JP7076937B2 - 半導体素子 - Google Patents

半導体素子 Download PDF

Info

Publication number
JP7076937B2
JP7076937B2 JP2016096255A JP2016096255A JP7076937B2 JP 7076937 B2 JP7076937 B2 JP 7076937B2 JP 2016096255 A JP2016096255 A JP 2016096255A JP 2016096255 A JP2016096255 A JP 2016096255A JP 7076937 B2 JP7076937 B2 JP 7076937B2
Authority
JP
Japan
Prior art keywords
electrode
region
width
semiconductor layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016096255A
Other languages
English (en)
Other versions
JP2017005690A (ja
Inventor
泰史 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US15/736,529 priority Critical patent/US10951167B2/en
Priority to PCT/JP2016/002497 priority patent/WO2016203712A1/en
Publication of JP2017005690A publication Critical patent/JP2017005690A/ja
Priority to JP2021086665A priority patent/JP2021153185A/ja
Application granted granted Critical
Publication of JP7076937B2 publication Critical patent/JP7076937B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/02Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance
    • H03B7/06Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device
    • H03B7/08Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device being a tunnel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/12Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising distributed inductance and capacitance
    • H03B7/14Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising distributed inductance and capacitance active element being semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0471Non-planar, stepped or wedge-shaped patch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2302/00Amplification / lasing wavelength
    • H01S2302/02THz - lasers, i.e. lasers with emission in the wavelength range of typically 0.1 mm to 1 mm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02375Positioning of the laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/003Circuit elements of oscillators
    • H03B2200/0044Circuit elements of oscillators including optical elements, e.g. optical injection locking
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0084Functional aspects of oscillators dedicated to Terahertz frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、共鳴トンネルダイオードを用いたテラヘルツ波を発振又は検出する半導体素子に関する。
30GHz以上30THz以下の周波数領域の電磁波(以下、「テラヘルツ波」とよぶ)を発生する電流注入型の光源として、テラヘルツ波帯の周波数領域における利得を有する素子と共振器とを集積した半導体素子を用いる発振器がある。なかでも、共鳴トンネルダイオード(Resonant tunneling Diode:RTD)と共振器とを集積した発振器がある。RTDを用いた発振器は、1THz近傍の周波数領域で室温動作する素子として期待されている。
非特許文献1には、半導体基板上に平面状に形成したスロットアンテナ共振器とRTDとを集積したテラヘルツ波の発振器が開示されている。非特許文献1では、InP基板上にエピタキシャル成長された、InGaAs量子井戸層とAlAsトンネル障壁層とからなる2重障壁型のRTDを用いている。このようなRTDを用いた発振器では、電圧―電流(V-I)特性で微分負性抵抗が得られる領域近傍においてテラヘルツ波の発振が室温で実現される。また、特許文献1には、2重障壁のRTDとマイクロストリップ共振器とを同一基板上に集積したテラヘルツ波の発振器が開示されている。
特開2006-101495号公報
Jpn.J.Appl.Phys.,Vol.47,No.6(2008)、pp.4375-4384
RTDを含む半導体層の構造に起因した直列抵抗Rは、電磁波の損失及びRC遅延の原因となる。一方、パッチアンテナ等のマイクロストリップ型共振器を用いた発振器は、誘電体を厚くすることで放射効率を改善することができる。そのため、従来のマイクロストリップ型共振器は、誘電体の厚さと半導体の厚さとの間にトレードオフがあり、放射効率の改善が制限されていた。このような課題を解決するための手段として、特許文献1には、共振器の誘電体として基板を利用する構成が記載されている。しかしながら、基板として利用可能な誘電体材料が限定されており、また、テラヘルツ波帯では基板厚が薄くなり歩留まりが低下することがあった。
本発明は上記課題に鑑み、RTDのようなテラヘルツ波の周波数領域に利得を有する素子を用いたテラヘルツ波の発振器における電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる半導体素子を提供することを目的とする。
本発明の一側面としての半導体素子は、テラヘルツ波を発生又は検出する半導体素子であって、共鳴トンネルダイオードを有する半導体層と、前記半導体層と接続されている第1の電極と、前記半導体層に対して前記第1の電極が配置されている側の反対側に配置されており、前記半導体層と電気的に接続されている第2の電極と、前記第2の電極と電気的に接続されている第3の電極と、前記半導体層及び前記第2の電極の周囲で且つ前記第1の電極と前記第3の電極との間に配置されており、前記半導体層の厚さより厚い誘電体層と、を備え、前記誘電体層は、前記第2の電極と前記第3の電極とを電気的に接続する導体を含む領域を有し、前記領域は、前記導体が充填されている領域であり、前記テラヘルツ波の共振方向である第1の方向において、前記領域の幅は前記第3の電極の幅よりも小さく、前記第1の方向と直交する第2の方向において、前記領域の幅は前記第3の電極の幅よりも小さく、前記第1の方向および前記第2の方向において、前記領域の幅は前記第2の電極の幅よりも大きいことを特徴とする。
本発明の別の一側面としての半導体素子は、テラヘルツ波を発生又は検出する半導体素子であって、共鳴トンネルダイオードを有する半導体層と、前記半導体層と接続されている第1の電極と、前記半導体層に対して前記第1の電極が配置されている側の反対側に配置されており、前記半導体層と電気的に接続されている第2の電極と、前記第2の電極と電気的に接続されている第3の電極と、前記半導体層及び前記第2の電極の周囲で且つ前記第1の電極と前記第3の電極との間に配置されており、前記半導体層の厚さより厚い誘電体層と、を備え、前記誘電体層は、前記第2の電極と前記第3の電極とを電気的に接続する導体を含む領域を有し、前記テラヘルツ波の共振方向である第1の方向において、前記領域の幅は前記第3の電極の幅よりも小さく、前記第1の方向と直交する第2の方向において、前記領域の幅は前記第3の電極の幅よりも小さく、前記第1の方向および前記第2の方向において、前記領域の幅は前記第2の電極の幅よりも大きく、
前記領域は、以下の式を満たすことを特徴とする。
tanθ=2h/(d-d
45°<θ<135°
:前記領域の前記第2の電極側の面の幅
:前記領域の前記第3の電極側の面の幅
h:前記領域の厚さ
本発明の一側面としての半導体素子によれば、テラヘルツ波の周波数領域に利得を有する素子を用いたテラヘルツ波の発振器における電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる。
第1の実施形態の半導体素子の構成を説明する図。 実施例の半導体素子の解析例を説明する図。 第2の実施形態の半導体素子の構成を説明する図。 第2の実施形態の半導体素子の構成を説明する図。 実施例1の半導体素子の構成を説明する図。 実施例1の半導体素子の構成を説明する図。
(第1の実施形態)
本実施形態に係る半導体素子100(以下、「素子100」と呼ぶ)について、図1を用いて説明する。素子100は、周波数(共振周波数)fTHzのテラヘルツ波を発振又は検出する素子である。図1(a)は素子100の外観を示す斜視図であり、図1(b)はそのA-A断面図、図1(c)は半導体層と領域とを説明する図である。なお、以降の説明では、素子100を発振器として用いた例について説明する。
まず、素子100の構成について説明する。素子100は、テラヘルツ波帯の電磁波を共振するための共振器(共振部)114と、バイアス回路120と、を有する。共振器114は、第1の電極104、半導体層102、第2の電極107、誘電体層105、及び第3の電極103を有する。誘電体層105は、導体130を含む領域106、を有する。半導体層102は、共鳴トンネルダイオード(Resonant tunneling Diode:RTD)101を含む。なお、以降の説明では、電極103、104、107、半導体層102の積層方向における各構成の長さを厚さ又は高さと呼び、積層方向と直交する面における共振器114を電磁波が共振する方向(共振方向)における各構成の長さを幅と呼ぶ。
共振器114は、テラヘルツ波の共振器であり、第1の電極104、半導体層102、第2の電極107、導体130、第3の電極103の順に積層されている。共振器114は、第3の電極103と第1の電極104の二つの導体で誘電体層105を挟む構成となっている。このような構成は、有限な長さのマイクロストリップラインなどを用いたマイクロストリップ共振器として良く知られている。
第1の電極104は、基板108の上に配置される。RTD101を含む半導体層102は、第1の電極104の上に配置されており、第1の電極104と接続されている。
RTD101は、複数のトンネル障壁層を含み構成される共鳴トンネル構造層を有し、複数のトンネル障壁の間に量子井戸層が設けられる。すなわち、RTD101は、キャリアのサブバンド間遷移によりテラヘルツ波を発生する多重量子井戸構造を備え、テラヘルツ波の周波数領域における電磁波利得を有している。ここで、テラヘルツ波は、30GHz以上30THz以下の周波数領域内の電磁波を指す。RTD101は、微分負性抵抗領域において、フォトンアシストトンネル現象に基づくテラヘルツ波の周波数領域の利得を有する。また、テラヘルツ波の周波数領域の利得を有する構造体として、数百から数千層の半導体多層構造を持つ量子カスケード構造(Quantum Cascade Laser:QCL)を用いても良い。その場合、半導体層102はQCLを含む半導体層となる。
第2の電極107は、半導体層102に対して第1の電極104が配置されている側の反対側に配置されている。第2の電極107は、半導体層102と電気的に接続されている。本実施形態の第2の電極107は、半導体層102とオーム性接続されているオーミック電極で、後述の直列抵抗を低減に好適である。以下、第2の電極107をオーミック電極107と呼ぶことがある。
オーミック電極107は、上述の構成に限らず、第1の電極104の一部、すなわち第1の電極104の半導体層102と接触する領域にオーミック電極を用いるような構成であっても良い。第2の電極107としては、例えば、Mo、Ti/Pd/Au、Ti/Pt/Au、AuGe/Ni/Au、TiW、ErAsなどが好適に用いられる。また、半導体層102の第2の電極107と接する領域が高濃度に不純物がドーピングされた半導体であれば、より接触抵抗が低くなり、高出力化と高周波化に好適である。また、第2の電極107は、ショットキー接続のように半導体層102と整流性を示す接続をされた構成であってもよい。以下、本実施形態では、第2の電極107がオーミック電極である例について説明する。
誘電体層105は、半導体層102と第2の電極107の周囲に配置されている層であり、半導体層102と第2の電極107とは、誘電体層105によって周囲を埋め込まれている。誘電体層105の厚さtは、少なくとも半導体層102より厚く形成される。誘電体層105として用いる誘電体は、導電性よりも誘電性が優位な物質で、直流電圧に対しては電気を通さない絶縁体或いは高抵抗体としてふるまう材料である。典型的には抵抗率が1kΩ・m以上の材料が好適である。具体例としては、プラスティック、セラミック、酸化シリコン、窒化シリコンなどがある。
第3の電極103は、誘電体層105を介して第1の電極104と対向するように配置されており、領域106を経由してオーミック電極107と電気的に接続される。
領域106は、オーミック電極107と第3の電極103とを電気的に接続する構造で、導体130を含む領域である。一般的には、領域106のように上下の層間を電気的に接続する構造は、ビアと呼ばれる。このような構成にすることにより、第1の電極104及び第3の電極103のそれぞれは、RTD101に電流を注入するための電極を兼ねることになる。
領域106は、誘電体層105に形成された孔(ビアホール)131に含まれる領域である。具体的には、領域106は、導体130が充填されている領域、は導体130によって誘電体層105又は孔131の内部に形成された任意の層の表面を被覆している導体130を含む領域である。これにより、誘電体層105の厚み方向に形成された複数の電極層の層間に電気的な導通を付与するビアが形成される。例えば、本実施形態の領域106は、領域106内に配置されている導体130を介して、オーミック電極107と第3の電極103との間に電気的な導通を付与する。
導体130は、抵抗率が1×10-6Ω・m以下の材料で、具体的にはAg、Au、Cu、W、Ni、Cr、Ti、Al、AuIn合金、TiN等の金属および金属化合物が好適に用いられる。
本実施形態では、共振器114として、代表的なテラヘルツ波の共振器であるパッチアンテナを用いている。共振器114は、パッチ導体である第3の電極103のA-A方向(共振方向)の幅がλ/2共振器となるように設定されている。また、接地導体である第1の電極104は接地されている。ここで、λは、共振器114で共振するテラヘルツ波の誘電体層105における実効波長であり、テラヘルツ波の真空中の波長をλ、誘電体層105の比誘電率をεとするとλ=λ×ε -1/2で表わされる。
共振器114は、RTD101を有するパッチアンテナが集積されたアクティブアンテナである。したがって、素子100から発振されるテラヘルツ波の周波数fTHzは、共振器114のリアクタンスと半導体層102のリアクタンスとを組み合わせた全並列共振回路の共振周波数として決定される。具体的には、非特許文献1に記載された発振器の等価回路から、RTDとアンテナのアドミタンス(YRTD及びYANT)を組み合わせた共振回路について、(1)式の振幅条件と(2)式の位相条件とを満たす周波数が発振周波数fTHzとして決定される。
Re[YRTD]+Re[YANT]≦0 (1)
Im[YRTD]+Im[YANT]=0 (2)
ここで、Re[YRTD]は、半導体層102のアドミタンスであり、負の値を有す。
共振器114とバイアス回路120とは、線路109を経由して接続されている。バイアス回路120は、RTD101にバイアス電圧を供給するための回路である。線路109は、共振器114内の共振電界に干渉しない程度の寸法が好ましく、例えば実効波長λの1/10以下(λ/10以下)が好適である。また、線路109は、共振器114に定在する発振周波数fTHzのテラヘルツ波の電界の節に配置することが好ましい。この時、線路109は、発振周波数fTHz付近の周波数帯においてRTD101の微分負性抵抗の絶対値よりインピーダンスが高い構成となり、共振器114内の発振周波数fTHzの電界との干渉が抑制される。
ここで、「共振器に定在する発振周波数fTHzのテラヘルツ波の電界の節」は、共振器に定在する発振周波数fTHzのテラヘルツ波の電界の実質的な節となる領域のことである。具体的には、共振器114に定在する発振周波数fTHzのテラヘルツ波の電界強度が、共振部に定在する発振周波数fTHzのテラヘルツ波の最大電界強度より1桁程度低い領域のことである。望ましくは、発振周波数fTHzのテラヘルツ波の電界強度が、共振部に定在する発振周波数fTHzのテラヘルツ波の最大電界強度の1/e(eは自然対数の底)以下となる位置が好適である。
RTD101にバイアス電圧を供給するためのバイアス回路120は、RTD101と並列に接続された抵抗111、抵抗111と並列に接続された容量110、電源113、配線112を含む。配線112は、寄生的なインダクタンス成分を必ず伴うため、図1上ではインダクタンスとして表示した。電源113は、RTD101の駆動に必要な電流を供給し、バイアス電圧を調整する。バイアス電圧は、典型的には、RTD101の微分負性抵抗領域から選択される。バイアス回路120からのバイアス電圧は、線路109を介して素子100に供給される。
バイアス回路120の抵抗111及び容量110は、バイアス回路120に起因した比較的低周波な共振周波数(典型的にはDCから100GHzの周波数帯)の寄生発振を抑制する。抵抗111の値は、RTD101の微分負性抵抗領域における微分負性抵抗の絶対値と等しいか少し小さい値が選択されることが好ましい。
容量110は、抵抗111と同様に、RTD101の微分負性抵抗の絶対値と素子のインピーダンスが等しいか、少し低くなるように設定されることが好ましい。一般的には、容量110は上述の範囲内で大きい方が好ましく、本実施形態では数十pF程度としている。容量110はデカップリング容量となっており、例えば、パッチアンテナである共振器114と基板を共にしたMIM(Metal-insulator-Metal)構造を利用してもよい。
パッチアンテナ等のマイクロストリップ型の共振器は、誘電体層を厚くすることで導体ロスが低減され放射効率が改善されることが一般的に知られる。一方、RTDを含む半導体層の構造に起因した直列抵抗Rが電磁波の損失及びRC遅延等の原因となる。このため、従来のマイクロストリップ型の共振器では、誘電体層と半導体層の厚さにトレードオフがあり放射効率の向上が制限されていた。
本実施形態では、共振器114は、第1の電極104、RTD101を含む半導体層102、第2の電極107、領域106に充填されている導体130、第3の電極103の順に積層された構成を含む。そして、素子100は、ビアとなる領域106の高さhを調整することで、共振器114の誘電体層105の厚さtを変化させて放射効率を調整することが可能な構成となっている。領域106の高さhは、主に誘電体層105に形成された孔131の高さを変えることで調整できる。この際、素子100は、抵抗率の低い導体130を含む領域106を用いることにより、直列抵抗を比較的低く抑えられるので、上述の放射効率に関する誘電体層105と半導体層102の厚さのトレードオフの課題の制限が緩和される。
図2(a)は、後述の実施例に開示した発振周波数0.45THzの素子100の構成において、半導体層102の構造に起因した直列抵抗R、共振器114の寄生容量C、放射効率Reffの構造依存性を解析した例である。解析に用いた素子100の構成については、後述の実施例で説明する。
図2(a)は、素子100の直列抵抗Rおよび放射効率Reffの誘電体厚依存性の解析結果である。具体的には、図2(a)は、抵抗率が10-8Ω・mオーダーの導体130を含む領域106を有する素子100について、領域106の高さh及び幅dを変更して誘電体層厚を調整する場合の直列抵抗Rと放射効率Reffに関する解析結果である。放射効率Reffについては領域106の幅(d)の依存性(d=5μm、10μm、20μm)についても記した。図2(a)の実線は直列抵抗Rを表し、点線は放射効率Reffを表している。ここで、直列抵抗Rは、主に半導体層102および周辺の各電極103、104、107の構造に起因する抵抗であり、主に表皮深さ及び広がり抵抗(spreading resistance)などから見積られる。なお、図2(a)では、従来例として、抵抗率が10-6Ω・mオーダーの半導体で構成されたメサ状の半導体層の高さと幅を変更して誘電体層厚を調整する場合の直列抵抗Rも示した。
ここで、テラヘルツ波帯で用いられるRTD101の利得を示す負性抵抗の絶対値は概ね1~100Ωのオーダーであるため、電磁波の損失はその1%以下に抑える必要がある。したがって、直列抵抗Rは、目安として少なくとも1Ω以下に抑制する必要がある。また、テラヘルツ波帯で動作するためには、半導体層102の幅(≒オーミック電極107の幅)は典型値として0.1~5μm程度となる。このため、直列抵抗のもう一つの要因であるコンタクト抵抗(R)は、コンタクト抵抗率を10Ω・μm以下にして0.1~数Ωの範囲に抑制する必要がある。この点からも、直列抵抗Rは目安として1Ω以下に抑制されるべきである。
図2(a)から、従来の発振器では、半導体層102を伸縮して誘電体層105の厚さtを調整した場合、誘電体厚が3μm以上になると直列抵抗Rが1Ωを超える。そのため、直列抵抗Rによる損失や遅延が無視出来なくなり、放射効率を向上することが容易でなかった。一方、本実施形態の領域106を有する素子100であれば、誘電体層105の厚さtの増加に伴う直列抵抗Rの増加を0.1Ωのオーダーに抑制できる。したがって、共振器114の誘電体層105の厚さtを増やして、10%程度であった放射効率Reffを約50%以上にまで改善することが出来る。なお、誘電体層105の厚さtは、厚いほど放射効率は上がるが、厚すぎると多モードの共振が生じることがあるため、半導体層102の厚さ以上λ/10以下の範囲で設計することが好ましい。
ここで、半導体層102の高さは誘電体層105の厚さtに比べて十分に薄い。したがって、領域106の高さhは、誘電体層105の厚さtと同様に、λ/10以下の範囲で設計することが好ましい。また、領域106の高さhの下限としては、第3の電極103の厚さ以上であることが好ましく、より好ましくは半導体層102の厚さ以上である。
図2(b)は、実施例の素子100において、誘電体層105の厚さtを10μmに固定した場合の、直列抵抗Rと寄生容量Cそれぞれの、領域106の幅に対する依存性を解析した例である。ここで、直列抵抗Rを減らすために、半導体層102の厚さは100nmで設計されている。したがって、領域106の高さhは誘電体層105の厚さtと略同じと考えて良い。
図2(b)から、領域106の幅dの増加により直列抵抗Rは低減されるが、第一の電極104と領域106とに挟まれた部分に寄生的に生じる寄生容量C(図1(c)参照)が増加する。寄生容量Cは、RC遅延(RC時定数)の要因となるため素子100の高出力化と高周波化を阻害する。そのため、RC遅延は、共振される電磁波の周期よりも短くするようにする必要がある。一般的にテラヘルツ波帯で用いるRTD101の容量Cは100fF前後であるから、寄生容量Cは少なくともその1割以下に抑制することが求められる。
直列抵抗Rを低減するためには領域106の幅dを大きくする必要があるが、領域106の幅dが大きくなると導体ロスが増加するため放射効率が低下する。したがって、寄生容量C及び放射効率Reffを考慮して幅dを大きくしすぎないようにする必要がある。よって、領域106の幅dは、共振電界に干渉しない程度の寸法が好ましく、典型的には、λ/10以下が好適である。素子100は、領域106の幅dを極端に増やさなくても直列抵抗Rが抑制できるので、領域106の幅dによる寄生容量Cの増加及び放射効率Reffの減少による直列抵抗Rの低減効果は小さくてもよい。
また、領域106の幅dは、直列抵抗を増やさない程度に小さくすることが可能で、目安としては表皮深さの2倍程度まで縮小できる。よって、直列抵抗Rが1Ωを超えない程度まで幅dを小さくすることができ、その範囲内であれば領域106の幅dを半導体層102の幅より小さくすることもできる。この場合、素子100の構造及び発振周波数により変わるが、放射効率・直列抵抗・寄生容量の点で、領域106の幅dは典型的には0.1μm以上20μm以下の範囲が目安となる。
また、共振器114であれば、誘電体層105の厚さtと材料を調整することで共振器114の特性インピーダンスを調整することが出来る。マイクロストリップ型の共振器の特性インピーダンスは、誘電体層105の厚さtが厚いほど特性インピーダンスが上がり、薄いほど特性インピーダンスが下がることが知られており、典型的には電磁波の波長よりも十分に薄く設計される。また、誘電体層105の材料の誘電率が小さいほど特性インピーダンスが上がり、大きいほど特性インピーダンスが下がることが知られている。本実施形態の共振器114は、RTD101とインピーダンス整合するように、誘電体層105の材料や厚さの選択が可能な構成となっている。
なお、これまで、素子100を主に発振器として用いた例について説明してきた。他の例として、素子100は、RTD101の電流電圧特性において電圧変化に伴い電流の非線形性が生じる領域を用いてテラヘルツ波の検出器として動作させることも出来る。
このように、本実施形態によれば、誘電体厚を調整して導体ロスの低減及びインピーダンスマッチングを行うことで放射効率を改善することができる。そのため、RTDを集積したテラヘルツ波の共振器における電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる半導体素子を提供できる。
(第2の実施形態)
本実施形態では、第1の実施形態の素子100の変形例として、複数の半導体素子について図3及び図4を参照して説明する。なお、本実施形態のそれぞれの半導体素子は、テラヘルツ波を発生する発振器又はテラヘルツ波を検出する検出器として用いることができる。
図3(a)~(c)は、それぞれ、素子100の変形例である半導体素子200、300、400の構成を説明する断面図である。図3(a)~(c)のそれぞれは、素子100のA-A断面と対応する断面を示している。ここで、素子100と同じ構成については、同じ符号を付し、詳細な説明を省略する。
図3(a)に示した半導体素子200は、第1の電極104として、金属層204aおよび不純物を高濃度にドーピングされた半導体層204bを用いる。その他の構成は上述の実施形態と同様で、半導体層102は基板108上でエピタキシャル成長して形成される。このような半導体素子200によれば、電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる。また、半導体素子200は、RTD101を含む半導体層102をエピタキシャル成長された半導体基板を基板108として用いることができるので、より実用的な構成となっている。
図3(b)に示した半導体素子300は、領域106として、誘電体層105に形成された逆テーパー構造の孔331の内部を金属で充填した領域306を用いる。このような構成にすることにより、直列抵抗Rと寄生容量Cとをより低減できる。この場合、領域306の第3の電極103側の面の幅dは、放射効率の点で共振電界に干渉しない程度の寸法が好ましく、例えば、λ/10以下が好適である。また、前述の通り誘電体層105の厚さtはλ/10以下の範囲で設計されるので、領域306の高さhもそれと同じような範囲で設計される。
領域306の幅dの増加は放射効率の点で問題となるため、領域306の高さhの増加に伴う幅dの増加を抑制する為、テーパー形状の角度θはθ≧45°となるように設計すると良い。ここで、テーパー角θは、領域306の第2の電極側(第2の電極107側)の面の幅をdとすると、tanθ=2h/(d-d)で定義される。なお、θ≧60°であれば領域306のアスペクトがより高くなる。そのため、誘電体層105を厚くしても、領域306の幅の増加が抑えられるため、より好ましい構成となる。また、領域306のアスペクトの点から、領域306の第3の電極103側の面の幅dは、領域306のオーミック電極107側の面の幅dの少なくとも20倍以下が好適であり、より好ましくは10倍以下に設定される。
また、領域306の形状は、幅dの方が幅dより狭いテーパー形状であってもよく、前述の寄生容量Cや導体ロスの観点からテーパー角θは135°程度まで許容される。しかし、領域306の幅が小さいと抵抗が高くなるため、テーパー角θは90°以上、すなわち幅dが幅d以上であることが望ましい。なお、領域306の形状に関わらず、領域306の最も幅が大きい部分において、領域306の幅が上述のλ/10以下となるようにすればよい。
このような半導体素子300によれば、電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる。
図3(c)には、半導体素子400の構成を示す。半導体素子400は、領域106として、角度θでテーパー加工された孔431の表面を導体130の薄膜で被覆した中空の電極構造を用いた領域406を有する半導体素子である。このように、領域406は、誘電体層105に形成された孔431の表面が導体130で被覆されていれば形成することが可能で、領域406内に導体130が完全に充填されておらず一部空洞を有している構成であっても良い。この場合、直列抵抗の観点から、導体130の厚さは表皮深さの2倍以上が好ましい。このような構成は、金属の埋め込み工程が不要なため、歩留まりがよく、製造コストも低減できる。
このような構成であっても、領域406の最も幅が大きい部分において、領域406の幅が上述のλ/10以下となるようにすればよい。領域406は、上述の半導体素子300と同様の範囲でテーパー角などを決定すればよい。
このような半導体素子400によれば、電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる。
図4(a)~(c)は、それぞれ素子100の別の変形例である半導体素子500、600、700の構成を説明する断面図である。図4(a)~(c)のそれぞれは、素子100のA-A断面と対応する断面を示している。ここで、素子100と同じ構成については、図面に同様の符号を付し、詳細な説明を省略する。
図4(a)は、素子100の変形例の1つである半導体素子500の構成を説明する図である。半導体素子500は、第3の電極503、孔531に充填された導体130を含む領域506、第1のオーミック電極507b、RTD101を含む半導体層102、第2のオーミック電極507a、第1の電極504の順に積層された構成の共振器を含む。
素子100では、第1の電極104の方が第3の電極103より基板108側に配置されており、領域106は半導体層102の基板108と反対側に設けられていた。それに対し、半導体素子500では、第3の電極503の方が第1の電極504より基板108側に配置されており、領域506が半導体層102の基板108側に設けられている。なお、領域506は領域106と同様の構成で、オーミック電極507a、507bはオーミック電極107と同様のものを用いることができる。
このような半導体素子500によれば、電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる。なお、領域506と半導体層102との間に、さらに第1のオーミック電極507bを配置すれば、直列抵抗がより低減されるので好適である。
図4(b)は、素子100の変形例の1つである半導体素子600の構成を説明する図である。半導体素子600は、基板108上に、第1の電極104、領域606b、オーミック電極607b、半導体層102、オーミック電極607a、孔631aに充填されている導体130を含む領域606a、第3の電極103の順に積層されている。領域606bは、孔631bに充填されている導体130を含む。領域606a、606b、半導体層102及びオーミック電極607a、607bそれぞれの構成は、素子100と同様のものを用いることができる。また、領域606bの大きさや形状は、上述の幅dをオーミック電極607b側の領域606bの幅d、幅dを第1の電極104側の領域606bの幅dとして、上述の関係を満たす構成とすることが望ましい。このような半導体素子600によれば、電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる。
図4(c)は、素子100の変形例の1つである半導体素子700の構成を説明する図である。半導体素子700は、半導体素子200における半導体層102およびオーミック電極107を窒化シリコンなどの絶縁層715で被覆している。また、領域106とオーミック電極107とが、半導体層102の幅より細い1μm以下のコンタクトホール716を介して接続されている。このような半導体素子700によれば、電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる。
このように、本実施形態に記載の半導体素子によれば、誘電体厚を調整して導体ロス低減やインピーダンスマッチングを行うことができる。そのため、RTDを集積したテラヘルツ波の共振器を有する発振器における電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる。
(実施例1)
本実施例に係るテラヘルツ波を発振する素子100の構成について、図1を用いて説明する。素子100は、発振周波数fTHz=0.45THzを発振させる素子である。本実施例で用いたRTD101は、例えば、InP基板108上のInGaAs/InAlAs、InGaAs/AlAsによる多重量子井戸構造とn-InGaAsによる電気的接点層を伴って構成される。
多重量子井戸構造としては、例えば三重障壁構造を用いる。より具体的には、AlAs(1.3nm)/InGaAs(7.6nm)/InAlAs(2.6nm)/InGaAs(5.6nm)/AlAs(1.3nm)の半導体多層構造を含む。このうち、InGaAsは井戸層で、格子整合するInAlAsや非整合のAlAsは障壁層である。これらの層は意図的にキャリアドープを行わないアンドープ層としておく。
この様な多重量子井戸構造は、電子濃度が2×1018cm-3のn-InGaAsによる電気的接点層に挟まれる。こうした電気的接点層間の構造の電流電圧I(V)特性において、ピーク電流密度は280kA/cmであり、約0.7Vから約0.9Vまでが微分負性抵抗領域となる。RTD101が約2μmΦのメサ構造の場合、ピーク電流10mA、微分負性抵抗-20Ωが得られる。
共振器114は、パッチ導体である第3の電極103、接地導体である第1の電極104及び誘電体層105と、RTD101を含む半導体層102とを有する。共振器114は、第3の電極103の一辺が200μmの正方形のパッチアンテナを含む。第3の電極103と第1の電極104との間には、誘電体層105として3μm厚のBCB(ベンゾシクロブテン、ダウケミカル社製、ε=2.4)が配置されている。
第1の電極104は、電子濃度が2×1018cm-3以上のn+-InGaAs層(200nm)とTi/Pd/Au層(20/20/100nm)を用いる。共振器114は、第1の電極104、直径2μmのRTD101を含む半導体層102、Mo/Au(=50/200nm)を含むオーミック電極107、Cuを含む導体130、Ti/Au(=5/100nm)を含む第3の電極103の順に接続されている。RTD101は、パッチ導体である第3の電極103の重心から共振方向に80μmシフトした位置に配置されている。
パッチアンテナの単独の共振周波数は、約0.48THzであるが、RTD101のリアクタンスを考慮すると、素子100の発振周波数(共振周波数)fTHzは約0.45THzとなる。ここで、領域106の幅dは10μm、高さhは10μmとし、半導体層102の高さは0.1μmとした。本実施例における直列抵抗Rは約0.2Ωである。
第3の電極103は、線路109を介して、バイアス回路120と、接続される。第3の電極103は、発振周波数fTHz(=0.45THz)で共振器114に定在する高周波電界の節で線路109と接続されており、線路109と発振周波数fTHzのテラヘルツ波の共振電界との干渉を抑制している。容量110はMIM(Metal-Insulator-Metal)容量であり、容量の大きさは、本実施例では100pFとした。容量110には、ワイヤーボンディングを含む配線112が接続され、電源113によりRTD101のバイアス電圧が調整される。
本実施例による素子100は、以下の工程で作製できる。まず、InP基板108上に、分子ビームエピタキシー(MBE)法や有機金属気相エピタキシー(MOVPE)法などによって、半導体層102となる以下の層をエピタキシャル成長する。すなわち、順に、n-InP/n-InGaAs、InGaAs/InAlAsによるRTD101を含む半導体層102をエピタキシャル成長する。InP基板108としてn型の導電性基板を選択する場合は、n-InGaAsからエピタキシャル成長すればよい。
次に、RTD101を含む半導体層102の上にオーミック電極107となるMo/Au(=50/200nm)をスパッタリング法により成膜する。次に、オーミック電極107およびRTD101を含む半導体層102を直径2μmの円形のメサ形状に成形する。ここで、メサ形状の形成にはEB(電子線)リソグラフィ又はフォトリソグラフィとICP(誘導性結合プラズマ)によるドライエッチングを用いる。続いて、エッチングされた面に、リフトオフ法により第1の電極104を形成する。さらに、スピンコート法とドライエッチング法を用いて誘電体層105となるBCBによる埋め込み及び平坦化をおこなう。
次に、フォトリソグラフィとドライエッチングにより領域106を形成する部分のBCBを除去して、孔131を形成する。その後、オーミック電極107の一部を露出する。この際、グレースケール露光を含むフォトリソグラフィを用いれば、誘電体層105に形成する孔131のテーパー角度を任意に制御することも出来る。したがって、領域106のテーパー角度を任意に制御することができる。続いて、スパッタリング法、電気めっき法、化学的機械研磨法を用いてオーミック電極107と接するように導体130としてのCuで孔(ビアホール)131を埋め込み、平坦化することにより領域106を形成する。続いて、リフトオフ法によりTi/Auの第3の電極103を形成する。
最後に、抵抗111となるシャント抵抗やワイヤーボンディングなどで配線112及び電源113と接続することで素子100は完成する。素子100への電力の供給はバイアス回路120から行われ、通常は微分負性抵抗領域となるバイアス電圧を印加してバイアス電流を供給すると、発振器として動作する。
本実施例の半導体素子によれば、RTDを集積したテラヘルツ波の共振器を有する発振器における電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる。
(実施例2)
本実施例では、半導体素子800(以下、「素子800」と呼ぶ)について、図5、図6を参照して説明する。素子800は、テラヘルツ波を発振する発振器である。図5は、素子800の構成を説明する図である。図6(a)は図5におけるVIA-VIA断面図、図6(b)は図5におけるVIB-VIB断面図、図6(c)は図5のVIC-VIC断面図について説明する図である。
素子800は、第一の実施形態及び第二の実施形態で説明した各半導体素子を、20GHzで高速変調するための構造を有する。
素子800は、共振器814と、導体809と、シャント抵抗811と、絶縁体815と、変換部817と、コプレーナ線路818と、導体819と、基板820と、を有する
素子800は、発振周波数fTHz=0.45THzを発振させる素子である。共振器814は、パッチ導体である第3の電極803(以下、「パッチ導体803」と呼ぶ)、接地導体である第1の電極804a(以下、「接地導体804a」と呼ぶ)及び誘電体層805と、RTD801を含む半導体層802とを有する。共振器814は、一辺が200μmの正方形のパッチ導体803と接地導体804aとの間に、約10μm厚のBCBからなる誘電体層805が挟まれたパッチアンテナの構造を有する。以降の説明では、共振器814を、パッチアンテナ814と呼ぶ。
パッチアンテナ814は、半導体層804b、RTD801、Mo/Au(=50/200nm)を含むオーミック電極807、Cuを含む導体830、Ti/Au(=5/200nm)を含むパッチ導体803の順に接続されている。また、パッチアンテナ814は、半導体層804b上に、接地導体804aが配置されている。半導体層802は、直径2μmのRTD801を含む。接地導体804aは、Ti/Pd/Au層(20/20/200nm)からなり、電子濃度が2×1018cm-3以上のn+-InGaAs層(200nm)からなる半導体層804bと接続される。
本実施例のRTD801は、実施例1で説明したInGaAs/InAlAs系の3重障壁RTDを用いており、InGaAs/InAlAsを半絶縁性のリン化インジウム(比誘電率~12)からなる基板820上にエピタキシャル成長した半導体層である。RTD101は、パッチ導体803の重心から共振方向に80μmシフトした位置に配置されている。
本実施例の素子800は、導体830が埋め込まれた幅10μm、高さ10μmの領域806を有する。領域806は、オーミック電極807とパッチ導体803とを電気的に接続する構造である。半導体層802の高さは約0.1μmとした。
パッチ導体803は、Ti/Au(=5/200nm)を含む第5の導体であるプラグ816と導体809とを介して、変換部817、コプレーナ線路818と接続される。本実施例では、プラグ816は幅6um高さ10umであり、導体809は幅6um長さ150umとする。
導体809、接地導体804a、半導体層804b及び絶縁体815で構成されるマイクロストリップ線路は、数GHz以上100GHz未満の範囲で損失性の線路であり、導体809のインダクタンスに起因する寄生発振を抑制する構造となっている。このようなマイクロストリップラインにおける絶縁体815は、100nm厚の窒化シリコン層を用いた。20GHzの高周波伝送のため、パッチアンテナ814とマイクロストリップラインの容量は0.3pF以下となるように設計される。
導体809は、シャント抵抗811を介して、接地導体804aと接続される。シャント抵抗811は、典型的な構造が幅5um、長さ5um、厚さ0.3umの2×1018cm-3以上のn-InGaAs層を含む半導体層804bと、導体809と半導体層804bとの接触抵抗から構成され、5~10ohmとなるように設計される。シャント抵抗811と導体819は、絶縁体815で絶縁されている。
コプレーナ線路818は、信号線である導体819(Ti/Au=5/200nm)と、グランド線である導体804c及び804d(Ti/Au=5/200nm)と、基板820とを有する。コプレーナ線路818は、基板820の厚さtを0.5mmとすると、ギャップ幅wが10um、導体819の幅sが50umであり、変調する搬送波の周波数20GHzに対して50Ωとなるように設計されている。
変換部817は、導体809、接地導体804a、半導体層804b及び絶縁体815を有するマイクロストリップ線路とコプレーナ線路818とを50Ωのインピーダンスで変換する変換器である。コプレーナ線路818の後段には、ワイヤーボンディングを含む配線と高周波電源(いずれも不図示)が接続されており、RTD801へ、20GHzで変調されたバイアス電圧の搬送波が伝送される。
本実施例の半導体素子によれば、RTDを集積したテラヘルツ波の共振器を有する発振器における電磁波の損失を従来よりも低減し、テラヘルツ波をより高効率に発振又は検出できる。
また、本実施例の半導体素子は、パッチアンテナ814から、ベースバンド0.45THzにおいて20GHzの搬送波を送信することが可能となる。また、RTD801の非線形光応答性を利用して、本実施例の構成をテラヘルツ波の検出器として用いることも出来る。この場合、素子800は、0.45THzにおいて20GHzの搬送波を受信可能な検出素子として動作する。
本実施例の半導体素子によれば、導体830を含む領域806有している。このような構成であれば、パッチアンテナ814の誘電体を厚くすることができるので、ギガヘルツ帯(GHz帯)の搬送波の遅延に対するパッチアンテナ814の容量の影響を低減することができる。このため、本実施例の素子800によれば、RTD801のような負性抵抗素子を集積したパッチアンテナ814の送受信機を高速大容量通信に用いる場合に、好適に利用することが出来る。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
例えば、RTDの構成は、上述の各実施形態及び実施例に記載の構造や材料系に限られることなく、他の構造や材料の組み合わせであっても本発明の半導体素子を提供することができる。例えば、2重障壁構造を有する2重量子井戸構造を有するRTDや、4重以上の多重障壁構造を有する多重量子井戸を有するRTDを用いてもよい。
また、RTDの材料としては、以下の組み合わせのそれぞれを用いてもよい。
・GaAs基板上に形成したGaAs/AlGaAs/及びGaAs/AlAs、InGaAs/GaAs/AlAs
・InP基板上に形成したInGaAs/AlGaAsSb
・InAs基板上に形成したInAs/AlAsSb及びInAs/AlSb
・Si基板上に形成したSiGe/SiGe
上述の構造と材料は、所望の周波数などに応じて適宜選定すればよい。
また、上述の実施形態及び実施例では、キャリアが電子である場合を想定して説明しているが、これに限定されるものではなく、正孔(ホール)を用いたものであってもよい。基板や誘電体の材料は、用途に応じて選定すればよく、シリコン、ガリウムヒ素、インジウムヒ素、ガリウムリンなどの半導体や、ガラス、セラミック、テフロン(登録商標)、リエチレンテレフタラートなどの樹脂を用いることができる。
さらに、上述の実施形態及び実施例では、テラヘルツ波の共振器として正方形パッチを用いているが、共振器の形状はこれに限られたものではなく、例えば、矩形及び三角形等の多角形、円形、楕円形等のパッチ導体を用いた構造の共振器等を用いてもよい。
半導体素子に集積する微分負性抵抗素子の数は、1つに限るものではなく、微分負性抵抗素子を複数有する共振器としてもよい。線路の数も1つに限定されず、複数の線路を設ける構成でもよい。
上述の実施形態と実施例で記載した半導体素子は、各構成を組み合わせることも可能である。たとえば、半導体素子500の半導体層102及びオーミック電極507a、507bを、図4(c)の絶縁層715で被膜してもよい。また、半導体素子600の領域606a、606bの形状を第二の実施形態のようにテーパー構造にしたり等の組み合わせが考えられるが、これらに限らず、適宜組み合わせることができる。
また、上述の実施形態及び実施例では、誘電体層105に形成された孔(ビアホール)に導体を充填又は孔の表面を導体で被覆していたが、孔の表面に導体と異なる材料で被覆層を設けてもよい。例えば、実施例の素子100を例にとると、孔131の表面に導体130と異なる材料で被覆層を形成する。被覆層を配置した後に形成されている孔に導体130を充填する、又は、被覆層を配置した後に形成されている孔の表面を導体130で被覆することにより、領域106が形成できる。
上述の実施形態及び実施例に記載の半導体素子を用いて、テラヘルツ波の発振及び検出を行うこともできる。
102 半導体層
103 第3の電極
104 第1の電極
105 誘電体層
106 領域
107 第2の電極
130 導体

Claims (20)

  1. テラヘルツ波を発生又は検出する半導体素子であって、
    共鳴トンネルダイオードを有する半導体層と、
    前記半導体層と接続されている第1の電極と、
    前記半導体層に対して前記第1の電極が配置されている側の反対側に配置されており、前記半導体層と電気的に接続されている第2の電極と、
    前記第2の電極と電気的に接続されている第3の電極と、
    前記半導体層及び前記第2の電極の周囲で且つ前記第1の電極と前記第3の電極との間に配置されており、前記半導体層の厚さより厚い誘電体層と、を備え、
    前記誘電体層は、前記第2の電極と前記第3の電極とを電気的に接続する導体を含む領域を有し、
    前記領域は、前記導体が充填されている領域であり、
    前記テラヘルツ波の共振方向である第1の方向において、前記領域の幅は前記第3の電極の幅よりも小さく、
    記第1の方向と直交する第2の方向において、前記領域の幅は前記第3の電極の幅よりも小さく、
    前記第1の方向および前記第2の方向において、前記領域の幅は前記第2の電極の幅よりも大きい
    ことを特徴とする半導体素子。
  2. テラヘルツ波を発生又は検出する半導体素子であって、
    共鳴トンネルダイオードを有する半導体層と、
    前記半導体層と接続されている第1の電極と、
    前記半導体層に対して前記第1の電極が配置されている側の反対側に配置されており、前記半導体層と電気的に接続されている第2の電極と、
    前記第2の電極と電気的に接続されている第3の電極と、
    前記半導体層及び前記第2の電極の周囲で且つ前記第1の電極と前記第3の電極との間に配置されており、前記半導体層の厚さより厚い誘電体層と、を備え、
    前記誘電体層は、前記第2の電極と前記第3の電極とを電気的に接続する導体を含む領域を有し、
    前記テラヘルツ波の共振方向である第1の方向において、前記領域の幅は前記第3の電極の幅よりも小さく、
    記第1の方向と直交する第2の方向において、前記領域の幅は前記第3の電極の幅よりも小さく、
    前記第1の方向および前記第2の方向において、前記領域の幅は前記第2の電極の幅よりも大きく、
    前記領域は、以下の式を満たす
    ことを特徴とする半導体素子。
    tanθ=2h/(d-d
    45°<θ<135°
    :前記領域の前記第2の電極側の面の幅
    :前記領域の前記第3の電極側の面の幅
    h:前記領域の厚さ
  3. 前記半導体層と、前記第1の電極と、前記第3の電極と、前記第2の電極と、前記誘電体層と、は、共振器を形成しており、
    前記領域の最も長い幅は、前記共振器で共振するテラヘルツ波の前記誘電体層における実効波長λの1/10以下である
    ことを特徴とする請求項1又は2に記載の半導体素子。
  4. 前記導体は、抵抗率が1×10-6Ω・m以下の材料を含む
    ことを特徴とする請求項1乃至3のいずれか一項に記載の半導体素子。
  5. 前記導体は、抵抗率が1×10-6Ω・m以下の金属を含む
    ことを特徴とする請求項1乃至4のいずれか一項に記載の半導体素子。
  6. 前記領域の前記第3の電極側の面の幅dが、前記領域の前記第2の電極側の面の幅dの20倍以下である
    ことを特徴とする請求項1乃至5のいずれか一項に記載の半導体素子。
  7. 前記領域の前記第3の電極側の面の幅dが、前記領域の前記第2の電極側の面の幅dの10倍以下である
    ことを特徴とする請求項1乃至5のいずれか一項に記載の半導体素子。
  8. 前記領域の前記第3の電極側の面の幅dは、前記領域の前記第2の電極側の面の幅d以上である
    ことを特徴とする請求項6又は7に記載の半導体素子。
  9. 前記領域の厚さは、前記第3の電極の厚さより厚く、且つ共振するテラヘルツ波の前記誘電体層における実効波長λの1/10以下である
    ことを特徴とする請求項1乃至8のいずれか一項に記載の半導体素子。
  10. 前記領域の厚さは、前記半導体層の厚さより厚い
    ことを特徴とする請求項9のいずれか一項に記載の半導体素子。
  11. 前記誘電体層の厚さhは、前記半導体層の厚さより厚く、共振するテラヘルツ波の前記誘電体層における実効波長λの1/10以下である
    ことを特徴とする請求項1乃至10のいずれか一項に記載の半導体素子。
  12. 前記半導体層と前記第2の電極とは、オーム性接続されている
    ことを特徴とする請求項1乃至11のいずれか一項に記載の半導体素子。
  13. 前記半導体層に対して前記第1の電極が配置されている側に配置されており、前記半導体層と電気的に接続されている第4の電極を有し、
    前記誘電体層は、前記第1の電極と前記第4の電極と電気的に接続する前記導体と異なる導体を含む第2の領域を有する
    ことを特徴とする請求項1乃至12のいずれか一項に記載の半導体素子。
  14. 前記第2の領域は、以下の式を満たす
    ことを特徴とする請求項13に記載の半導体素子。
    tanθ=2h/(d-d
    45°<θ<135°
    :前記第2の領域の前記第4の電極側の面の幅
    :前記第2の領域の前記第1の電極側の面の幅
    h:前記第2の領域の厚さ
  15. 前記半導体層と前記第4の電極とは、オーム性接続されている
    ことを特徴とする請求項13又は14に記載の半導体素子。
  16. 前記半導体層は、共鳴トンネルダイオードを含む
    ことを特徴とする請求項1乃至15のいずれか一項に記載の半導体素子。
  17. 前記半導体層と、前記第1の電極と、前記第3の電極と、前記第2の電極と、前記誘電体層と、は、共振器を形成しており、
    前記共振器は、パッチアンテナを含む
    ことを特徴とする請求項1乃至16のいずれか一項に記載の半導体素子。
  18. 前記半導体層にバイアス電圧を供給する電源と、
    前記共振器と前記電源とを接続するバイアス回路と、を有し、
    前記バイアス回路は、ストリップ線路と、前記ストリップ線路と前記共振器とを接続するためのプラグと、前記ストリップ線路と接続しており前記半導体層と並列に接続しているデカップリング容量及びシャント抵抗と、前記電源と接続しているコプレーナ線路と、前記ストリップ線路のインピーダンスと前記コプレーナ線路のインピーダンスとを変換する変換器と、を備える
    ことを特徴とする請求項17に記載の半導体素子。
  19. 前記プラグは、前記共振器に定在するテラヘルツ波の電界の節に配置されている
    ことを特徴とする請求項18に記載の半導体素子。
  20. 前記電界の節は、前記共振器に定在するテラヘルツ波の周波数における電界強度が、前記共振器に定在するテラヘルツ波の最大電界強度の1/e(eは自然対数の底)以下となる位置である
    ことを特徴とする請求項19に記載の半導体素子。
JP2016096255A 2015-06-15 2016-05-12 半導体素子 Active JP7076937B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/736,529 US10951167B2 (en) 2015-06-15 2016-05-23 Semiconductor device
PCT/JP2016/002497 WO2016203712A1 (en) 2015-06-15 2016-05-23 Semiconductor device generating or detecting terahertz waves
JP2021086665A JP2021153185A (ja) 2015-06-15 2021-05-24 半導体素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015120403 2015-06-15
JP2015120403 2015-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021086665A Division JP2021153185A (ja) 2015-06-15 2021-05-24 半導体素子

Publications (2)

Publication Number Publication Date
JP2017005690A JP2017005690A (ja) 2017-01-05
JP7076937B2 true JP7076937B2 (ja) 2022-05-30

Family

ID=57752471

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016096255A Active JP7076937B2 (ja) 2015-06-15 2016-05-12 半導体素子
JP2021086665A Pending JP2021153185A (ja) 2015-06-15 2021-05-24 半導体素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021086665A Pending JP2021153185A (ja) 2015-06-15 2021-05-24 半導体素子

Country Status (2)

Country Link
US (1) US10951167B2 (ja)
JP (2) JP7076937B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112702968A (zh) * 2018-09-17 2021-04-23 柯惠Lp公司 手术机器人系统
JP7262959B2 (ja) 2018-10-04 2023-04-24 キヤノン株式会社 半導体素子、半導体素子の製造方法
CN112557761A (zh) * 2019-09-25 2021-03-26 天津大学 一种高分辨率简易太赫兹近场成像阵列单元
US20220013915A1 (en) * 2020-07-08 2022-01-13 Samsung Electro-Mechanics Co., Ltd. Multilayer dielectric resonator antenna and antenna module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324257A (ja) 2006-05-31 2007-12-13 Canon Inc レーザ素子
JP2008011490A (ja) 2006-05-31 2008-01-17 Canon Inc アクティブアンテナ発振器
JP2010233031A (ja) 2009-03-27 2010-10-14 Canon Inc 共振器
JP2014207654A (ja) 2013-03-16 2014-10-30 キヤノン株式会社 導波路素子
JP2015091117A (ja) 2013-11-07 2015-05-11 キヤノン株式会社 発振器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151250A (ja) * 1998-11-05 2000-05-30 Matsushita Electric Ind Co Ltd アンテナ、それを備えた搭載機およびそれらを用いたデータ送受信システム
JP2001345608A (ja) * 2000-06-05 2001-12-14 Toyota Central Res & Dev Lab Inc 線路変換器
JP5129443B2 (ja) 2004-08-25 2013-01-30 三星電子株式会社 ミリ波及びサブミリ波用電磁波を生成する量子井戸共鳴トンネルジェネレータを安定化するマイクロストリップ
US7653371B2 (en) * 2004-09-27 2010-01-26 Qualcomm Mems Technologies, Inc. Selectable capacitance circuit
JP5737669B2 (ja) 2010-11-15 2015-06-17 日本信号株式会社 超伝導トンネル接合検出器
WO2012163403A1 (en) * 2011-05-30 2012-12-06 Acconeer Ab Transceiver module
JP2014175533A (ja) * 2013-03-11 2014-09-22 Canon Inc レーザ素子
JP6510802B2 (ja) * 2014-12-08 2019-05-08 ローム株式会社 テラヘルツ素子およびその製造方法
US9899959B2 (en) * 2015-05-22 2018-02-20 Canon Kabushiki Kaisha Element, and oscillator and information acquiring device including the element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324257A (ja) 2006-05-31 2007-12-13 Canon Inc レーザ素子
JP2008011490A (ja) 2006-05-31 2008-01-17 Canon Inc アクティブアンテナ発振器
JP2010233031A (ja) 2009-03-27 2010-10-14 Canon Inc 共振器
JP2014207654A (ja) 2013-03-16 2014-10-30 キヤノン株式会社 導波路素子
JP2015091117A (ja) 2013-11-07 2015-05-11 キヤノン株式会社 発振器

Also Published As

Publication number Publication date
US20180152141A1 (en) 2018-05-31
JP2017005690A (ja) 2017-01-05
JP2021153185A (ja) 2021-09-30
US10951167B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
JP2021153185A (ja) 半導体素子
US11011663B2 (en) Semiconductor element for oscillating or detecting terahertz wave and manufacturing method of semiconductor element
US10594260B2 (en) Element that oscillates or detects terahertz waves
JP7208306B2 (ja) 素子
US11831063B2 (en) Element having antenna array structure
US20230208359A1 (en) Device emitting or detecting terahertz waves, and manufacturing method for device
WO2016203712A1 (en) Semiconductor device generating or detecting terahertz waves
US8125281B2 (en) Resonator
US11258156B2 (en) Element used for an oscillation or detection of a terahertz wave
JP6870135B2 (ja) 素子
WO2022024788A1 (ja) 半導体素子
US11496095B2 (en) Oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210524

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210601

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210615

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210709

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210713

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211026

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211214

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220315

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220419

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R151 Written notification of patent or utility model registration

Ref document number: 7076937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151