JP7079078B2 - Control device - Google Patents

Control device Download PDF

Info

Publication number
JP7079078B2
JP7079078B2 JP2017192721A JP2017192721A JP7079078B2 JP 7079078 B2 JP7079078 B2 JP 7079078B2 JP 2017192721 A JP2017192721 A JP 2017192721A JP 2017192721 A JP2017192721 A JP 2017192721A JP 7079078 B2 JP7079078 B2 JP 7079078B2
Authority
JP
Japan
Prior art keywords
waveform
target
correction
control
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017192721A
Other languages
Japanese (ja)
Other versions
JP2019066344A (en
Inventor
友起 芳村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2017192721A priority Critical patent/JP7079078B2/en
Publication of JP2019066344A publication Critical patent/JP2019066344A/en
Application granted granted Critical
Publication of JP7079078B2 publication Critical patent/JP7079078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、制御装置に関する。 The present invention relates to a control device.

目標とする波形の信号を繰り返し制御対象へ入力して、制御対象が目標波形通りに応答波形を出力するようにするシステムとしては、たとえば、配管やホースといった試験体の疲労耐久性をテストする圧力試験機や振動試験機がある。 As a system that repeatedly inputs a signal of the target waveform to the control target and causes the control target to output a response waveform according to the target waveform, for example, a pressure for testing the fatigue durability of a test piece such as a pipe or a hose. There are testers and vibration testers.

圧力試験機や振動試験機には、流体圧を用いた試験機が用いられ、試験機を制御する制御装置は、試験体に対して目標波形に沿った圧力や振動を与えるために、目標波形を入力として試験機のサーボ弁を制御する。 A tester using fluid pressure is used for the pressure tester and vibration tester, and the control device that controls the tester has a target waveform in order to give pressure and vibration along the target waveform to the test piece. Is used as an input to control the servo valve of the testing machine.

具体的には、制御装置は、目標波形に対して試験機が出力する応答波形が目標波形に追従するように、一般的には、圧力試験機にあっては圧力をフィードバックする、振動試験機にあっては変位、速度或いは加速度をフィードバックするフィードバック制御を行う(たとえば、特許文献1参照)。 Specifically, the control device is a vibration tester that generally feeds back the pressure in the pressure tester so that the response waveform output by the tester to the target waveform follows the target waveform. In this case, feedback control is performed to feed back displacement, velocity or acceleration (see, for example, Patent Document 1).

特開平11-101708号公報Japanese Unexamined Patent Publication No. 11-101708

しかしながら、従来の制御装置では、目標波形に急峻なピークが含まれている場合、目標波形をフィードバックループに入力してフィードバック制御を実行しても応答波形のピーク値を目標波形におけるピーク値に一致させられない。 However, in the conventional control device, when the target waveform contains a steep peak, the peak value of the response waveform matches the peak value of the target waveform even if the target waveform is input to the feedback loop and feedback control is executed. I can't let you.

制御対象には必ず応答遅れがあり、制御対象が圧力試験機である場合、作動油等の圧力媒体や試験体が弾性を有しているので、図8に示すように、前記フィードバック制御を実行しても目標波形(図中実線)に対して応答波形(図中破線)におけるピーク部分の波形がなまってしまう。よって、目標波形をフィードバックループに入力してフィードバック制御を実行しても応答波形のピーク値が目標波形のピーク値に一致しない。 There is always a response delay in the controlled object, and when the controlled object is a pressure tester, the pressure medium such as hydraulic oil and the test piece have elasticity, so the feedback control is executed as shown in FIG. Even so, the waveform of the peak part in the response waveform (broken line in the figure) becomes dull with respect to the target waveform (solid line in the figure). Therefore, even if the target waveform is input to the feedback loop and the feedback control is executed, the peak value of the response waveform does not match the peak value of the target waveform.

巨視的に見れば、フィードバック制御を長時間継続していけば、応答波形のピーク値が目標波形に近づくのであるが、目標波形と応答波形のピーク値を精度よく一致させる必要がある試験では、両者のピーク値が一致を見ないのは看過し難い問題である。 From a macroscopic point of view, if the feedback control is continued for a long time, the peak value of the response waveform approaches the target waveform. It is a problem that cannot be overlooked that the peak values of both do not match.

そこで、本発明の目的は、急峻なピークを含む目標波形のピーク値に制御対象の応答波形のピーク値を精度よく一致させ得る制御装置の提供である。 Therefore, an object of the present invention is to provide a control device capable of accurately matching the peak value of the response waveform to be controlled with the peak value of the target waveform including a steep peak.

上記した目的を達成するため、本発明の制御装置は、目標波形に基づいて制御対象に繰り返し応答波形を出力させる制御装置であって、目標波形と制御対象が出力する応答波形のうち予め決められた所定ポイントにおける差分に基づいて、目標波形を修正して修正波形を求める波形修正部と、修正波形を補正して入力波形を求める誤差補正部と、入力波形に基づいて制御対象を制御する制御部とを備え、所定ポイントを目標波形中のピークが設けられるポイントとし、波形修正部が目標波形のポイントにおけるピーク値と所定ポイントにおける応答波形の出力値との差分に基づいて修正値を求めるとともに、修正値を目標波形の所定ポイントの値に順次加算して修正波形を求め、誤差補正部は、目標波形と前回制御時に制御対象が出力した応答波形との差分に基づいて、修正波形を補正して制御部へ次回制御時に入力する入力波形を求める。このように構成された制御装置では、修正波形が所定ポイントにおける値が大きくなるように修正された波形となるので、制御対象の制御上の応答遅れ、圧力媒体や試験体の弾性に起因してピーク部分で応答波形がなまってしまっても、応答波形における所定ポイントにおける値を目標波形の所定ポイントにおける値に精度よく一致させ得る。よって、このように構成された制御装置は、フィードバック制御のみでは応答波形を目標波形に一致させ難いピーク部分でも精度良く両者を一致させられる。 In order to achieve the above object, the control device of the present invention is a control device that repeatedly outputs a response waveform to the control target based on the target waveform, and is predetermined among the target waveform and the response waveform output by the control target. A waveform correction unit that corrects the target waveform to obtain the corrected waveform based on the difference at a predetermined point, an error correction unit that corrects the corrected waveform to obtain the input waveform, and a control that controls the control target based on the input waveform. A predetermined point is set as a point where a peak in the target waveform is provided , and the waveform correction unit obtains a correction value based on the difference between the peak value at the point of the target waveform and the output value of the response waveform at the predetermined point. , The correction value is sequentially added to the value of the predetermined point of the target waveform to obtain the correction waveform, and the error correction unit corrects it based on the difference between the target waveform and the response waveform output by the control target during the previous control. Correct the waveform and obtain the input waveform to be input to the control unit at the next control . In the control device configured in this way, the corrected waveform becomes a waveform corrected so that the value at a predetermined point becomes large, so that it is caused by the control response delay of the controlled object and the elasticity of the pressure medium or the test piece. Even if the response waveform becomes dull at the peak portion, the value at the predetermined point in the response waveform can be accurately matched with the value at the predetermined point in the target waveform. Therefore, the control device configured in this way can accurately match the response waveform even in the peak portion where it is difficult to match the response waveform with the target waveform only by the feedback control.

また、制御装置は、波形修正部が目標波形の所定ポイントにおけるピーク値と所定ポイントにおける応答波形の出力値との差分に基づいて修正値を求め、修正値を目標波形の所定ポイントの値に順次加算して修正波形を求めている。このように制御装置が修正波形を求めると、差分に応じて目標波形が修正されるので、制御装置が制御対象を制御するたびに所定ポイントにおいて応答波形が目標波形に一致するように修正されて応答波形の所定ポイントにおける目標波形への一致も早い。 Further, in the control device , the waveform correction unit obtains a correction value based on the difference between the peak value at the predetermined point of the target waveform and the output value of the response waveform at the predetermined point, and sets the correction value to the value of the predetermined point of the target waveform. Corrected waveforms are obtained by sequentially adding them. When the control device obtains the correction waveform in this way, the target waveform is corrected according to the difference, so that the response waveform is corrected to match the target waveform at a predetermined point each time the control device controls the control target. The response waveform matches the target waveform at a predetermined point quickly.

また、誤差補正部は、目標波形と前回制御時に制御対象が出力した応答波形との差分と、目標波形の最大ピーク値と制御対象が前回制御時に出力した応答波形の最大ピーク値の差に基づいて、修正波形を補正して制御部へ次回制御時に入力する入力波形を求めてもよい。このように構成された制御装置では、目標波形を修正した修正波形を補正して制御部への入力波形とするので、所定ポイントにおける目標波形に対する応答波形の一致度を高めつつ、制御回数に伴って応答波形を目標波形に近づける誤差補正も同時に行える。よって、この制御装置によれば、応答波形の全体が目標波形に追従し、かつ、応答波形が目標波形に追従するまでの時間も極めて短くて済む。 Further, the error correction unit is based on the difference between the target waveform and the response waveform output by the control target during the previous control, and the difference between the maximum peak value of the target waveform and the maximum peak value of the response waveform output by the control target during the previous control . Then, the corrected waveform may be corrected and the input waveform to be input to the control unit at the next control may be obtained . In the control device configured in this way, the modified waveform obtained by modifying the target waveform is corrected and used as the input waveform to the control unit. Therefore, the degree of coincidence of the response waveform with the target waveform at a predetermined point is increased, and the number of controls is increased. At the same time, error correction can be performed to bring the response waveform closer to the target waveform. Therefore, according to this control device, the time until the entire response waveform follows the target waveform and the response waveform follows the target waveform can be extremely short.

さらに、誤差補正部は、目標波形の最大ピーク値と制御部に目標波形を入力した際に制御対象が出力した応答波形の最大ピーク値の差である初回ピーク差で、目標波形の最大ピーク値と制御部への入力波形の入力によって制御対象が出力した応答波形の最大ピーク値の差である今回ピーク差を割った値をピーク値比として算出し、目標波形と前回制御時に制御対象が出力した応答波形との差分にピーク値比を乗じて補正値を求め、修正波形に補正値を順次加算して制御部へ入力する入力波形を求めてもよい。このように構成された制御装置によれば、応答波形が目標波形に近づく際に目標波形を大きくオーバーシュートするのが防止されて、目標波形によく追従するようになり、応答波形が目標波形に一致するか充分に近づくと、補正値が非常に小さくなるので、入力波形の補正を自動的に中止する効果が得られる。 Further, the error correction unit is the initial peak difference, which is the difference between the maximum peak value of the target waveform and the maximum peak value of the response waveform output by the control target when the target waveform is input to the control unit, and is the maximum peak value of the target waveform. The value obtained by dividing the current peak difference, which is the difference between the maximum peak values of the response waveform output by the control target by inputting the input waveform to the control unit, is calculated as the peak value ratio, and the target waveform and the control target during the previous control are calculated. The correction value may be obtained by multiplying the difference from the response waveform output by the above by the peak value ratio, and the correction value may be sequentially added to the correction waveform to obtain the input waveform to be input to the control unit . According to the control device configured in this way, it is prevented that the response waveform greatly overshoots the target waveform when it approaches the target waveform, and the response waveform follows the target waveform well, and the response waveform becomes the target waveform. When they match or are sufficiently close to each other, the correction value becomes very small, so that the effect of automatically stopping the correction of the input waveform can be obtained.

本発明の制御装置によれば、急峻なピークを含む目標波形のピーク値に制御対象の応答波形のピーク値を精度よく一致させ得る。 According to the control device of the present invention, the peak value of the response waveform to be controlled can be accurately matched with the peak value of the target waveform including a steep peak.

一実施の形態におけるシリンダ制御装置のシステム構成図である。It is a system block diagram of the cylinder control device in one Embodiment. 一実施の形態における制御装置の制御ブロック図である。It is a control block diagram of the control device in one Embodiment. 目標波形の一例を説明する図である。It is a figure explaining an example of a target waveform. 初回制御時における目標波形と応答波形を示した図である。It is a figure which showed the target waveform and the response waveform at the time of the first control. 二回目の制御時における修正波形を示した図である。It is a figure which showed the correction waveform at the time of the second control. 初回制御時における目標波形、応答波形および誤差補正部で演算される差分を示した図である。It is a figure which showed the difference calculated by the target waveform, the response waveform, and the error correction part at the time of the first control. 二回目の制御時における入力波形、応答波形を示した図である。It is a figure which showed the input waveform and the response waveform at the time of the second control. 従来のフィードバック制御のみを実行した際の目標波形と応答波形を示した図である。It is a figure which showed the target waveform and the response waveform when only the conventional feedback control was executed.

以下、図に示した実施の形態に基づき、本発明を説明する。図1に示すように、一実施の形態における制御装置1は、本例では、圧力試験機Aを制御するため、圧力試験機Aが出力する圧力Pを検知する圧力検知部2と、入力波形に従って圧力試験機Aのサーボ弁Vを制御する制御部3と、目標波形を修正して修正波形を求める波形修正部4と、修正波形を補正して制御部3へ入力する入力波形を求める誤差補正部5とを備えて構成されている。制御装置1は、繰り返し入力される目標波形に基づいて繰り返し応答波形の圧力を出力させるよう圧力試験機Aを制御するものである。 Hereinafter, the present invention will be described based on the embodiments shown in the figure. As shown in FIG. 1, in this example, the control device 1 according to the embodiment has a pressure detection unit 2 for detecting the pressure P output by the pressure tester A and an input waveform in order to control the pressure tester A. The control unit 3 that controls the servo valve V of the pressure tester A according to the above procedure, the waveform correction unit 4 that corrects the target waveform to obtain the corrected waveform, and the error that corrects the corrected waveform and obtains the input waveform to be input to the control unit 3. It is configured to include a correction unit 5. The control device 1 controls the pressure tester A so as to output the pressure of the repeated response waveform based on the repeatedly input target waveform.

他方、圧力試験機Aは、出力される流体圧力を制御するサーボ弁Vを備えており、制御装置1によるサーボ弁Vの制御によって、圧力試験機Aが出力する圧力が調整される。なお、圧力試験機Aは、図示はしないが、たとえば、ポンプと、ポンプから圧力流体の供給を受けるブースターシリンダを備えており、ブースターシリンダから出力される流体圧力をサーボ弁Vで調節して、ホース等の試験体Tの内部へ圧力を負荷するものである。サーボ弁Vは、ソレノイドで駆動する比例電磁弁とされており、制御装置1から供給される電流量に応じて試験体Tへ与える圧力を調整する。 On the other hand, the pressure tester A includes a servo valve V that controls the output fluid pressure, and the pressure output by the pressure tester A is adjusted by the control of the servo valve V by the control device 1. Although not shown, the pressure tester A includes, for example, a pump and a booster cylinder that receives pressure fluid from the pump, and the fluid pressure output from the booster cylinder is adjusted by the servo valve V. Pressure is applied to the inside of the test piece T such as a hose. The servo valve V is a proportional solenoid valve driven by a solenoid, and adjusts the pressure applied to the test piece T according to the amount of current supplied from the control device 1.

圧力検知部2は、本例では、圧力試験機Aが出力する圧力を試験体Tへ導く管路Hに設置されており、圧力試験機Aが出力する圧力Pを検知して、制御部3、波形修正部4と誤差補正部5へ入力するようになっている。なお、圧力検知部2は、圧力試験機Aが出力する圧力を検出可能な位置に設ければよい。 In this example, the pressure detection unit 2 is installed in a pipeline H that guides the pressure output by the pressure tester A to the test body T, detects the pressure P output by the pressure tester A, and controls the control unit 3. , Is input to the waveform correction unit 4 and the error correction unit 5. The pressure detection unit 2 may be provided at a position where the pressure output by the pressure tester A can be detected.

目標波形は、圧力試験機Aが試験体Tへ負荷すべき圧力を時系列で指示する圧力指令であり、一回の目標波形の入力に対して制御装置1が圧力試験機Aを制御して応答波形の出力が終了すると、再度、制御装置1に入力される。よって、制御装置1は、繰り返し入力される目標波形に対して制御対象である圧力試験機Aに繰り返し応答波形の圧力を出力させる制御を行う。 The target waveform is a pressure command in which the pressure tester A indicates the pressure to be applied to the test body T in chronological order, and the control device 1 controls the pressure tester A with respect to one input of the target waveform. When the output of the response waveform is completed, it is input to the control device 1 again. Therefore, the control device 1 controls the pressure tester A, which is the control target, to output the pressure of the repeated response waveform with respect to the repeatedly input target waveform.

制御部3は、図2に示すように、本例では、圧力試験機Aが出力すべき圧力(指示圧力)Pを指示する入力波形と圧力検知部2が検知する圧力Pに基づいて、サーボ弁Vへ与えるべき電流量を指示する制御指令Iを生成し、サーボ弁Vへ電流を供給する。 As shown in FIG. 2, in this example, the control unit 3 is based on an input waveform instructing a pressure (instructed pressure) P * to be output by the pressure tester A and a pressure P detected by the pressure detection unit 2. A control command I * indicating the amount of current to be given to the servo valve V is generated, and the current is supplied to the servo valve V.

制御部3に入力される入力波形は、本例では、目標波形を波形修正部4が修正した修正波形をさらに誤差補正部5が補正した波形とされる。ただし、制御部3が最初にサーボ弁Vを制御する初回では、入力波形は、図3に示すように、試験体Tへ負荷すべき理想的な圧力波形を示す目標波形とされる。目標波形は、予め試験体Tへ負荷したい圧力を時系列に指示する一回分の圧力指令として設定される。目標波形は、一制御周期毎に一つの指示圧力Pを指示しており、本例では、5000個の目標圧力のデータで構成されている。制御周期は、本例では、0.2msとしているので、目標波形は1s分の目標圧力のデータセットである。本例の目標波形は、図3に示すように、始点のポイントaから終点のポイントhまでの間に変曲点であるポイントb、ポイントc、ポイントd、ポイントe、ポイントf、ポイントgを備えた波形とされており、指示圧力が0であるポイントa,hの他、各ポイントb,c,d,e,f,gにおいて指示圧力が設定されている。そして、隣りあうポイント同士は、直線で接続される波形となっている。よって、各ポイントb,c,d,e,f,gについて指示圧力を設定すれば、ポイント間のデータを前記条件に従って補完して自動的に目標波形のデータセットを作成できる。また、入力波形もまた、目標波形と同様の5000個の目標圧力のデータで構成される。なお、本例の目標波形は、一例であり、図示した波形以外の波形を目標波形としてもよいのは当然である。 In this example, the input waveform input to the control unit 3 is a waveform obtained by correcting the target waveform by the waveform correction unit 4 and further correcting the correction waveform by the error correction unit 5. However, at the first time when the control unit 3 first controls the servo valve V, the input waveform is a target waveform showing an ideal pressure waveform to be loaded on the test body T as shown in FIG. The target waveform is set in advance as a single pressure command for instructing the pressure to be applied to the test piece T in chronological order. The target waveform indicates one indicated pressure P * for each control cycle, and in this example, it is composed of 5000 target pressure data. Since the control cycle is 0.2 ms in this example, the target waveform is a data set of the target pressure for 1 s. As shown in FIG. 3, the target waveform of this example includes points b, c, point d, point e, point f, and point g, which are turning points between the start point a and the end point h. The waveform is provided, and the indicated pressure is set at each point b, c, d, e, f, g in addition to the points a and h where the indicated pressure is 0. The adjacent points have a waveform connected by a straight line. Therefore, if the indicated pressure is set for each point b, c, d, e, f, g, the data between the points can be complemented according to the above conditions to automatically create a data set of the target waveform. Further, the input waveform is also composed of 5000 target pressure data similar to the target waveform. The target waveform of this example is an example, and it is natural that a waveform other than the waveform shown in the figure may be used as the target waveform.

具体的には、制御部3は、図2に示すように、後述する入力波形演算部53から出力される入力波形が指示する圧力P**と圧力試験機A(圧力検知部2)から出力される圧力Pとの偏差Eを求める加算部31と、加算部31が求めた偏差EをPID補償して制御指令Iを求める補償部32と、制御指令I通りにサーボ弁Vへ電流を供給するドライバ33とを備えて構成されている。 Specifically, as shown in FIG. 2, the control unit 3 outputs the pressure P ** indicated by the input waveform output from the input waveform calculation unit 53, which will be described later, and the pressure tester A (pressure detection unit 2). The addition unit 31 that obtains the deviation E from the pressure P to be generated, the compensation unit 32 that obtains the control command I * by PID compensating the deviation E obtained by the addition unit 31, and the current to the servo valve V according to the control command I * . It is configured to include a driver 33 for supplying the above.

加算部31は、入力波形が指示している圧力P**と圧力検知部2が検知した圧力Pとの偏差Eを求めて補償部32へ入力する。補償部32は、本例では偏差Eを比例積分微分補償してサーボ弁Vへ与える電流を指示する制御指令Iを求める。つまり、制御部3は、本例では、圧力フィードバックによってサーボ弁Vを制御する。なお、補償部32は、本例では、PID補償器とされているが、比例積分補償するPI補償器とされてもよい。 The addition unit 31 obtains a deviation E between the pressure P ** indicated by the input waveform and the pressure P detected by the pressure detection unit 2, and inputs the deviation E to the compensation unit 32. In this example, the compensation unit 32 obtains a control command I * that indicates the current applied to the servo valve V by proportionally integrating and differentially compensating the deviation E. That is, in this example, the control unit 3 controls the servo valve V by pressure feedback. Although the compensation unit 32 is a PID compensator in this example, it may be a PI compensator for proportional integral compensation.

そして、求められた制御指令Iは、ドライバ33に入力されて、ドライバ33は、制御指令I通りにサーボ弁Vに電流を供給する。ドライバ33は、たとえば、オペアンプ等によるアナログ回路やスイッチング素子を備えて、スイッチング素子のオンオフによって電源からサーボ弁Vのソレノイドに供給する電流量を調節可能な回路とされる。 Then, the obtained control command I * is input to the driver 33, and the driver 33 supplies a current to the servo valve V according to the control command I * . The driver 33 is provided with, for example, an analog circuit using an operational amplifier or the like, or a switching element, and is a circuit capable of adjusting the amount of current supplied from the power supply to the solenoid of the servo valve V by turning the switching element on and off.

波形修正部4は、図2に示すように、目標波形の予め決められた所定ポイントと圧力検知部2で検知する圧力試験機Aが出力した圧力Pの波形である応答波形の所定ポイントとの差分を求める差分演算部41と、前記差分に基づいて目標波形に加算する修正値を求める修正値演算部42と、求めた修正値を目標波形に加算して今回制御に使用する修正波形を求める修正波形演算部43と、求めた修正値を積算して記憶する記憶部44を備えている。 As shown in FIG. 2, the waveform correction unit 4 has a predetermined point of the target waveform and a predetermined point of the response waveform which is the waveform of the pressure P output by the pressure tester A detected by the pressure detection unit 2. The difference calculation unit 41 for obtaining the difference, the correction value calculation unit 42 for obtaining the correction value to be added to the target waveform based on the difference, and the correction value calculation unit 42 for adding the obtained correction value to the target waveform to obtain the correction waveform used for this control. It includes a correction waveform calculation unit 43 and a storage unit 44 that integrates and stores the obtained correction values.

差分演算部41は、所定ポイントにおける目標波形と圧力検知部2で検知する圧力試験機Aが出力した圧力Pの波形である応答波形との差分を求める。差分演算部41は、この目標波形中の所定ポイントにおける値と、応答波形中で目標波形の所定ポイントに対応して圧力試験機Aが出力した圧力Pの値(出力値)との差分を求める。本例では、所定ポイントは、目標波形中の目標圧力のデータの中から特定のデータを指定する形で設定されており、図3に示すように、目標波形中の最大のピーク値を持つデータに対応するポイントbを所定ポイントとして設定してある。したがって、差分演算部41は、この目標波形中の最大のピーク値と、応答波形中で目標波形の所定ポイントに対応して圧力試験機Aが出力した圧力Pの値(出力値)との差分ΔPを求める。図4に、初回制御時において入力波形を目標波形として、図中の実線で示す目標波形と、この目標波形の制御部3への入力に対して制御対象である圧力試験機Aが出力した圧力Pの波形である応答波形(図中の波線)を示している。差分演算部41は、所定ポイントである目標波形の最大ピーク値の指示圧力Pの値と圧力試験機Aが出力する応答波形における所定ポイントにおける圧力Pの値(出力値)との差分ΔPを求める。 The difference calculation unit 41 obtains the difference between the target waveform at a predetermined point and the response waveform which is the waveform of the pressure P output by the pressure tester A detected by the pressure detection unit 2. The difference calculation unit 41 obtains the difference between the value at the predetermined point in the target waveform and the value (output value) of the pressure P output by the pressure tester A corresponding to the predetermined point of the target waveform in the response waveform. .. In this example, the predetermined point is set by designating specific data from the target pressure data in the target waveform, and as shown in FIG. 3, the data having the maximum peak value in the target waveform. The point b corresponding to is set as a predetermined point. Therefore, the difference calculation unit 41 is the difference between the maximum peak value in the target waveform and the value (output value) of the pressure P output by the pressure tester A corresponding to the predetermined point of the target waveform in the response waveform. Find ΔP. In FIG. 4, the input waveform is set as the target waveform at the time of initial control, the target waveform shown by the solid line in the figure, and the pressure output by the pressure tester A to be controlled with respect to the input of the target waveform to the control unit 3. The response waveform (wavy line in the figure) which is the waveform of P is shown. The difference calculation unit 41 calculates the difference ΔP between the value of the indicated pressure P * of the maximum peak value of the target waveform, which is a predetermined point, and the value of the pressure P (output value) at the predetermined point in the response waveform output by the pressure tester A. Ask.

修正値演算部42は、差分演算部41が演算した差分ΔPに修正係数(ゲイン)を乗じて修正値を求める。記憶部44は、修正値演算部42が順次求めた修正値を順次加算して修正値の積分値を求めて記憶する。つまり、記憶部44は、自身が記憶している積分値に、修正値演算部42が新たに求めた修正値を加算して順次積分値を更新して記憶する。修正波形演算部43は、記憶部44に記憶している積分値と前回に修正値演算部42が求めた修正値を加えて、入力される目標波形に加算して今回制御に使用する修正波形を求める。修正波形演算部43は、具体的には、目標波形における所定ポイントであるポイントbの値を前記積分値と前記修正値を加算して修正し、修正後のポイントbとポイントaとの間と修正後のポイントbとポイントcとの間を直線で接続する波形となるように補完して修正波形のデータセットを生成する。なお、本例では、目標波形が各ポイント間を直線で結んだ波形となっているので、修正波形演算部43は、ポイントa,b間とポイントb,c間を直線で接続する補完を行う。目標波形がポイント間を直線以外の線で結ぶ波形となっている場合には、修正波形演算部43は、ポイント間を結ぶ線の条件に従って補完すればよい。 The correction value calculation unit 42 obtains a correction value by multiplying the difference ΔP calculated by the difference calculation unit 41 by a correction coefficient (gain). The storage unit 44 sequentially adds the correction values sequentially obtained by the correction value calculation unit 42 to obtain and store the integrated value of the correction values. That is, the storage unit 44 adds the correction value newly obtained by the correction value calculation unit 42 to the integration value stored by itself, and sequentially updates and stores the integration value. The correction waveform calculation unit 43 adds the integrated value stored in the storage unit 44 and the correction value previously obtained by the correction value calculation unit 42, adds the correction waveform to the input target waveform, and uses the correction waveform for this control. Ask for. Specifically, the corrected waveform calculation unit 43 corrects the value of the point b, which is a predetermined point in the target waveform, by adding the integrated value and the corrected value, and between the corrected point b and the point a. A data set of the corrected waveform is generated by complementing the waveform so that the corrected point b and the point c are connected by a straight line. In this example, since the target waveform is a waveform connecting each point with a straight line, the correction waveform calculation unit 43 complements the connection between the points a and b and the points b and c with a straight line. .. When the target waveform is a waveform connecting the points with a line other than a straight line, the correction waveform calculation unit 43 may complement the waveform according to the condition of the line connecting the points.

このように、制御装置1は、目標波形の入力によって圧力試験機Aを制御する度に修正値を求めるようになっており、一回の制御の度に演算される修正値が目標波形に順次加算されて、修正波形が求められる。換言すれば、修正波形は、修正値が積分されて目標波形に加算されて求められる。よって、目標波形と応答波形とに所定ポイントにおいて差分ΔPが0でないと、基本的には、修正波形は制御装置1が制御を実行する度に修正される。なお、制御の初回では、差分演算部41は差分ΔPを演算しておらず、0を出力するので、修正値演算部42も修正値を0として求め、修正波形演算部43は、入力される目標波形に0を加算する。よって、初回制御時には、修正波形演算部43は、目標波形をそのまま誤差補正部5へ出力するので、波形修正部4は目標波形を修正しない。二回目の制御時には、修正値演算部42は、目標波形における所定ポイントの値と初回制御時に圧力試験機Aが出力した応答波形における前記所定ポイントに対応する値との差分ΔPに修正係数を乗じて修正値を求める。この二回目の制御時には、修正波形演算部43は、目標波形の所定ポイントであるポイントbのデータ値に修正値を加算して修正波形を求めて誤差補正部5へ出力する。このように、波形修正部4は、制御が進むたびに、差分ΔPに応じた修正値を求めて、修正波形を生成する。 In this way, the control device 1 obtains a correction value every time the pressure tester A is controlled by inputting a target waveform, and the correction value calculated for each control is sequentially applied to the target waveform. It is added to obtain the corrected waveform. In other words, the modified waveform is obtained by integrating the modified values and adding them to the target waveform. Therefore, if the difference ΔP between the target waveform and the response waveform is not 0 at a predetermined point, the corrected waveform is basically corrected every time the control device 1 executes control. At the first time of control, the difference calculation unit 41 does not calculate the difference ΔP and outputs 0. Therefore, the correction value calculation unit 42 also obtains the correction value as 0, and the correction waveform calculation unit 43 is input. Add 0 to the target waveform. Therefore, at the time of initial control, the correction waveform calculation unit 43 outputs the target waveform as it is to the error correction unit 5, so that the waveform correction unit 4 does not correct the target waveform. At the time of the second control, the correction value calculation unit 42 multiplies the difference ΔP between the value of the predetermined point in the target waveform and the value corresponding to the predetermined point in the response waveform output by the pressure tester A at the time of the first control by the correction coefficient. To find the correction value. At the time of this second control, the correction waveform calculation unit 43 adds the correction value to the data value of the point b, which is a predetermined point of the target waveform, obtains the correction waveform, and outputs the correction waveform to the error correction unit 5. In this way, the waveform correction unit 4 obtains a correction value according to the difference ΔP each time the control progresses, and generates a correction waveform.

目標波形におけるポイントbの値に対して応答波形におけるポイントbに対応する値(出力値)との差分ΔPが正の値を持つと、修正係数をKとすると、正のK・ΔPの値を持つ修正値が求められる。すると、図5に示すように、波形修正部4によって生成される修正波形(図中実線)は、目標波形(図中破線)に比較してポイントbにおいてK・ΔPだけ大きな値を持つ波形となる。目標波形におけるポイントbの値に対して応答波形におけるポイントbに対応する値(出力値)との差分ΔPが正の値を持ち続けると、修正波形は、ポイントbにおいて目標波形に対して値が大きくなり続け、修正波形に基づいて制御部3が制御した結果、圧力試験機Aの応答波形がポイントbにおいて目標波形に一致すると、波形修正部4における目標波形の修正が停止される。なお、修正値演算部42は、求めた修正値の絶対値が充分に小さく、予め設定した停止閾値以下になると、修正値を0とするようにして、波形修正部4における目標波形の修正を停止させてもよい。 If the difference ΔP from the value of point b in the target waveform to the value corresponding to point b in the response waveform (output value) has a positive value, and the correction coefficient is KS , then positive KS · ΔP A correction value with a value is sought. Then, as shown in FIG. 5, the corrected waveform (solid line in the figure) generated by the waveform correction unit 4 has a larger value by KS · ΔP at the point b than the target waveform (broken line in the figure). It becomes. If the difference ΔP between the value of point b in the target waveform and the value corresponding to point b in the response waveform (output value) continues to have a positive value, the corrected waveform has a value with respect to the target waveform at point b. When the response waveform of the pressure tester A matches the target waveform at the point b as a result of being controlled by the control unit 3 based on the correction waveform, the correction of the target waveform by the waveform correction unit 4 is stopped. The correction value calculation unit 42 corrects the target waveform in the waveform correction unit 4 by setting the correction value to 0 when the absolute value of the obtained correction value is sufficiently small and becomes equal to or less than the preset stop threshold value. You may stop it.

なお、記憶部44は、修正値を記憶するのではなく、修正波形演算部43が求めた修正波形を記憶する場合、修正波形演算部43は、記憶部44が前回記憶した修正波形に修正値演算部42が求めた修正値を加算して新たな修正波形を求めるように構成されてもよい。このようにしても、修正値演算部42が順次求めた修正値が目標波形に順次加算されていくのに変わりはないので、修正波形に求めた修正値を加算して修正波形を更新するのと、目標波形に都度求められる修正値を順次加算して修正波形を求めるのは等価である。 When the storage unit 44 does not store the correction value but stores the correction waveform obtained by the correction waveform calculation unit 43, the correction waveform calculation unit 43 stores the correction value in the correction waveform previously stored by the storage unit 44. It may be configured to add the correction value obtained by the calculation unit 42 to obtain a new correction waveform. Even in this case, the correction values sequentially obtained by the correction value calculation unit 42 are sequentially added to the target waveform, so that the correction values obtained are added to the correction waveform to update the correction waveform. And, it is equivalent to obtain the corrected waveform by sequentially adding the corrected value obtained each time to the target waveform.

誤差補正部5は、修正波形を補正して制御部3へ入力する入力波形を求める。誤差補正部5は、図2に示すように、目標波形と圧力検知部2で検知した圧力試験機Aが出力する圧力Pの波形である応答波形との差分を求める差分演算部51と、前記差分に基づいて今回に制御部3に入力された入力波形に加算する補正値を求める補正値演算部52と、求めた補正値を今回入力された入力波形に加算して次回に制御部3へ入力する入力波形を求める入力波形演算部53と、求めた補正値を記憶する記憶部54を備えている。 The error correction unit 5 corrects the correction waveform and obtains an input waveform to be input to the control unit 3. As shown in FIG. 2, the error correction unit 5 includes a difference calculation unit 51 for obtaining a difference between the target waveform and the response waveform which is the waveform of the pressure P output by the pressure tester A detected by the pressure detection unit 2. A correction value calculation unit 52 that obtains a correction value to be added to the input waveform input to the control unit 3 this time based on the difference, and a correction value calculation unit 52 that adds the obtained correction value to the input waveform input this time to the control unit 3 next time. It includes an input waveform calculation unit 53 for obtaining an input waveform to be input, and a storage unit 54 for storing the obtained correction value.

差分演算部51は、目標波形と圧力検知部2で検知する圧力試験機Aが出力した圧力Pの波形である応答波形との差分を求める。図6に、初回制御時において入力波形を目標波形として、図中で実線で示す目標波形と、この目標波形の制御部3への入力に対して制御対象である圧力試験機Aが出力した圧力Pの波形である応答波形(図中の波線)を示している。差分は、具体的には、入力波形が指示する一つのデータとしての指示圧力P**に対する圧力試験機Aが出力した応答波形の圧力Pとの差を時系列にしたデータとなる。よって、目標波形に対して応答波形が図6に示すように推移すると、これらの差分は、図6中の下方に示すような波形のデータとなる。また、差分演算部51は、本例では、図6に示すように、目標波形に設定される補正対象区間でのみ前記差分を演算する。目標波形は、本例では、途中で指示する指示圧力Pが一定となる区間を二つ有しており、この区間では、目標波形が指示する指示圧力Pを制御部3に入力して圧力フィードバックが行われれば、応答波形も目標波形によく追従するため、修正波形を補正する必要がない。よって、このような区間では、補正値を求めるための差分の演算も補正値の演算および記憶も不要となる。よって、補正対象区間は、本例では、目標波形のうち指示圧力Pに変化がない区間以外の区間、つまり、指示圧力Pに変動がある区間を補正対象区間として設定されている。具体的には、図6に示すように、補正対象区間は、目標波形の一番先頭のデータから1000個目までの範囲と3000個目から3400個目までの範囲に設定されている。このように、補正対象区間は、データ順の番号を指定して設定するほか、目標波形は時系列の目標圧力のデータであるから時間によって範囲を設定してもよい。 The difference calculation unit 51 obtains the difference between the target waveform and the response waveform which is the waveform of the pressure P output by the pressure tester A detected by the pressure detection unit 2. In FIG. 6, the input waveform is set as the target waveform at the time of initial control, the target waveform shown by the solid line in the figure, and the pressure output by the pressure tester A to be controlled with respect to the input of the target waveform to the control unit 3. The response waveform (wavy line in the figure) which is the waveform of P is shown. Specifically, the difference is data in which the difference from the pressure P of the response waveform output by the pressure tester A with respect to the indicated pressure P ** as one data indicated by the input waveform is chronologically arranged. Therefore, when the response waveform changes with respect to the target waveform as shown in FIG. 6, these differences become the waveform data as shown in the lower part in FIG. Further, in this example, the difference calculation unit 51 calculates the difference only in the correction target section set in the target waveform, as shown in FIG. In this example, the target waveform has two sections in which the indicated pressure P * instructed on the way is constant, and in this section, the indicated pressure P * instructed by the target waveform is input to the control unit 3. If pressure feedback is performed, the response waveform also follows the target waveform well, so there is no need to correct the corrected waveform. Therefore, in such an interval, it is not necessary to calculate the difference, calculate the correction value, and store the correction value. Therefore, in this example, the correction target section is set as the section of the target waveform other than the section where the indicated pressure P * does not change, that is, the section where the indicated pressure P * fluctuates. Specifically, as shown in FIG. 6, the correction target section is set in the range from the first data of the target waveform to the 1000th and the range from the 3000th to the 3400th. In this way, the correction target section is set by designating the number in the order of data, and since the target waveform is the data of the target pressure in the time series, the range may be set according to the time.

補正値演算部52は、差分演算部51が演算した差分と、ピーク値比と、補正係数とを乗じて補正値を求める。入力波形演算部53は、補正値演算部52が求めた補正値に記憶部54に記憶している前回に補正値演算部52が求めた補正値を加えて、入力される修正波形に加算して次回に制御部3へ入力する入力波形を求める。記憶部54は、自身が記憶している補正値に、補正値演算部52が新たに求めた補正値を加算して順次補正値を更新して記憶する。このように、制御装置1は、入力波形の制御部3への入力によって圧力試験機Aを制御する度に補正値求めるようになっており、一回の制御の度に演算される補正値が修正波形に順次加算されて、入力波形が求められる。換言すれば、入力波形は、補正値が積分されて修正波形に加算されて求められる。よって、入力波形と修正波形とに差分が0でないと、基本的には、入力波形は制御装置1が制御を実行する度に補正される。なお、制御の初回では、差分演算部51は差分を演算しておらず、0を出力するので、補正値演算部52も補正値を0として求める。制御の初回では、前述したように波形修正部4も目標波形を出力するので、入力波形演算部53は、入力される目標波形に0を加算する。よって、初回制御時には、入力波形演算部53は、目標波形をそのまま制御部3へ入力するので、入力される目標波形を補正せずにそのまま出力する。二回目以降の制御では、波形修正部4が目標波形を修正して修正波形を出力し、補正値演算部52も補正値を求めるので、誤差補正部5は、修正波形に補正値を加算して入力波形を生成して制御部3へ出力するようになる。 The correction value calculation unit 52 obtains a correction value by multiplying the difference calculated by the difference calculation unit 51, the peak value ratio, and the correction coefficient. The input waveform calculation unit 53 adds the correction value previously obtained by the correction value calculation unit 52 stored in the storage unit 54 to the correction value obtained by the correction value calculation unit 52, and adds the correction waveform to the input correction waveform. Next time, the input waveform to be input to the control unit 3 is obtained. The storage unit 54 adds the correction value newly obtained by the correction value calculation unit 52 to the correction value stored by itself, and sequentially updates and stores the correction value. In this way, the control device 1 obtains a correction value every time the pressure tester A is controlled by inputting an input waveform to the control unit 3, and the correction value is calculated every time the control is performed. Is sequentially added to the corrected waveform to obtain the input waveform. In other words, the input waveform is obtained by integrating the correction value and adding it to the correction waveform. Therefore, if the difference between the input waveform and the corrected waveform is not 0, the input waveform is basically corrected every time the control device 1 executes control. At the first time of control, the difference calculation unit 51 does not calculate the difference and outputs 0. Therefore, the correction value calculation unit 52 also obtains the correction value as 0. At the first time of control, since the waveform correction unit 4 also outputs the target waveform as described above, the input waveform calculation unit 53 adds 0 to the input target waveform. Therefore, at the time of initial control, the input waveform calculation unit 53 inputs the target waveform to the control unit 3 as it is, so that the input target waveform is output as it is without being corrected. In the second and subsequent controls, the waveform correction unit 4 corrects the target waveform and outputs the corrected waveform, and the correction value calculation unit 52 also obtains the correction value. Therefore, the error correction unit 5 adds the correction value to the correction waveform. The input waveform is generated and output to the control unit 3.

なお、記憶部54は、補正値を記憶するのではなく、入力波形演算部53が求めた入力波形を記憶する場合、入力波形演算部53は、記憶部54が前回記憶した入力波形に補正値演算部52が求めた補正値を加算して新たな入力波形を求めるように構成されてもよい。このようにしても、修正波形に、順次補正値演算部52が求めた補正値が加算されていくのに変わりはないので、入力波形に求めた補正値を加算して入力波形を更新するのと、目標波形に都度求められる補正値を順次加算して入力波形を求めるのは等価である。 When the storage unit 54 does not store the correction value but stores the input waveform obtained by the input waveform calculation unit 53, the input waveform calculation unit 53 corrects the correction value to the input waveform previously stored by the storage unit 54. The correction value obtained by the calculation unit 52 may be added to obtain a new input waveform. Even in this case, the correction value obtained by the correction value calculation unit 52 is still added to the correction waveform, so the correction value obtained is added to the input waveform to update the input waveform. And, it is equivalent to obtain the input waveform by sequentially adding the correction value obtained each time to the target waveform.

ここで、補正値演算部52の演算内容について詳しく説明する。前記したピーク値比は、目標波形の最大ピーク値と圧力試験機Aが制御の初回に出力した応答波形の最大ピーク値の差である初回ピーク差で、目標波形の最大ピーク値と圧力試験機Aが今回の制御時に出力した応答波形の最大ピーク値の差である今回ピーク差を割った値である。最大ピーク値は、波形の最大値とされており、図6に示したところでは、図6中実線で示す目標波形のポイントbにおける最大ピーク値P1と圧力試験機Aが制御初回に出力した応答波形の最大ピーク値P2の差を初回ピーク差δiniとする。なお、初回の制御時には、目標波形が補正されずにそのまま入力波形とされているので、差分は、図6の下方に示された波形の如くに求められて補正値が求められ、続く次回制御時には、修正波形に補正値が加算されて入力波形とされる。図7に示すように、二回目の制御時において、入力波形が図7中実線のように補正され、その入力波形に対して応答波形が図7中破線のように推移すると、図7中一点鎖線で示す目標波形の最大ピーク値P1と圧力試験機Aが今回出力した応答波形の最大ピーク値P3の差が今回ピーク差δnowとなる。補正値演算部52は、初回ピーク差δiniと今回ピーク差δnowとを求め、ピーク値比を演算する。二回目の制御時において、ピーク値比αは、α=δnow/δiniで演算される。三回目の制御時には、また、目標波形の最大ピーク値P1と応答波形のピーク値との差として今回ピーク差δnowが求められ、初回ピーク差δiniは、制御の初回に求められると制御中は一定の値とされる。 Here, the calculation content of the correction value calculation unit 52 will be described in detail. The above-mentioned peak value ratio is the initial peak difference, which is the difference between the maximum peak value of the target waveform and the maximum peak value of the response waveform output by the pressure tester A at the first time of control, and is the maximum peak value of the target waveform and the pressure tester. A is the value obtained by dividing the current peak difference, which is the difference between the maximum peak values of the response waveforms output during the current control. The maximum peak value is the maximum value of the waveform, and as shown in FIG. 6, the maximum peak value P1 at the point b of the target waveform shown by the solid line in FIG. 6 and the response output by the pressure tester A for the first time of control. The difference in the maximum peak value P2 of the waveform is defined as the initial peak difference δini. At the time of the first control, the target waveform is not corrected and is used as the input waveform as it is. Therefore, the difference is obtained as shown in the waveform shown at the bottom of FIG. 6, and the correction value is obtained, and the next control is continued. Occasionally, a correction value is added to the correction waveform to obtain an input waveform. As shown in FIG. 7, when the input waveform is corrected as shown by the solid line in FIG. 7 and the response waveform changes as shown by the broken line in FIG. 7 with respect to the input waveform at the time of the second control, one point in FIG. The difference between the maximum peak value P1 of the target waveform shown by the chain line and the maximum peak value P3 of the response waveform output this time by the pressure tester A is the peak difference δnow this time. The correction value calculation unit 52 obtains the initial peak difference δini and the current peak difference δnow, and calculates the peak value ratio. At the time of the second control, the peak value ratio α is calculated by α = δnow / δini. At the time of the third control, the peak difference δnow is obtained this time as the difference between the maximum peak value P1 of the target waveform and the peak value of the response waveform, and the initial peak difference δini is constant during the control when it is obtained at the first control. Is the value of.

補正値演算部52は、差分演算部51が演算した差分をεとし、ピーク値比をαとし、補正係数をKとすると、補正値を補正値=K・ε・αを演算して求める。 When the difference calculated by the difference calculation unit 51 is ε, the peak value ratio is α, and the correction coefficient is K H , the correction value calculation unit 52 calculates the correction value = K H · ε · α. Ask.

このように制御装置1は構成されており、目標波形が繰り返し入力される。目標波形の入力に対して波形修正部4が目標波形を修正して修正波形を生成し、誤差補正部5が修正波形を補正して入力波形を生成する。こうして得られた入力波形が入力される制御部3は、入力波形が指示する指示圧力P**と圧力検知部2が検知する圧力Pとに基づいて圧力フィードバック制御を行い圧力試験機Aが出力する圧力を制御する。一回の目標波形の入力に対して制御装置1が圧力試験機Aを制御するのを一回目(初回)の制御とし、前述した通り、初回では目標波形がそのまま入力波形として制御部3に入力される。 The control device 1 is configured in this way, and the target waveform is repeatedly input. The waveform correction unit 4 corrects the target waveform to generate the corrected waveform with respect to the input of the target waveform, and the error correction unit 5 corrects the correction waveform to generate the input waveform. The control unit 3 to which the input waveform obtained in this way is input performs pressure feedback control based on the indicated pressure P ** indicated by the input waveform and the pressure P detected by the pressure detecting unit 2, and the pressure tester A outputs the pressure tester A. Control the pressure. The control device 1 controls the pressure tester A for one input of the target waveform as the first (first time) control, and as described above, the target waveform is directly input to the control unit 3 as an input waveform at the first time. Will be done.

一回目の制御時において入力波形である目標波形と制御部3による圧力フィードバック制御によって圧力試験機Aが出力する圧力の応答波形には差が生じる。二回目の制御時では、目標波形の制御装置1への入力に対して、初回の入力波形である目標波形と実際に検知された圧力波形である応答波形との差分が演算され、修正値演算部42と補正値演算部52が前述の演算を行ってそれぞれ修正値と補正値が求められる。 At the time of the first control, there is a difference between the target waveform which is an input waveform and the pressure response waveform output by the pressure tester A due to the pressure feedback control by the control unit 3. At the time of the second control, the difference between the target waveform which is the first input waveform and the response waveform which is the actually detected pressure waveform is calculated for the input of the target waveform to the control device 1, and the correction value calculation is performed. The unit 42 and the correction value calculation unit 52 perform the above-mentioned calculation to obtain a correction value and a correction value, respectively.

よって、二回目の制御では、波形修正部4によって目標波形が修正されて修正波形が生成され、誤差補正部5によって修正波形に補正値が加算され修正波形が補正されて入力波形が生成される。一回目の制御では、目標波形は入力波形とされているので、二回目の制御で入力される入力波形は、目標波形が修正値によって修正された後、修正波形に補正値が加算されて補正される。二回目の制御によって得られる入力波形と応答波形は、目標波形に対して修正値によって修正されるとともに補正値が加算されるために、図5に示すように、ポイントbにおいてピーク値が大きくなるとともに、補正対象区間において振幅が上下に大きくなる波形となる。二回目の制御では、このように入力波形が補正されるため、応答波形も目標波形が制御部3に入力される一回目の制御の時の応答波形よりも、目標波形に近づく波形となる。以降、制御回数を重ねると順次入力波形が補正されて、応答波形が目標波形に近づいていく。 Therefore, in the second control, the waveform correction unit 4 corrects the target waveform to generate a correction waveform, and the error correction unit 5 adds the correction value to the correction waveform, corrects the correction waveform, and generates an input waveform. .. Since the target waveform is the input waveform in the first control, the input waveform input in the second control is corrected by adding the correction value to the correction waveform after the target waveform is corrected by the correction value. Will be done. Since the input waveform and the response waveform obtained by the second control are corrected by the correction value and the correction value is added to the target waveform, the peak value becomes large at the point b as shown in FIG. At the same time, it becomes a waveform in which the amplitude increases up and down in the correction target section. In the second control, since the input waveform is corrected in this way, the response waveform also becomes a waveform closer to the target waveform than the response waveform at the time of the first control in which the target waveform is input to the control unit 3. After that, as the number of controls is repeated, the input waveform is sequentially corrected, and the response waveform approaches the target waveform.

そして、波形修正部4が所定ポイントにおける目標波形と圧力検知部2で検知する圧力試験機Aが出力した圧力Pの波形である応答波形との差分に基づいて目標波形を修正して修正波形を生成する。本例の制御装置1は、このように修正波形を求めるので、修正波形が所定ポイントにおける値が大きくなるように修正された波形となり、圧力試験機Aの制御上の応答遅れ、圧力媒体や試験体Tの弾性に起因してピーク部分で応答波形がなまってしまっても、応答波形における所定ポイントにおける値を目標波形の所定ポイントにおける値に精度よく一致させ得る。よって、本発明の制御装置1によれば、急峻なピークを含む目標波形に対して制御対象の応答波形の追従性を向上できる。 Then, the target waveform is corrected based on the difference between the target waveform at the predetermined point and the response waveform which is the waveform of the pressure P output by the pressure tester A detected by the pressure detection unit 2, and the correction waveform is obtained. Generate. Since the control device 1 of this example obtains the corrected waveform in this way, the corrected waveform becomes a waveform corrected so that the value at a predetermined point becomes large, and the response delay in the control of the pressure tester A, the pressure medium, and the test Even if the response waveform is blunted at the peak portion due to the elasticity of the body T, the value at the predetermined point in the response waveform can be accurately matched with the value at the predetermined point in the target waveform. Therefore, according to the control device 1 of the present invention, it is possible to improve the followability of the response waveform to be controlled with respect to the target waveform including a steep peak.

また、本例の制御装置1では、所定ポイントを目標波形中のピークが設けられるポイントとし、波形修正部4が目標波形のポイントにおけるピーク値と所定ポイントにおける応答波形の出力値との差分に基づいて修正波形を求めるように構成されているので、フィードバック制御のみでは応答波形を目標波形に一致させ難いピーク部分でも精度良く両者を一致させられる。 Further, in the control device 1 of this example, a predetermined point is set as a point where a peak in the target waveform is provided, and the waveform correction unit 4 is based on the difference between the peak value at the point of the target waveform and the output value of the response waveform at the predetermined point. Since it is configured to obtain the corrected waveform, it is possible to accurately match the response waveform even in the peak portion where it is difficult to match the response waveform with the target waveform only by the feedback control.

なお、本例の制御装置1では、所定ポイントにて応答波形を目標波形に一致させられるので、所定ポイントを目標波形のピーク以外に設定してもよい。また、所定ポイントを目標波形の複数のポイントに設定すれば、制御装置1は、所定ポイントに選ばれたポイントにおいて応答波形を目標波形に一致させ得る。 In the control device 1 of this example, since the response waveform can be matched with the target waveform at a predetermined point, the predetermined point may be set to a value other than the peak of the target waveform. Further, if the predetermined points are set to a plurality of points of the target waveform, the control device 1 can match the response waveform with the target waveform at the points selected as the predetermined points.

さらに、本例の制御装置1では、波形修正部4が目標波形の所定ポイントにおけるピーク値と所定ポイントにおける応答波形の出力値との差分に基づいて修正値を求め、修正値を目標波形の所定ポイントの値に順次加算して修正波形を求める。このように制御装置1が修正波形を求めると、差分に応じて目標波形が修正されるので、制御装置1が制御対象である圧力試験機Aを制御するたびに所定ポイントにおいて応答波形が目標波形に一致するように修正されて応答波形の所定ポイントにおける目標波形への一致も早い。なお、波形修正部4における目標波形の修正は、修正値によるもの以外に、差分に応じてゲインを決定して目標波形における所定ポイントの値に前記ゲインを乗じて当該値を修正して、修正波形を求める方法も採用できる。 Further, in the control device 1 of this example, the waveform correction unit 4 obtains a correction value based on the difference between the peak value at a predetermined point of the target waveform and the output value of the response waveform at the predetermined point, and determines the correction value of the target waveform. The corrected waveform is obtained by sequentially adding to the point values. When the control device 1 obtains the correction waveform in this way, the target waveform is corrected according to the difference. Therefore, every time the control device 1 controls the pressure tester A to be controlled, the response waveform becomes the target waveform at a predetermined point. It is corrected so that it matches the target waveform at a predetermined point of the response waveform, and the match with the target waveform is quick. In addition to the correction value, the correction of the target waveform in the waveform correction unit 4 is performed by determining the gain according to the difference, multiplying the value of the predetermined point in the target waveform by the gain, and correcting the value. A method of obtaining a waveform can also be adopted.

また、本例の制御装置1では、入力される波形に基づいて圧力試験機(制御対象)Aを制御する制御部3と、目標波形と圧力試験機(制御対象)Aが今回出力した応答波形との差分と、目標波形の最大ピーク値と圧力試験機(制御対象)Aが今回出力した応答波形の最大ピーク値の差に基づいて、修正波形を補正して制御部3へ入力する入力波形を求める誤差補正部5を備えている。このように構成された制御装置1では、目標波形を修正した修正波形を補正して制御部3へ入力する入力波形とするので、所定ポイントにおける目標波形に対する応答波形の一致度を高めつつ、制御回数に伴って応答波形を目標波形に近づける誤差補正も同時に行える。よって、この制御装置1によれば、応答波形の全体が目標波形に追従し、かつ、応答波形が目標波形に追従するまでの時間も極めて短くて済む。 Further, in the control device 1 of this example, the control unit 3 that controls the pressure tester (control target) A based on the input waveform, the target waveform, and the response waveform output this time by the pressure tester (control target) A. The correction waveform is corrected and input to the control unit 3 based on the difference between It is provided with an error correction unit 5 for obtaining the above. In the control device 1 configured in this way, since the corrected waveform obtained by correcting the target waveform is corrected and used as the input waveform to be input to the control unit 3, control is performed while increasing the degree of matching of the response waveform with the target waveform at a predetermined point. Error correction that brings the response waveform closer to the target waveform with the number of times can be performed at the same time. Therefore, according to the control device 1, the time until the entire response waveform follows the target waveform and the response waveform follows the target waveform can be extremely short.

さらに、本例の制御装置1では、目標波形の最大ピーク値と圧力試験機(制御対象)Aが初回に出力した応答波形の最大ピーク値の差である初回ピーク差で、目標波形の最大ピーク値と圧力試験機(制御対象)Aが今回出力した応答波形の最大ピーク値の差である今回ピーク差を割った値をピーク値比とし、目標波形と目標波形に対して圧力試験機(制御対象)Aが今回出力した応答波形との差分にピーク値比を乗じて補正値を求め、修正波形に補正値を順次加算して入力波形を求めるようになっている。 Further, in the control device 1 of this example, the maximum peak of the target waveform is the difference between the maximum peak value of the target waveform and the maximum peak value of the response waveform output by the pressure tester (controlled object) A for the first time. The peak value ratio is the value obtained by dividing the current peak difference, which is the difference between the value and the maximum peak value of the response waveform output by the pressure tester (control target) A, and the pressure tester (control) with respect to the target waveform and the target waveform. Target) The correction value is obtained by multiplying the difference from the response waveform output by A by the peak value ratio, and the correction value is sequentially added to the correction waveform to obtain the input waveform.

ここで、差分εにピーク値比αを乗じずに、差分εに補正係数Kのみを乗じて補正値を求めると、入力波形は、差分εが0にならなければ、制御回数が増えれば増えるほど、振幅が大きくなる。そのため、何回目かの制御において、応答波形が目標波形に一致するような入力波形が得られても、それ以降の制御で入力波形の振幅が大きくなるように補正されてしまい、応答波形が目標波形を大きくオーバーシュートしてしまう。これに対して、本例では誤差補正部5は、入力波形と応答波形の差分εにピーク値比αを乗じて補正値を求めている。ピーク値比αは、今回のピーク差δnowを初回のピーク差δiniで割った値であるので、応答波形のピーク値が目標波形のピーク値に近づけば近づくほどピーク値比αの値は小さくなっていく。よって、このように補正値を求めると、応答波形が目標波形に近づくと前回の入力波形に対して次回の入力波形は振幅の増幅度合は小さくなる。これにより、応答波形が目標波形に近づく際に目標波形を大きくオーバーシュートするのが防止され、目標波形によく追従するようになる。また、補正値は、目標波形と応答波形の差分ではなく、目標波形より振幅が大きくなる入力波形と応答波形との差分εに基づいて求められるので、目標波形と応答波形の差分を利用するよりも、応答波形が目標波形に追従するまでの時間を短縮できる。なお、補正値を求めるのに際して、差分εに補正係数Kを乗じているが、この補正係数Kは、一回の制御で応答波形が目標波形に近づく量を調整する調整要素であり、値は、任意に設定でき、不要であれば省略できる。 Here, if the correction value is obtained by multiplying the difference ε by only the correction coefficient KH without multiplying the difference ε by the peak value ratio α, the input waveform will be controlled if the number of controls increases unless the difference ε becomes 0. The larger the number, the larger the amplitude. Therefore, even if an input waveform whose response waveform matches the target waveform is obtained in the control several times, it is corrected so that the amplitude of the input waveform becomes large in the subsequent control, and the response waveform is the target. It overshoots the waveform significantly. On the other hand, in this example, the error correction unit 5 obtains the correction value by multiplying the difference ε between the input waveform and the response waveform by the peak value ratio α. Since the peak value ratio α is the value obtained by dividing the current peak difference δnow by the initial peak difference δini, the value of the peak value ratio α becomes smaller as the peak value of the response waveform approaches the peak value of the target waveform. To go. Therefore, when the correction value is obtained in this way, when the response waveform approaches the target waveform, the degree of amplitude amplification of the next input waveform becomes smaller than that of the previous input waveform. As a result, when the response waveform approaches the target waveform, it is prevented from overshooting the target waveform significantly, and the target waveform is well followed. Further, since the correction value is obtained based on the difference ε between the input waveform and the response waveform whose amplitude is larger than the target waveform, not the difference between the target waveform and the response waveform, it is better to use the difference between the target waveform and the response waveform. However, the time required for the response waveform to follow the target waveform can be shortened. When obtaining the correction value, the difference ε is multiplied by the correction coefficient KH . This correction coefficient KH is an adjustment element for adjusting the amount of the response waveform approaching the target waveform by one control. The value can be set arbitrarily and can be omitted if unnecessary.

以上より、本例の制御装置1では、応答波形が目標波形に近づく際に目標波形を大きくオーバーシュートするのが防止されて、目標波形によく追従するようになり、応答波形が目標波形に一致するか充分に近づくと、補正値が非常に小さくなるので、入力波形の補正を自動的に中止する効果が得られる。 From the above, in the control device 1 of this example, when the response waveform approaches the target waveform, it is prevented from overshooting the target waveform significantly, and the target waveform is well followed, and the response waveform matches the target waveform. When it is done or is sufficiently close, the correction value becomes very small, so that the effect of automatically stopping the correction of the input waveform can be obtained.

なお、補正値をピーク値比αを利用せず、差分εに補正係数Kを乗じるのみで求める場合、目標波形のピーク値と応答波形のピーク値の差に閾値βを設定しておき、目標波形のピーク値と応答波形のピーク値の差の絶対値が閾値β以下となると入力波形の補正を行わないようにするか、補正値を0とするようにしてもよい。閾値βは、応答波形が目標波形に充分追従すると認められる範囲を設定するものであり、任意に設定できる。本例では、ピーク値比αを利用して補正値を求めるので、応答波形が目標波形に一致するか充分に近づくと、補正値が非常に小さくなる。しかしながら、数百万回のオーダー(桁数)で繰り返し試験を行うような場合には、補正値が充分小さくなっても補正値が加算されて入力波形が発散し、制御上発振する可能性がある。よって、ピーク値比αを利用して補正値を求める場合にも、閾値βと目標波形のピーク値と応答波形のピーク値の差の比較判断を行うのが望ましい。 When the correction value is obtained only by multiplying the difference ε by the correction coefficient KH without using the peak value ratio α, a threshold value β is set for the difference between the peak value of the target waveform and the peak value of the response waveform. When the absolute value of the difference between the peak value of the target waveform and the peak value of the response waveform is equal to or less than the threshold value β, the input waveform may not be corrected or the correction value may be set to 0. The threshold value β sets a range in which the response waveform is recognized to sufficiently follow the target waveform, and can be set arbitrarily. In this example, since the correction value is obtained using the peak value ratio α, the correction value becomes very small when the response waveform matches or sufficiently approaches the target waveform. However, when repeated tests are performed on the order of millions of times (number of digits), even if the correction value becomes sufficiently small, the correction value is added and the input waveform may diverge and oscillate in control. be. Therefore, even when the correction value is obtained using the peak value ratio α, it is desirable to compare and judge the difference between the threshold value β, the peak value of the target waveform, and the peak value of the response waveform.

また、本例の制御装置1は、目標波形に対して補正対象区間を設定し、補正対象区間外では、前記補正を行わないので、補正値を記憶する記憶部54における記憶容量が小さくて済むので、制御装置1のコストを低減できる。 Further, since the control device 1 of this example sets the correction target section for the target waveform and does not perform the correction outside the correction target section, the storage capacity in the storage unit 54 for storing the correction value can be small. Therefore, the cost of the control device 1 can be reduced.

以上より、制御装置1は、繰り返し同一波形の出力が要求されるとともに、圧力媒体や試験体Tの弾性の影響で応答波形が目標波形に一致しづらい圧力試験機Aの制御に最適となる。 From the above, the control device 1 is optimal for controlling the pressure tester A in which the output of the same waveform is repeatedly required and the response waveform is difficult to match the target waveform due to the influence of the elasticity of the pressure medium and the test body T.

以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されない。 This concludes the description of the embodiments of the present invention, but the scope of the present invention is not limited to the details themselves shown or described.

1・・・制御装置、3・・・制御部、4・・・波形修正部、5・・・誤差補正部、A・・・圧力試験機 1 ... Control device, 3 ... Control unit, 4 ... Waveform correction unit, 5 ... Error correction unit, A ... Pressure tester

Claims (3)

目標波形に基づいて制御対象に繰り返し応答波形を出力させる制御装置であって、
前記目標波形と前記制御対象が出力する前記応答波形のうち予め決められた所定ポイントにおける差分に基づいて、前記目標波形を修正して修正波形を求める波形修正部と、前記修正波形を補正して入力波形を求める誤差補正部と、前記入力波形に基づいて前記制御対象を制御する制御部とを備え、
前記所定ポイントは、前記目標波形のピークが設けられるポイントであって、
前記波形修正部は、前記目標波形の前記所定ポイントにおけるピーク値と前記所定ポイントにおける前記応答波形の出力値との差分に基づいて修正値を求めるとともに、前記修正値を前記目標波形の前記所定ポイントの値に順次加算して前記修正波形を求め、
前記誤差補正部は、前記目標波形と前回制御時に前記制御対象が出力した応答波形との差分に基づいて、前記修正波形を補正して前記制御部へ次回制御時に入力する入力波形を求める
ことを特徴とする制御装置。
A control device that repeatedly outputs a response waveform to a controlled object based on a target waveform.
Based on the difference between the target waveform and the response waveform output by the control target at a predetermined predetermined point, the waveform correction unit that corrects the target waveform to obtain the correction waveform and the correction waveform are corrected. It is provided with an error correction unit for obtaining an input waveform and a control unit for controlling the control target based on the input waveform.
The predetermined point is a point at which the peak of the target waveform is provided.
The waveform correction unit obtains a correction value based on the difference between the peak value of the target waveform at the predetermined point and the output value of the response waveform at the predetermined point, and obtains the correction value at the predetermined point of the target waveform. The corrected waveform is obtained by sequentially adding to the value of
The error correction unit corrects the correction waveform based on the difference between the target waveform and the response waveform output by the control target at the time of the previous control, and obtains an input waveform to be input to the control unit at the next control.
A control device characterized by that.
記誤差補正部は、前記目標波形と前回制御時に前記制御対象が出力した応答波形との差分と、前記目標波形の最大ピーク値と前記制御対象が前回制御時に出力した応答波形の最大ピーク値の差に基づいて、前記修正波形を補正して前記制御部へ次回制御時に入力する入力波形を求める
ことを特徴とする請求項1に記載の制御装置。
The error correction unit includes the difference between the target waveform and the response waveform output by the control target during the previous control, the maximum peak value of the target waveform, and the maximum peak value of the response waveform output by the control target during the previous control . The control device according to claim 1, wherein the corrected waveform is corrected and an input waveform to be input to the control unit at the next control is obtained based on the difference between the two.
前記誤差補正部は、
前記目標波形の最大ピーク値と前記制御部に前記目標波形を入力した際に前記制御対象が出力した応答波形の最大ピーク値の差である初回ピーク差で、前記目標波形の最大ピーク値と前記制御部への入力波形の入力によって前記制御対象が出力した応答波形の最大ピーク値の差である今回ピーク差を割った値をピーク値比として算出し、
さらに、前記目標波形と前回制御時に前記制御対象が出力した応答波形との差分に前記ピーク値比を乗じて補正値を求め、前記修正波形に前記補正値を順次加算して前記制御部へ入力する入力波形を求める
ことを特徴とする請求項に記載の制御装置。
The error correction unit is
The initial peak difference, which is the difference between the maximum peak value of the target waveform and the maximum peak value of the response waveform output by the control target when the target waveform is input to the control unit, is the maximum peak value of the target waveform and the above. The peak value ratio is calculated by dividing the current peak difference, which is the difference between the maximum peak values of the response waveform output by the controlled object by the input of the input waveform to the control unit.
Further, the difference between the target waveform and the response waveform output by the control target at the time of the previous control is multiplied by the peak value ratio to obtain a correction value, and the correction value is sequentially added to the correction waveform and input to the control unit. The control device according to claim 1 , wherein the input waveform is obtained.
JP2017192721A 2017-10-02 2017-10-02 Control device Active JP7079078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017192721A JP7079078B2 (en) 2017-10-02 2017-10-02 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017192721A JP7079078B2 (en) 2017-10-02 2017-10-02 Control device

Publications (2)

Publication Number Publication Date
JP2019066344A JP2019066344A (en) 2019-04-25
JP7079078B2 true JP7079078B2 (en) 2022-06-01

Family

ID=66340582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017192721A Active JP7079078B2 (en) 2017-10-02 2017-10-02 Control device

Country Status (1)

Country Link
JP (1) JP7079078B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059536B2 (en) * 1991-08-13 2000-07-04 株式会社鷺宮製作所 Vibration control device for vibration testing machine
JPH07128207A (en) * 1993-10-29 1995-05-19 Shimadzu Corp Material testing machine
JP3399792B2 (en) * 1997-08-13 2003-04-21 日本たばこ産業株式会社 Fatigue testing machine

Also Published As

Publication number Publication date
JP2019066344A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6770359B2 (en) Control device
US6205863B1 (en) Material testing machine having a control system for feedback-controlling the operation of a servo system
US20070204607A1 (en) Hydraulic circuit of construction machine
TW201600735A (en) Method for fluid pressure control in a closed system
WO2015168074A1 (en) Method for flow control calibration of high-transient systems
JP7079078B2 (en) Control device
KR970707391A (en) Output calibration method of control device, control device and hydraulic pump control device (OUTPUT CORRECTING METHOD IN CONTROL SYSTEM, CONTROL SYSTEM, AND HYDRAULIC PUMP CONTROL SYSTEM)
KR20200008947A (en) Flow rate control apparatus, flow rate control method, and program recording medium having recorded therein program for flow rate control apparatus
JP2021506658A (en) Brake system with valve open time compensator and method of compensating valve open time
JPH09203700A (en) Material tester
US11085532B2 (en) Method for controlling a hydraulic system
JP7169156B2 (en) pressure tester
JP3368182B2 (en) Material testing machine
JP3399792B2 (en) Fatigue testing machine
JP6950489B2 (en) Fuel injection control device and fuel injection control system
KR20180067335A (en) Method for defining learning area of injector opening duration control
US20220073044A1 (en) Method and system for controlling the pneumatic pressure in a volume
JP5197221B2 (en) Fluid pressure actuator testing equipment
CN105987213A (en) Positioner
JP6248764B2 (en) Boiler system
JPS63263117A (en) Control method for active suspension device for automobile
US20220228896A1 (en) Pressure control system, pressure control method, and pressure control program
JP2020064539A (en) Control system
JP2020085648A (en) Tester control device
JP6193827B2 (en) Fuel supply device, combustor, gas turbine, and fuel supply method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220224

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220520

R151 Written notification of patent or utility model registration

Ref document number: 7079078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350