JP7078954B2 - Heat generator for liquid evaporation - Google Patents

Heat generator for liquid evaporation Download PDF

Info

Publication number
JP7078954B2
JP7078954B2 JP2018125660A JP2018125660A JP7078954B2 JP 7078954 B2 JP7078954 B2 JP 7078954B2 JP 2018125660 A JP2018125660 A JP 2018125660A JP 2018125660 A JP2018125660 A JP 2018125660A JP 7078954 B2 JP7078954 B2 JP 7078954B2
Authority
JP
Japan
Prior art keywords
heating element
radiator
heat generating
generating device
liquid evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018125660A
Other languages
Japanese (ja)
Other versions
JP2020000201A (en
Inventor
正樹 北澤
克人 矢古宇
諒 向山
重忠 野中
Original Assignee
株式会社赤羽電具製作所
大和電器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社赤羽電具製作所, 大和電器株式会社 filed Critical 株式会社赤羽電具製作所
Priority to JP2018125660A priority Critical patent/JP7078954B2/en
Publication of JP2020000201A publication Critical patent/JP2020000201A/en
Application granted granted Critical
Publication of JP7078954B2 publication Critical patent/JP7078954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catching Or Destruction (AREA)
  • Resistance Heating (AREA)

Description

本発明は、加熱蒸散装置の吸液芯等の被加熱物を加熱する液体蒸発用発熱装置に関する。 The present invention relates to a heat generating device for liquid evaporation that heats an object to be heated such as a liquid absorbing core of a heating and evaporating device.

従来におけるこの種の発熱装置としては、金属製の放熱体と、発熱素子(PTCサーミスタ素子、或いはセメント抵抗等)を用いた発熱ユニットと、放熱体と発熱ユニットとの間に絶縁板を備え、発熱ユニットを発熱させて、絶縁板を介して放熱体を加熱することにより、放熱部から放熱を行うものが知られている(特許文献1参照)。 Conventionally, this type of heat generating device includes a metal radiator, a heating unit using a heating element (PTC thermistor element, cement resistance, etc.), and an insulating plate between the radiator and the heating unit. It is known that heat is dissipated from a heat radiating portion by generating heat in a heat generating unit and heating a heat radiating body through an insulating plate (see Patent Document 1).

特許文献1の放熱体は、平面視でD字状となっている筒状体であり、平面部分が絶縁板を介して発熱ユニットで加熱されるようになっている。発熱ユニットは、扁平の円柱状に形成された発熱素子とその両面から電源を供給する一対の電極を有しており、発熱素子で発生した熱は、一方の電極を加熱し、当該電極と接触している絶縁板を加熱することにより、放熱体に伝えられる。 The heat radiating body of Patent Document 1 is a cylindrical body having a D-shape in a plan view, and the flat surface portion is heated by a heat generating unit via an insulating plate. The heat generation unit has a heat generation element formed in a flat columnar shape and a pair of electrodes for supplying power from both sides thereof, and the heat generated by the heat generation element heats one electrode and contacts the electrode. By heating the insulating plate, it is transmitted to the radiator.

このような構成では、発熱素子で発生した熱が、電極及び絶縁板を介して放熱体に伝えられるので、放熱体に伝えられるまでに熱量の損失が発生する。また、従来の発熱装置においては、平面視でD字状となっている放熱体の平面部分に熱が伝えられ、そこから円弧状に延びる部分まで熱が伝えられるため、平面部分と円弧状部分とでは温度分布にばらつきが生じる。 In such a configuration, the heat generated by the heat generating element is transferred to the radiator through the electrodes and the insulating plate, so that a loss of heat is generated before the heat is transferred to the radiator. Further, in the conventional heat generating device, heat is transferred to the flat portion of the radiator which is D-shaped in a plan view, and heat is transferred from there to the portion extending in an arc shape, so that the flat portion and the arc-shaped portion The temperature distribution varies with and.

さらに、最近では、家庭用の100ボルト電源ではなく、低電圧電源等の低い電圧で発熱装置を作動させたいというニーズが高くなっている。しかしながら、従来からこの種の発熱装置の熱源に用いられているPTCサーミスタ素子は、100ボルト電源でなければ必要な熱量は得られない。また、他の発熱素子の場合であっても、上記熱損失がある構成では、低電圧電源のような電源では要求される温度を達成できないおそれがある。 Further, recently, there is an increasing need to operate a heat generating device with a low voltage such as a low voltage power supply instead of a household 100 volt power supply. However, the PTC thermistor element conventionally used as a heat source for this type of heat generating device cannot obtain the required amount of heat unless it is a 100 volt power supply. Further, even in the case of other heat generating elements, in the configuration having the above heat loss, there is a possibility that the required temperature cannot be achieved by a power source such as a low voltage power source.

また、従来の構成では、要求温度に昇温することが可能であっても、上記熱損失を補うために発熱ユニットで発生させる熱量を大きくすることが必要であり、消費電力が大きくなるという不都合がある。 Further, in the conventional configuration, even if the temperature can be raised to the required temperature, it is necessary to increase the amount of heat generated by the heat generating unit in order to compensate for the heat loss, which is inconvenient in that the power consumption increases. There is.

特開2008-35797号公報Japanese Unexamined Patent Publication No. 2008-35797

本発明は、上記不都合を解消するために、少ない消費電力でも要求される温度に昇温することが可能であり、放熱部の温度分布も均一にすることができる液体蒸発用発熱装置を提供することを目的とする。 INDUSTRIAL APPLICABILITY In order to solve the above-mentioned inconvenience, the present invention provides a heat generating device for liquid evaporation, which can raise the temperature to a required temperature even with low power consumption and can make the temperature distribution of the heat radiating portion uniform. The purpose is.

上記目的を達成するために、本発明の液体蒸発用発熱装置は、筒状の放熱体と、前記放熱体の軸方向の離れた位置に取り付けられる一対の電極と、一対の前記電極に接続され、前記放熱体の外面に密着する発熱体とを備えていることを特徴とする。 In order to achieve the above object, the heat generating device for liquid evaporation of the present invention is connected to a cylindrical radiator, a pair of electrodes attached at positions apart from each other in the axial direction of the radiator, and a pair of electrodes. It is characterized by having a heating element that is in close contact with the outer surface of the radiator.

本発明の液体蒸発用発熱装置によれば、筒状の放熱体の外面に発熱体が密着して設けられているため、放熱体に発熱体からの発熱が直接伝達されるので、熱量の損失が少なく、少ない消費電力でも要求される温度に昇温することが可能となる。また、発熱体を放熱体に直接密着させるものであるため、従来のように絶縁体を介して発熱体を組み付けるものに比べて装置を小型化することができる。 According to the heat generating device for liquid evaporation of the present invention, since the heating element is provided in close contact with the outer surface of the tubular radiating element, the heat generated from the heating element is directly transmitted to the radiating element, so that the amount of heat is lost. It is possible to raise the temperature to the required temperature even with a small amount of power consumption. Further, since the heating element is directly brought into close contact with the radiator, the device can be downsized as compared with the conventional device in which the heating element is assembled via an insulator.

また、本発明の液体蒸発用発熱装置において、前記放熱体は円筒状であり、前記発熱体は、前記放熱体の外周面に沿って螺旋状に密着していることが好ましい。当該構成によれば、円筒状の放熱体が螺旋状に密着した発熱体によって加熱されるので、従来のように放熱体の一部が加熱される場合に比べて、放熱体全体を均一に加熱することができる。 Further, in the heat generating device for liquid evaporation of the present invention, it is preferable that the heating element is cylindrical and the heating element is spirally adhered along the outer peripheral surface of the radiator. According to this configuration, since the cylindrical radiator is heated by the heating element that is in close contact with the spiral, the entire radiator is heated uniformly as compared with the case where a part of the radiator is heated as in the conventional case. can do.

また、本発明の液体蒸発用発熱装置において、前記発熱体は、前記放熱体の軸方向における密度が粗となる部分と密となる部分が設けられていてもよい。当該構成によれば、放熱体の軸方向の温度分布を変更させることができるため、使用目的ごとに最適な放熱体の温度分布を実現させることができる。 Further, in the heat generating device for liquid evaporation of the present invention, the heating element may be provided with a portion where the density in the axial direction of the radiator becomes coarse and a portion where the density becomes dense. According to this configuration, the temperature distribution in the axial direction of the radiator can be changed, so that the optimum temperature distribution of the radiator can be realized for each purpose of use.

また、本発明の液体蒸発用発熱装置において、前記電極は、筒状の前記放熱体の外面に当接する電極本体と、前記電極本体から前記放熱体の内方に突出し、前記放熱体の軸方向の端部に当接可能な内側鍔部を備えていることが好ましい。当該構成によれば、内側鍔部により一対の電極が放熱体に位置決めされるので、外部から衝撃が加わった場合であっても、電極の位置を確保することができる。 Further, in the heat generating device for liquid evaporation of the present invention, the electrodes have an electrode body that abuts on the outer surface of the cylindrical radiator body and projects from the electrode body toward the inside of the radiator body in the axial direction of the radiator body. It is preferable to have an inner flange portion that can come into contact with the end portion of the. According to this configuration, since the pair of electrodes is positioned on the radiator by the inner flange portion, the positions of the electrodes can be secured even when an impact is applied from the outside.

また、本発明の液体蒸発用発熱装置において、前記発熱体が線状の抵抗体で形成されていてもよく、前記放熱体の外面に固着された皮膜抵抗体で形成されていてもよい。発熱体が線状の抵抗体で形成されている場合は、例えば螺旋形状の巻数を変更することにより、容易に発熱量を調節することができる。また、発熱体が皮膜抵抗体で形成されている場合は、皮膜抵抗体を蒸着法やメッキ法などで形成することが可能であり、トリミングカット等により容易に発熱量を調節することができる。 Further, in the heat generating device for liquid evaporation of the present invention, the heating element may be formed of a linear resistor or may be formed of a film resistor fixed to the outer surface of the radiator. When the heating element is formed of a linear resistor, the heating amount can be easily adjusted by changing the number of turns of the spiral shape, for example. Further, when the heating element is formed of a film resistor, the film resistor can be formed by a vapor deposition method, a plating method, or the like, and the calorific value can be easily adjusted by trimming or the like.

第一の実施形態である液体蒸発用発熱装置の外観を示す説明図。The explanatory view which shows the appearance of the heat generating apparatus for liquid evaporation which is 1st Embodiment. 図1の液体蒸発用発熱装置の内部に設けられた発熱ユニットを示す説明図。It is explanatory drawing which shows the heat generation unit provided in the inside of the heat generation apparatus for liquid evaporation of FIG. 図2の発熱ユニットを分解した状態を示す説明図。Explanatory drawing which shows the state which disassembled the heat generation unit of FIG. 第二の実施形態の発熱ユニットを示す説明図。The explanatory view which shows the heat generation unit of the 2nd Embodiment. 第一の実施形態の発熱装置と従来品との液体の蒸発量を示すグラフ。The graph which shows the evaporation amount of the liquid between the heat generating apparatus of 1st Embodiment and a conventional product. 第一の実施形態の発熱装置と従来品の各時間における液体の蒸発量(g)が同等となるように実験した際の蒸発量を示すグラフ。The graph which shows the evaporation amount at the time of an experiment so that the evaporation amount (g) of the liquid at each time of the heat generating apparatus of 1st Embodiment and a conventional product becomes equivalent.

次に、図1乃至図6を参照して、本発明の実施形態である液体蒸発用発熱装置1(以下「発熱装置1」とする。)について説明する。図1に示すように、第一の実施形態の発熱装置1は、加熱蒸散装置の吸液芯(図示省略。以下同じ。)を内部に挿入可能な装置であり、図示しない加熱蒸散装置の内部に取り付けられている。 Next, the liquid evaporation heat generating device 1 (hereinafter referred to as “heating device 1”) according to the embodiment of the present invention will be described with reference to FIGS. 1 to 6. As shown in FIG. 1, the heat generating device 1 of the first embodiment is a device capable of inserting a liquid absorbing core (not shown; the same applies hereinafter) of the heated transpiration device into the inside of the heated transpiration device (not shown). It is attached to.

図1~図3に示すように、発熱装置1は、円筒状の放熱体2と、放熱体2の軸方向の両端部に設けられた略リング状の一対の電極3,4と、電極3及び4の間に接続された発熱体5と、電極3,4のそれぞれに接続された端子6,7と、これらの部材を覆うハウジング8とを備えている。発熱装置1において、図2に示すように、ハウジング8を除く放熱体2及び発熱体5等が発熱ユニット9である。 As shown in FIGS. 1 to 3, the heat generating device 1 includes a cylindrical radiator body 2, a pair of substantially ring-shaped electrodes 3 and 4 provided at both ends of the radiator body 2 in the axial direction, and electrodes 3. It is provided with a heating element 5 connected between the electrodes 3 and 4, terminals 6 and 7 connected to each of the electrodes 3 and 4, and a housing 8 for covering these members. In the heating device 1, as shown in FIG. 2, the heating element 2 and the heating element 5 and the like excluding the housing 8 are the heating units 9.

発熱ユニット9において、放熱体2は、アルミナ等の絶縁物で熱伝導性が高い素材を用いる。放熱体2の内径は、被加熱物である吸液芯の外径よりも一回りほど大径に形成されている。放熱体2の厚さは、熱伝導性と強度を勘案して決められている。なお、図1~図4において符号Aで示す方向は、放熱体2の軸方向を示している。 In the heat generating unit 9, the radiator 2 is made of an insulating material such as alumina and has high thermal conductivity. The inner diameter of the radiator 2 is formed to be one size larger than the outer diameter of the liquid absorbing core which is the object to be heated. The thickness of the radiator 2 is determined in consideration of thermal conductivity and strength. The direction indicated by reference numeral A in FIGS. 1 to 4 indicates the axial direction of the radiator 2.

電極3,4は、ステンレス等の導電性の素材により形成されている。第一の実施形態では、筒状の電極本体3a,4aと、放熱体2の内方に突出して軸方向の端面に当接可能な内側鍔部3b,4bを備えている。電極3,4は、この内側鍔部3b,4bにより放熱体2の軸方向の端部に当接し、放熱体2に対して位置決めされている。端子6,7は、電極本体3a,4aの外周面に取り付けられている。 The electrodes 3 and 4 are made of a conductive material such as stainless steel. In the first embodiment, a cylindrical electrode body 3a, 4a and inner flange portions 3b, 4b that project inward of the radiator 2 and can abut on the end face in the axial direction are provided. The electrodes 3 and 4 are in contact with the axial end portion of the radiator body 2 by the inner flange portions 3b and 4b, and are positioned with respect to the radiator body 2. The terminals 6 and 7 are attached to the outer peripheral surfaces of the electrode bodies 3a and 4a.

発熱体5は、第一の実施形態ではニクロム線を用いており、図2に示すように、放熱体2の外面に密着するように、放熱体2の外面に沿って螺旋状に形成されている。また、発熱体5は、図2に示すように、放熱体2の軸方向の下方領域で密に巻回されており、上方領域では粗に巻回されている。 The heating element 5 uses a nichrome wire in the first embodiment, and is spirally formed along the outer surface of the heat radiating body 2 so as to be in close contact with the outer surface of the heat radiating body 2 as shown in FIG. There is. Further, as shown in FIG. 2, the heating element 5 is densely wound in the lower region of the radiator 2 in the axial direction, and is roughly wound in the upper region.

このように、第一の実施形態では、発熱体5は放熱体2の軸方向における密度が異なる領域が設けられている。また、発熱体5の上方の端部5aは電極3に接続され、下方の端部5bは電極4に接続される(図3参照)。 As described above, in the first embodiment, the heating element 5 is provided with regions having different densities in the axial direction of the heating element 2. Further, the upper end 5a of the heating element 5 is connected to the electrode 3, and the lower end 5b is connected to the electrode 4 (see FIG. 3).

端子6,7は、同一形状に形成された金属製の部材を上下に反転させて用いている。端子6,7は、それぞれ弾性を有しており、電極3,4に押し付けられる形で接続されている。この端子6,7の電極3,4と反対側の端部は、ハウジング8から突出しており、加熱蒸散装置の電源供給配線(図示省略)が接続される。 The terminals 6 and 7 are used by inverting a metal member formed in the same shape upside down. The terminals 6 and 7 have elasticity, respectively, and are connected so as to be pressed against the electrodes 3 and 4. The ends of the terminals 6 and 7 opposite to the electrodes 3 and 4 project from the housing 8 and are connected to the power supply wiring (not shown) of the heating transpiration device.

ハウジング8は、合成樹脂により形成され、上下に分割可能に形成されている。このハウジング8は、上下に分割した状態で、発熱ユニット9を内部に収納し、分割した部品を組み合わせることで形成されている。また、ハウジング8には、突出した端子6,7の下方に位置しており、加熱蒸散装置の本体(図示省略)に固定するための固定部8aが形成されている。 The housing 8 is made of synthetic resin and can be divided into upper and lower parts. The housing 8 is formed by accommodating a heat generating unit 9 inside in a state of being divided into upper and lower parts and combining the divided parts. Further, the housing 8 is located below the protruding terminals 6 and 7, and is formed with a fixing portion 8a for fixing to the main body (not shown) of the heating transpiration device.

第一の実施形態の発熱装置1は、円筒状の放熱体2に、ニクロム線で形成された発熱体5が螺旋状に巻回され、発熱体5が放熱体2の外周面に密着している。放熱体2はアルミナにより形成されており、アルミナは熱伝導率が高いので、発熱体5によって発生した熱が放熱体2に直接伝わり、放熱体2の内周面が効率よく昇温される。従って、端子6,7に供給される電源が、例えば5ボルト程度の低電圧電源から供給される電源であっても、放熱体2を必要な温度にまで昇温させることができる。 In the heating element 1 of the first embodiment, a heating element 5 formed of a nichrome wire is spirally wound around a cylindrical heating element 2, and the heating element 5 is in close contact with the outer peripheral surface of the heating element 2. There is. Since the heat radiating body 2 is formed of alumina and has a high thermal conductivity, the heat generated by the heating element 5 is directly transferred to the heat radiating body 2, and the inner peripheral surface of the heat radiating body 2 is efficiently heated. Therefore, even if the power supply supplied to the terminals 6 and 7 is a power supply supplied from a low voltage power supply of, for example, about 5 volts, the radiator 2 can be raised to a required temperature.

第一の実施形態においては、発熱体5は放熱体2の外周面に螺旋状に巻回されているため、放熱体2の軸方向から見た状態で、放熱体2が均一に加熱される。これは、従来のように、放熱体の一部に熱が加えられる構成に比べて、被加熱体をムラなく加熱することができる。 In the first embodiment, since the heating element 5 is spirally wound around the outer peripheral surface of the heat radiating body 2, the heating element 2 is uniformly heated when viewed from the axial direction of the heat radiating body 2. .. This makes it possible to heat the heated body evenly as compared with the conventional configuration in which heat is applied to a part of the heat radiating body.

また、第一の実施形態では、発熱体5について、放熱体2の上方が粗となり、下方が密となるように巻回されている。このため、発熱体5の下方部分が高温となり、放熱体2の上方部分は下方部分よりも低温となる。 Further, in the first embodiment, the heating element 5 is wound so that the upper part of the heating element 2 becomes coarse and the lower part becomes dense. Therefore, the lower portion of the heating element 5 has a high temperature, and the upper portion of the radiator 2 has a lower temperature than the lower portion.

この場合、粗の部分と密の部分の差が大きいほど温度分布に差が生じる。一方で、その部分と密の部分の差が小さいほど温度分布が均一な状態となる。従って、発熱装置1の使用目的に応じて、発熱体5の温度分布を均一なものとしてもよく、差があるものとしてもよい。 In this case, the larger the difference between the coarse portion and the dense portion, the larger the difference in temperature distribution. On the other hand, the smaller the difference between the part and the dense part, the more uniform the temperature distribution becomes. Therefore, depending on the purpose of use of the heating device 1, the temperature distribution of the heating element 5 may be uniform or different.

また、発熱体5は放熱体2に対して密着して設けられているが、発熱体5の外方(放熱体2とは反対側)は、ハウジング8との間に間隔が設けられている。このハウジング8の内周面と発熱体5との間には空気層が存在するため、発熱体5からの発熱は、ハウジング8側には伝わりにくくなっている。 Further, the heating element 5 is provided in close contact with the heating element 2, but the outside of the heating element 5 (the side opposite to the heating element 2) is provided with a space between the heating element 5 and the housing 8. .. Since an air layer exists between the inner peripheral surface of the housing 8 and the heating element 5, the heat generated from the heating element 5 is less likely to be transmitted to the housing 8 side.

ここで、第一の実施形態の発熱装置1、及び特許文献1に記載の構成を有する従来の発熱装置(以下「従来品」)について、液体を蒸発させた際の蒸発量の比較を行った結果を次に示す。当該実験では、両発熱装置について発熱体5の温度が同じ温度となるように電源を調節した。また、液体が充填された容器から突出する吸液芯を、放熱体2及び従来品の放熱体の内部に配置した。 Here, the amount of evaporation when the liquid was evaporated was compared between the heat generating device 1 of the first embodiment and the conventional heat generating device having the configuration described in Patent Document 1 (hereinafter referred to as "conventional product"). The results are shown below. In this experiment, the power supply was adjusted so that the temperature of the heating element 5 was the same for both heating devices. Further, the liquid absorbing core protruding from the container filled with the liquid was arranged inside the radiator 2 and the conventional radiator.

発熱装置1は、5ボルト程度の電源を用いて、発熱体5を通常の商用電源を使用した従来品と同程度の温度に発熱させることができる。実際に、発熱装置1及び従来品を作動させて、円筒状の発熱体5及び従来品の発熱体の上端の中心部の温度を測定したところ、発熱装置1の方が従来品よりも温度が高いという結果を得た。 The heating device 1 can heat the heating element 5 to a temperature similar to that of a conventional product using a normal commercial power source by using a power source of about 5 volts. When the temperature of the cylindrical heating element 5 and the center of the upper end of the conventional heating element was actually measured by operating the heating device 1 and the conventional product, the temperature of the heating device 1 was higher than that of the conventional product. I got the result that it was high.

また、放熱体2及び発熱体5、及び従来品をサーモグラフィにて確認したところ、本実施形態の発熱装置1は、放熱体2及び発熱体5が円周方向に均一に熱せられているのに対し、従来品は、発熱ユニットに近い放熱体と、発熱ユニットから離れた部分の放熱体とは、大きく温度が異なっており、温度分布にばらつきがあることが確認された。 Further, when the heat radiating body 2, the heating body 5, and the conventional product were confirmed by thermography, in the heat generating device 1 of the present embodiment, the heat radiating body 2 and the heat generating body 5 were uniformly heated in the circumferential direction. On the other hand, in the conventional product, it was confirmed that the heat radiating body close to the heat generating unit and the radiating body away from the heat generating unit have significantly different temperatures, and the temperature distribution varies.

また、両者を同じ発熱温度となるように通電した状態で、容器内の液体の蒸発量を測定した結果を図5のグラフに示す。図5において、縦軸は液体の蒸発量(g)であり、横軸は時間(h)である。図5においては、黒い丸点が本実施形態の発熱装置1の蒸発量であり、黒い四角の点が従来品の蒸発量である。図5に示すように、本実施形態の発熱装置1は、従来品に比べて約1.8倍の量の液体を蒸発させることが可能であることが明らかとなった。 Further, the graph of FIG. 5 shows the result of measuring the evaporation amount of the liquid in the container in a state where both are energized so as to have the same heat generation temperature. In FIG. 5, the vertical axis is the evaporation amount (g) of the liquid, and the horizontal axis is the time (h). In FIG. 5, the black circle points are the evaporation amount of the heat generating device 1 of the present embodiment, and the black square points are the evaporation amount of the conventional product. As shown in FIG. 5, it has been clarified that the heat generating device 1 of the present embodiment can evaporate about 1.8 times as much liquid as the conventional product.

一方で、図6に示すように、各時間における液体の蒸発量(g)が同等となるように発熱装置1に供給される電力を低減させた。即ち、本実施形態の発熱装置1では、低い消費電力で従来品と同等の液体の蒸発量を得ることができる。これにより、発熱装置1自身が発する熱による劣化を低減させることができる。 On the other hand, as shown in FIG. 6, the electric power supplied to the heat generating device 1 is reduced so that the evaporation amount (g) of the liquid at each time becomes the same. That is, in the heat generating device 1 of the present embodiment, the evaporation amount of the liquid equivalent to that of the conventional product can be obtained with low power consumption. As a result, deterioration due to heat generated by the heat generating device 1 itself can be reduced.

このように、本実施形態の発熱装置1は、低電圧電源で低い消費電力であっても、従来品と同等の温度にすることができるため、低い消費電力で従来品と同等の液体を蒸発させることができる。 As described above, since the heat generating device 1 of the present embodiment can have the same temperature as the conventional product even with a low power consumption and low power consumption, the liquid equivalent to the conventional product is evaporated with low power consumption. Can be made to.

このため、本実施形態の発熱装置1を加熱蒸散装置の発熱装置として用いた場合は、低電圧電源があるところであれば使用が可能となり、例えば、スマートフォン用のモバイルバッテリや、パーソナルコンピュータの電源端子等を用いることも可能となる。 Therefore, when the heat generating device 1 of the present embodiment is used as the heat generating device of the heating and evaporating device, it can be used wherever there is a low voltage power supply, for example, a mobile battery for a smartphone or a power supply terminal of a personal computer. Etc. can also be used.

次に、本発明の第二の実施形態である発熱装置11について、図4を参照して説明する。第二の実施形態である発熱装置11は、図4に示すように、発熱体12が第一の実施形態の発熱体5と異なっている。第二の実施形態の発熱装置11においては、その他の構成は上記第一の実施形態の発熱装置1と同様であるので、同一の構成には同一の符号を付して詳細な説明は省略する。また、図4においては、ハウジング8の図示を省略している。 Next, the heat generating device 11 according to the second embodiment of the present invention will be described with reference to FIG. As shown in FIG. 4, in the heating element 11 of the second embodiment, the heating element 12 is different from the heating element 5 of the first embodiment. In the heat generating device 11 of the second embodiment, other configurations are the same as those of the heat generating device 1 of the first embodiment, and therefore, the same components are designated by the same reference numerals and detailed description thereof will be omitted. .. Further, in FIG. 4, the housing 8 is not shown.

第二の実施形態の発熱体12は、皮膜状の皮膜抵抗体により形成されており、放熱体2の外周面に抵抗体の皮膜を生成し、その皮膜をトリミングすることにより螺旋状の発熱体12としている。 The heating element 12 of the second embodiment is formed of a film-shaped film resistor, and a film of the resistor is formed on the outer peripheral surface of the radiator 2, and the film is trimmed to form a spiral heating element. It is set to 12.

発熱体12は、素材は無電解めっきにより着膜したニッケル-リン合金皮膜やスパッタリングにより着膜したニクロム系皮膜を用いており、放熱体2の表面に厚さが1μmの状態で固着されている。また、発熱体12の上下端部は、電極3,4にそれぞれ接続されている。第二の実施形態の発熱装置11も、実験を行った結果、第一の実施形態の発熱装置1と同様の実験結果が得られた。 The heating element 12 uses a nickel-phosphorus alloy film formed by electroless plating or a nichrome-based film formed by sputtering, and is fixed to the surface of the radiator 2 in a state of 1 μm in thickness. .. Further, the upper and lower ends of the heating element 12 are connected to the electrodes 3 and 4, respectively. As a result of conducting an experiment on the heat generating device 11 of the second embodiment, the same experimental results as those of the heat generating device 1 of the first embodiment were obtained.

本実施形態の発熱装置1,11は、上記構成であるので、加熱蒸散装置に用いることができる他、芳香剤を発散させるアロマテラピー用の発熱装置、或いは、蒸散用薬剤を発散させる薬剤散布用発熱装置として用いることができる。 Since the heat generating devices 1 and 11 of the present embodiment have the above configuration, they can be used as a heat transpiration device, a heat generating device for aromatherapy that dissipates a fragrance, or a chemical spraying device that dissipates a transpiration agent. It can be used as a heat generating device.

なお、第一の実施形態の発熱装置1及び第二の実施形態の発熱装置11においては、発熱体5,12を螺旋状に形成しているが、発熱体5,12の形状はこれに限らず、任意の形状とすることができる。例えば、発熱体5,12を放熱体2の軸方向を振幅方向、放熱体2の周方向を波長の方向とする波形状にすることも可能である。 In the heating device 1 of the first embodiment and the heating device 11 of the second embodiment, the heating elements 5 and 12 are formed in a spiral shape, but the shapes of the heating elements 5 and 12 are limited to this. It can be any shape. For example, the heating elements 5 and 12 may have a wave shape in which the axial direction of the heating element 2 is the amplitude direction and the circumferential direction of the heating element 2 is the wavelength direction.

また、第一の実施形態においては、線状の発熱体5の材質や外径、或いは断面形状を任意に変更することにより、発熱量の調節を行うことができる。また、第二の実施形態の発熱体12の場合、放熱体2の表面全体に抵抗体を固着して不要な部分をエッチングすることにより発熱体12とすることができる。このため、発熱体12について、使用の用途に応じて幾何学形状等の任意の形状とすることができ、発熱量の調節を行うことができる。 Further, in the first embodiment, the amount of heat generated can be adjusted by arbitrarily changing the material, outer diameter, or cross-sectional shape of the linear heating element 5. Further, in the case of the heating element 12 of the second embodiment, the heating element 12 can be formed by fixing a resistor to the entire surface of the radiator 2 and etching an unnecessary portion. Therefore, the heating element 12 can have an arbitrary shape such as a geometric shape according to the intended use, and the amount of heat generated can be adjusted.

また、上記実施形態において、放熱体2はアルミナを素材として用いているが、その他、窒化アルミニウム等の絶縁性を有する熱伝導性の高い素材を用いてもよい。また、発熱体5,12と放熱体2との間が絶縁されていれば、放熱体2を絶縁体とする必要はない。 Further, in the above embodiment, the radiator 2 uses alumina as a material, but in addition, a material having high thermal conductivity such as aluminum nitride may be used. Further, if the heating elements 5 and 12 and the heat radiating body 2 are insulated from each other, it is not necessary to use the heating element 2 as an insulator.

また、上記実施形態においては、放熱体2は円筒状のものを用いているが、平面視が四角形の角筒状、或いは平面視が他の多角形の筒状の部材を用いてもよい。この場合、電極3は放熱体2の端部の形状に合わせた形状とすることができる。 Further, in the above embodiment, the radiator 2 has a cylindrical shape, but a square tubular member having a rectangular plan view or another polygonal tubular member having a plan view may be used. In this case, the electrode 3 can be shaped to match the shape of the end portion of the radiator body 2.

また、上記実施形態においては、電極3,4は、放熱体2の軸方向の端部に設けられているが、これに限らず、3b,4bを形成せずに、軸方向に扁平の筒状の電極とし、放熱体2の軸方向の任意の位置に固定してもよい。 Further, in the above embodiment, the electrodes 3 and 4 are provided at the axial end portion of the radiator body 2, but the present invention is not limited to this, and the cylinder is flat in the axial direction without forming 3b and 4b. The shape of the electrode may be used and fixed at an arbitrary position in the axial direction of the radiator 2.

1…発熱装置、1…液体蒸発用発熱装置、2…放熱体、3…電極、3a…電極本体、3b…内側鍔部、4…電極、4a…電極本体、4b…内側鍔部、5…発熱体、6…端子、6…発熱体、7…端子、8…ハウジング、8a…固定部、9…発熱ユニット、11…発熱装置、12…発熱体。



1 ... heat generating device, 1 ... heat generating device for liquid evaporation, 2 ... radiator, 3 ... electrode, 3a ... electrode body, 3b ... inner flange, 4 ... electrode, 4a ... electrode body, 4b ... inner flange, 5 ... Heat generator, 6 ... Terminal, 6 ... Heat generator, 7 ... Terminal, 8 ... Housing, 8a ... Fixed part, 9 ... Heat generation unit, 11 ... Heat generator, 12 ... Heat generator.



Claims (6)

筒状の放熱体と、
前記放熱体の軸方向の離れた位置に取り付けられる一対の電極と、
一対の前記電極に接続され、前記放熱体の外面に密着する発熱体とを備えていることを特徴とする液体蒸発用発熱装置。
With a tubular radiator
A pair of electrodes attached to the radiator at a distance in the axial direction,
A heating element for liquid evaporation, comprising a heating element connected to the pair of electrodes and in close contact with the outer surface of the radiator.
請求項1に記載の液体蒸発用発熱装置であって、
前記放熱体は円筒状であり、
前記発熱体は、前記放熱体の外周面に沿って螺旋状に密着していることを特徴とする液体蒸発用発熱装置。
The heat generating device for liquid evaporation according to claim 1.
The radiator is cylindrical and has a cylindrical shape.
The heating element is a heating element for liquid evaporation, characterized in that the heating element is spirally adhered along the outer peripheral surface of the radiator.
請求項1又は2に記載の液体蒸発用発熱装置であって、
前記発熱体は、前記放熱体の軸方向における密度が粗となる部分と密となる部分が設けられていることを特徴とする液体蒸発用発熱装置。
The heat generating device for liquid evaporation according to claim 1 or 2.
The heating element is a heat generating device for liquid evaporation, characterized in that a portion where the density in the axial direction of the radiator becomes coarse and a portion where the density becomes dense are provided.
請求項1~3のいずれか1項に記載の液体蒸発用発熱装置であって、
前記電極は、筒状の前記放熱体の外面に当接する電極本体と、前記電極本体から前記放熱体の内方に突出し、前記放熱体の軸方向の端部に当接可能な内側鍔部を備えていることを特徴とする液体蒸発用発熱装置。
The heat generating device for liquid evaporation according to any one of claims 1 to 3.
The electrode has an electrode body that abuts on the outer surface of the tubular body and an inner flange portion that protrudes inward from the electrode body and can abut on the axial end of the radiator. A heat generating device for liquid evaporation, which is characterized by being equipped.
請求項1~4のいずれか1項に記載の液体蒸発用発熱装置であって、
前記発熱体は、線状の抵抗体で形成されていることを特徴とする液体蒸発用発熱装置。
The heat generating device for liquid evaporation according to any one of claims 1 to 4.
The heating element is a heating element for liquid evaporation, characterized in that it is formed of a linear resistor.
請求項1~4のいずれか1項に記載の液体蒸発用発熱装置であって、
前記発熱体は、前記放熱体の外面に固着された皮膜抵抗体で形成されていることを特徴とする液体蒸発用発熱装置。
The heat generating device for liquid evaporation according to any one of claims 1 to 4.
The heating element is a heat generating device for liquid evaporation, characterized in that the heating element is formed of a film resistor fixed to the outer surface of the radiator.
JP2018125660A 2018-06-30 2018-06-30 Heat generator for liquid evaporation Active JP7078954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018125660A JP7078954B2 (en) 2018-06-30 2018-06-30 Heat generator for liquid evaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125660A JP7078954B2 (en) 2018-06-30 2018-06-30 Heat generator for liquid evaporation

Publications (2)

Publication Number Publication Date
JP2020000201A JP2020000201A (en) 2020-01-09
JP7078954B2 true JP7078954B2 (en) 2022-06-01

Family

ID=69098897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125660A Active JP7078954B2 (en) 2018-06-30 2018-06-30 Heat generator for liquid evaporation

Country Status (1)

Country Link
JP (1) JP7078954B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498534A (en) 2002-11-06 2004-05-26 株式会社大泉制作所 Heater for electrothermal evaporating disperser
JP2007151488A (en) 2005-12-07 2007-06-21 Oizumi Seisakusho:Kk Heater for liquid evaporator
JP2008035797A (en) 2006-08-08 2008-02-21 Oizumi Seisakusho:Kk Heat generation apparatus for liquid transpiration device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491085Y1 (en) * 1967-10-25 1974-01-11
JPS5718287U (en) * 1980-07-04 1982-01-30
JPS6220274A (en) * 1985-07-18 1987-01-28 興亜電工株式会社 Heating structural body
JPH02126587A (en) * 1988-11-04 1990-05-15 Mikihiro Goto Heater element and heater unit for fluid heating purpose and their manufacture
JPH10263066A (en) * 1997-03-25 1998-10-06 Sekisui Plastics Co Ltd Aroma generating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498534A (en) 2002-11-06 2004-05-26 株式会社大泉制作所 Heater for electrothermal evaporating disperser
JP2007151488A (en) 2005-12-07 2007-06-21 Oizumi Seisakusho:Kk Heater for liquid evaporator
JP2008035797A (en) 2006-08-08 2008-02-21 Oizumi Seisakusho:Kk Heat generation apparatus for liquid transpiration device

Also Published As

Publication number Publication date
JP2020000201A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US6571080B2 (en) Fusing roller assembly having working fluid and heater coil for quick heating and low power consumption for an electrophotographic image forming apparatus and method of making the same
US20070119844A1 (en) Ceramic hair care heating element
US8395092B2 (en) Moisture resistant layered sleeve heater and method of manufacturing thereof
KR20180113841A (en) Cylinder type heater for electronic cigarette
KR20190128213A (en) Sheath heater
US6665515B2 (en) Fusing device for electrophotographic image forming apparatus
JP7078954B2 (en) Heat generator for liquid evaporation
US10531521B2 (en) Specific heater circuit track pattern coated on a thin heater plate for high temperature uniformity
KR20230074560A (en) Heater tube with thermal and electrical insulation
KR20200001576U (en) Flexible heater for heating device
JP2871618B2 (en) Hot Pot Press
JP7312350B1 (en) Heating element structure and manufacturing method thereof
US6898390B2 (en) Power supply unit for a fusing roller of an electrophotographic image forming apparatus
US20180324901A1 (en) Electric heater with coil body
EP1220054B1 (en) Fusing roller assembly including a working fluid within a heat pipe roller for electrophotographic image forming apparatus
JP7189086B2 (en) Plasma generator parts
US5760377A (en) Heating element of electrical heater
JP2007157488A (en) Planar heating element
KR101252912B1 (en) Evaporator With Heater Inserted
US491322A (en) Electrically-heated gridiron
JPH10263066A (en) Aroma generating device
JP6511691B2 (en) Water tank heater
KR101971872B1 (en) Hair dryer
JP7170639B2 (en) heating device
JP2002329570A (en) Tubular heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R150 Certificate of patent or registration of utility model

Ref document number: 7078954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150