lens group front group G3a having a positive refractive power and a third lens group rear group G3b having a negative refractive power in order from the object side, and is fixed to the image plane at the time of scaling. Has been done.

第3レンズ群前群G3aは、両凸レンズL7と物体側に凸面を向けた正メニスカスレンズL8より構成される。 The front group G3a of the third lens group is composed of a biconvex lens L7 and a positive meniscus lens L8 with a convex surface facing the object side.

第3レンズ群後群G3bは、両凹レンズL9と、両凹レンズL10と両凸レンズL11の接合レンズから構成されており、防振に際して光軸と直交する方向に駆動される。 The rear group G3b of the third lens group is composed of a biconcave lens L9, a biconcave lens L10, and a junction lens of the biconvex lens L11, and is driven in a direction orthogonal to the optical axis during vibration isolation.

第4レンズ群G4は、両凸レンズG12と、両凸レンズG13と両凹レンズG14の接合レンズと、物体側に凸面を向けた正メニスカスレンズL15と、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17と像側に凸面を向けた負メニスカスレンズL18の接合レンズから構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fourth lens group G4 includes a biconvex lens G12, a junction lens of a biconvex lens G13 and a biconcave lens G14, a positive meniscus lens L15 having a convex surface facing the object side, and a negative meniscus lens L16 having a convex surface facing the object side. It is composed of a junction lens of a biconvex lens L17 and a negative meniscus lens L18 with a convex surface facing the image side, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

また、第4レンズ群G4中の両凹レンズG14と、正メニスカスレンズL15の間の空気間隔中に開口絞りSを備える。 Further, an aperture diaphragm S is provided in the air gap between the biconcave lens G14 in the fourth lens group G4 and the positive meniscus lens L15.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL19と、両凸レンズL20と、物体側に凸面を向けた正メニスカスレンズL21から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fifth lens group G5 is composed of a negative meniscus lens L19 having a convex surface facing the object side, a biconvex lens L20, and a positive meniscus lens L21 having a convex surface facing the object side. Move from the image side to the object side.

第6レンズ群G6は、両凸レンズL22と、両凹レンズL23と、両凹レンズL24と両凸レンズL25の接合レンズから構成され、広角端から望遠端への変倍に際して像側から望遠側へ移動し、無限遠から近距離へのフォーカシングに際して物体側から像側へ移動する。 The sixth lens group G6 is composed of a biconvex lens L22, a biconcave lens L23, a biconcave lens L24 and a biconvex lens L25, and moves from the image side to the telephoto side when scaling from the wide-angle end to the telephoto end. It moves from the object side to the image side when focusing from infinity to a short distance.

続いて、以下に実施例5に係る変倍結像光学系の諸元値を示す。
数値実施例5
単位:mm
[面データ]
面番号 r d nd vd
1 193.9183 3.0000 1.87071 40.73
2 112.7009 10.6601 1.49700 81.61
3 1954.6224 0.1500
4 115.4053 10.2252 1.43700 95.10
5 1909.8680 (d5)
6 125.0396 4.0633 1.80518 25.46
7 -8685.5213 1.5000 1.87071 40.73
8 56.9223 3.6694
9 215.6973 1.5000 1.87071 40.73
10 71.6254 (d10)
11 106.7759 4.3569 1.62004 36.30
12 -253.2720 6.1339
13 41.5419 3.4109 1.51680 64.20
14 74.4874 5.5127
15 -3606.5946 0.9000 1.74320 49.34
16 57.7292 4.4098
17 -44.4736 1.0000 1.61997 63.88
18 89.2171 3.2201 1.85478 24.80
19 -242.2676 (d19)
20 254.2966 3.3635 1.80610 33.27
21 -163.4129 0.1500
22 58.5932 3.8645 1.59349 67.00
23 -616.5772 1.0000 1.85478 24.80
24 135.9209 7.9000
25(絞り) ∞ 5.0080
26 55.2100 4.1271 1.51680 64.20
27 985.6996 0.2023
28 45.5011 0.9000 1.95375 32.32
29 33.2247 2.5855
30 55.0730 5.5390 1.43700 95.10
31 -55.0730 1.0000 1.91082 35.25
32 -611.6706 (d32)
33 108.6949 0.9000 1.87071 40.73
34 72.1846 12.4091
35 117.8829 4.0484 1.54072 47.20
36 -105.3095 0.1500
37 62.1923 3.6393 1.55032 75.50
38 314.3486 (d38)
39 460.4669 2.9171 1.67300 38.15
40 -117.9258 1.1550
41 -222.3699 1.0000 1.43700 95.10
42 29.3273 10.8668
43 -45.5274 0.9000 1.95375 32.32
44 323.5961 3.2003 1.85478 24.80
45 -64.0272 (BF)
像面 ∞

[各種データ]
ズーム比 9.32
広角 中間 望遠
焦点距離 62.07 180.98 578.34
Fナンバー 4.45 5.52 6.50
全画角2ω 38.65 13.42 4.21
像高Y 21.63 21.63 21.63
レンズ全長 297.37 348.55 390.08

[可変間隔データ]
広角
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 4.0000 4.0000 4.0000
d10 33.8685 33.8685 33.8685
d19 50.8036 50.8036 50.8036
d32 6.5986 6.5986 6.5986
d38 5.0364 5.1218 5.4935
BF 56.5239 56.4384 56.0670

中間
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 75.7681 75.7681 75.7681
d10 13.2773 13.2773 13.2773
d19 28.0374 28.0374 28.0374
d32 2.1055 2.1055 2.1055
d38 8.5152 8.9821 10.9095
BF 80.3043 79.8376 77.9100

望遠
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 126.036 126.036 126.036
d10 4.5449 4.5449 4.5449
d19 2.0000 2.0000 2.0000
d32 13.4942 13.4942 13.4942
d38 2.0874 5.5385 18.7932
BF 101.3808 97.9294 84.6750

[レンズ群データ]
群 始面 焦点距離
G1 1 224.38
G2 6 -59.44
G3 11 -333.47
G4 20 68.21
G5 33 73.44
G6 39 -58.36
G3a 11 73.18
G3b 15 -47.50
Subsequently, the specification values of the variable magnification imaging optical system according to the fifth embodiment are shown below.
Numerical Example 5
Unit: mm
[Surface data]
Face number rd nd vd
1 193.9183 3.0000 1.87071 40.73
2 112.7009 10.6601 1.49700 81.61
3 1954.6224 0.1500
4 115.4053 10.2252 1.43700 95.10
5 1909.8680 (d5)
6 125.0396 4.0633 1.80518 25.46
7 -8685.5213 1.5000 1.87071 40.73
8 56.9223 3.6694
9 215.6973 1.5000 1.87071 40.73
10 71.6254 (d10)
11 106.7759 4.3569 1.62004 36.30
12 -253.2720 6.1339
13 41.5419 3.4109 1.51680 64.20
14 74.4874 5.5127
15 -3606.5946 0.9000 1.74320 49.34
16 57.7292 4.4098
17 -44.4736 1.0000 1.61997 63.88
18 89.2171 3.2201 1.85478 24.80
19 -242.2676 (d19)
20 254.2966 3.3635 1.80610 33.27
21 -163.4129 0.1500
22 58.5932 3.8645 1.59349 67.00
23 -616.5772 1.0000 1.85478 24.80
24 135.9209 7.9000
25 (Aperture) ∞ 5.0080
26 55.2100 4.1271 1.51680 64.20
27 985.6996 0.2023
28 45.5011 0.9000 1.95375 32.32
29 33.2247 2.5855
30 55.0730 5.5390 1.43700 95.10
31 -55.0730 1.0000 1.91082 35.25
32 -611.6706 (d32)
33 108.6949 0.9000 1.87071 40.73
34 72.1846 12.4091
35 117.8829 4.0484 1.54072 47.20
36 -105.3095 0.1500
37 62.1923 3.6393 1.55032 75.50
38 314.3486 (d38)
39 460.4669 2.9171 1.67300 38.15
40 -117.9258 1.1550
41 -222.3699 1.0000 1.43700 95.10
42 29.3273 10.8668
43 -45.5274 0.9000 1.95375 32.32
44 323.5961 3.2003 1.85478 24.80
45 -64.0272 (BF)
Image plane ∞

[Various data]
Zoom ratio 9.32
Wide-angle medium telephoto focal length 62.07 180.98 578.34
F number 4.45 5.52 6.50
Full angle of view 2ω 38.65 13.42 4.21
Image height Y 21.63 21.63 21.63
Lens total length 297.37 348.55 390.08

[Variable interval data]
Wide angle
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 4.0000 4.0000 4.0000
d10 33.8685 33.8685 33.8685
d19 50.8036 50.8036 50.8036
d32 6.5986 6.5986 6.5986
d38 5.0364 5.1218 5.4935
BF 56.5239 56.4384 56.0670

Intermediate
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 75.7681 75.7681 75.7681
d10 13.2773 13.2773 13.2773
d19 28.0374 28.0374 28.0374
d32 2.1055 2.1055 2.1055
d38 8.5152 8.9821 10.9095
BF 80.3043 79.8376 77.9100

Telephoto
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 126.036 126.036 126.036
d10 4.5449 4.5449 4.5449
d19 2.0000 2.0000 2.0000
d32 13.4942 13.4942 13.4942
d38 2.0874 5.5385 18.7932
BF 101.3808 97.9294 84.6750

[Lens group data]
Focal length
G1 1 224.38
G2 6 -59.44
G3 11 -333.47
G4 20 68.21
G5 33 73.44
G6 39 -58.36
G3a 11 73.18
G3b 15 -47.50

図111は、本発明の実施例6の結像光学系のレンズ構成図である。 FIG. 111 is a lens configuration diagram of the imaging optical system according to the sixth embodiment of the present invention.

物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5、負の屈折力を有する第6レンズ群G6が配置されて構成される。 From the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a negative refractive power, and the fourth lens having a positive refractive power. The group G4, the fifth lens group G5 having a positive refractive power, and the sixth lens group G6 having a negative refractive power are arranged and configured.

第1レンズ群G1は、物体側へ凸面を向けた負メニスカスレンズL1と物体側へ凸面を向けた正メニスカスレンズL2からなる接合レンズと、物体側へ凸面を向けた正メニスカスレンズレンズL3から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The first lens group G1 is composed of a junction lens consisting of a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens lens L3 having a convex surface facing the object side. It moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

第2レンズ群G2は、物体側へ凸面を向けた正メニスカスレンズL4と物体側へ凸面を向けた負メニスカスレンズL5からなる接合レンズと、物体側へ凸面を向けた負メニスカスレンズL6から構成され、広角端から望遠端への変倍に際して物体側から像側へ移動する。 The second lens group G2 is composed of a junction lens consisting of a positive meniscus lens L4 having a convex surface facing the object side, a negative meniscus lens L5 having a convex surface facing the object side, and a negative meniscus lens L6 having a convex surface facing the object side. , Moves from the object side to the image side when scaling from the wide-angle end to the telephoto end.

第3レンズ群G3は物体側から順に、正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、変倍に際して像面に対し固定されている。 The third lens group G3 is composed of a third lens group front group G3a having a positive refractive power and a third lens group rear group G3b having a negative refractive power in order from the object side, and is fixed to the image plane at the time of scaling. Has been done.

第3レンズ群前群G3aは、両凸レンズL7と物体側に凸面を向けた正メニスカスレンズL8より構成される。 The front group G3a of the third lens group is composed of a biconvex lens L7 and a positive meniscus lens L8 with a convex surface facing the object side.

第3レンズ群後群G3bは、物体側へ凸面を向けた負メニスカスレンズL9と、両凹レンズL10と両凸レンズL11の接合レンズから構成されており、防振に際して光軸と直交する方向に駆動される。 The rear group G3b of the third lens group is composed of a negative meniscus lens L9 having a convex surface facing the object side and a junction lens of a biconcave lens L10 and a biconvex lens L11, and is driven in a direction orthogonal to the optical axis for vibration isolation. Orthogonal.

第4レンズ群G4は、両凸レンズG12と、両凸レンズG13と両凹レンズG14の接合レンズと、物体側に凸面を向けた正メニスカスレンズL15と、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17と像側に凸面を向けた負メニスカスレンズL18の接合レンズから構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fourth lens group G4 includes a biconvex lens G12, a junction lens of a biconvex lens G13 and a biconcave lens G14, a positive meniscus lens L15 having a convex surface facing the object side, and a negative meniscus lens L16 having a convex surface facing the object side. It is composed of a junction lens of a biconvex lens L17 and a negative meniscus lens L18 with a convex surface facing the image side, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

また、第4レンズ群G4中の両凹レンズG14と、正メニスカスレンズL15の間の空気間隔中に開口絞りSを備える。 Further, an aperture diaphragm S is provided in the air gap between the biconcave lens G14 in the fourth lens group G4 and the positive meniscus lens L15.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL19と、両凸レンズL20と、物体側に凸面を向けた正メニスカスレンズL21から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動し、無限遠から近距離へのフォーカシングに際して像側から物体側へ移動する。 The fifth lens group G5 is composed of a negative meniscus lens L19 having a convex surface facing the object side, a biconvex lens L20, and a positive meniscus lens L21 having a convex surface facing the object side. It moves from the image side to the object side, and moves from the image side to the object side when focusing from infinity to a short distance.

第6レンズ群G6は、両凸レンズL22と、両凹レンズL23と、両凹レンズL24と両凸レンズL25の接合レンズから構成され、広角端から望遠端への変倍に際して像側から望遠側へ移動し、無限遠から近距離へのフォーカシングに際して物体側から像側へ移動する。 The sixth lens group G6 is composed of a biconvex lens L22, a biconcave lens L23, a biconcave lens L24 and a biconvex lens L25, and moves from the image side to the telephoto side when scaling from the wide-angle end to the telephoto end. It moves from the object side to the image side when focusing from infinity to a short distance.

続いて、以下の実施例6に係る変倍結像光学系の諸元値を示す。
数値実施例6
単位:mm
[面データ]
面番号 r d nd vd
1 192.6245 3.0000 1.87071 40.73
2 112.5169 10.7760 1.49700 81.61
3 1984.0254 0.1500
4 115.7484 10.1202 1.43700 95.10
5 1724.6070 (d5)
6 114.9668 4.1760 1.80518 25.46
7 5851.5099 1.5000 1.87071 40.73
8 50.3830 4.1197
9 203.5260 1.5000 1.87071 40.73
10 78.9555 (d10)
11 112.6746 3.8686 1.62004 36.30
12 -260.7771 6.8226
13 39.8812 3.1526 1.51680 64.20
14 66.7555 5.4833
15 2298.3099 0.9000 1.74320 49.34
16 60.1530 4.3155
17 -45.0268 1.0000 1.61997 63.88
18 91.6412 3.1459 1.85478 24.80
19 -263.0854 (d19)
20 277.2869 3.3679 1.80610 33.27
21 -153.3145 0.1500
22 76.8555 3.8300 1.59349 67.00
23 -174.3225 1.0000 1.85478 24.80
24 275.1663 7.9000
25(絞り) ∞ 9.2084
26 47.6196 4.1709 1.51680 64.20
27 305.0231 0.4175
28 46.3664 0.9000 1.95375 32.32
29 33.3567 2.6103
30 55.8659 5.7561 1.43700 95.10
31 -55.8659 1.0000 1.91082 35.25
32 -562.2495 (d32)
33 101.2508 0.9000 1.87071 40.73
34 68.7716 9.9444
35 118.7990 3.1614 1.54072 47.20
36 -109.0007 0.1500
37 60.2608 3.8704 1.55032 75.50
38 768.7425 (d38)
39 592.9856 2.8644 1.67300 38.15
40 -118.7088 1.0148
41 -425.1087 1.0000 1.43700 95.10
42 27.4580 10.4317
43 -46.1064 0.9000 1.95375 32.32
44 85.7256 3.7392 1.85478 24.80
45 -66.7991 (BF)
像面 ∞

[各種データ]
ズーム比 9.33
広角 中間 望遠
焦点距離 62.02 177.99 578.40
Fナンバー 4.44 5.51 6.49
全画角2ω 38.40 13.60 4.20
像高Y 21.63 21.63 21.63
レンズ全長 298.22 348.79 391.31

[可変間隔データ]
広角
無限遠 有限遠距離 有限近距離
撮影距離 inf 12.6694m 2.5985m
d5 4.0000 4.0000 4.0000
d10 34.0475 34.0475 34.0475
d19 50.0147 50.0147 50.0147
d32 6.1519 6.1430 6.1029
d38 5.0476 5.1243 5.4472
BF 56.6412 56.5732 56.2906


中間
無限遠 有限遠距離 有限近距離
撮影距離 inf 12.9380m 2.5997m
d5 74.8794 74.8794 74.8794
d10 13.7364 13.7364 13.7364
d19 27.5080 27.5080 27.5080
d32 2.0000 1.7031 1.1498
d38 8.0927 8.4706 10.0523
BF 80.2549 80.1733 79.1449

望遠
無限遠 有限遠距離 有限近距離
撮影距離 inf 12.9996m 2.5899m
d5 126.7050 126.7050 126.7050
d10 4.4360 4.4360 4.4360
d19 2.0000 2.0000 2.0000
d32 12.3570 11.1260 6.4810
d38 1.9976 4.9694 15.6785
BF 101.5007 99.7596 93.6958

[レンズ群データ]
群 始面 焦点距離
G1 1 224.73
G2 6 -59.47
G3 11 -328.00
G4 20 69.41
G5 33 68.68
G6 39 -53.32
G3a 11 76.69
G3b 15 -49.57
Subsequently, the specification values of the variable magnification imaging optical system according to the following Example 6 are shown.
Numerical Example 6
Unit: mm
[Surface data]
Face number rd nd vd
1 192.6245 3.0000 1.87071 40.73
2 112.5169 10.7760 1.49700 81.61
3 1984.0254 0.1500
4 115.7484 10.1202 1.43700 95.10
5 1724.6070 (d5)
6 114.9668 4.1760 1.80518 25.46
7 5851.5099 1.5000 1.87071 40.73
8 50.3830 4.1197
9 203.5260 1.5000 1.87071 40.73
10 78.9555 (d10)
11 112.6746 3.8686 1.62004 36.30
12 -260.7771 6.8226
13 39.8812 3.1526 1.51680 64.20
14 66.7555 5.4833
15 2298.3099 0.9000 1.74320 49.34
16 60.1530 4.3155
17 -45.0268 1.0000 1.61997 63.88
18 91.6412 3.1459 1.85478 24.80
19 -263.0854 (d19)
20 277.2869 3.3679 1.80610 33.27
21 -153.3145 0.1500
22 76.8555 3.8300 1.59349 67.00
23 -174.3225 1.0000 1.85478 24.80
24 275.1663 7.9000
25 (Aperture) ∞ 9.2084
26 47.6196 4.1709 1.51680 64.20
27 305.0231 0.4175
28 46.3664 0.9000 1.95375 32.32
29 33.3567 2.6103
30 55.8659 5.7561 1.43700 95.10
31 -55.8659 1.0000 1.91082 35.25
32 -562.2495 (d32)
33 101.2508 0.9000 1.87071 40.73
34 68.7716 9.9444
35 118.7990 3.1614 1.54072 47.20
36 -109.0007 0.1500
37 60.2608 3.8704 1.55032 75.50
38 768.7425 (d38)
39 592.9856 2.8644 1.67300 38.15
40 -118.7088 1.0148
41 -425.1087 1.0000 1.43700 95.10
42 27.4580 10.4317
43 -46.1064 0.9000 1.95375 32.32
44 85.7256 3.7392 1.85478 24.80
45 -66.7991 (BF)
Image plane ∞

[Various data]
Zoom ratio 9.33
Wide-angle medium telephoto focal length 62.02 177.99 578.40
F number 4.44 5.51 6.49
Full angle of view 2ω 38.40 13.60 4.20
Image height Y 21.63 21.63 21.63
Lens total length 298.22 348.79 391.31

[Variable interval data]
Wide angle
Infinity finite long distance finite short distance shooting distance inf 12.6694m 2.5985m
d5 4.0000 4.0000 4.0000
d10 34.0475 34.0475 34.0475
d19 50.0147 50.0147 50.0147
d32 6.1519 6.1430 6.1029
d38 5.0476 5.1243 5.4472
BF 56.6412 56.5732 56.2906


Intermediate
Infinity finite long distance finite short distance shooting distance inf 12.9380m 2.5997m
d5 74.8794 74.8794 74.8794
d10 13.7364 13.7364 13.7364
d19 27.5080 27.5080 27.5080
d32 2.0000 1.7031 1.1498
d38 8.0927 8.4706 10.0523
BF 80.2549 80.1733 79.1449

Telephoto
Infinity finite long distance finite short distance shooting distance inf 12.9996m 2.5899m
d5 126.7050 126.7050 126.7050
d10 4.4360 4.4360 4.4360
d19 2.0000 2.0000 2.0000
d32 12.3570 11.1260 6.4810
d38 1.9976 4.9694 15.6785
BF 101.5007 99.7596 93.6958

[Lens group data]
Focal length
G1 1 224.73
G2 6 -59.47
G3 11 -328.00
G4 20 69.41
G5 33 68.68
G6 39 -53.32
G3a 11 76.69
G3b 15 -49.57

図133は、本発明の実施例7の結像光学系のレンズ構成図である。 FIG. 133 is a lens configuration diagram of the imaging optical system according to the seventh embodiment of the present invention.

物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5、負の屈折力を有する第6レンズ群G6が配置されて構成される。 From the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a negative refractive power, and the fourth lens having a positive refractive power. The group G4, the fifth lens group G5 having a positive refractive power, and the sixth lens group G6 having a negative refractive power are arranged and configured.

第1レンズ群G1は物体側から順に、物体側へ凸面を向けた負メニスカスレンズL1と物体側へ凸面を向けた正メニスカスレンズL2からなる接合レンズと、物体側へ凸面を向けた正メニスカスレンズレンズL3から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The first lens group G1 is a junction lens consisting of a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side in order from the object side. It is composed of a lens L3 and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

第2レンズ群G2は物体側から順に、物体側へ凸面を向けた正メニスカスレンズL4と物体側へ凸面を向けた負メニスカスレンズL5からなる接合レンズと、物体側へ凸面を向けた負メニスカスレンズL6から構成され、広角端から望遠端への変倍に際して物体側から像側へ移動する。 The second lens group G2 consists of a junction lens consisting of a positive meniscus lens L4 having a convex surface facing the object side, a negative meniscus lens L5 having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side, in order from the object side. It is composed of L6 and moves from the object side to the image side when scaling from the wide-angle end to the telephoto end.

第3レンズ群G3は物体側から順に、正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、変倍に際して像面に対し固定されている。 The third lens group G3 is composed of a third lens group front group G3a having a positive refractive power and a third lens group rear group G3b having a negative refractive power in order from the object side, and is fixed to the image plane at the time of scaling. Has been done.

第3レンズ群前群G3aは、両凸レンズL7と物体側に凸面を向けた正メニスカスレンズL8より構成される。 The front group G3a of the third lens group is composed of a biconvex lens L7 and a positive meniscus lens L8 with a convex surface facing the object side.

第3レンズ群後群G3bは、両凹レンズL9と、両凹レンズL10と両凸レンズL11の接合レンズから構成されており、防振に際して光軸と直交する方向に駆動される。 The rear group G3b of the third lens group is composed of a biconcave lens L9, a biconcave lens L10, and a junction lens of the biconvex lens L11, and is driven in a direction orthogonal to the optical axis during vibration isolation.

第4レンズ群G4は、両凸レンズG12と、両凸レンズG13と両凹レンズG14の接合レンズと、物体側に凸面を向けた正メニスカスレンズL15と、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17と像側に凸面を向けた負メニスカスレンズL18の接合レンズから構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fourth lens group G4 includes a biconvex lens G12, a junction lens of a biconvex lens G13 and a biconcave lens G14, a positive meniscus lens L15 having a convex surface facing the object side, and a negative meniscus lens L16 having a convex surface facing the object side. It is composed of a junction lens of a biconvex lens L17 and a negative meniscus lens L18 with a convex surface facing the image side, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

また、第4レンズ群G4中の両凹レンズG14と、正メニスカスレンズL15の間の空気間隔中に開口絞りSを備える。 Further, an aperture diaphragm S is provided in the air gap between the biconcave lens G14 in the fourth lens group G4 and the positive meniscus lens L15.

第5レンズ群G5は、両凸レンズL19と像側に凸面を向けた負メニスカスレンズL20の接合レンズと、物体側に凸面を向けた正メニスカスレンズL21から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動し、無限遠から近距離へのフォーカシングに際して像側から物体側へ移動する。 The fifth lens group G5 is composed of a junction lens of a biconvex lens L19, a negative meniscus lens L20 with a convex surface facing the image side, and a positive meniscus lens L21 with a convex surface facing the object side, and changes from a wide-angle end to a telephoto end. When doubling, it moves from the image side to the object side, and when focusing from infinity to a short distance, it moves from the image side to the object side.

第6レンズ群G6は、両凸レンズL22と、物体側に凸面を向けた負メニスカスレンズL23と、両凹レンズL24と両凸レンズL25の接合レンズから構成され、広角端から望遠端への変倍に際して像側から望遠側へ移動し、無限遠から近距離へのフォーカシングに際して物体側から像側へ移動する。 The sixth lens group G6 is composed of a biconvex lens L22, a negative meniscus lens L23 with a convex surface facing the object side, and a junction lens of a biconcave lens L24 and a biconvex lens L25. It moves from the side to the telephoto side, and moves from the object side to the image side when focusing from infinity to a short distance.

続いて、以下に実施例7に係る変倍結像光学系の諸元値を示す。
数値実施例7
単位:mm
[面データ]
面番号 r d nd vd
1 192.5126 3.0000 1.87071 40.73
2 112.2679 10.9773 1.49700 81.61
3 1944.6507 0.1500
4 116.3211 10.2596 1.43700 95.10
5 1900.2215 (d5)
6 106.4166 4.2645 1.80518 25.46
7 1477.2058 1.5000 1.87071 40.73
8 49.5258 4.2268
9 205.5296 1.5000 1.87071 40.73
10 76.2964 (d10)
11 120.7193 3.9461 1.62004 36.30
12 -296.9205 6.5056
13 40.9267 3.3290 1.51680 64.20
14 78.5445 5.6508
15 -857.9657 0.9000 1.74320 49.34
16 62.2599 4.2242
17 -45.6861 1.0000 1.61997 63.88
18 90.9368 3.2036 1.85478 24.80
19 -239.9746 (d19)
20 301.9306 3.2784 1.80610 33.27
21 -165.8529 0.1500
22 64.9410 4.0150 1.59349 67.00
23 -221.1033 1.0000 1.85478 24.80
24 200.8814 7.9000
25(絞り) ∞ 8.4048
26 59.8463 3.9982 1.51680 64.20
27 3831.4603 0.1500
28 43.1359 0.9000 1.95375 32.32
29 32.8588 2.7257
30 57.1861 5.6556 1.43700 95.10
31 -57.1861 1.0000 1.91082 35.25
32 -707.9463 (d32)
33 219.9242 3.1584 1.54072 47.20
34 -70.3601 1.0000 1.87071 40.73
35 -101.9088 0.1500
36 63.1802 3.6731 1.55032 75.50
37 575.3405 (d37)
38 283.2877 2.8457 1.67300 38.15
39 -143.1587 0.7946
40 319.5211 1.0000 1.43700 95.10
41 25.6525 8.5298
42 -44.1468 0.9000 1.95375 32.32
43 62.1213 5.4762 1.85478 24.80
44 -70.5578 (BF)
像面 ∞

[各種データ]
ズーム比 9.32
広角 中間 望遠
焦点距離 62.05 179.34 578.36
Fナンバー 4.46 5.55 6.49
全画角2ω 38.35 13.49 4.20
像高Y 21.63 21.63 21.63
レンズ全長 296.49 347.08 389.64

[可変間隔データ]
広角
無限遠 有限遠距離 有限近距離
inf 12.8516m 2.5957m
d5 4.0000 4.0000 4.0000
d10 34.5447 34.5447 34.5447
d19 48.888 48.888 48.888
d32 15.8559 15.8345 15.7376
d37 4.9469 5.0218 5.3431
BF 56.9136 56.8602 56.6357

中間
無限遠 有限遠距離 有限近距離
inf 13.0397m 2.6458m
d5 75.4218 75.4218 75.4218
d10 13.7107 13.7107 13.7107
d19 27.195 27.1950 27.1950
d32 10.8073 10.5623 9.8236
d37 8.0431 8.4281 9.9901
BF 80.5587 80.4189 79.5956

望遠
無限遠 有限遠距離 有限近距離
inf 12.8079m 2.5878m
d5 127.1326 127.1326 127.1326
d10 4.5590 4.5590 4.5590
d19 2.0000 2.0000 2.0000
d32 20.7217 19.4049 14.6041
d37 1.9977 5.0210 15.8831
BF 101.8846 100.1787 94.1169

[レンズ群データ]
群 始面 焦点距離
G1 1 225.03
G2 6 -59.20
G3 11 -308.95
G4 20 69.58
G5 33 71.15
G6 38 -53.38
G3a 11 75.97
G3b 15 -49.05
Subsequently, the specification values of the variable magnification imaging optical system according to the seventh embodiment are shown below.
Numerical Example 7
Unit: mm
[Surface data]
Face number rd nd vd
1 192.5126 3.0000 1.87071 40.73
2 112.2679 10.9773 1.49700 81.61
3 1944.6507 0.1500
4 116.3211 10.2596 1.43700 95.10
5 1900.2215 (d5)
6 106.4166 4.2645 1.80518 25.46
7 1477.2058 1.5000 1.87071 40.73
8 49.5258 4.2268
9 205.5296 1.5000 1.87071 40.73
10 76.2964 (d10)
11 120.7193 3.9461 1.62004 36.30
12 -296.9205 6.5056
13 40.9267 3.3290 1.51680 64.20
14 78.5445 5.6508
15 -857.9657 0.9000 1.74320 49.34
16 62.2599 4.2242
17 -45.6861 1.0000 1.61997 63.88
18 90.9368 3.2036 1.85478 24.80
19 -239.9746 (d19)
20 301.9306 3.2784 1.80610 33.27
21 -165.8529 0.1500
22 64.9410 4.0150 1.59349 67.00
23 -221.1033 1.0000 1.85478 24.80
24 200.8814 7.9000
25 (Aperture) ∞ 8.4048
26 59.8463 3.9982 1.51680 64.20
27 3831.4603 0.1500
28 43.1359 0.9000 1.95375 32.32
29 32.8588 2.7257
30 57.1861 5.6556 1.43700 95.10
31 -57.1861 1.0000 1.91082 35.25
32 -707.9463 (d32)
33 219.9242 3.1584 1.54072 47.20
34 -70.3601 1.0000 1.87071 40.73
35 -101.9088 0.1500
36 63.1802 3.6731 1.55032 75.50
37 575.3405 (d37)
38 283.2877 2.8457 1.67300 38.15
39 -143.1587 0.7946
40 319.5211 1.0000 1.43700 95.10
41 25.6525 8.5298
42 -44.1468 0.9000 1.95375 32.32
43 62.1213 5.4762 1.85478 24.80
44 -70.5578 (BF)
Image plane ∞

[Various data]
Zoom ratio 9.32
Wide-angle medium telephoto focal length 62.05 179.34 578.36
F number 4.46 5.55 6.49
Full angle of view 2ω 38.35 13.49 4.20
Image height Y 21.63 21.63 21.63
Lens total length 296.49 347.08 389.64

[Variable interval data]
Wide angle
Point at infinity finite distance finite short distance
inf 12.8516m 2.5957m
d5 4.0000 4.0000 4.0000
d10 34.5447 34.5447 34.5447
d19 48.888 48.888 48.888
d32 15.8559 15.8345 15.7376
d37 4.9469 5.0218 5.3431
BF 56.9136 56.8602 56.6357

Intermediate
Point at infinity finite distance finite short distance
inf 13.0397m 2.6458m
d5 75.4218 75.4218 75.4218
d10 13.7107 13.7107 13.7107
d19 27.195 27.1950 27.1950
d32 10.8073 10.5623 9.8236
d37 8.0431 8.4281 9.9901
BF 80.5587 80.4189 79.5956

Telephoto
Point at infinity finite distance finite short distance
inf 12.8079m 2.5878m
d5 127.1326 127.1326 127.1326
d10 4.5590 4.5590 4.5590
d19 2.0000 2.0000 2.0000
d32 20.7217 19.4049 14.6041
d37 1.9977 5.0210 15.8831
BF 101.8846 100.1787 94.1169

[Lens group data]
Focal length
G1 1 225.03
G2 6 -59.20
G3 11 -308.95
G4 20 69.58
G5 33 71.15
G6 38 -53.38
G3a 11 75.97
G3b 15 -49.05

図155は、本発明の実施例8の結像光学系のレンズ構成図である。 FIG. 155 is a lens configuration diagram of the imaging optical system according to the eighth embodiment of the present invention.

物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4、正の屈折力を有する第5レンズ群G5、負の屈折力を有する第6レンズ群G6が配置されて構成される。 From the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a negative refractive power, and the fourth lens having a positive refractive power. The group G4, the fifth lens group G5 having a positive refractive power, and the sixth lens group G6 having a negative refractive power are arranged and configured.

第1レンズ群G1は、物体側へ凸面を向けた負メニスカスレンズL1と物体側へ凸面を向けた正メニスカスレンズL2からなる接合レンズと、物体側へ凸面を向けた正メニスカスレンズレンズL3から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The first lens group G1 is composed of a junction lens consisting of a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens lens L3 having a convex surface facing the object side. It moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

第2レンズ群G2は、物体側へ凸面を向けた負メニスカスレンズL4と物体側へ凸面を向けた正メニスカスレンズL5からなる接合レンズと、物体側へ凸面を向けた負メニスカスレンズL6から構成され、広角端から望遠端への変倍に際して物体側から像側へ移動する。 The second lens group G2 is composed of a junction lens consisting of a negative meniscus lens L4 having a convex surface facing the object side, a positive meniscus lens L5 having a convex surface facing the object side, and a negative meniscus lens L6 having a convex surface facing the object side. , Moves from the object side to the image side when scaling from the wide-angle end to the telephoto end.

第3レンズ群G3は、正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、変倍に際して像面に対し固定されている。 The third lens group G3 is composed of a third lens group front group G3a having a positive refractive power and a third lens group rear group G3b having a negative refractive power, and is fixed to the image plane at the time of scaling.

第3レンズ群前群G3aは、両凸レンズL7と物体側に凸面を向けた正メニスカスレンズL8より構成される。 The front group G3a of the third lens group is composed of a biconvex lens L7 and a positive meniscus lens L8 with a convex surface facing the object side.

第3レンズ群後G3bは、物体側に凸面を向けた負メニスカスレンズL9と、両凹レンズL10と両凸レンズL11の接合レンズから構成されており、防振に際して光軸と直交する方向に駆動される。 The rear G3b of the third lens group is composed of a negative meniscus lens L9 having a convex surface facing the object side and a junction lens of a biconcave lens L10 and a biconvex lens L11, and is driven in a direction orthogonal to the optical axis for vibration isolation. ..

第4レンズ群G4は、両凸レンズG12と、両凸レンズG13と両凹レンズG14の接合レンズと、物体側に凸面を向けた正メニスカスレンズL15と、物体側に凸面を向けた負メニスカスレンズL16と、両凸レンズL17と像側に凸面を向けた負メニスカスレンズL18の接合レンズから構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fourth lens group G4 includes a biconvex lens G12, a junction lens of a biconvex lens G13 and a biconcave lens G14, a positive meniscus lens L15 having a convex surface facing the object side, and a negative meniscus lens L16 having a convex surface facing the object side. It is composed of a junction lens of a biconvex lens L17 and a negative meniscus lens L18 with a convex surface facing the image side, and moves from the image side to the object side when scaling from the wide-angle end to the telephoto end.

また、第4レンズ群G4中の両凹レンズG14と、正メニスカスレンズL15の間の空気間隔中に開口絞りSを備える。 Further, an aperture diaphragm S is provided in the air gap between the biconcave lens G14 in the fourth lens group G4 and the positive meniscus lens L15.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL19と、両凸レンズL20と、物体側に凸面を向けた正メニスカスレンズL21から構成され、広角端から望遠端への変倍に際して像側から物体側へ移動する。 The fifth lens group G5 is composed of a negative meniscus lens L19 having a convex surface facing the object side, a biconvex lens L20, and a positive meniscus lens L21 having a convex surface facing the object side. Move from the image side to the object side.

第6レンズ群G6は、両凸レンズL22と、両凹レンズL23と、両凹レンズL24と両凸レンズL25の接合レンズから構成され、広角端から望遠端への変倍に際して像側から望遠側へ移動し、無限遠から近距離へのフォーカシングに際して物体側から像側へ移動する。 The sixth lens group G6 is composed of a biconvex lens L22, a biconcave lens L23, a biconcave lens L24 and a biconvex lens L25, and moves from the image side to the telephoto side when scaling from the wide-angle end to the telephoto end. It moves from the object side to the image side when focusing from infinity to a short distance.

続いて、以下に実施例8に係る変倍結像光学系の諸元値を示す。
数値実施例8
単位:mm
[面データ]
面番号 r d nd vd
1 195.0864 3.0000 1.87071 40.73
2 112.2000 10.6715 1.49700 81.61
3 2015.5812 0.1500
4 114.6688 10.2048 1.43700 95.10
5 1943.0237 (d5)
6 161.1555 1.5000 1.87071 40.73
7 37.8572 5.2636 1.72825 28.32
8 65.1111 2.2582
9 123.5592 1.5000 1.87071 40.73
10 65.9196 (d10)
11 135.3943 4.1223 1.62004 36.30
12 -226.4852 6.3495
13 37.3781 3.0945 1.51680 64.20
14 57.4246 5.7064
15 2922.7562 0.9000 1.74320 49.34
16 56.4129 4.4965
17 -43.3948 1.0000 1.61997 63.88
18 88.0469 3.2707 1.85478 24.80
19 -229.4553 (d19)
20 247.7660 3.4934 1.80610 33.27
21 -142.7463 0.1500
22 58.2780 3.8616 1.59349 67.00
23 -923.9465 1.0000 1.85478 24.80
24 135.7377 7.9000
25(絞り) ∞ 5.0000
26 56.1488 3.9198 1.48749 70.44
27 620.1867 0.1500
28 47.7950 0.9000 1.95375 32.32
29 34.7120 2.4490
30 55.4002 5.5414 1.43700 95.10
31 -55.4002 1.0000 1.91082 35.25
32 -915.4361 (d32)
33 77.6585 0.9000 1.87071 40.73
34 57.4732 14.2263
35 95.4063 3.3859 1.51742 52.15
36 -108.6274 0.1500
37 72.4085 3.5102 1.55032 75.50
38 389.6026 (d38)
39 447.5412 2.9525 1.67300 38.15
40 -124.1445 1.1440
41 -252.3647 1.0000 1.43700 95.10
42 31.7093 14.0095
43 -45.7595 0.9000 1.95375 32.32
44 394.6031 3.2862 1.85478 24.80
45 -64.1992 (BF)
像面 ∞

[各種データ]
ズーム比 9.31
広角 中間 望遠
焦点距離 62.08 180.74 578.24
Fナンバー 4.49 5.55 6.50
全画角2ω 38.70 13.45 4.21
像高Y 21.63 21.63 21.63
レンズ全長 299.31 350.97 392.88

[可変間隔データ]
広角
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 4.0000 4.0000 4.0000
d10 34.1670 34.1670 34.1670
d19 50.3014 50.3014 50.3014
d32 7.2934 7.2934 7.2934
d38 4.3094 4.4030 4.8110
BF 54.9199 54.8262 54.4183

中間
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 76.1088 76.1088 76.1088
d10 13.7174 13.7174 13.7174
d19 27.8928 27.8928 27.8928
d32 2.0000 2.0000 2.0000
d38 8.1887 8.7011 10.8208
BF 78.7425 78.2298 76.1106

望遠
無限遠 有限遠距離 有限近距離
撮影距離 inf 13m 2.6m
d5 126.7677 126.7677 126.7677
d10 4.9670 4.9670 4.9670
d19 2.0000 2.0000 2.0000
d32 13.0218 13.0218 13.0218
d38 2.0385 5.8542 20.6340
BF 99.7637 95.9482 81.1682

[レンズ群データ]
群 始面 焦点距離
G1 1 224.65
G2 6 -63.76
G3 11 -207.93
G4 20 67.85
G5 33 75.05
G6 39 -62.36
G3a 11 81.93
G3b 15 -47.63
Subsequently, the specification values of the variable magnification imaging optical system according to the eighth embodiment are shown below.
Numerical Example 8
Unit: mm
[Surface data]
Face number rd nd vd
1 195.0864 3.0000 1.87071 40.73
2 112.2000 10.6715 1.49700 81.61
3 2015.5812 0.1500
4 114.6688 10.2048 1.43700 95.10
5 1943.0237 (d5)
6 161.1555 1.5000 1.87071 40.73
7 37.8572 5.2636 1.72825 28.32
8 65.1111 2.2582
9 123.5592 1.5000 1.87071 40.73
10 65.9196 (d10)
11 135.3943 4.1223 1.62004 36.30
12 -226.4852 6.3495
13 37.3781 3.0945 1.51680 64.20
14 57.4246 5.7064
15 2922.7562 0.9000 1.74320 49.34
16 56.4129 4.4965
17 -43.3948 1.0000 1.61997 63.88
18 88.0469 3.2707 1.85478 24.80
19 -229.4553 (d19)
20 247.7660 3.4934 1.80610 33.27
21 -142.7463 0.1500
22 58.2780 3.8616 1.59349 67.00
23 -923.9465 1.0000 1.85478 24.80
24 135.7377 7.9000
25 (Aperture) ∞ 5.0000
26 56.1488 3.9198 1.48749 70.44
27 620.1867 0.1500
28 47.7950 0.9000 1.95375 32.32
29 34.7120 2.4490
30 55.4002 5.5414 1.43700 95.10
31 -55.4002 1.0000 1.91082 35.25
32 -915.4361 (d32)
33 77.6585 0.9000 1.87071 40.73
34 57.4732 14.2263
35 95.4063 3.3859 1.51742 52.15
36 -108.6274 0.1500
37 72.4085 3.5102 1.55032 75.50
38 389.6026 (d38)
39 447.5412 2.9525 1.67300 38.15
40 -124.1445 1.1440
41 -252.3647 1.0000 1.43700 95.10
42 31.7093 14.0095
43 -45.7595 0.9000 1.95375 32.32
44 394.6031 3.2862 1.85478 24.80
45 -64.1992 (BF)
Image plane ∞

[Various data]
Zoom ratio 9.31
Wide-angle medium telephoto focal length 62.08 180.74 578.24
F number 4.49 5.55 6.50
Full angle of view 2ω 38.70 13.45 4.21
Image height Y 21.63 21.63 21.63
Lens total length 299.31 350.97 392.88

[Variable interval data]
Wide angle
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 4.0000 4.0000 4.0000
d10 34.1670 34.1670 34.1670
d19 50.3014 50.3014 50.3014
d32 7.2934 7.2934 7.2934
d38 4.3094 4.4030 4.8110
BF 54.9199 54.8262 54.4183

Intermediate
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 76.1088 76.1088 76.1088
d10 13.7174 13.7174 13.7174
d19 27.8928 27.8928 27.8928
d32 2.0000 2.0000 2.0000
d38 8.1887 8.7011 10.8208
BF 78.7425 78.2298 76.1106

Telephoto
Infinity finite long distance finite short distance shooting distance inf 13m 2.6m
d5 126.7677 126.7677 126.7677
d10 4.9670 4.9670 4.9670
d19 2.0000 2.0000 2.0000
d32 13.0218 13.0218 13.0218
d38 2.0385 5.8542 20.6340
BF 99.7637 95.9482 81.1682

[Lens group data]
Focal length
G1 1 224.65
G2 6 -63.76
G3 11 -207.93
G4 20 67.85
G5 33 75.05
G6 39 -62.36
G3a 11 81.93
G3b 15 -47.63

本発明の防振機能を備えた変倍結像光学系においては、更に以下の構成を伴うのが望ましい。 In the variable magnification imaging optical system provided with the vibration isolation function of the present invention, it is desirable to further include the following configuration.

第2レンズ群G2中の空気界面はすべて物体側に凸の面であることが望ましい。なぜなら、広角端において第2レンズ群G2を通過する周辺画角の主光線と、相対屈折率の大きい空気界面の法線とのなす角を小さくすることで、コマ収差や非点収差等の軸外収差の発生を低減し、広角端の画面全域で結像性能を担保することができる。 It is desirable that all the air interfaces in the second lens group G2 are surfaces convex toward the object. This is because by reducing the angle between the main ray of the peripheral image angle passing through the second lens group G2 at the wide-angle end and the normal line of the air interface having a large relative refractive index, the axes of coma aberration and astigmatism are reduced. It is possible to reduce the occurrence of astigmatism and ensure imaging performance over the entire screen at the wide-angle end.

無限遠から近距離への合焦に際して、前述の通り第6レンズ群G6が移動することが望ましいが、実施例に示したように第6レンズ群G6とともに第5レンズ群G5を移動させてもよい。また第5レンズ群G5のみ、または第5レンズ群G5ないし第6レンズ群G6の一部を、第5レンズ群G5と第6レンズ群G6の間の空気間隔が変化するように移動させてもよい。 It is desirable to move the 6th lens group G6 as described above when focusing from infinity to a short distance, but the 5th lens group G5 may be moved together with the 6th lens group G6 as shown in the examples. .. Further, even if only the 5th lens group G5 or a part of the 5th lens group G5 to the 6th lens group G6 is moved so that the air spacing between the 5th lens group G5 and the 6th lens group G6 changes. good.

各実施例では第4レンズ群G4内部に開口絞りSを備えるが、第4レンズ群G4の前側ないし後ろ側に配置することも可能である。開口絞りSを第4レンズ群G4の前側に置いた場合、第3レンズ群後群G3bが防振群である関係上、開口絞りSと防振の駆動機構が隣接することになるので配置が難しい。開口絞りSを第4レンズ群G4の後ろ側に置いた場合、入射瞳が像側に移動して絞りより前の群での主光線通過位置が光軸から離れるので、特に第1レンズ群G1や第2レンズ群G2の径が上がって、その重量が増加傾向となる。 In each embodiment, the aperture diaphragm S is provided inside the fourth lens group G4, but it can also be arranged on the front side or the rear side of the fourth lens group G4. When the aperture stop S is placed on the front side of the fourth lens group G4, the aperture stop S and the vibration isolation drive mechanism are adjacent to each other because the third lens group rear group G3b is an anti-vibration group. difficult. When the aperture diaphragm S is placed behind the fourth lens group G4, the entrance pupil moves to the image side and the main ray passing position in the group before the diaphragm moves away from the optical axis. As the diameter of the second lens group G2 increases, the weight of the second lens group G2 tends to increase.

したがって第4レンズ群G4の内部に開口絞りSを配置することが最も好ましい。しかし前記の問題を解決できる場合には開口絞りSの位置が第4レンズ群G4の内部でなくとも本発明の本質的な効果は変わらない。 Therefore, it is most preferable to arrange the aperture stop S inside the fourth lens group G4. However, if the above problem can be solved, the essential effect of the present invention does not change even if the position of the aperture stop S is not inside the fourth lens group G4.

以上の上記に各実施例に対応する条件式対応値を示す。
条件式 実施例1 実施例2 実施例3 実施例4
f1/ft 0.41 0.47 0.44 0.40
|ft/f2| 9.5 8.4 8.8 9.6
{(n2-n1)/r2}/{(n1-1)/r1} -0.72 -0.71 -0.72 -0.69
r3/bf1 0.80 0.99 1.60 0.70
ht/r2 0.39 0.34 0.35 0.42
ft/fw 9.31 9.46 9.59 9.32
LT/ft 0.71 0.82 0.78 0.68
β6 2.9 2.8 2.5 2.8
f3/f2 4.04 3.28 4.49 5.43
|f3a/f3b| 1.62 1.58 1.55 1.56
β3b -0.87 -0.79 -0.89 -1.07
|f2/f3b| 1.29 1.19 1.22 1.32

条件式 実施例5 実施例6 実施例7 実施例8
f1/ft 0.39 0.39 0.39 0.39
|ft/f2| 9.7 9.7 9.8 9.1
{(n2-n1)/r2}/{(n1-1)/r1} -0.74 -0.73 -0.74 -0.75
r3/bf1 1.88 1.97 1.91 1.87
ht/r2 0.39 0.40 0.40 0.40
ft/fw 9.32 9.33 9.32 9.31
LT/ft 0.67 0.68 0.67 0.68
β6 2.9 3.1 3.1 2.8
f3/f2 5.61 5.52 5.22 3.26
|f3a/f3b| 1.54 1.55 1.55 1.72
β3b -1.09 -1.03 -1.04 -0.99
|f2/f3b| 1.25 1.20 1.21 1.34
The above-mentioned above shows the values corresponding to the conditional expressions corresponding to each embodiment.
Conditional expression Example 1 Example 2 Example 3 Example 4
f1 / ft 0.41 0.47 0.44 0.40
| ft / f2 | 9.5 8.4 8.8 9.6 9.6
{(n2-n1) / r2} / {(n1-1) / r1} -0.72 -0.71 -0.72 -0.69
r3 / bf1 0.80 0.99 1.60 0.70
ht / r2 0.39 0.34 0.35 0.42
ft / fw 9.31 9.46 9.59 9.32
LT / ft 0.71 0.82 0.78 0.68
β6 2.9 2.8 2.5 2.8
f3 / f2 4.04 3.28 4.49 5.43
| f3a / f3b | 1.62 1.58 1.55 1.56
β3b -0.87 -0.79 -0.89 -1.07
| f2 / f3b | 1.29 1.19 1.22 1.32

Conditional expression Example 5 Example 6 Example 7 Example 8
f1 / ft 0.39 0.39 0.39 0.39
| ft / f2 | 9.7 9.7 9.8 9.1
{(n2-n1) / r2} / {(n1-1) / r1} -0.74 -0.73 -0.74 -0.75
r3 / bf1 1.88 1.97 1.91 1.87
ht / r2 0.39 0.40 0.40 0.40
ft / fw 9.32 9.33 9.32 9.31
LT / ft 0.67 0.68 0.67 0.68
β6 2.9 3.1 3.1 2.8
f3 / f2 5.61 5.52 5.22 3.26
| f3a / f3b | 1.54 1.55 1.55 1.72
β3b -1.09 -1.03 -1.04 -0.99
| f2 / f3b | 1.25 1.20 1.21 1.34

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G3a 第3レンズ群前群
G3b 第3レンズ群後群
G4 第4レンズ群
G5 第5レンズ群
G6 第6レンズ群
S 開口絞り
I 像面
G1 1st lens group G2 2nd lens group G3 3rd lens group G3a 3rd lens group Front group G3b 3rd lens group Rear group G4 4th lens group G5 5th lens group G6 6th lens group S Aperture aperture I image plane

Claims (9)

物体側から順に、
正の屈折力を有する第1レンズ群G1と、
負の屈折力を有する第2レンズ群G2と、
負の屈折力を有する第3レンズ群G3と、
正の屈折力を有する第4レンズ群G4と、
正の屈折力を有する第5レンズ群G5と、
負の屈折力を有する第6レンズ群G6とから構成され、
開口絞りSは前記第4レンズ群G4の内部あるいは近傍に配置され、
広角端から望遠端への変倍に際し、各レンズ群の間の空気間隔が変化し、
前記第1レンズ群G1は物体側へ移動し、前記第2レンズ群G2は像側へ移動し、前記第3レンズ群G3は変倍及び合焦に際して像面に対して移動せず、
前記第3レンズ群G3は物体側より順に正の屈折力を有する第3レンズ群前群G3aと負の屈折力を有する第3レンズ群後群G3bより構成され、
前記G3b群を光軸と直する方向に変位させることによって防振を行い、
前記第1レンズ群G1は負レンズL1と正レンズL2とからなる接合レンズ、および正レンズL3から構成され、
下記の条件式を満足することを特徴とする変倍結像光学系
(1)0.30<f1/ft<0.55
(2)8.2<|ft/f2|<10.7
(3)-0.85<{(n2-n1)/r2}/{(n1-1)/r1}<-0.50
(4)0.50<r3/bf1<2.00
fi:前記第iレンズ群の合成焦点距離
ft:望遠端かつ無限遠合焦状態における光学系全系の合成焦点距離
ri:光学系の物体側から第i番目の光学面の曲率半径
ni:光学系の物体側から第i番目と第i+1番目の光学面の間の媒質のd線(波長587.56nm)屈折率
bf1:前記負レンズL1と前記正レンズL2からなる接合レンズのもっとも像側の面頂点から当該接合レンズの像側焦点までの距離
From the object side,
The first lens group G1 having a positive refractive power,
The second lens group G2, which has a negative refractive power,
The third lens group G3, which has a negative refractive power,
The fourth lens group G4 having a positive refractive power,
The fifth lens group G5 having a positive refractive power,
It is composed of a sixth lens group G6 having a negative refractive power.
The aperture diaphragm S is arranged inside or near the fourth lens group G4, and is arranged.
When scaling from the wide-angle end to the telephoto end, the air spacing between each lens group changes,
The first lens group G1 moves to the object side, the second lens group G2 moves to the image side, and the third lens group G3 does not move to the image plane during scaling and focusing.
The third lens group G3 is composed of a third lens group front group G3a having a positive refractive power and a third lens group rear group G3b having a negative refractive power in order from the object side.
Vibration isolation is performed by displacing the G3b group in a direction orthogonal to the optical axis.
The first lens group G1 is composed of a junction lens composed of a negative lens L1 and a positive lens L2, and a positive lens L3.
Variable magnification imaging optical system characterized by satisfying the following conditional expression (1) 0.30 <f1 / ft <0.55
(2) 8.2 << | ft / f2 | <10.7
(3) -0.85 <{(n2-n1) / r2} / {(n1-1) / r1} <-0.50
(4) 0.50 <r3 / bf1 <2.00
fi: Synthetic focal distance of the i-th lens group ft: Synthetic focal distance of the entire optical system in the telephoto end and infinite focus state ri: Radius of curvature of the i-th optical surface of the optical system from the object side ni: Optical The d-line (wavelength 587.56 nm) refractive index bf1: of the medium between the i-th and i + 1-th optical planes from the object side of the system, which is the most image-side of the junction lens composed of the negative lens L1 and the positive lens L2. Distance from the surface apex to the image side focal point of the junction lens
下記の条件式を満足することを特徴とする請求項1に記載の変倍結像光学系
(5)0.30<ht/r2<0.45
ht:望遠端かつ無限遠合焦状態における入射瞳の半径
ri:光学系の物体側から第i番目の光学面の曲率半径
The variable magnification imaging optical system according to claim 1, which satisfies the following conditional expression (5) 0.30 <ht / r2 <0.45.
ht: Radius of the entrance pupil at the telephoto end and in the in-focus state at infinity ri: Radius of curvature of the i-th optical surface from the object side of the optical system
下記の条件式を満足することを特徴とする請求項1又は2に記載の変倍結像光学系
(6)8.50<ft/fw
(7)0.55<LT/ft<0.85
ft:望遠端かつ無限遠合焦状態における光学系全系の合成焦点距離
fw:広角端かつ無限遠合焦状態における光学系全系の合成焦点距離
LT:望遠端かつ無限遠合焦状態における光学系の最も物体側の光学面から像までの長さ
The variable magnification imaging optical system according to claim 1 or 2, which satisfies the following conditional expression (6) 8.50 <ft / fw.
(7) 0.55 <LT / ft <0.85
ft: Synthetic focal length of the entire optical system in the telephoto end and infinity focus state fw: Synthetic focal length of the entire optical system in the wide-angle end and infinity focus state LT: Optical in the telephoto end and infinity focus state The length from the optical plane on the most object side of the system to the image
前記第2レンズ群G2は、少なくとも1枚ずつの正レンズと負レンズを有することを特徴とする請求項1乃至請求項3のいずれかに記載の変倍結像光学系
The variable magnification imaging optical system according to any one of claims 1 to 3, wherein the second lens group G2 has at least one positive lens and one negative lens.
無限遠方から近距離への合焦に際して、前記第5レンズ群G5と前記第6レンズ群G6の群間隔が変化することを特徴とする請求項1乃至請求項4のいずれかに記載の変倍結像光学系
The scaling according to any one of claims 1 to 4, wherein the group spacing between the fifth lens group G5 and the sixth lens group G6 changes when focusing from infinity to a short distance. Imaging optical system
下記の条件式を満足することを特徴とする請求項5に記載の変倍結像光学系
(8)2.0<β6<4.0
β6:前記第6レンズ群G6の望遠端かつ無限遠合焦状態における結像倍率
The variable magnification imaging optical system according to claim 5, which satisfies the following conditional expression (8) 2.0 <β6 <4.0.
β6: Imaging magnification of the sixth lens group G6 at the telephoto end and in infinity in focus.
無限遠方から近距離への合焦に際して、前記第6レンズ群G6が移動することを特徴とする請求項5又は請求項6に記載の変倍結像光学系
The variable magnification imaging optical system according to claim 5 or 6, wherein the sixth lens group G6 moves when focusing from an infinite distance to a short distance.
下記の条件式を満足することを特徴とする請求項1乃至請求項7のいずれかに記載の変倍結像光学系
(9)2.5<f3/f2<6.0
(10)1.00<|f3a/f3b|<2.50
fi :前記第iレンズ群の合成焦点距離
f3a:前記第3レンズ群前群G3aの合成焦点距離
f3b:前記第3レンズ群後群G3b群の合成焦点距離
The variable magnification imaging optical system according to any one of claims 1 to 7, which satisfies the following conditional expression (9) 2.5 <f3 / f2 <6.0.
(10) 1.00 << | f3a / f3b | <2.50
fi: Composite focal length of the i-th lens group f3a: Composite focal length of the third lens group front group G3a f3b: Composite focal length of the third lens group rear group G3b group
下記の条件式を満足することを特徴とする請求項1乃至請求項8のいずれかに記載の変倍結像光学系
(11)-1.50<β3b<-0.50
(12)0.85<f2/f3b<2.00
β3b:望遠端かつ無限遠合焦状態における前記第3レンズ群後群G3bの結像倍率
fi :前記第iレンズ群の合成焦点距離
f3b:前記第3レンズ群後群G3b群の合成焦点距離
The variable magnification imaging optical system (11) -1.50 <β3b <-0.50 according to any one of claims 1 to 8, which satisfies the following conditional expression.
(12) 0.85 <f2 / f3b <2.00
β3b: Imaging magnification fi of the third lens group rear group G3b at the telephoto end and infinite focus state: synthetic focal length f3b of the i-th lens group: synthetic focal length of the third lens group rear group G3b group
JP2018144102A 2018-07-31 2018-07-31 Variable magnification imaging optical system Active JP7080483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018144102A JP7080483B2 (en) 2018-07-31 2018-07-31 Variable magnification imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018144102A JP7080483B2 (en) 2018-07-31 2018-07-31 Variable magnification imaging optical system

Publications (3)

Publication Number Publication Date
JP2020020948A JP2020020948A (en) 2020-02-06
JP2020020948A5 JP2020020948A5 (en) 2021-06-17
JP7080483B2 true JP7080483B2 (en) 2022-06-06

Family

ID=69588524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018144102A Active JP7080483B2 (en) 2018-07-31 2018-07-31 Variable magnification imaging optical system

Country Status (1)

Country Link
JP (1) JP7080483B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020144207A (en) * 2019-03-06 2020-09-10 株式会社タムロン Zoom lens and image capturing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162501A (en) 1998-11-25 2000-06-16 Tamron Co Ltd Zoom lens
JP2013164623A (en) 2008-04-02 2013-08-22 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868941A (en) * 1994-08-30 1996-03-12 Nikon Corp High-magnification zoom lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162501A (en) 1998-11-25 2000-06-16 Tamron Co Ltd Zoom lens
JP2013164623A (en) 2008-04-02 2013-08-22 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system

Also Published As

Publication number Publication date
JP2020020948A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
US9134512B2 (en) Zoom lens and image pickup apparatus having the same
US7251081B2 (en) Zoom lens system
JP6208458B2 (en) Zoom lens with image stabilization
JP4944436B2 (en) Zoom lens and imaging apparatus having the same
US11073684B2 (en) Zoom lens and image pickup apparatus including the same
US9019610B2 (en) Zoom lens and image pickup apparatus including the zoom lens
JPH06337354A (en) Zoom lens
US8953251B2 (en) Zoom lens and image pickup apparatus equipped with zoom lens
US10551600B2 (en) Zoom lens and image pickup apparatus
US11061212B2 (en) Zoom lens and image pickup apparatus
US6556356B2 (en) Zoom lens system
JPH11223771A (en) Vari-focal lens system
US20130148211A1 (en) Zoom lens and image pickup apparatus having the same
JP2020064175A (en) Zoom lens and imaging apparatus having the same
JP2006139187A (en) Zoom lens
US8023197B2 (en) Zoom lens and camera with the same
JP5841675B2 (en) Zoom lens and imaging device
JP7080483B2 (en) Variable magnification imaging optical system
US6661584B2 (en) Zoom lens and camera having the zoom lens
JP7160326B2 (en) Wide-angle lens system
JP6409361B2 (en) Inner focusing type zoom lens
JP4333151B2 (en) Zoom lens
JP7162883B2 (en) Wide-angle lens system
JP6276634B2 (en) Super wide-angle zoom lens
JPH04181910A (en) Compact high variable power zoom lens

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7080483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350