JP2000162501A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2000162501A
JP2000162501A JP10333706A JP33370698A JP2000162501A JP 2000162501 A JP2000162501 A JP 2000162501A JP 10333706 A JP10333706 A JP 10333706A JP 33370698 A JP33370698 A JP 33370698A JP 2000162501 A JP2000162501 A JP 2000162501A
Authority
JP
Japan
Prior art keywords
group
lens
refractive power
zoom lens
telephoto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10333706A
Other languages
Japanese (ja)
Other versions
JP2000162501A5 (en
Inventor
Akio Arakawa
明男 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to JP10333706A priority Critical patent/JP2000162501A/en
Publication of JP2000162501A publication Critical patent/JP2000162501A/en
Publication of JP2000162501A5 publication Critical patent/JP2000162501A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure sufficient peripheral light quantity without enlarging the diameter of a lens and to provide high optical performance all over the area of zooming by specifying the ratio of the focal distance of a 1st group to that of an entire system at a telephoto end, the ratio of the moving amount of the 1st group to that of a 4th group and the ratio of the moving amount of a 5th group to that of a 4th group in a telephoto zoom lens consisting of seven groups. SOLUTION: This lens is provided with 1st, 2nd, 3rd and 4th groups L1, L2, L3 and L4 having positive, negative, negative and positive refractive power, respectively, a 5th group L5 constituted of a diaphragm and 6th and 7th groups L6 and L7 having positive and negative refractive power, respectively, in order from an object side. The 1st to the 6th groups are moved to the object side so as to perform variable power from a wide-angle end to the telephoto end, and the 7th group is moved to perform image surface moving associated with the variable power. Assuming that the focal distance of the 1st group is f1 and that of the entire system at the telephoto end is fT, 0.4<f1/fT<0.6 holds, assuming that the moving amount of the 1st group is m1 and that of the 4th group is m4, 0.4<m4/m1<0.7 holds, and assuming that the moving amount of the 5th group is m5, 0.5<m5/m4<1.0 holds.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、高倍率望遠ズームレン
ズに関し、さらに詳しくは、35mmフィルム用の写真用
カメラやビデオカメラ、電子スチルカメラ、そして放送
用カメラ等に用いる望遠用ズームレンズにおいて、広角
端の焦点距離が約100mmで、ズーム比が約5倍である
にものかかわらず、テレ比が0.75以内のコンパクト性
をもったズームレンズに関する。 【0002】 【従来技術】従来より35mm一眼フレックスカメラ等に
使用される望遠ズームレンズでは、物体側より順に変倍
中固定の正の屈折力を持つ第1群、負の屈折力を持つ変
倍レンズ群である第2群、正の屈折力を持つ補正レンズ
群である第3群、および正の屈折力を持つリレーレンズ
群からなる第4群からなる4群構成のズームレンズ群が
実用化されている。レンズ全長を小さくするために、多
群で構成された多群移動方式のズームレンズ群も実用化
されている。 【0003】 【発明が解決しようとする課題】上述した前者のズーム
レンズにおいては、ズーム比を大きくすると、変倍作用
を持つ第2群の移動量が増加するため、レンズ全長は大
きくなってしまい、テレ比も小さくすることができな
い。変倍中の移動量を減少させるために第2群の屈折力
を強くすると、変倍により収差の変動が大きくなり、収
差の補正が困難となる。上述した後者のズームレンズに
おいては、広角端の焦点距離が約100mm、ズーム比が
約5倍の高倍率のものは実用化されていない。 【0004】 【発明の目的】本発明の目的は、広角端の焦点距離が約
100mm、ズーム比が約5倍の高倍率ズームレンズにも
かかわらず、テレ比0.75以内のコンパス性を持ち、レ
ンズ径の拡大化を招くことなしに十分な周辺光量を確保
でき、ズーミングの全域にわたり高い光学性能を有する
遠望のズームレンズを提供することを目的にする。 【0005】 【課題を解決するための手段】本発明は、物体側から順
に正の屈折力を持つ第1レンズ群L1、負の屈折力を持
つ第2群L2、負の屈折力を持つ第3群L3、正の屈折
力を持つ第4群L4、絞りで構成される第5群L5、正
の屈折力を持つ第6群L6、負の屈折力を持つ第7群L
7を有し、第1群、第2群、第4群、第5群、第6群を
物体側へ移動させて広角端から望遠端へ変倍を行い、変
倍に伴う像面移動を第7群を移動させて行う望遠ズーム
レンズにおいて、第1群の焦点距離をf1 、全系の望遠
端における焦点距離をfT とした時、 0.4<f1 /fT <0.6 (1) 第1群の移動量をm、第4群の移動量をm4 とした時、 0.4<m4 /m1 <0.7 (2) 第5群の移動量をm5 とした時 0.5<m5 /m4 <1.0 (3) であることを特徴とするコンパクトズームレンズであ
る。 【0006】 【作用】第1群の焦点距離をf1 、全系の望遠端におけ
る焦点距離をfT とした時、 0.4<f1 /fT <0.6 (1) とすることにより、望遠ズームレンズをテレ比0.75以
内にコンパクトに構成し、第1レンズ群の屈折力を適切
に設定することができる。条件式(1) の下限を越える
と、第1レンズ群の屈折力が強くなるため、ズーミング
による移動量は小さくできるが第1レンズ群で発生する
球面収差が大きくなり、第1レンズ群より像面側のレン
ズ群での補正が困難となる。逆に(1) 式の上限をはずれ
ると、第1レンズ群の屈折力が弱くなるためにズーミン
グによる移動量が大きくなり、コンパクト化が困難にな
る。 【0007】第1群の移動量をm、第4群の移動量をm
4 とした時、 0.4<m4 /m1 <0.7 (2) とすることにより、広角端におけるレンズ全長と、望遠
端におけるレンズ全長の変動を規制することができる。
条件式(2) の下限を越えると、第1レンズ群のズーミン
グによる移動量が大きくなるためにコンパクト化が困難
になる。逆に(2)式の上限をはずれると、広角側での球
面収差の補正が困難となる。絞りである第5群の移動量
をm5 とした時 0.5<m5 /m4 <1.0 (3) とすることにより、レンズ鏡筒径に影響する絞りの径を
適切に決めることができる。条件式(3) の下限を越える
と、絞り径が小さくできるが、広角側のFナンバーが暗
くなってしまう。逆に条件式(3) の上限を越えると、絞
り径が大きくなり広角側の球面収差の補正が困難とな
る。 【0008】 【発明の効果】本発明によれば、広角端の焦点距離が約
100mm、ズーム比が約5倍の高倍率ズームレンズにも
かかわらず、テレ比0.75以内のコンパス性を持ち、レ
ンズ径の拡大化を招くことなしに十分な周辺光量を確保
でき、ズーミングの全域にわたり高い光学性能を有する
遠望のコンパクトズームレンズを構成することができ
る。 【0009】 【発明の実施の形態】[第1実施例]第1実施例のコン
パクトズームレンズは、図1及び図2に示すように、 焦点距離 f=102.0 〜222.7 〜490.0 mm 開口数 Fno=5.01〜6.05〜6.32 バックフォーカス BF=42.5mm 以下に第1実施例の緒元を示す。第1カラムNSは物体
側からのレンズ面の番号、第2カラムRはレンズ曲率半
径(mm)、第3カラムDは各レンズ面の間隔(mm)、第4カ
ラムNdは各レンズのd線(λ=587.6nm)に対する屈折
率、第5カラムνは各レンズのアッベ数を示す。STOPは
絞り、FSはフレア絞りを表わす。 【0010】 NS R D Nd ν 1 387.5497 7.0 1.48749 70.21 2 −387.5497 0.2 3 155.6791 8.5 1.49700 81.61 4 −480.7183 2.5 5 −431.3691 4.0 1.83400 37.17 6 389.9144 2.0 7 304.7566 5.0 1.49700 81.61 8 -2501.4226 D(B) 9 -2818.4233 2.0 1.77250 49.60 10 80.2019 5.0 1.71736 29.51 11 224.5318 D(11) 12 − 77.1609 5.0 1.75520 27.51 13 − 43.4425 2.5 14 − 36.7324 2.0 1.77250 49.60 15 −138.4914 D(15) 16 −111.5964 2.5 1.75520 27.51 17 890.6644 2.0 18 133.772 6.0 1.51633 64.15 19 − 44.7196 D(19) 20 STOP D(20) 21 144.8189 6.0 1.51633 64.15 22 − 32.7986 2.0 1.74400 44.79 23 −140.254 0.2 24 60.6175 4.0 1.48749 70.21 25 −469.4821 D(25) 26 79.4164 2.0 1.71300 53.84 27 40.086 2.0 28 868.3316 1.5 1.72000 50.25 29 27.2208 3.5 1.75520 27.51 30 66.2276 D(30) 31 FS 焦点距離 102.0 222.7 490.0 可変間隔 D(8) 4.749 52.810 93.752 D(11) 27.941 34.806 40.655 D(15) 53.360 26.393 2.501 D(19) 3.228 10.970 18.485 D(20) 2.842 7.838 13.014 D(25) 34.533 23.829 2.036 D(30) 0.390 25.323 58.317 第1実施例の条件式に関する値は、 f1 /fT = 0.45 m4 /m1 = 0.5 m5 /m4 = 0.7 である。 【0011】第1実施例のコンパクトズームレンズの収
差を、図3、図4、図5にグラフで示す。球面収差・正
弦条件グラフにおいて、実線は球面収差を示し、点線は
正弦条件を示す。非点収差グラフにおいて、実線はサジ
タル像面を示し、点線はメリデイオナル像面を示す。各
グラフにおいて、1はd線(587.56nm)を示し、
2はg線(435.84nm)を示す。図3は、物点が無
限遠である広角端のコンパクトズームレンズの収差図で
ある。図4は、物点が無限遠であるズーム中間状態のコ
ンパクトズームレンズの収差図である。図5は、物点が
無限遠である広角端のコンパクトズームレンズの収差図
である。 【0012】 【第2実施例】第2実施例のコンパクトズームレンズ
は、図6及び図7に示すように、 焦点距離 f=102.0 〜222.7 〜490.0 mm 開口数 FNo=4.55〜5.66〜6.30 バックフォーカス BF=42.5mm 以下に第2実施例の緒元を示す。 NS R D Nd ν 1 393.2283 7.0 1.48749 70.21 2 −393.2283 0.2 3 154.8552 8.5 1.49700 81.61 4 −467.2884 2.5 5 −426.1859 4.0 1.83400 37.17 6 391.0741 2.0 7 304.715 5.0 1.49700 81.61 8 -2413.4558 D(8) 9 -2795.6899 2.0 1.77250 49.60 10 80.2035 5.0 1.71736 29.51 11 224.6892 D(11) 12 − 77.3514 5.0 1.75520 27.51 13 − 43.3449 2.5 14 − 36.6691 2.0 1.77250 49.60 15 −139.2209 D(15) 16 −112.4116 2.5 1.75520 27.51 17 880.8016 2.0 18 134.0859 6.0 1.51633 64.15 19 − 44.8191 D(19) 20 STOP D(20) 21 145.9918 6.0 1.51633 64.15 22 − 32.9411 2.0 1.74400 44.79 23 −140.3313 0.2 24 60.6661 4.0 1.48749 70.21 25 −466.0133 D(25) 26 79.3776 2.0 1.71300 53.84 27 40.0895 2.0 28 859.1386 1.5 1.72000 50.25 29 27.2264 3.5 1.75520 27.51 30 66.1411 D(30) 31 FS 焦点距離 102.0 222.7 490.0 可変間隔 D(8) 4.804 52.865 93.807 D(11) 27.903 34.769 40.618 D(15) 53.423 26.456 2.564 D(19) 3.196 5.445 8.282 D(20) 2.831 13.319 23.174 D(25) 34.542 23.838 2.045 D(30) 0.394 25.326 58.320 第2実施例の条件式に関する値は、 f1 /fT = 0.45 m4 /m1 = 0.5 m5 /m4 = 0.9 である。 【0013】第2実施例のコンパクトズームレンズの収
差を、図8、図9、図10のグラフで示す。球面収差・
正弦条件グラフにおいて、実線は球面収差を示し、点線
は正弦条件を示す。非点収差グラフにおいて、実線はサ
ジタル像面を示し、点線はメリデイオナル像面を示す。
各グラフにおいて、1はd線(587.56nm)を示
し、2はg線(435.84nm)を示す。図8は、物点
が無限遠である広角端のコンパクトズームレンズの収差
図である。図9は、物点が無限遠であるズーム中間状態
のコンパクトズームレンズの収差図である。図10は、
物点が無限遠である望遠端のコンパクトズームレンズの
収差図である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-magnification telephoto zoom lens, and more particularly to a photographic camera, video camera, electronic still camera, and broadcast camera for 35 mm film. The present invention relates to a telephoto zoom lens used for a camera or the like, which has a focal length of about 100 mm at a wide-angle end and a compactness of a telephoto ratio of 0.75 or less regardless of a zoom ratio of about 5 times. 2. Description of the Related Art Conventionally, in a telephoto zoom lens used for a 35 mm single-lens flex camera or the like, a first lens unit having a fixed positive refractive power and a variable refractive power having a negative refractive power are fixed in order from the object side during zooming. Practical use of a four-group zoom lens group including a second group as a lens group, a third group as a correction lens group having a positive refractive power, and a fourth group including a relay lens group having a positive refractive power. Have been. In order to reduce the overall length of the lens, a zoom lens group of a multi-group moving system composed of multiple groups has been put to practical use. [0003] In the former zoom lens described above, when the zoom ratio is increased, the moving distance of the second lens unit having a zooming action increases, and the overall length of the lens increases. Also, the telephoto ratio cannot be reduced. If the refractive power of the second lens unit is increased in order to reduce the amount of movement during zooming, the zoom will cause a large variation in aberrations, making it difficult to correct aberrations. In the latter zoom lens described above, a lens having a high magnification with a focal length at the wide angle end of about 100 mm and a zoom ratio of about 5 has not been put to practical use. An object of the present invention is to provide a compass having a telephoto ratio of 0.75 or less despite a high magnification zoom lens having a focal length of about 100 mm at the wide-angle end and a zoom ratio of about 5 times. It is another object of the present invention to provide a long-distance zoom lens that can secure a sufficient amount of peripheral light without increasing the lens diameter and has high optical performance over the entire zooming range. According to the present invention, there is provided a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, and a second lens unit having a negative refractive power. A third unit L3, a fourth unit L4 having a positive refractive power, a fifth unit L5 including a stop, a sixth unit L6 having a positive refractive power, and a seventh unit L having a negative refractive power.
The first, second, fourth, fifth, and sixth units are moved toward the object side to perform zooming from the wide-angle end to the telephoto end, and perform image plane movement accompanying zooming. In a telephoto zoom lens that is moved by moving the seventh unit, when the focal length of the first unit is f 1 and the focal length at the telephoto end of the entire system is f T , 0.4 <f 1 / f T <0. 6 (1) When the moving amount of the first group is m and the moving amount of the fourth group is m 4 , 0.4 <m 4 / m 1 <0.7 (2) The moving amount of the fifth group is m 5 that the the time is 0.5 <m 5 / m 4 < 1.0 (3) is a compact zoom lens according to claim. When the focal length of the first lens unit is f 1 and the focal length at the telephoto end of the entire system is f T , 0.4 <f 1 / f T <0.6 (1) Accordingly, the telephoto zoom lens can be configured to be compact within the telephoto ratio of 0.75, and the refractive power of the first lens group can be set appropriately. If the lower limit of conditional expression (1) is exceeded, the refractive power of the first lens group becomes strong, so that the amount of movement due to zooming can be reduced, but the spherical aberration generated in the first lens group becomes large, and the image quality becomes larger than that of the first lens group. Correction by the lens unit on the surface side becomes difficult. Conversely, if the value is outside the upper limit of the expression (1), the refractive power of the first lens group becomes weak, so that the moving amount by zooming becomes large, and it is difficult to make the zoom lens compact. The amount of movement of the first group is m, and the amount of movement of the fourth group is m
4 and then when he, by a 0.4 <m 4 / m 1 < 0.7 (2), it is possible to regulate the total lens length at the wide angle end, the variation of the total lens length at the telephoto end.
If the lower limit of conditional expression (2) is exceeded, the amount of movement of the first lens unit due to zooming becomes large, making it difficult to make the first lens unit compact. Conversely, if the upper limit of the expression (2) is deviated, it becomes difficult to correct spherical aberration on the wide-angle side. Determining the amount of movement of the fifth group of a diaphragm by 0.5 when the m 5 <m 5 / m 4 <1.0 (3), the diameter of the aperture that affect lens barrel diameter appropriately be able to. If the lower limit of conditional expression (3) is exceeded, the aperture diameter can be reduced, but the F-number on the wide-angle side becomes dark. On the other hand, when the value exceeds the upper limit of the conditional expression (3), the stop diameter becomes large and it becomes difficult to correct spherical aberration on the wide-angle side. According to the present invention, despite having a high magnification zoom lens having a focal length of about 100 mm at the wide angle end and a zoom ratio of about 5 times, it has a compass property within a telephoto ratio of 0.75. In addition, a sufficient peripheral light amount can be secured without increasing the lens diameter, and a long-distance compact zoom lens having high optical performance over the entire zooming range can be configured. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment A compact zoom lens according to a first embodiment has a focal length f = 102.0 to 222.7 to 490.0 mm and a numerical aperture Fno = as shown in FIGS. 5.01 to 6.05 to 6.32 Back focus BF = 42.5 mm The specifications of the first embodiment are shown below. The first column NS is the number of the lens surface from the object side, the second column R is the lens radius of curvature (mm), the third column D is the distance (mm) between the lens surfaces, and the fourth column Nd is the d line of each lens. (Λ = 587.6 nm) and the fifth column ν shows the Abbe number of each lens. STOP indicates a stop and FS indicates a flare stop. NS RD Nd ν 1 387.5497 7.0 1.48749 70.21 2 −387.5497 0.2 3 155.6791 8.5 1.49700 81.61 4 −480.7183 2.5 5 −431.3691 4.0 1.83400 37.17 6 389.9144 2.0 7 304.7566 5.0 1.49700 81.61 8 -2501.4226 D (B) 9 -2818.4233 2.0 1.77250 49.60 10 80.2019 5.0 1.71736 29.51 11 224.5318 D (11) 12 − 77.1609 5.0 1.75520 27.51 13 − 43.4425 2.5 14 − 36.7324 2.0 1.77250 49.60 15 −138.4914 D (15) 16 −111.5964 2.5 1.75520 27.51 17 890.6644 2.0 18 133.772 6.0 1.51633 64.15 19 − 44.7196 D (19) 20 STOP D (20) 21 144.8189 6.0 1.51633 64.15 22 − 32.7986 2.0 1.74400 44.79 23 −140.254 0.2 24 60.6175 4.0 1.48749 70.21 25 −469.4821 D (25) 26 79.4164 2.0 1.71300 53.84 27 40.086 2.0 28 868.3316 1.5 1.72000 50.25 29 27.2208 3.5 1.75520 27.51 30 66.2276 D (30) 31 FS Focal length 102.0 222.7 490.0 Variable spacing D (8) 4.749 52.810 93.752 D (11) 27.941 34.806 40.655 D (15) 53.360 26.393 2.501 D (19) 3.228 10.970 18.485 D (20) 2.842 7.838 13.014 D (25) 34.533 23.829 2.036 D ( 30) 0.390 25.323 58.317 values regarding conditional expressions of the first embodiment is f 1 / f T = 0.45 m 4 / m 1 = 0.5 m 5 / m 4 = 0.7. The aberrations of the compact zoom lens of the first embodiment are shown in graphs in FIGS. 3, 4 and 5. FIG. In the spherical aberration / sine condition graph, a solid line indicates a spherical aberration, and a dotted line indicates a sine condition. In the astigmatism graph, a solid line indicates a sagittal image plane, and a dotted line indicates a meridional image plane. In each graph, 1 indicates a d-line (587.56 nm),
2 indicates a g-line (435.84 nm). FIG. 3 is an aberration diagram of the compact zoom lens at the wide-angle end where the object point is at infinity. FIG. 4 is an aberration diagram of the compact zoom lens in the intermediate zoom state where the object point is at infinity. FIG. 5 is an aberration diagram of the compact zoom lens at the wide-angle end where the object point is at infinity. Second Embodiment A compact zoom lens according to a second embodiment has a focal length f = 102.0 to 222.7 to 490.0 mm and a numerical aperture F No = 4.55 to 5.66 to 6.30 as shown in FIGS. Focus BF = 42.5 mm The specifications of the second embodiment are shown below. NS R D Nd ν 1 393.2283 7.0 1.48749 70.21 2 −393.2283 0.2 3 154.8552 8.5 1.49700 81.61 4 −467.2884 2.5 5 −426.1859 4.0 1.83400 37.17 6 391.0741 2.0 7 304.715 5.0 1.49700 81.61 8 -2413.4558 D (8) 9 -2795.6899 2.0 1.77250 49.60 10 80.2035 5.0 1.71736 29.51 11 224.6892 D (11) 12 − 77.3514 5.0 1.75520 27.51 13 − 43.3449 2.5 14 − 36.6691 2.0 1.77250 49.60 15 −139.2209 D (15) 16 −112.4116 2.5 1.75520 27.51 17 880.8016 2.0 18 134.0859 6.0 1.51633 64.15 19 − 44.8191 D (19) 20 STOP D (20) 21 145.9918 6.0 1.51633 64.15 22 − 32.9411 2.0 1.74400 44.79 23 −140.3313 0.2 24 60.6661 4.0 1.48749 70.21 25 −466.0133 D (25) 26 79.3776 2.0 1.71300 53.84 27 40.0895 2.0 28 859.1386 1.5 1.72000 50.25 29 27.2264 3.5 1.75520 27.51 30 66.1411 D (30) 31 FS Focal length 102.0 222.7 490.0 Variable spacing D (8) 4.804 52.865 93.807 D (11) 27.903 34.769 40.618 D (15) 53.423 26.456 2.564 D (19) 3.196 5.445 8.282 D (20) 2.831 13.319 23.174 D (25) 34.542 23.838 2.045 D (30) 0.394 25.326 5 8.320 values for conditional expressions in the second embodiment is f 1 / f T = 0.45 m 4 / m 1 = 0.5 m 5 / m 4 = 0.9. The aberrations of the compact zoom lens of the second embodiment are shown by graphs in FIGS. 8, 9 and 10. Spherical aberration
In the sine condition graph, a solid line indicates a spherical aberration, and a dotted line indicates a sine condition. In the astigmatism graph, a solid line indicates a sagittal image plane, and a dotted line indicates a meridional image plane.
In each graph, 1 indicates a d-line (587.56 nm), and 2 indicates a g-line (435.84 nm). FIG. 8 is an aberration diagram of the compact zoom lens at the wide-angle end where the object point is at infinity. FIG. 9 is an aberration diagram of the compact zoom lens in the intermediate zoom state where the object point is at infinity. FIG.
FIG. 4 is an aberration diagram of a compact zoom lens at a telephoto end in which an object point is at infinity.

【図面の簡単な説明】 【図1】本発明の第1実施例のコンパクトズームレンズ
の広角端のレンズ断面図である。 【図2】本発明の第1実施例のコンパクトズームレンズ
の望遠端のレンズ断面図である。 【図3】本発明の第1実施例のコンパクトズームレンズ
において物点が無限遠である広角端の収差図である。 【図4】本発明の第1実施例のコンパクトズームレンズ
において物点が無限遠であるズーム中間状態の収差図で
ある。 【図5】本発明の第1実施例のコンパクトズームレンズ
において物点が無限遠である望遠端の収差図である。 【図6】本発明の第2実施例のコンパクトズームレンズ
の広角端のレンズ断面図である。 【図7】本発明の第2実施例のコンパクトズームレンズ
の望遠端のレンズ断面図である。 【図8】本発明の第2実施例のコンパクトズームレンズ
において物点が無限遠である広角端の収差図である。 【図9】本発明の第2実施例のコンパクトズームレンズ
において物点が無限遠であるズーム中間状態の収差図で
ある。 【図10】本発明の第2実施例のコンパクトズームレン
ズにおいて物点が無限遠である望遠端の収差図である。 【符号の説明】 STOP 絞り FS フレア絞り L1 第1群レンズ L2 第2群レンズ L3 第3群レンズ L4 第4群レンズ L5 第5群レンズ L6 第6群レンズ L7 第7群レンズ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a lens cross-sectional view at a wide-angle end of a compact zoom lens according to a first embodiment of the present invention. FIG. 2 is a lens sectional view at a telephoto end of a compact zoom lens according to a first embodiment of the present invention. FIG. 3 is an aberration diagram at a wide-angle end where an object point is at infinity in the compact zoom lens according to the first embodiment of the present invention. FIG. 4 is an aberration diagram of the compact zoom lens according to the first embodiment of the present invention in a zoom intermediate state where the object point is at infinity. FIG. 5 is an aberration diagram at a telephoto end where an object point is at infinity in the compact zoom lens according to the first embodiment of the present invention. FIG. 6 is a sectional view of a compact zoom lens according to a second embodiment of the present invention at the wide-angle end. FIG. 7 is a lens sectional view at a telephoto end of a compact zoom lens according to a second embodiment of the present invention. FIG. 8 is an aberration diagram at a wide-angle end where an object point is at infinity in a compact zoom lens according to a second embodiment of the present invention. FIG. 9 is an aberration diagram of a compact zoom lens according to a second embodiment of the present invention in a zoom intermediate state where the object point is at infinity. FIG. 10 is an aberration diagram at a telephoto end where an object point is at infinity in a compact zoom lens according to a second embodiment of the present invention. [Description of Signs] STOP Stop FS Flare Stop L1 First Group Lens L2 Second Group Lens L3 Third Group Lens L4 Fourth Group Lens L5 Fifth Group Lens L6 Sixth Group Lens L7 Seventh Group Lens

Claims (1)

【特許請求の範囲】 【請求項1 】 物体側から順に正の屈折力を持つ第1レ
ンズ群、負の屈折力を持つ第2群、負の屈折力を持つ第
3群、正の屈折力を持つ第4群、絞りで構成される第5
群、正の屈折力を持つ第6群、負の屈折力を持つ第7群
を有し、第1群、第2群、第4群、第5群、第6群を物
体側へ移動させて広角端から望遠端へ変倍を行い、変倍
に伴う像面移動を第7群を移動させて行う望遠ズームレ
ンズにおいて、 第1群の焦点距離をf1 、全系の望遠端における焦点距
離をfT とした時、 0.4<f1 /fT <0.6 (1) 第1群の移動量をm、第4群の移動量をm4 とした時、 0.4<m4 /m1 <0.7 (2) 第5群の移動量をm5 とした時 0.5<m5 /m4 <1.0 (3) であることを特徴とするズームレンズ。
Claims 1. A first lens group having a positive refractive power, a second group having a negative refractive power, a third group having a negative refractive power, and a positive refractive power in order from the object side. 4th group with aperture, 5th group consisting of aperture
Group, a sixth group having a positive refractive power, and a seventh group having a negative refractive power. The first group, the second group, the fourth group, the fifth group, and the sixth group are moved to the object side. In the telephoto zoom lens, zooming is performed from the wide-angle end to the telephoto end, and image plane movement accompanying zooming is performed by moving the seventh unit, the focal length of the first unit is f 1 , and the focal point of the entire system at the telephoto end is When the distance is f T , 0.4 <f 1 / f T <0.6 (1) When the movement amount of the first group is m and the movement amount of the fourth group is m 4 , 0.4 <f m 4 / m 1 <0.7 (2) A zoom lens characterized by satisfying 0.5 <m 5 / m 4 <1.0 (3) when the amount of movement of the fifth lens unit is m 5 .
JP10333706A 1998-11-25 1998-11-25 Zoom lens Pending JP2000162501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10333706A JP2000162501A (en) 1998-11-25 1998-11-25 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10333706A JP2000162501A (en) 1998-11-25 1998-11-25 Zoom lens

Publications (2)

Publication Number Publication Date
JP2000162501A true JP2000162501A (en) 2000-06-16
JP2000162501A5 JP2000162501A5 (en) 2006-01-19

Family

ID=18269063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10333706A Pending JP2000162501A (en) 1998-11-25 1998-11-25 Zoom lens

Country Status (1)

Country Link
JP (1) JP2000162501A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255861A (en) * 2017-08-10 2017-10-17 福建福光股份有限公司 A kind of subminaturization, big multiple proportions, the airborne pick-up lens of high definition zoom
JP2019158961A (en) * 2018-03-08 2019-09-19 キヤノン株式会社 Zoom lens and image capturing device
JP2020020948A (en) * 2018-07-31 2020-02-06 株式会社シグマ Zoom imaging optical system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117209A (en) * 1983-11-29 1985-06-24 Canon Inc Zoom lens having stopper
JPS61259217A (en) * 1985-05-14 1986-11-17 Canon Inc Magnification varying method for zoom lens
JPH0470709A (en) * 1990-07-11 1992-03-05 Minolta Camera Co Ltd Zoom lens
JPH0627380A (en) * 1992-07-07 1994-02-04 Canon Inc Zoom lens
JPH06186477A (en) * 1992-12-18 1994-07-08 Canon Inc Zoom lens with flare diaphragm
JPH0868941A (en) * 1994-08-30 1996-03-12 Nikon Corp High-magnification zoom lens
JPH0882741A (en) * 1994-09-13 1996-03-26 Canon Inc Zoom lens having flare diaphragm
JPH095626A (en) * 1995-06-19 1997-01-10 Nikon Corp Variable power optical system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117209A (en) * 1983-11-29 1985-06-24 Canon Inc Zoom lens having stopper
JPS61259217A (en) * 1985-05-14 1986-11-17 Canon Inc Magnification varying method for zoom lens
JPH0470709A (en) * 1990-07-11 1992-03-05 Minolta Camera Co Ltd Zoom lens
JPH0627380A (en) * 1992-07-07 1994-02-04 Canon Inc Zoom lens
JPH06186477A (en) * 1992-12-18 1994-07-08 Canon Inc Zoom lens with flare diaphragm
JPH0868941A (en) * 1994-08-30 1996-03-12 Nikon Corp High-magnification zoom lens
JPH0882741A (en) * 1994-09-13 1996-03-26 Canon Inc Zoom lens having flare diaphragm
JPH095626A (en) * 1995-06-19 1997-01-10 Nikon Corp Variable power optical system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255861A (en) * 2017-08-10 2017-10-17 福建福光股份有限公司 A kind of subminaturization, big multiple proportions, the airborne pick-up lens of high definition zoom
JP2019158961A (en) * 2018-03-08 2019-09-19 キヤノン株式会社 Zoom lens and image capturing device
JP7123579B2 (en) 2018-03-08 2022-08-23 キヤノン株式会社 Zoom lens and imaging device
JP2020020948A (en) * 2018-07-31 2020-02-06 株式会社シグマ Zoom imaging optical system
JP7080483B2 (en) 2018-07-31 2022-06-06 株式会社シグマ Variable magnification imaging optical system

Similar Documents

Publication Publication Date Title
JP4902191B2 (en) Zoom lens and imaging apparatus having the same
JP2008026880A (en) Zoom lens, imaging apparatus and method for varying power of the zoom lens
JP4147786B2 (en) Zoom lens
JP2011133739A (en) Zoom lens and imaging apparatus having the same
JP2001194586A (en) Zoom lens and photographing device using the same
JPH1020193A (en) Zoom lens
JP3698134B2 (en) Zoom lens
JP5038028B2 (en) Zoom lens and imaging apparatus having the same
JP5582918B2 (en) Zoom lens and imaging apparatus having the same
JP2006106111A (en) Zoom lens
JP4391639B2 (en) High magnification zoom lens
JPH11174324A (en) Zoom lens
JP4617108B2 (en) Zoom lens and imaging apparatus having the same
JPH0933809A (en) Zoom lens
JP3301815B2 (en) Zoom lens
JP2538777B2 (en) Compact zoom lens
JP2002221661A (en) Zoom lens system
JP4115746B2 (en) Telephoto zoom lens
JPH09203861A (en) Zoom lens
JP4617107B2 (en) Zoom lens and imaging apparatus having the same
JP4630444B2 (en) Zoom lens and optical apparatus having the same
JP2005321561A (en) Zoom lens
JPH11174325A (en) Zoom lens
JP2003241093A (en) Zoom lens
JPH11211983A (en) Variable focal distance lens with built-in filter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090806