JP7077949B2 - 光パス設計装置および光パス設計方法 - Google Patents

光パス設計装置および光パス設計方法 Download PDF

Info

Publication number
JP7077949B2
JP7077949B2 JP2018541080A JP2018541080A JP7077949B2 JP 7077949 B2 JP7077949 B2 JP 7077949B2 JP 2018541080 A JP2018541080 A JP 2018541080A JP 2018541080 A JP2018541080 A JP 2018541080A JP 7077949 B2 JP7077949 B2 JP 7077949B2
Authority
JP
Japan
Prior art keywords
optical
optical path
path
candidates
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018541080A
Other languages
English (en)
Other versions
JPWO2018056285A1 (ja
Inventor
仁士 竹下
慎介 藤澤
章雄 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2018056285A1 publication Critical patent/JPWO2018056285A1/ja
Application granted granted Critical
Publication of JP7077949B2 publication Critical patent/JP7077949B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0271Impairment aware routing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Description

本発明は、光パス設計装置および光パス設計方法に関し、特に、波長分割多重方式による光通信ネットワークに用いられる光パス設計装置および光パス設計方法に関する。
モバイル端末の爆発的普及や高精細ビデオ配信サービスの急速な拡大などにより、コアネットワークにおける通信容量の拡大が求められている。この容量拡大の要求は、今後も継続する傾向にある。限られたコストで通信容量を継続的に拡大していくためには、ネットワークのリソースを効率的に運用することによって、ネットワーク利用効率を上げることが効果的である。
特に、扱う情報容量が非常に大きい光通信ネットワークにおいては、通信リソースである光周波数帯域を効率よく使用することが重要である。光通信ネットワークにおいて光周波数帯域を利用する場合、光信号伝送における様々な物理法則による制約に起因する光信号の品質劣化を考慮する必要がある。この場合の物理制約には、例えば、波長多重光信号伝送における隣接波長チャネル間のクロストーク、光ファイバ損失や光増幅器によって付加される光雑音に起因する光S/N(Signal/Noise)比の劣化などがある。さらに、複数の光バンドパスフィルタ(Band Pass Filter:BPF)を通過することに起因する通過帯域狭窄効果も上述した物理的制約になる。
光通信ネットワークにおいては、通信元から通信先に至る光信号の伝送距離、すなわち光パス長が短いほど、このような物理的制約の影響が小さいため良好な通信が可能になる。従って、通信元から通信先に至る経路に複数の選択肢がある場合、最短経路が選択される。この最短経路の探索には、ダイクストラ法が用いられることが多い。そして、選択された最短経路上で光周波数帯域の割当てが行われる。
一方、フレキシブルグリッドを利用する光通信ネットワーク(フレキシブル光ネットワーク)は、通信容量が同じ場合であっても、伝送距離に応じて所要の光周波数帯域を増減させることにより光周波数利用効率を向上させることができる。この点が従来から用いられている固定グリッドに比べて優れた特徴である。この所要光周波数帯域は、伝送距離が長くなるほど広い帯域が必要になるので、伝送距離が短いほど光周波数利用効率の点で有利となる。
このようなフレキシブル光ネットワークにおいて、可変幅の周波数を割り当てる周波数・経路決定装置の一例が特許文献1に記載されている。特許文献1の経路・周波数決定装置は、リソース情報DB、共通空き周波数情報生成部、周波数状態評価部、周波数・経路決定部、および通信路需要分布DBからなる。
共通空き周波数情報生成部は、計算対象とする複数ファイバのリソース情報をリソース情報DBから取得し、取得したファイバの共通の空き周波数情報を生成する。周波数状態評価部は、空き周波数情報について、空き周波数の連続性および想定される通信路設定要求の通信路の分布を加味して評価値を与える。
周波数・経路決定部は、候補経路および割り当て候補となる周波数を算出する。そして、候補となっている各経路および割り当て周波数の組み合わせについて、複数候補から決定候補を算出するためのメトリックを、周波数状態評価部によって与えられた評価値に基いて算出する。周波数・経路決定部は、算出したメトリックに基づいて最適な経路・割り当て周波数を算出する。
このような構成としたことにより、フレキシブル光ネットワークにおけるフラグメンテーションの発生を効果的に抑制し、周波数リソースの利用効率を最適化することができる、としている。
国際公開第2012/057095号
光通信ネットワークにおける光パス設計では、通信リソースが一定である条件の下で、いかに多くの光パスを探索できるかが重要となる。所望の通信要求に対する光パスの探索に失敗した場合、その光パスを開通させるためには、光ファイバやトランスポンダ等の通信リソースを増設する必要がある。しかしながら、通信リソースの増設には追加費用が伴うため望ましくない。そのため、通信リソースを増設することなく、多くの光パスの探索に成功する光パス設計を行うことが重要となる。すなわち、探索に成功する光パスの数が多いほど光パスの収容効率が増大するので、光通信ネットワークを効率よく利用することが可能になる。
上述したように特許文献1には、フラグメンテーション、すなわち光周波数スロットの断片化の発生を効果的に抑制し、 光周波数リソースの利用効率を最大化することが可能な経路・周波数決定装置が開示されている。しかし、光周波数スロットの断片化の発生を抑制すると、特定の光ファイバに光周波数スロットの使用が集中することになり、特定の光ファイバを通る光パスの設定が困難になる。その結果、光パスの収容効率が低下し、光通信ネットワークの効率的な利用が妨げられることになる。
このように、波長分割多重方式を用いた光通信ネットワークにおいては、特定の光ファイバに光周波数スロットの使用が集中すると光パスの収容効率が低下し、光通信ネットワークの効率的な利用が困難になる、という問題があった。
本発明の目的は、上述した課題である、波長分割多重方式を用いた光通信ネットワークにおいては、特定の光ファイバに光周波数スロットの使用が集中すると光パスの収容効率が低下し、光通信ネットワークの効率的な利用が困難になる、という課題を解決する光パス設計装置および光パス設計方法を提供することにある。
本発明の光パス設計装置は、通信要求を収容する光パスの経路を探索し、複数の経路候補を選定する経路候補選定手段と、複数の経路候補上の光ファイバに、光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定する光パス候補選定手段と、複数の光パス候補の中から、光ファイバにおける光周波数帯域利用率に基いて、光パスを決定する光パス決定手段、とを有する。
本発明の光パス設計方法は、通信要求を収容する光パスの経路を探索して、複数の経路候補を選定し、複数の経路候補上の光ファイバに、光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定し、複数の光パス候補の中から、光ファイバにおける光周波数帯域利用率に基いて、光パスを決定する。
本発明の光パス設計装置および光パス設計方法によれば、波長分割多重方式を用いた光通信ネットワークにおいて、光パスの収容効率を増大させることができ、光通信ネットワークの効率的な利用を図ることが可能になる。
本発明の第1の実施形態に係る光パス設計装置の構成を示すブロック図である。 本発明の第1の実施形態に係る光パス設計装置の動作を説明するための、光通信ネットワークの構成を模式的に示す図である。 本発明の第1の実施形態に係る光通信ネットワークにおける光信号の到達可能性を示す図である。 本発明の第1の実施形態に係る光通信ネットワークにおける、各光ファイバの光周波数スロットの利用状況を示す図である。 関連する方式に基づいて、新規デマンドを収容する光パスを探索した場合における、光ファイバの光周波数スロットの利用状況を示す図である。 本発明の第1の実施形態に係る光パス設計装置の動作を説明するためのフローチャートである。 本発明の第1の実施形態に係る光パス設計装置が新規光パスを設定した場合における、光周波数スロットの利用状況を示す図である。 本発明の第1の実施形態に係る光ノード装置の構成を示すブロック図である。 本発明の第2の実施形態に係る光パス設計装置の動作を説明するためのフローチャートである。 本発明の第2の実施形態に係る光パス設計装置の動作を説明するための、光パスの探索状況を示す図である。 本発明の第2の実施形態に係る光パス設計装置が探索した新規光パスに対応する光ファイバにおける、光周波数スロットの利用状況を示す図である。 本発明の第2の実施形態に係る光パス設計装置が探索した新規光パスに対応する光ファイバにおける、光周波数スロットの利用状況を示す図である。 本発明の第3の実施形態に係る光パス設計装置の構成を示すブロック図である。 本発明の第3の実施形態に係る光パス設計装置の動作を説明するためのフローチャートである。
以下に、図面を参照しながら、本発明の実施形態について説明する。
〔第1の実施形態〕
図1は、本発明の第1の実施形態に係る光パス設計装置100の構成を示すブロック図である。
光パス設計装置100は、経路候補選定部(経路候補選定手段)110、光パス候補選定部(光パス候補選定手段)120、および光パス決定部(光パス決定手段)130を有する。
経路候補選定部110は、通信要求を収容する光パスの経路を探索し、複数の経路候補を選定する。光パス候補選定部120は、この複数の経路候補上の光ファイバに、光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定する。そして、光パス決定部130は、複数の光パス候補の中から、光ファイバにおける光周波数帯域利用率に基いて、通信要求を収容する光パスを決定する。
このように、本実施形態による光パス設計装置100においては、経路が異なる複数の光パス候補の中から、経路上の光ファイバにおける光周波数帯域利用率に基いて、光パスを決定する構成としている。そのため、未使用の光周波数帯域が存在しない経路が選択されてしまうことによる、光パスの収容効率の低下を防止することができる。その結果、本実施形態の光パス設計装置100によれば、波長分割多重方式を用いた光通信ネットワークにおいて、光パスの収容効率を増大させることができ、光通信ネットワークの効率的な利用を図ることが可能になる。
ここで、経路候補選定部110は、経路上の光ファイバを用いた光伝送性能に基いて、複数の経路候補を選定する構成とすることができる。すなわち、経路候補選定部110は、光伝送性能に基いて光信号の到達可否を判定し、到達可能と判定した経路のみを経路候補として選定する構成とすることができる。ここで、この光伝送性能には、光信号雑音比、光ファイバの非線形効果、隣接波長チャネル間のクロストーク、光バンドパスフィルタによる通過帯域狭窄効果の少なくとも一が含まれる。
また、光パス決定部130は、経路上の光ファイバのうち光周波数帯域利用率が最大である最大収容光ファイバにおける、光周波数帯域利用率が最小となる光パス候補を、通信要求を収容する光パスに決定する構成とすることができる。なお、光周波数帯域利用率は、光周波数スロット数、光パス数、および光周波数スロットが連続して配置されている個数の少なくとも一を用いて算出することができる。
次に、本実施形態による光パス設計装置100の動作について詳細に説明する。以下では、図2に示した16ノードからなる光通信ネットワーク1000を例として説明する。図2において、各丸印は各光ノード1001~1016を示す。各光ノード1001~1016は、各光ノードを同図中の横方向に接続する光ファイバ1201~1212、および縦方向に接続する光ファイバ1301~1312のそれぞれ12本からなる光ファイバによって接続されている。
図2に示すように、光通信ネットワーク1000には、光ノード1001から光ノード1010に至る通信要求(デマンド)を収容する光パス1101、および光ノード1003から光ノード1010に至るデマンドを収容する光パス1102が設定されている。
光通信ネットワーク1000については、光信号の到達可能性について図3に示す関係が予め知られているものとする。ここで、光通信ネットワーク1000では、光ノード間の距離をすべて等しくしている。そのため、光ノード同士を接続する光パスの長さ、すなわち光信号が到達すべき距離は、光ノード間のホップ数に比例する。また、光通信ネットワーク1000はフレキシブルグリッドを利用したフレキシブル光ネットワークであるので、光パスに割り当てられる光周波数帯域は、例えば12.5GHzを1単位とする光周波数スロット単位で割当てが行われる。そこで、図3では、光信号を所望のホップ数だけ到達させる場合における、ホップ数と、その場合に必要となる光周波数スロット数との関係を示した。すなわち、図3から、光信号を所望の距離だけ到達させるために必要な光周波数帯域を知ることができる。
例えば、光パスのホップ数が2である場合、図3から必要な光周波数スロット数は1であることがわかる。また、ホップ数が6を超えた場合、光信号を送受信するトランスポンダの性能などによる制約から、光周波数スロット数を10より大きくしても光信号を到達させることができないことを図3は表している。なお、光ファイバ1201~1212、1301~1312はそれぞれ、6個の光周波数スロットを収容する容量を有しているものとする。
図4に、図2で示したように光パス1101および光パス1102が設定されている状況における、光ファイバ1306、1307、1308の光周波数スロットの利用状況を示す。
この場合、光ファイバ1306の光周波数スロットの利用率ηは、4/6=0.67と算出することができる。他の光ファイバ1307、1308の光周波数スロット利用率を同様に算出すると、いずれも0となる。したがって、図2に示した光通信ネットワーク1000の光パス設定状況において、光周波数スロット利用率が最大となるのは光ファイバ1306である。このときの光周波数スロット利用率ηは4/6となる。
ここで、光ノード1005から光ノード1010へのデマンドが新規に発生した場合について説明する。なお、光ノード1009を通過する光パスの設定は禁止されているものとする。
まず、比較例として関連する方式に基づく光パスの探索について説明する。関連する方式では、光ノード1005から光ノード1010に至る経路長が最短となる経路を探索する。したがって、ホップ数が2である光パス1103が求まる(図2参照)。ホップ数が2である場合、図3から必要な光周波数スロット数は1であることがわかる。したがって、この場合の光周波数スロットの利用状況は図5に示すようになる。図4に示した場合と同様に、光周波数スロット利用率が最大となる光ファイバ(光ファイバ1306)における光周波数スロット利用率ηを求めるとη=5/6となる。
次に、本実施形態の光パス設計装置100による光パスの探索について詳細に説明する。本実施形態の光パス設計装置100は、経路長および光周波数スロット利用率について、それぞれ優先度を設定する。そして、経路長よりも光周波数スロット利用率に基づく判断を優先する。ここでは、経路長に関しては短いほど高い優先度を設定し、光周波数スロット利用率に関しては低いほど高い優先度を設定する場合について、図6を参照しながら説明する。
図6は、本実施形態による光パス設計装置100の動作を説明するためのフローチャートである。
まず、デマンドが発生する(ステップS3001)と、そのデマンドを収容する光パスの経路探索を行う(ステップS3002)。経路探索に失敗した場合(ステップS3002/NO)、所望の光パスを開通することはできない。
経路探索に成功した場合(ステップS3002/YES)、その経路を使って光パスを開通させるのに必要な光周波数スロット数を算出する(ステップS3003)。必要となる光周波数スロット数を決定した後に、探索した経路上における各光ファイバに光周波数スロットを割り当てる(ステップS3007)。ここで、経路上のすべての光ファイバに、ステップS3003で決定した光周波数スロット数以上の未割り当ての光周波数スロットが存在する場合、割当は成功となる(ステップS3007/YES)。
光ファイバに未割り当ての光周波数スロットが不足していることにより割当に失敗し(ステップS3007/NO)、かつ、割当失敗回数が予め定めた経路探索最大回数Nを下回る場合、経路探索をやり直す(ステップS3005/YES)。ただし、この場合は光周波数スロット割当に失敗した経路を除いて探索を行う。経路探索最大回数Nを下回るやり直し回数で光周波数スロット割当に成功しない場合は、光パス探索に失敗したと見なす。
光周波数スロット割当てに成功した場合(ステップS3007/YES)、これを光パス候補として各光ファイバの光周波数スロット利用状況とともにパス候補データベース(DB)に格納する(ステップS3004)。
上述した一連の動作を、経路探索最大回数Nを超えるまで繰り返す。
パス候補データベースに格納されたパス候補の個数kが0である場合(ステップS3009/NO)、光パス探索に失敗したとみなす。
パス候補の個数kが0より大きい場合(ステップS3009/YES)、ステップS3001で発生したデマンドを収容することが可能な光パスが少なくとも一つ存在することになる。複数の光パス候補が存在する場合、それらの複数の光パス候補について、それぞれ光周波数スロット利用率ηを算出する(ステップS3006)。そして、それらの中から光周波数スロット利用率ηが最小となる光パスを抽出し(ステップS3008)、発生したデマンドを収容する光パスに決定する。これにより、光パス探索に成功したことになる。
上述した、光ノード1005から光ノード1010へのデマンドが新規に発生した場合を例にとると、光パス設計装置100は、まず、光ノード1005から光ノード1010にいたる経路を探索する(ステップS3002)。この場合も最短経路は関連する方式と同様に光パス1103となる。
最短経路ではないが、光ノード1005から光ノード1010にいたる経路は他にも検出することができる。その一つとして、ホップ数が4の光パス1104がある。光パス1104は、光ノード1005から光ノード1010にいたる経路であって、ホップ数が2を超える経路の中では最短の経路である。この光パス1104を開通させるのに必要な光周波数スロット数は、図3から2と算出される(ステップS3003)。図4に示したように、光ファイバ1307には未割り当て光周波数スロットが2個以上あるので、光パス1104は光周波数スロット割当てに成功したことになる(ステップS3007)。
光パス1104の次に経路長が短いのは光パス1105である(図2参照)。光パス1105はホップ数が6であるので、必要な光周波数スロット数は図3から10と算出される(ステップS3003)。上述したように、光ファイバ1201~1212、1301~1312は光周波数スロットを6個まで収容することができる通信リソースを有しているものとしている。したがって、10個の光周波数スロットを必要とする光パス1105については、通信リソースの不足によって光パスを開通することができない(ステップS3007/NO)。
図7に、本実施形態の光パス設計装置100が光パス1104を設定した場合における光周波数スロットの利用状況を示す。
光パス設計装置100は、図7に示した光周波数スロットの利用状況とともに、光パス1104をパス候補データベースに格納する(ステップS3004)。光パス1104以外のパス候補についても同様な手順を実行し、パス候補データベースを更新する。以上の動作を、予め定めた経路探索最大回数Nを超えるまで繰り返す。関連する方式による光パスの探索結果である光パス1103もパス候補の一つとなり得るため、光パス1103もパス候補データに格納する。したがって、パス候補データベースに格納されている光パス候補が少なくとも一つは存在するので、パス探索に失敗することはないことが確定する(ステップS3009/YES)。
経路上の光ファイバにおける光周波数スロットの利用状況は、光パス1103については図5に、光パス1104については図7に示すようになる。図5および図7から、光パス1103および光パス1104のいずれにおいても光周波数スロット利用率が最大であるのは光ファイバ1306であることがわかる。光ファイバ1306における光周波数スロット利用率ηは、光パス1103についてη=5/6、光パス1104についてη=4/6と算出される(ステップS3006)。光パス1103、1104以外のパス候補についても同様に算出される。以上より、光ファイバ1306における光周波数スロット利用率ηが最小となる光パスとして、光パス1104が抽出される(ステップS3008)。これにより、複数あったパス候補の中から唯一の光パスが選択され、光パス探索に成功することになる。
ここで、光ファイバ1306における未割当ての光周波数スロット数に着目すると、関連する方式による場合、図5から1個、本実施形態による場合は図7から2個となる。すなわち本実施形態によれば、光ファイバ1306における未割当て光周波数スロット数を、関連する方式による場合よりも増大させることができる。
ここで、別の新たなデマンドが発生し、光ファイバ1306にさらに2個の光周波数スロットを割り当てる必要が生じた場合について検討する。図5に示した光周波数スロットの利用状況にある関連方式では、光周波数スロットが不足するため、このデマンドを収容する光パスを開通することができない。それに対して、図7に示した光周波数スロットの利用状況にある本実施形態によれば、光周波数スロットが不足することはないため、このデマンドを収容する光パスを開通することができる。
このように、本実施形態の光パス設計装置100によれば、割当て済みの光周波数スロットが、特定の光ファイバに局所的に集中することを回避することが可能になる。その結果、通信リソースが一定の条件の下で、光パスを開通する際の成功率を関連方式よりも向上させることができる。
次に、光通信ネットワーク1000を構成する各光ノード1001~1016で用いられる光ノード装置について説明する。図8に、本実施形態による光ノード装置200の構成を示す。
光ノード装置200は、光パス情報受付部(光パス情報受付手段)210、可変光トランスポンダ220、切替部(切替手段)230、および光ノード制御部(光ノード制御手段)240を有する。
光パス情報受付部210は、光パス設計装置100が決定した、通信要求(デマンド)を収容する光パスに関する経路情報および光周波数帯域情報を受付ける。可変光トランスポンダ220は、この通信要求(デマンド)に含まれるクライアント信号に基づいて光搬送波を変調して信号光を生成する。可変光トランスポンダ220は、信号光の中心周波数および光周波数帯域幅を可変できるように構成されている。切替部230は、光ファイバの一端に接続され、光パス単位で入出力方路を変更する。そして、光ノード制御部240は、経路情報に基いて切替部230を制御し、光周波数帯域情報に基いて可変光トランスポンダ220を制御する。
次に、本実施形態による光パス設計方法について説明する。
本実施形態による光パス設計方法においては、まず、通信要求(デマンド)を収容する光パスの経路を探索して、複数の経路候補を選定する。これらの複数の経路候補上の光ファイバに、この光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定する。そして、これらの複数の光パス候補の中から、光ファイバにおける光周波数帯域利用率に基いて、通信要求(デマンド)を収容する光パスを決定する。
ここで、光パスを決定する際に、光ファイバのうち光周波数帯域利用率が最大である最大収容光ファイバにおける、光周波数帯域利用率が最小となる光パス候補を、通信要求(デマンド)を収容する光パスに決定することとすることができる。
また、上述の各ステップをコンピュータに実行させることとしてもよい。すなわち、コンピュータを経路候補選定手段、光パス候補選定手段、および光パス決定手段として機能させるためのプログラムを用いることができる。
ここで、経路候補選定手段は、通信要求を収容する光パスの経路を探索し、複数の経路候補を選定する。光パス候補選定手段は、複数の経路候補上の光ファイバに、光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定する。そして、光パス決定手段は、複数の光パス候補の中から、光ファイバにおける光周波数帯域利用率に基いて、光パスを決定する。
以上説明したように、本実施形態の光パス設計装置100、光ノード装置200、光パス設計方法およびプログラムによれば、波長分割多重方式を用いた光通信ネットワークにおいて、光パスの収容効率を増大させることができる。その結果、光通信ネットワークの効率的な利用を図ることが可能になる。
〔第2の実施形態〕
次に、本発明の第2の実施形態について説明する。本実施形態による光パス設計装置の構成は、第1の実施形態によるものと同様である(図1参照)。
本実施形態による光パス設計装置においては、光パス決定部130が、複数の経路候補上の光ファイバのうち、光周波数帯域利用率が1未満である帯域未使用光ファイバを用いる追加光パスを選定する。そして、光パス決定部130が、この追加光パスを収容する追加光ファイバの増設を決定し、この追加光パスを通信要求(デマンド)を収容する光パスに決定する構成とした。
すなわち、光通信ネットワーク1000において通信リソース不足によって光パスの探索に失敗した場合、必要な通信リソースを増設することによって光パス探索の失敗を回避し、所望のデマンドをすべて収容するのに必要な通信リソースを算定する構成とした。
次に、本実施形態による光パス設計装置の動作について、図9を用いてさらに詳細に説明する。図9は、本実施形態による光パス設計装置の動作を説明するためのフローチャートである。
図9に示すように、本実施形態による光パス設計装置の動作は、光ファイバを増設するステップ(ステップS4010)が追加されている点が、第1の実施形態による光パス設計装置の動作(図6参照)と異なる。その他の基本的動作は、第1の実施形態による光パス設計装置の動作と同様であるので、以下では異なる動作について詳細に説明する。
図10に、光パス6101および光パス6102が予め設定された状態を初期状態として、光ノード1005から光ノード1010へのデマンドが増加したときの光パスの探索状況を示す。ここでは、追加分の光パスとして、光パス6103~6109が探索された場合を例として示している。また、図11および図12に、この場合の光パスに対応する光ファイバ1306、光ファイバ1307、および光ファイバ1205における光周波数スロットの利用状況を示す。
光パス6101および光パス6102が設定されている初期状態から、図9に示した本実施形態による光パス設計装置の動作に従って、増加するデマンドを収容する光パスが増設される。
まず、1デマンドだけ増加した場合に設定される光パスは、光パス6103である。図10に示したように、光パス6103は、光ノード1005から、光ファイバ1205、光ファイバ1307を通過して光ノード1010に接続される。この光パス6103を設定する動作は、第1の実施形態で詳細に説明した通りである。
図11に、このときの光周波数スロットの利用状況を示す。光パス6103は4ホップの光パスであるから、図3より必要となる光周波数スロット数は2である。したがって、光ファイバ1205、1307には、光パス6103向けに光周波数スロットが2個ずつ割り当てられる。
さらにデマンドが増加されると、図9に示した本実施形態による光パス設計装置の動作に従って、光パス6104~6106が設定される。その結果、光周波数スロットの利用状況は図11に示した状態から図12に示した状態に変化する。
ここで、デマンドがさらに増加した場合について検討する。図12に示した光周波数スロットの利用状況からわかるように、光ファイバ1205および光ファイバ1306には未使用の光周波数スロットが存在しない。そのため、これらの光ファイバは使用することができない。そこで、これらの光ファイバを迂回した光パス6108が次の候補となる。しかし、光バス6108はホップ数が6よりも大きいので、図3に示した光信号の到達可能性における制約から接続することができない。他の光パス候補についても同様な結果となるので、予め定めた経路探索最大回数Nがいくつであっても接続可能な光パスは存在しないと判定される(図9のステップS4009/NO)。そこで、本実施形態による光パス設計装置は光ファイバの増設を行う判定がなされる(ステップS4010)。
光ファイバを増設する際(ステップS4010)には、光ファイバの増設数が最小となるように増設が行われる。図12から、未使用の光周波数スロットが存在する光ファイバ、すなわち光周波数帯域利用率が1未満である帯域未使用光ファイバは、光ファイバ1307であることがわかる。したがって、光ファイバ1307を利用する光パスを想定した光ファイバの増設が優先される。光ファイバ1307を利用する場合、開通できる光パスは光パス6107である。光パス6107は光ファイバ1205も通過するので、光ファイバ1205と同様に光ノード1105と光ノード1106を接続する光ファイバ6901を1本増設することによって、光パス6107を開通させることができる。したがって、本実施形態による光パス設計装置は、光ファイバ6901の増設を決定(ステップS4010)した後に、経路探索を再度実行する(ステップS4002)。
このように、光ファイバ6901を増設することにより、光周波数スロットが不足することによって開通できなかった光パス6107を開通させることができるようになる。その結果、光パスの探索における失敗を回避することができる。
上述した例において、初期状態では図10に示したように、各光ノード間に光ファイバがそれぞれ1本ずつ配置されているので、光ファイバの総数は24本である。この初期状態から光ファイバ6901を1本だけ光ノード1005と光ノード1006の間に新設することにより、光パス6107をさらに開通させことができる。
なお、光パス設計装置は光ファイバを増設する際(ステップS4010)に、光ファイバ6901を1本増設したことを経路情報として保持する構成としてもよい。これにより、所望のデマンドをすべて収容するために必要な光ファイバの本数と配置を把握することができる。
以上説明したように、本実施形態の光パス設計装置および光パス設計方法によっても、第1の実施形態による場合と同様に、波長分割多重方式を用いた光通信ネットワークにおいて、光パスの収容効率を増大させることができる。その結果、光通信ネットワークの効率的な利用を図ることが可能になる。
〔第3の実施形態〕
次に、本発明の第3の実施形態について説明する。図13に、本実施形態による光パス設計装置300の構成を示す。
光パス設計装置300は、経路候補選定部(経路候補選定手段)110、光パス候補選定部(光パス候補選定手段)120、および光パス決定部(光パス決定手段)130を有する。光パス設計装置300はさらに、警告部(警告手段)340を有する構成とした点が、第1の実施形態による光パス設計装置100の構成と異なる。警告部340は、光ファイバにおける光周波数帯域利用率を算出し、算出した光周波数帯域利用率が所定の閾値を超えた場合、警告情報を生成する。その他の構成は、第1の実施形態による光パス設計装置100の構成と同様であるので、それらの説明は省略する。
次に、本実施形態による光パス設計装置300の動作について説明する。図14に、本実施形態による光パス設計装置300の動作を説明するためのフローチャートを示す。
本実施形態による光パス設計装置300は、光通信ネットワーク1000において、光ファイバにおける光周波数スロット利用率が予め定めた閾値thを超えた場合に警告情報を生成する。そして、ネットワーク管理システムなどに対して警告を発令する。その他の基本的動作は、第1の実施形態による光パス設計装置の動作と同様であるので、以下では異なる動作について詳細に説明する。
光ファイバにおける光周波数スロットの利用状況が、図12に示した状態に変化したとき、光ファイバ1306および光ファイバ1205には未割当の光周波数スロットが存在しない。また、光ノード1009を通過せず、かつ、光ファイバ1306および光ファイバ1205を使用することなく、かつ、6ホップ以下で光ノード1005と光ノード1010を接続できる経路は存在しない。そのため、光ノード1005から光ノード1010へのデマンドが新規に発生したとしても、通信リソースが不足するため、そのデマンドを収容するための新規光パスを生成することはできない。これを回避するためには、光ファイバなどの通信リソースを増設すればよい。しかし、通信リソースの増設には時間を要する。そこで、本実施形態による光パス設計装置300は将来的に通信リソースが不足することを予め予想し、通信リソースの不足によって光パスが生成できなくなることを防止する構成とした。
本実施形態の光パス設計装置300は、光周波数スロット利用率ηを算出する際に(図14のステップS5006)、光通信ネットワーク1000を構成する各光ファイバにおける光周波数スロットの利用状況を把握する。このとき、光周波数スロットの利用率が予め定めた閾値thを超えた場合(ステップS5010/YES)、例えばネットワーク全体を管理するネットワーク管理システムに対して通信リソースが不足する旨の警告を発令する。この警告を受けることにより、ネットワーク管理システムは適切なタイミングで、適切な箇所に光ファイバを増設することができる。これにより、通信リソースが不足することによって光パスの生成が不可能となる事態を回避することが可能になる。
さらに、本実施形態の光パス設計装置300および光パス設計方法によっても、第1の実施形態による場合と同様に、波長分割多重方式を用いた光通信ネットワークにおいて、光パスの収容効率を増大させることができる。その結果、光通信ネットワークの効率的な利用を図ることが可能になる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)通信要求を収容する光パスの経路を探索し、複数の経路候補を選定する経路候補選定手段と、前記複数の経路候補上の光ファイバに、前記光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定する光パス候補選定手段と、前記複数の光パス候補の中から、前記光ファイバにおける光周波数帯域利用率に基いて、前記光パスを決定する光パス決定手段、とを有する光パス設計装置。
(付記2)前記経路候補選定手段は、前記光ファイバを用いた光伝送性能に基いて、前記複数の経路候補を選定する付記1に記載した光パス設計装置。
(付記3)前記光パス決定手段は、前記光ファイバのうち前記光周波数帯域利用率が最大である最大収容光ファイバにおける、前記光周波数帯域利用率が最小となる前記光パス候補を前記光パスに決定する付記1または2に記載した光パス設計装置。
(付記4)前記光パス決定手段は、前記光ファイバのうち前記光周波数帯域利用率が1未満である帯域未使用光ファイバを用いる追加光パスを選定し、前記追加光パスを収容する追加光ファイバの増設を決定し、前記追加光パスを前記光パスに決定する付記1から3のいずれか一項に記載した光パス設計装置。
(付記5)前記光ファイバにおける前記光周波数帯域利用率を算出し、算出した前記光周波数帯域利用率が所定の閾値を超えた場合、警告情報を生成する警告手段をさらに有する付記1から4のいずれか一項に記載した光パス設計装置。
(付記6)付記1から5のいずれか一項に記載した光パス設計装置が決定した前記光パスに関する経路情報および光周波数帯域情報を受付ける光パス情報受付手段と、前記通信要求に含まれるクライアント信号に基づいて光搬送波を変調して信号光を生成し、前記信号光の中心周波数および光周波数帯域幅を可変できる可変光トランスポンダと、前記光ファイバの一端に接続され、前記光パス単位で入出力方路を変更する切替手段と、前記経路情報に基いて前記切替手段を制御し、前記光周波数帯域情報に基いて前記可変光トランスポンダを制御する光ノード制御手段、とを有する光ノード装置。
(付記7)通信要求を収容する光パスの経路を探索して、複数の経路候補を選定し、前記複数の経路候補上の光ファイバに、前記光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定し、前記複数の光パス候補の中から、前記光ファイバにおける光周波数帯域利用率に基いて、前記光パスを決定する光パス設計方法。
(付記8)前記光パスを決定する際に、前記光ファイバのうち前記光周波数帯域利用率が最大である最大収容光ファイバにおける、前記光周波数帯域利用率が最小となる前記光パス候補を前記光パスに決定する付記7に記載した光パス設計方法。
(付記9)前記光パスを決定する際に、前記光ファイバのうち前記光周波数帯域利用率が1未満である帯域未使用光ファイバを用いる追加光パスを選定し、前記追加光パスを収容する追加光ファイバの増設を決定し、前記追加光パスを前記光パスに決定する付記7または8に記載した光パス設計方法。
(付記10)前記光ファイバにおける前記光周波数帯域利用率を算出し、算出した前記光周波数帯域利用率が所定の閾値を超えた場合、警告情報を生成するステップをさらに有する付記7から9のいずれか一項に記載した光パス設計方法。
(付記11)前記光周波数帯域利用率は、光周波数スロット数、光パス数、および光周波数スロットが連続して配置されている個数の少なくとも一を用いて算出される付記1から5のいずれか一項に記載した光パス設計装置。
(付記12)前記光伝送性能は、光信号雑音比、光ファイバの非線形効果、隣接波長チャネル間のクロストーク、光バンドパスフィルタによる通過帯域狭窄効果の少なくとも一を含む付記2に記載した光パス設計装置。
(付記13)前記複数の経路候補を選定する際に、前記光ファイバを用いた光伝送性能に基いて選定する付記7から10のいずれか一項に記載した光パス設計方法。
(付記14)前記光伝送性能は、光信号雑音比、光ファイバの非線形効果、隣接波長チャネル間のクロストーク、光バンドパスフィルタによる通過帯域狭窄効果の少なくとも一を含む付記13に記載した光パス設計方法。
(付記15)前記光周波数帯域利用率は、光周波数スロット数、光パス数、および光周波数スロットが連続して配置されている個数の少なくとも一を用いて算出される付記7から10、13、および14のいずれか一項に記載した光パス設計方法。
(付記16)コンピュータを、通信要求を収容する光パスの経路を探索し、複数の経路候補を選定する経路候補選定手段、前記複数の経路候補上の光ファイバに、前記光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定する光パス候補選定手段、前記複数の光パス候補の中から、前記光ファイバにおける光周波数帯域利用率に基いて、前記光パスを決定する光パス決定手段、として機能させるためのプログラム。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2016年9月26日に出願された日本出願特願2016-186852を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100、300 光パス設計装置
110 経路候補選定部
120 光パス候補選定部
130 光パス決定部
200 光ノード装置
210 光パス情報受付部
220 可変光トランスポンダ
230 切替部
240 光ノード制御部
340 警告部
1000 光通信ネットワーク
1001~1016 光ノード
1101~1105、6101~6109 光パス
1201~1212、1301~1312、6901 光ファイバ

Claims (8)

  1. 通信要求を収容する光パスの経路を探索し、複数の経路候補を選定する経路候補選定手段と、
    前記複数の経路候補上の光ファイバに、前記光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定する光パス候補選定手段と、
    前記複数の光パス候補の中から、前記光ファイバにおける光周波数帯域利用率に基いて、前記光パスを決定する光パス決定手段、とを有し、
    前記光パス決定手段は、前記光ファイバのうち前記光周波数帯域利用率が1未満である帯域未使用光ファイバを用いる追加光パスを選定し、前記追加光パスを収容する追加光ファイバの増設を決定し、前記追加光パスを前記光パスに決定する
    光パス設計装置。
  2. 通信要求を収容する光パスの経路を探索し、複数の経路候補を選定する経路候補選定手段と、
    前記複数の経路候補上の光ファイバに、前記光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定する光パス候補選定手段と、
    前記複数の光パス候補の中から、前記光ファイバにおける光周波数帯域利用率に基いて、前記光パスを決定する光パス決定手段、とを有し、
    前記光ファイバにおける前記光周波数帯域利用率を算出し、算出した前記光周波数帯域利用率が所定の閾値を超えた場合、警告情報を生成する警告手段をさらに有する
    光パス設計装置。
  3. 請求項1または2に記載した光パス設計装置において、
    前記経路候補選定手段は、前記光ファイバを用いた光伝送性能に基いて、前記複数の経路候補を選定する
    光パス設計装置。
  4. 請求項1から3のいずれか一項に記載した光パス設計装置において、
    前記光パス決定手段は、前記光ファイバのうち前記光周波数帯域利用率が最大である最大収容光ファイバにおける、前記光周波数帯域利用率が最小となる前記光パス候補を前記光パスに決定する
    光パス設計装置。
  5. 請求項1からのいずれか一項に記載した光パス設計装置が決定した前記光パスに関する経路情報および光周波数帯域情報を受付ける光パス情報受付手段と、
    前記通信要求に含まれるクライアント信号に基づいて光搬送波を変調して信号光を生成し、前記信号光の中心周波数および光周波数帯域幅を可変できる可変光トランスポンダと、
    前記光ファイバの一端に接続され、前記光パス単位で入出力方路を変更する切替手段と、
    前記経路情報に基いて前記切替手段を制御し、前記光周波数帯域情報に基いて前記可変光トランスポンダを制御する光ノード制御手段、とを有する
    光ノード装置。
  6. 通信要求を収容する光パスの経路を探索して、複数の経路候補を選定し、
    前記複数の経路候補上の光ファイバに、前記光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定し、
    前記複数の光パス候補の中から、前記光ファイバにおける光周波数帯域利用率に基いて、前記光パスを決定し、
    前記光パスを決定する際に、前記光ファイバのうち前記光周波数帯域利用率が1未満である帯域未使用光ファイバを用いる追加光パスを選定し、前記追加光パスを収容する追加光ファイバの増設を決定し、前記追加光パスを前記光パスに決定する
    光パス設計方法。
  7. 通信要求を収容する光パスの経路を探索して、複数の経路候補を選定し、
    前記複数の経路候補上の光ファイバに、前記光パスを収容するのに必要な光周波数帯域をそれぞれ割当てることによって複数の光パス候補を選定し、
    前記複数の光パス候補の中から、前記光ファイバにおける光周波数帯域利用率に基いて、前記光パスを決定し、
    前記光ファイバにおける前記光周波数帯域利用率を算出し、算出した前記光周波数帯域利用率が所定の閾値を超えた場合、警告情報を生成するステップをさらに有する
    光パス設計方法。
  8. 請求項6または7に記載した光パス設計方法において、
    前記光パスを決定する際に、前記光ファイバのうち前記光周波数帯域利用率が最大である最大収容光ファイバにおける、前記光周波数帯域利用率が最小となる前記光パス候補を前記光パスに決定する
    光パス設計方法。
JP2018541080A 2016-09-26 2017-09-20 光パス設計装置および光パス設計方法 Active JP7077949B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016186852 2016-09-26
JP2016186852 2016-09-26
PCT/JP2017/033815 WO2018056285A1 (ja) 2016-09-26 2017-09-20 光パス設計装置および光パス設計方法

Publications (2)

Publication Number Publication Date
JPWO2018056285A1 JPWO2018056285A1 (ja) 2019-07-11
JP7077949B2 true JP7077949B2 (ja) 2022-05-31

Family

ID=61689950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018541080A Active JP7077949B2 (ja) 2016-09-26 2017-09-20 光パス設計装置および光パス設計方法

Country Status (3)

Country Link
US (1) US10848262B2 (ja)
JP (1) JP7077949B2 (ja)
WO (1) WO2018056285A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11894948B2 (en) * 2020-04-02 2024-02-06 PrimeWan Limited Method of forming a virtual network
US11611405B2 (en) * 2020-08-11 2023-03-21 Microsoft Technology Licensing, Llc Efficient spectrum allocation in a multi-node optical network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009194A (ja) 2001-06-25 2003-01-10 Kddi Corp 光クロスコネクト装置並びにその制御装置及び方法
JP2008245225A (ja) 2007-03-29 2008-10-09 Kddi Corp 波長パス経路決定装置、波長パス設定制御システム及びプログラム
JP2011176631A (ja) 2010-02-24 2011-09-08 Fujitsu Ltd ルータ、管理装置およびルーティング制御プログラム
WO2016047101A1 (ja) 2014-09-25 2016-03-31 日本電気株式会社 光通信システム、光ノード装置、および光パス設定方法
JP2016111599A (ja) 2014-12-09 2016-06-20 富士通株式会社 伝送経路設計装置および伝送経路設計方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2104133A1 (en) * 1992-08-17 1994-02-18 Tsutomu Tanaka Data transmission system with packets having occupied, idle, released, and reset states
CN103190105B (zh) 2010-10-25 2015-11-25 日本电信电话株式会社 频率分配方法以及装置
JP5776330B2 (ja) * 2011-05-25 2015-09-09 富士通株式会社 波長再配置方法及びノード装置
CN103457663B (zh) * 2012-06-01 2018-08-28 中兴通讯股份有限公司 路径建立方法及装置
CN104704759B (zh) * 2012-10-08 2017-11-24 华为技术有限公司 基于波分复用(wdm)的光网络的传送功能虚拟化

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009194A (ja) 2001-06-25 2003-01-10 Kddi Corp 光クロスコネクト装置並びにその制御装置及び方法
JP2008245225A (ja) 2007-03-29 2008-10-09 Kddi Corp 波長パス経路決定装置、波長パス設定制御システム及びプログラム
JP2011176631A (ja) 2010-02-24 2011-09-08 Fujitsu Ltd ルータ、管理装置およびルーティング制御プログラム
WO2016047101A1 (ja) 2014-09-25 2016-03-31 日本電気株式会社 光通信システム、光ノード装置、および光パス設定方法
JP2016111599A (ja) 2014-12-09 2016-06-20 富士通株式会社 伝送経路設計装置および伝送経路設計方法

Also Published As

Publication number Publication date
US10848262B2 (en) 2020-11-24
US20190260474A1 (en) 2019-08-22
WO2018056285A1 (ja) 2018-03-29
JPWO2018056285A1 (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
US9654248B2 (en) Optical data transmission method and apparatus
US9252912B2 (en) Method for routing and spectrum assignment
EP2989735B1 (en) Optical data transmission
JP7400877B2 (ja) 光ネットワーク管理装置および光帯域の割り当て方法
US20140226986A1 (en) Network Fragmentation Measurement in an Optical Wavelength Division Multiplexing (WDM) Network
US9054829B2 (en) Spectrum aware rate selection procedure for optical channels in flexible WDM networks
JP6958649B2 (ja) 光ノード装置、光ネットワーク制御装置、および光ネットワーク制御方法
US11115318B2 (en) Optical network control devices and optical path setting method
US20120070148A1 (en) K-alternate Channel Selection for the Routing, Wavelength Assignment and Spectrum Allocation in Flexible Optical WDM Networks
JP7077949B2 (ja) 光パス設計装置および光パス設計方法
US10938499B2 (en) Optical path controller and method of controlling optical path
WO2015182070A1 (ja) 光ネットワーク管理装置および光ネットワーク管理方法
CN110249556A (zh) 用于在无格栅网络中以改进的频谱效率进行服务供应的方法和工具
US9270376B2 (en) Method of allocating bandwidth in an optical network
Tang et al. Counter-propagating core assignment in multi-core fiber optical networks to reduce inter-core crosstalk and capacity wastage
Ma A Study on Reactive and Proactive Push-Pull/Make-Before-Break Defragmentation For Dynamic RMSA
Moniz et al. On the effect of spectrum assignment policies in the efficiency of non-disruptive defragmentation techniques
WO2019078122A1 (ja) ネットワーク管理装置、光ネットワークシステム、および波長使用状況監視方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R151 Written notification of patent or utility model registration

Ref document number: 7077949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151