JP7076074B2 - How to install a flat-bottomed cylindrical tank with a concrete wall - Google Patents
How to install a flat-bottomed cylindrical tank with a concrete wall Download PDFInfo
- Publication number
- JP7076074B2 JP7076074B2 JP2018022886A JP2018022886A JP7076074B2 JP 7076074 B2 JP7076074 B2 JP 7076074B2 JP 2018022886 A JP2018022886 A JP 2018022886A JP 2018022886 A JP2018022886 A JP 2018022886A JP 7076074 B2 JP7076074 B2 JP 7076074B2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- concrete
- floating roof
- formwork
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/108—Rainwater harvesting
Landscapes
- Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
Description
この発明は、重油などの液体を貯蔵するためのコンクリート製外槽を備えた平底円筒形タンクの施工方法に関するものである。 The present invention relates to a method for constructing a flat-bottomed cylindrical tank provided with a concrete outer tank for storing a liquid such as heavy oil.
重油等を貯蔵する鋼製平底円筒形タンクが、大地震に伴って発生した津波により押し流されて、タンク貯蔵液が市街地に流出して火災を広げ、津波被害を深刻にしたことから、津波に容易に押し流されないタンクが求められている。
一般に、石油類を貯蔵する平底円筒形タンクは鋼製の底板と側板とで構成され、アンカーボルト等で基礎上に固定されずに載置されているだけの場合が多く、そのため貯蔵液量が少ない場合には、津波の圧力と浮力により押し流され易い状況にある。
A steel flat-bottomed cylindrical tank that stores heavy oil, etc. was swept away by the tsunami generated by the great earthquake, and the tank storage liquid flowed out into the city area, spreading the fire and making the tsunami damage serious. There is a demand for tanks that are not easily washed away.
In general, a flat-bottomed cylindrical tank for storing petroleum is composed of a steel bottom plate and side plates, and is often simply placed without being fixed on the foundation with anchor bolts or the like, so that the amount of stored liquid is large. If the amount is small, it is likely to be swept away by the pressure and buoyancy of the tsunami.
タンクの流出を防止する技術の例として、特許文献1の「構造物の地震・津波対策構造」の発明がある。この発明には、タンクの周囲の地盤に、複数の矢板及び鋼管矢板を打設し、地震や津波による構造物の他の構造物への衝突、漂流物の構造物への衝突等を防ぐことが可能な構造物の地震・津波対策構造が開示されている。
As an example of the technique for preventing the outflow of the tank, there is the invention of "Earthquake / Tsunami Countermeasure Structure of Structure" in
また、鋼製タンクよりも自重が大きく、かつ津波による側圧を受け止めることが可能となるコンクリート側壁を有するタンク等の発明がなされており、本出願人による特許文献2の「コンクリート壁を備えたタンクの施工方法」の発明がある。この発明には、タンク内槽を構築し、その内槽をコンクリート打設用の内側型枠として利用し、かつ該内槽内に注水して内槽内に設置された浮屋根を浮上させ、該浮屋根の外周部に沿って環状に取付けた加圧バッグ内に注入した流体で加圧することにより、内槽側板を内面から補強した状態で、コンクリートを打設する方法であり、設計高さまで順次外側型枠と浮屋根を上昇させ、外槽となるコンクリート側壁を下方から上方へ構築するコンクリート壁を備えた浮屋根式平底円筒形タンクの構築方法が開示されている。
Further, an invention has been made of a tank having a concrete side wall that has a heavier weight than a steel tank and can receive lateral pressure due to a tsunami, and is described by the applicant in
さらに、特許文献3の「複合構造貯槽の構築方法」には、鋼製槽を構築した後、該鋼製槽の頂部に設けられた仮設梁からコンクリート打設用の外型枠を吊り下げ、鋼製槽を密閉して内圧をかけつつ、槽下方から上方に向け外型枠を順次上昇移動させ、該外型枠を用いて鋼製槽外壁に槽下方より上方に向けて順次コンクリートを打設するようにした複合構造貯槽の構築方法が開示されている。
Further, in the "method for constructing a composite structure storage tank" in
さらにまた、特許文献4の「スリップフォーム装置および筒状壁体の構築方法」の発明には、筒状壁体の内周面をライニングする筒材の外周面と向かい合う外側型枠パネルを備えるヨークを筒材に設置される水平移動規制部材に対して昇降自在にしつつ水平方向の移動を規制するよう係合した外側型枠のみを有するスリップフォーム装置および筒状壁体の構築方法が開示されている。
Furthermore, in the invention of the "slip foam device and method for constructing a tubular wall body" in
特許文献1のようにタンク周囲に流出防止用の杭や矢板等を設置する津波対策は、タンクに作用する津波の圧力や浮力、流出した建築物の木材の衝突を避けることはできず、必ずしもタンク本体の損傷を免れることはできない。
また、様々な配管類が縦横に敷設された既設のタンクのヤード内に多数の杭を打設することは容易ではない。
さらに、金属製のライニングを有するコンクリート製タンクを構築する従来の工法は、津波による側圧や浮力に対抗させることは可能であるが、新規にタンクを設置する場合に可能な工法であり、津波対策が要求される既設のタンクには適用できない。
故に、該金属製タンクに接するように囲繞してコンクリート製の側壁を配設する構造を採用し、さらに該金属製タンクをコンクリート側壁構築時の内側型枠として利用し、コンクリート製外槽を構築する方法が、既設又は新設の平底円筒形タンクのいずれにも適用可能であるので、危険物貯蔵タンクの津波対策として最も合理的である。
このような津波対策用のコンクリート壁を有する平底円筒形タンクとしては、図8に示すような金属製のタンク1の外周部に側板4bの全体又は大部分を囲繞できる設計高さHcのコンクリート製の側壁3bを構築した二重殻構造の平底円筒形タンク1が考えられる。
Tsunami countermeasures such as installing piles and sheet piles to prevent outflow around the tank as in
In addition, it is not easy to drive a large number of piles in the yard of an existing tank in which various pipes are laid vertically and horizontally.
Furthermore, the conventional method of constructing a concrete tank with a metal lining can counteract the lateral pressure and buoyancy caused by the tsunami, but it is a method that is possible when installing a new tank, and is a tsunami countermeasure. Cannot be applied to existing tanks that require.
Therefore, a structure is adopted in which a concrete side wall is arranged so as to be in contact with the metal tank, and the metal tank is used as an inner formwork when constructing the concrete side wall to construct a concrete outer tank. This method is the most rational as a tsunami countermeasure for hazardous material storage tanks because it can be applied to both existing and new flat-bottomed cylindrical tanks.
As a flat-bottomed cylindrical tank having such a concrete wall for tsunami countermeasures, it is made of concrete having a design height of Hc that can surround the entire or most of the
ところで、平底円筒形タンクは、貯蔵液による内圧を基にその側板の必要板厚を求める設計がなされているため、該鋼製タンクをコンクリート側壁の構築のための型枠とする場合には、コンクリート打設時の外圧による鋼製タンク側板の変形を考慮する必要がある。
さらに、コンクリート側壁構築の工程を短縮するためには、一回のコンクリート打設高さをできるだけ高くすることが必要であるが、前記した鋼製タンクの変形の影響を考慮する必要が生じ、一回のコンクリート打設高さは型枠の強度により自ずと制限される。
既設の鋼製タンクの津波対策としてコンクリート壁で囲繞するための内側型枠として鋼製タンク自体を利用するうえで、コンクリート打設時の外圧による変形を抑制するには鋼製タンクの側板板厚を厚くすれば良いが、タンク構築コストが増大する。また、該タンクの側板の板厚を増すことは、タンク新設に匹敵する改修を行うことになり現実的ではない。
By the way, since the flat-bottomed cylindrical tank is designed to determine the required thickness of the side plate based on the internal pressure of the stored liquid, when the steel tank is used as a formwork for constructing a concrete side wall, it is used. It is necessary to consider the deformation of the steel tank side plate due to the external pressure when placing concrete.
Further, in order to shorten the process of constructing the concrete side wall, it is necessary to make the concrete casting height as high as possible, but it is necessary to consider the influence of the deformation of the steel tank described above. The height of concrete placement is naturally limited by the strength of the formwork.
When using the steel tank itself as an inner formwork to surround the existing steel tank with a concrete wall as a tsunami countermeasure, the side plate thickness of the steel tank is to suppress deformation due to external pressure during concrete placement. However, the tank construction cost will increase. In addition, increasing the thickness of the side plate of the tank is not realistic because it requires repairs comparable to the installation of a new tank.
既設又は新設の鋼製タンクを内側型枠とする既存のスリップフォーム工法は、
外側型枠のみを上昇させ、該タンクに仮設の補強構造を設置し、設計された高さのコンクリート製の側壁を構築することが可能であるが、当該工法は、タンクと同じ高さを有す補強部材を円周間隔に複数設ける必要がある等、コスト等で様々な問題点が有った。
The existing slip foam method that uses the existing or new steel tank as the inner formwork
It is possible to raise only the outer formwork, install a temporary reinforcement structure in the tank, and build a concrete side wall of the designed height, but the construction method has the same height as the tank. There were various problems in terms of cost, such as the need to provide multiple reinforcing members at circumferential intervals.
特許文献1の「構造物の地震・津波対策構造」は、タンクの周囲の地盤に複数の矢板及び鋼管矢板を打設し、タンクの移動やタンクに漂流物が衝突することを防ぐ構造であるが、タンクに作用する津波の側圧や浮力自体を避ける構造ではなく、タンク側板の変形を防止する構造に関するものでもない。
The "earthquake / tsunami countermeasure structure of a structure" in
特許文献2の「コンクリート壁を備えたタンクの施工方法」の発明は、コンクリート製の外槽を構築する際、外側型枠を順次コンクリート打設高さまで上昇させ、タンク内槽内に注水して浮屋根を上昇させ、加圧バッグ内に流体を注入してコンクリートを打設する工法であるが、内槽外周部に位置する外側型枠を内槽内に浮上させた浮屋根と連動させて昇降させる型枠スライド工法に関するものではない。
In the invention of
特許文献3の「複合構造貯槽の構築方法」は、鋼製槽を構築した後、該鋼製槽の頂部に設けられた仮設梁からコンクリート打設用の外型枠を吊り下げ、鋼製槽を密閉して空気圧をかけつつ、槽下方から上方に向け外型枠を順次上昇移動させ、コンクリートを打設するようにした複合構造貯槽の構築方法であり、前記鋼製槽を内型枠としてコンクリートを打設するようにした構築方法であるが、鋼製槽内に加圧バッグを有す浮屋根を設置し、該浮屋根と外側型枠を連動させて昇降させる工法に関するものではない。
またこの発明は、鋼製槽の内部全体を密閉し、エアコンプレッサ等により槽内に内圧を掛けて生コンクリートの打設圧に対抗するようにした工法であり、内槽内に設置した浮屋根及び加圧バッグで、コンクリートの打設圧に対抗するようにした工法ではない。
In
Further, the present invention is a construction method in which the entire inside of a steel tank is sealed and an internal pressure is applied to the inside of the tank by an air compressor or the like to counteract the placing pressure of ready-mixed concrete, and a floating roof installed in the inner tank. And it is not a construction method that is designed to counteract the placing pressure of concrete with a pressure bag.
特許文献4の「スリップフォーム装置および筒状壁体の構築方法」の発明は、内側の筒材をコンクリート打設時の内型枠として使用する工法であり、外型枠のみを有するコンクリート打設用のスリップフォーム装置を使用する工法であるが、前記筒材内に浮屋根を設置し、該浮屋根と外側型枠を連動させて昇降させる工法に関するものではない。
またこの発明は、内周面が筒材にてライニングされ、該筒材と前記外側型枠との間に新規にコンクリートを打設する工法に関するものであり、既設鋼製タンクに接するようにコンクリート側壁を構築する工法に関するものではない。
The invention of
The present invention also relates to a method in which the inner peripheral surface is lined with a tubular material and new concrete is placed between the tubular material and the outer formwork, and the concrete is in contact with the existing steel tank. It is not related to the construction method for constructing the side wall.
この発明は上述のような従来技術が有する問題点に鑑みてなされたもので、その目的とするところは、津波対策等の目的でコンクリート製外槽を備えた金属製の平底円筒形タンクを構築するに当たって、既設又は新設の金属製内槽である平底円筒形タンク側板をコンクリート製外槽側壁構築用の内側型枠とするとともに、金属製内槽内部に設置した円環状の加圧バッグを有する浮屋根と該金属製内槽の外周部に仮設した外側型枠を連動させて昇降させることにより、前記コンクリート製の外槽側壁を下方から上方へ構築するための型枠スライド工法による平底円筒形タンクの施工方法を提供することにある。
The present invention has been made in view of the problems of the prior art as described above, and the purpose thereof is to construct a metal flat-bottomed cylindrical tank equipped with a concrete outer tank for the purpose of tsunami countermeasures and the like. In order to do so, the flat-bottomed cylindrical tank side plate, which is an existing or new metal inner tank, is used as an inner formwork for constructing the side wall of the concrete outer tank, and an annular pressure bag installed inside the metal inner tank is provided. A flat-bottomed cylindrical shape by a formwork slide method for constructing the concrete outer tank side wall from the bottom to the top by moving the floating roof and the outer formwork temporarily provided on the outer periphery of the metal inner tank in conjunction with each other. The purpose is to provide a method of constructing a tank.
請求項1の発明に係るコンクリート壁を備えたタンクの構築のための型枠スライド工法は、金属製の内槽を囲繞して配設されるコンクリート製の外槽を備えた平底円筒形タンクの構築において、前記内槽は、新規に構築した金属製の平底円筒形タンク又は既設の金属製の平底円筒形タンクであって、該金属製の内槽の側板を前記コンクリート製の外槽の側壁構築におけるコンクリート打設のための内側型枠とし、円筒状の該内側型枠の外周部に前記外槽側壁の構築に用いるコンクリート打設のための外側型枠を仮設し、該外側型枠を前記内槽内に設置された金属製の浮屋根の昇降と連動して昇降させる型枠昇降手段を備えたコンクリート製側壁構築のための型枠スライド工法であって、
前記内槽側板の頂部または頂部近傍に仮設した架台上に前記外側型枠を吊持する複数の型枠昇降手段を仮設した後に、前記内槽内に注水し、前記浮屋根を前記外槽側壁構築のためのコンクリート打設高さまで上昇させ、かつ前記複数の型枠昇降手段で前記浮屋根の上昇と連動させて前記外側型枠を前記浮屋根と相対する高さまで上昇させる工程と、前記内槽側板を前記浮屋根および加圧バッグとで補強しつつ、前記内槽側板と外側型枠間にコンクリートを打設して凝固させる工程とを複数回順次繰り返して、設計された高さの前記コンクリート製の外槽側壁を下方から上方へ構築することを特徴とする。
The formwork slide method for constructing a tank with a concrete wall according to the invention of
After temporarily installing a plurality of formwork elevating means for suspending the outer formwork on the top or the vicinity of the top of the inner tank side plate, water is poured into the inner tank and the floating roof is placed on the outer tank side wall. A step of raising the outer formwork to a height facing the floating roof in conjunction with the raising of the floating roof by the plurality of formwork raising means and raising the concrete casting height for construction, and the inner part. While reinforcing the tank side plate with the floating roof and the pressure bag, the step of placing concrete between the inner tank side plate and the outer formwork and solidifying the concrete is sequentially repeated a plurality of times to obtain the designed height. It is characterized by constructing a concrete outer tank side wall from the bottom to the top.
請求項2の発明に係るコンクリート壁を備えたタンクの構築のための型枠スライド工法に用いる前記型枠昇降手段は、一端部が前記外側型枠に固定された線材と、該線材の巻き上げあるいは巻き下げを可能とする電動巻き取り機を備えた昇降駆動装置と、前記金属製内槽への注水により浮上する前記浮屋根の浮上高さを計測するための浮屋根高さ計測器と、該浮屋根高さ計測器で計測された前記浮屋根の高さ位置情報に係る電気信号を受信して、前記外側型枠の昇降高さを制御可能とする前記昇降駆動装置の制御装置とで構成され、前記浮屋根の浮上に連動して、前記電動巻き取り機に前記線材で連結された前記外側型枠を巻き上げ又は巻き下げることが可能な型枠昇降手段であることを特徴とする。
The formwork elevating means used in the formwork slide method for constructing a tank provided with a concrete wall according to the invention of
請求項3の発明に係るコンクリート壁を備えたタンクの構築のための型枠スライド工法に用いる前記浮屋根高さ計測器は、一端部が前記浮屋根の上部に固定され、他端部が張力を一定にする緊張装置に結合された線材と、前記浮屋根の昇降に伴う該線材の緩みが生じないように、該線材に生じる張力をほぼ一定に保持するように制御される電動巻き取り機とを具備し、該線材の巻取り長さを電気的又は光学的に計測することにより、前記浮屋根の浮上高さ位置を計測する浮屋根高さ計測器であるか、又は前記既設の平底円筒形タンクに具備された既設の液面計を用いた浮屋根高さ計測器であり、計測された前記浮屋根の高さ位置情報に係る電気信号を、前記外側型枠を昇降するための昇降駆動装置の制御装置に伝達することを特徴とする。
In the floating roof height measuring instrument used in the mold slide method for constructing a tank provided with a concrete wall according to the invention of
請求項4の発明に係るコンクリート壁を備えたタンクの構築のための型枠スライド工法に用いる前記浮屋根は、該浮屋根の外周部に沿って円環状に連続した単数又は連接した複数の着脱自在に取付けられた加圧バッグを備え、該加圧バッグは、該加圧バッグ内に液体又は気体からなる流体を注入し、又は該加圧バッグ内から液体又は気体からなる流体を排出するための流体注入口を備えるとともに、該流体注入口に配管を介して接続され、前記流体を出し入れして該加圧バック内の内圧を制御する圧力制御装置を有する加圧装置と着脱自在に接続された加圧バッグであって、請求項1記載の内槽側板を前記浮屋根および加圧バックとで補強しつつ、前記内槽側板と外側型枠間にコンクリートを打設して凝固させる工程において、一回に打設するコンクリートの打設高さ圧に対抗できるように、該コンクリートの打設高さに応じて、前記加圧バッグ内に前記流体を注入して圧力を調整し、該加圧バッグを前記内槽の側板内面と浮屋根側面に密着するように膨張させ、該内槽側板を内面側より加圧補強するとともに、前記外槽側壁のコンクリートが凝固した後に、次に行う工程に向けて前記浮屋根の昇降を自由にするために、前記加圧バッグ内から前記流体を排出し、前記加圧バッグ内を減圧して圧力制御することを特徴とする。
The floating roof used in the mold slide method for constructing a tank provided with a concrete wall according to the invention of
請求項1の発明に係るコンクリート壁を備えたタンクの構築のための型枠スライド工法は、金属製の内槽を囲繞して配設されるコンクリート製の外槽を備えた平底円筒形タンクの構築において、前記内槽は、新規に構築した金属製の平底円筒形タンク又は既設の金属製の平底円筒形タンクであって、該金属製の内槽の側板を前記コンクリート製の外槽の側壁構築におけるコンクリート打設のための内側型枠とし、円筒状の該内側型枠の外周部に前記外槽側壁の構築に用いるコンクリート打設のための外側型枠を仮設し、該外側型枠を前記内槽内に設置された金属製の浮屋根の昇降と連動して昇降させる型枠昇降手段を備えたコンクリート製側壁構築のための型枠スライド工法であって、
前記内槽側板の頂部または頂部近傍に仮設した架台上に前記外側型枠を吊持する複数の型枠昇降手段を仮設した後に、前記内槽内に注水し、前記浮屋根を前記外槽側壁構築のためのコンクリート打設高さまで上昇させ、かつ前記複数の型枠昇降手段で前記浮屋根の上昇と連動させて前記外側型枠を前記浮屋根と相対する高さまで上昇させる工程と、前記内槽側板を前記浮屋根および加圧バッグとで補強しつつ、前記内槽側板と外側型枠間にコンクリートを打設して凝固させる工程とを複数回順次繰り返して、設計された高さの前記コンクリート製の外槽側壁を下方から上方へ構築するので、
浮屋根と外側型枠を適正なコンクリート打設中心高さまで複数回繰り返し連動して昇降させることができ、設計高さのコンクリート製の外槽側壁を効率良く施工することが可能である。
新設又は既設の平底円筒形タンクの側板を内側型枠として使用するため、別途コンクリート側壁打設用の内側型枠を仮設・撤去する必要がなく、工期短縮と建設コストの低減を図ることができる。
The formwork slide method for constructing a tank with a concrete wall according to the invention of
After temporarily installing a plurality of formwork elevating means for suspending the outer formwork on the top or the vicinity of the top of the inner tank side plate, water is poured into the inner tank and the floating roof is placed on the outer tank side wall. A step of raising the outer formwork to a height facing the floating roof in conjunction with the raising of the floating roof by the plurality of formwork raising means and raising the concrete casting height for construction, and the inner part. While reinforcing the tank side plate with the floating roof and the pressure bag, the step of placing concrete between the inner tank side plate and the outer formwork and solidifying the concrete is sequentially repeated a plurality of times to obtain the designed height. Since the concrete outer tank side wall is constructed from the bottom to the top,
The floating roof and the outer formwork can be repeatedly moved up and down to the appropriate concrete placement center height multiple times, and the concrete outer tank side wall of the design height can be efficiently constructed.
Since the side plate of the new or existing flat-bottomed cylindrical tank is used as the inner formwork, it is not necessary to temporarily install or remove the inner formwork for placing the concrete side wall, and the construction period can be shortened and the construction cost can be reduced. ..
請求項2の発明に係るコンクリート壁を備えたタンクの構築のための型枠スライド工法に用いる前記型枠昇降手段は、一端部が前記外側型枠に固定された線材と、該線材の巻き上げあるいは巻き下げを可能とする電動巻き取り機を備えた昇降駆動装置と、前記金属製内槽への注水により浮上する前記浮屋根の浮上高さを計測するための浮屋根高さ計測器と、該浮屋根高さ計測器で計測された前記浮屋根の高さ位置情報に係る電気信号を受信して、前記外側型枠の昇降高さを制御可能とする前記昇降駆動装置の制御装置とで構成され、前記浮屋根の浮上に連動して、前記電動巻き取り機に前記線材で連結された前記外側型枠を巻き上げ又は巻き下げることが可能な型枠昇降手段であるので、
外側型枠を浮屋根の上昇高さに対応して昇降させることが容易となり、該外側型枠と浮屋根を相対するように同じ高さに容易に位置させることができるため、内槽側板のコンクリート打設圧に対する補強を適切に行った状態でコンクリートを打設することが可能となり、工期短縮を図ることができる。
The formwork elevating means used in the formwork slide method for constructing a tank provided with a concrete wall according to the invention of
Since it is easy to raise and lower the outer formwork according to the rising height of the floating roof, and the outer formwork and the floating roof can be easily positioned at the same height so as to face each other, the inner tank side plate can be easily moved up and down. It is possible to cast concrete in a state where the concrete casting pressure is appropriately reinforced, and the construction period can be shortened.
請求項3の発明に係るコンクリート壁を備えたタンクの構築のための型枠スライド工法に用いる前記浮屋根高さ計測器は、一端部が前記浮屋根の上部に固定され、他端部が張力を一定にする緊張装置に結合された線材と、前記浮屋根の昇降に伴う該線材の緩みが生じないように、該線材に生じる張力をほぼ一定に保持するように制御される電動巻き取り機とを具備し、該線材の巻取り長さを電気的又は光学的に計測することにより、前記浮屋根の浮上高さ位置を計測する浮屋根高さ計測器であるか、又は前記既設の平底円筒形タンクに具備された既設の液面計を用いた浮屋根高さ計測器であり、計測された前記浮屋根の高さ位置情報に係る電気信号を、前記外側型枠を昇降するための昇降駆動装置の制御装置に伝達するので、
既設の浮屋根式タンクに設置されている液面計で計測した内槽内に注入した水の液位或いは浮屋根に固定した線材の巻取り量に応じて前記浮屋根の浮上高さを計測した結果を基に、前記外側型枠の高さを調整することが容易となり、該外側型枠と浮屋根を相対するように同じ高さに容易に位置させることができるため、内槽側板のコンクリート打設圧に対する補強を適切に行った状態でコンクリートを打設することが可能となり、工期短縮を図ることができる。
In the floating roof height measuring instrument used in the mold slide method for constructing a tank provided with a concrete wall according to the invention of
The floating height of the floating roof is measured according to the liquid level of the water injected into the inner tank measured by the liquid level gauge installed in the existing floating roof type tank or the winding amount of the wire rod fixed to the floating roof. Based on the results, the height of the outer formwork can be easily adjusted, and the outer formwork and the floating roof can be easily positioned at the same height so as to face each other. It is possible to cast concrete in a state where the concrete casting pressure is appropriately reinforced, and the construction period can be shortened.
請求項4の発明に係るコンクリート壁を備えたタンクの構築のための型枠スライド工法に用いる前記浮屋根は、該浮屋根の外周部に沿って円環状に連続した単数又は連接した複数の着脱自在に取付けられた加圧バッグを備え、該加圧バッグは、該加圧バッグ内に液体又は気体からなる流体を注入し、又は該加圧バッグ内から液体又は気体からなる流体を排出するための流体注入口を備えるとともに、該流体注入口に配管を介して接続され、前記流体を出し入れして該加圧バック内の内圧を制御する圧力制御装置を有する加圧装置と着脱自在に接続された加圧バッグであって、請求項1記載の内槽側板を前記浮屋根および加圧バックとで補強しつつ、前記内槽側板と外側型枠間にコンクリートを打設して凝固させる工程において、一回に打設するコンクリートの打設高さ圧に対抗できるように、該コンクリートの打設高さに応じて、前記加圧バッグ内に前記流体を注入して圧力を調整し、該加圧バッグを前記内槽の側板内面と浮屋根側面に密着するように膨張させ、該内槽側板を内面側より加圧補強するとともに、前記外槽側壁のコンクリートが凝固した後に、次に行う工程に向けて前記浮屋根の昇降を自由にするために、前記加圧バッグ内から前記流体を排出し、前記加圧バッグ内を減圧して圧力制御するので、内槽側板の加圧補強とコンクリート打設を繰り返して実施することにより、外槽のコンクリートの打設圧によって内槽側板を変形させることなく、内槽側板の垂直立設状態を維持して設計高さが大きいコンクリート製の外槽側壁を構築することが可能である。タンクの浮屋根を、コンクリート打設時の補強構造として使用することができるため、別途コンクリート打設用の補強材を用意する必要がなく、側板全体に補強材等を取付けて補強する場合と比較して施工性、経済性が向上するとともに、外槽側壁施工時のコンクリート打設工事の安全性も向上する。
The floating roof used in the mold slide method for constructing a tank provided with a concrete wall according to the invention of
本発明に係るコンクリート壁を備えたタンクの構築のための型枠スライド工法の実施形態例について図1から図7を参照しながら説明する。なお、本発明は下記の実施形態にのみ限定されるものではない。本発明の要旨を逸脱しない範囲で下記の構成要素の省略または付加、構成要素の形状等の実施形態の変更を加えることが出来るのはもちろんである。また、図は概略を示すもので、一部のみを描き詳細構造は省略した。 An embodiment of the formwork slide method for constructing a tank provided with a concrete wall according to the present invention will be described with reference to FIGS. 1 to 7. The present invention is not limited to the following embodiments. It goes without saying that the following components can be omitted or added, and embodiments such as the shape of the components can be changed without departing from the gist of the present invention. In addition, the figure shows an outline, and only a part is drawn and the detailed structure is omitted.
図1、図2は、本発明に係るコンクリート壁を備えたタンクの構築のための型枠スライド工法の事例の全体側面説明図で、2は基礎、3は外槽、4は内槽を示す。なお、図1のタンク1は、内槽4内の液面高さに応じて昇降する浮屋根6を備えた新設の浮屋根式タンク1の事例である。
この二重殻構造の平底円筒形タンク1は、金属製の内槽4と該内槽4を囲繞して配設されるコンクリート製の外槽3とを備えた構造である。図1の左側はこのコンクリート製の外槽3の施工段階の断面図であり、右側はコンクリート製の外槽3の完成後の外観図である。
図1は主に新設タンク1で浮屋根6に固定した線材13aの巻き上げ量で浮屋根6の浮上高さを計測する場合の事例、図2は主に既設タンク1の液面計28で浮屋根6の浮上高さを計測する場合の事例を示す。
前記内槽4は、基礎2上に打設したコンクリート製の底版3a上に設置され、金属製の底板4aと、該底板4a上に立設した筒体状の金属製の側板4bとからなる構造であり、内槽側板4b頂部には、トップアングル7が設置されている。また、内槽側板4bの高さ方向上部に、雨水浸入防止措置9を備え、内槽側壁4bと外槽側壁3b間への雨水の浸入を防止する。
前記浮屋根6は、デッキサポート6f等の浮屋根サポート部材により底板4aから上方向に間隔をあけて支持されており、タンク1内に水5を張ると、浮屋根6が内槽4内を上昇し、水面上に浮上した状態となる。
浮屋根6は、外周部に加圧バッグ6aを有した構造とし、タンク1の水面に浮上させ、側板4bの内周面に対し、加圧バッグ6aを介して昇降自在に周囲が摺接された構造とする。加圧バッグ6aは、仮設の配管6bを介して、浮屋根6上の仮設の圧力制御装置6cを有する加圧装置6c1に接続される。この圧力制御装置6cは小規模のタンクの場合はタンク1外に設置しても良い。
前記外槽3は、前記コンクリート製の底版3aと、前記内槽側板4bを囲繞するコンクリート製の外槽側壁3bとからなる構造である。通常底版3aは鉄筋コンクリート、側壁3bはプレストレストコンクリートで構築する。
1 and 2 are overall side surface explanatory views of an example of a formwork slide method for constructing a tank provided with a concrete wall according to the present invention, where 2 is a foundation, 3 is an outer tank, and 4 is an inner tank. .. The
The flat-bottomed
FIG. 1 is an example in which the floating height of the floating
The
The floating
The floating
The
タンク1は、その内槽4の頂部又は頂部近傍に外側型枠3b1の型枠昇降手段11(以下、型枠昇降装置11)を備えていることとする。
図1、図2は、内槽4上部に円周等間隔に仮設した架台12上に当該型枠昇降装置11を備えた事例を示している。なお、この架台12には、内槽側板4bの頂部又は上部外周面に設けた点検架台やウィンドガーダー等のタンクの補強構造を使用しても良い。
この型枠昇降装置11は、一端部13b1が前記外側型枠3b1に固定された線材13bを、前記架台12上部に仮設した滑車15bに巻装させた後、当該線材13bの他端部13b2を巻き付ける電動巻き取り機14で構成されている。
前記線材13には、ワイヤーやロープ等を使用する。
タンク1の内槽4に内槽4内の液位を測定する液面計28を設置する。図1、図2はフロート式の液面計28を設置した事例である。
It is assumed that the
1 and 2 show an example in which the
In this
A wire, rope, or the like is used for the
A
図3は、コンクリート壁を備えたタンクの構築のための型枠スライド工法のタンク1構築開始から型枠昇降装置11設置完了までの工程の概略を説明するためのフローチャートである。このフローチャートは、新設の浮屋根式タンクのコンクリート製の外槽側壁3bを構築する場合の工程の事例を示す。
まず、工程(A)において、コンクリート製の底版3aを打設する。
続いて、内槽4を構築し、コンクリート打設用の内側型枠4bとする。該内槽4、すなわち内側型枠4bは以下の工程(B)~(C)で構築する。
工程(B)において、底版3a上に底板4aを設置する。
工程(C)において、該底板4a上に円筒状の側板4bを構築する。
工程(D)において、該底板4a上部にデッキサポート6fを介して浮屋根6を設置する。
工程(E)において、前記浮屋根6外周部に沿って加圧バッグ6aを環状に取付ける。この加圧バッグ6aは、該浮屋根6外周部と前記内槽4の側板4bとの間隙部に配設する。
続いて、工程(F)において、内槽側板4bの頂部又は頂部近傍に型枠昇降装置11を仮設する。
続いて、工程(G)において、コンクリート打設用の外側型枠3b1を仮設する。
続いて、工程(H)において、型枠昇降装置11の線材13bの一端部13b1を外側型枠3b1に固定し、前記架台12上部に仮設した第2の滑車15bに巻装した後、他端部13b2を電動巻き取り機14に巻き付ける。
続いて、新設のタンク1の場合は、工程(I)において、浮屋根高さ計測器25の線材13aを浮屋根6に固定し、型枠昇降装置11のタンク1への仮設が完了する。
FIG. 3 is a flowchart for explaining the outline of the process from the start of the construction of the
First, in the step (A), a
Subsequently, the
In the step (B), the
In step (C), a
In the step (D), the floating
In the step (E), the
Subsequently, in the step (F), the
Subsequently, in the step (G), the outer formwork 3b1 for placing concrete is temporarily installed.
Subsequently, in the step (H), one end 13b1 of the
Subsequently, in the case of the newly installed
図4は、コンクリート壁を備えたタンクの構築のための型枠スライド工法のコンクリート製の外槽側壁3bの構築開始から終了までの工程の概略を説明するためのフローチャートである。
内槽4の頂部又は頂部近傍に型枠昇降装置11を仮設した後、工程(a)において、コンクリート打設中心高さHpを制御装置19に設定する。なおコンクリート打設中心高さHpは、図2に示す通り、凝固したコンクリートの高さHp1に打設するコンクリートの下端からその中心までの高さHp2を足した高さであり、コンクリート打設時はこの高さを補強の中心高さHrと同じにする。
続いて、工程(b)において、タンク1の金属製の内槽4内に所定量の水5を注水し、浮屋根6を外槽側壁3b構築のためのコンクリート打設中心高さHpまで上昇させる。
続いて、工程(c)において、液面計28の液位測定又は浮屋根6に固定した線材13aの巻き上げ量等を計測する浮屋根高さ計測器25で浮屋根6の浮上高さを計測する。また、浮屋根高さ計測器25で計測した浮屋根6の上昇高さが型枠昇降制御手段19(以下、型枠昇降制御装置19)に伝達され、昇降駆動装置18に駆動信号が伝達される。
続いて、工程(d)において、外側型枠3b1に固定された線材13bが電動巻き取り機14で巻き取られ、外側型枠3b1を前記工程(b)において浮屋根6が浮上した高さと同じ高さの外槽側壁3b構築のためのコンクリート打設中心高さHpまで上昇させる。
続いて、工程(e)において、浮屋根6外周部の加圧バッグ6aに流体8を注入して加圧し、内槽側板4b内面に密着するまで膨張させ、該内槽側板4bを補強した状態で、前記内槽側板4bと外側型枠3b1間の該内槽側板4bが変形しない所定の高さまで外槽側壁3bのコンクリートを打設する。
続いて、工程(f)において、打設したコンクリートを凝固させる。
設計された高さHcまで外槽側壁3bのコンクリートが打設されていない場合は、工程(g)において、浮屋根6の加圧バッグ6aの流体8を排出し、該加圧バッグ6aを減圧し、内槽側板4b内周面と浮屋根6外周部の間隙を設けて浮屋根6の昇降を自由にし、前記工程(a)に戻って、再び内槽4内に所定量の水5を追加で注水し、浮屋根6を再び上昇させ、前記工程(b)から工程(f)までの工程を再度実施する。
この一連の工程(b)から工程(g)を複数回順次繰り返し実施し、設計された高さHcのコンクリート製の外槽側壁3bを構築する。
設計された高さHcのコンクリートを打設した後、外槽側壁3bがプレストレストコンクリートの場合は、該コンクリートにPC鋼線(図示しない)等で緊張力を与える。
その後、内槽4内から排水し、浮屋根6を降下させ、外側型枠3b1及び型枠昇降装置11を解体撤去し、工事を終了する。
FIG. 4 is a flowchart for explaining the outline of the process from the start to the end of the construction of the concrete outer
After temporarily installing the
Subsequently, in the step (b), a predetermined amount of
Subsequently, in the step (c), the floating height of the floating
Subsequently, in the step (d), the
Subsequently, in the step (e), the
Subsequently, in the step (f), the placed concrete is solidified.
When the concrete of the outer
This series of steps (b) to step (g) is sequentially repeated a plurality of times to construct a concrete outer
After placing concrete of the designed height Hc, if the outer
After that, drainage is performed from the
本工程では、浮屋根6と外側型枠3b1を適正なコンクリート打設高さまで複数回繰り返し連動して昇降させることができ、設計された高さのコンクリート製の外槽側壁3bを効率良く施工することが可能である。
外側型枠3b1を浮屋根6の上昇高さに対応して昇降させることが容易となり、該外側型枠3b1と浮屋根6を相対するように同じ高さに容易に位置させることができるため、内槽側板4bのコンクリート打設圧に対する補強を適切に行った状態でコンクリートを打設することが可能となり、工期短縮を図ることができる。
内槽側板4bの加圧補強とコンクリート打設を繰り返して実施することにより、外槽3のコンクリートの打設圧Pcによって内槽側板4bを変形させることなく、内槽側板4bの垂直立設状態を維持して設計高さHcが大きいコンクリート製の外槽側壁3bを構築することが可能である。
タンク1の浮屋根6を、コンクリート打設時の補強構造として使用することができるため、別途コンクリート打設用の補強材を用意する必要がなく、側板全体に補強材等を取付けて補強する場合と比較して施工性、経済性が向上するとともに、外槽側壁3b施工時のコンクリート打設工事の安全性も向上する。
In this process, the floating
Since the outer formwork 3b1 can be easily moved up and down according to the ascending height of the floating
By repeatedly pressurizing and reinforcing the inner
Since the floating
また、新設又は既設の平底円筒形タンク1の側板4bを内側型枠4bとして使用するため、別途コンクリート側壁3b打設用の内側型枠4bを仮設・撤去する必要がなく、工期短縮と建設コストの低減を図ることができる。
さらに、工程(b)でタンク1内に張った水5で内槽側板4bの水張試験を実施することが可能であり、タンク完成後に水張試験を改めて実施する場合よりも、工期の短縮を図ることが可能になる。
In addition, since the
Further, it is possible to carry out the water filling test of the inner
図5は、図1のA部の拡大図で、外側型枠3b1に固定した線材13bを昇降駆動装置18の電動巻き取り機14で巻き取る事例を示す側面説明図である。
線材13bは、一端部13b1を外側型枠3b1の支持部材17bに固定し、架台12上に仮設した第2の滑車15bに巻装させ、昇降駆動装置18の電動巻き取り機14bに巻き付ける。
浮屋根高さ計測器25は、一端部13a1が前記浮屋根6の上部の支持部材17aに固定され、他端部13a2が張力を一定にする緊張装置16に結合された線材13aを備える。この緊張装置16は、例えば定トルクのばね機構やカウンターウェイト機構(何れも図示せず)を備えたものとする。
この浮屋根高さ計測器25は、前記浮屋根6の昇降に伴う該線材13aの緩みが生じないように、該線材13aに生じる張力Tをほぼ一定に保持するように制御される電動巻き取り機14aを具備し、該線材13aの巻き取り長さを電気的又は光学的に計測することにより、前記浮屋根6の浮上高さ位置を測定する。
前記浮屋根高さ計測器25は、電動巻き取り機14aの回転数やレーザの送受信によって高さを計測するように構成しても良い。
前記電動巻き取り機14bは、前記浮屋根高さ計測器25で計測された浮屋根6の高さに基づいて、回転量や回転数が制御され、外側型枠3b1の昇降が制御され、内槽4内に注水して浮屋根6が上昇した高さと同じ高さ、外槽側壁3bのコンクリート打設中心高さHpまで該外側型枠3b1を連動して上昇させる。
FIG. 5 is an enlarged view of part A in FIG. 1, and is a side explanatory view showing an example in which a
The
The floating roof height measuring instrument 25 includes a
The floating roof height measuring instrument 25 is an electric winding controlled to keep the tension T generated in the
The floating roof height measuring instrument 25 may be configured to measure the height by the rotation speed of the
The
浮屋根6外周部の加圧バッグ6aは、該加圧バッグ6a内に前記流体8を注入するか、或いは該加圧バッグ6a内から前記流体8を排出するための流体注入口6dを備えるとともに、該流体注入口6dに仮設の配管6bを介して接続され、前記流体8を出し入れして内圧を制御する仮設の圧力制御装置6cと着脱自在に接続された加圧バッグ6aとする。この加圧バッグ6aは、繊維補強材を積層したゴム状弾性体等で袋状又はチューブ状とし、単数の加圧バッグ6aを円環状に連続して形成するか、或いは複数の加圧バッグ6aを連接して円環状に形成した構造とする。
コンクリート打設時の圧力制御の手順は以下の通りである。
まず、タンク1内に注水し、浮屋根6を内槽側板4bの補強が必要な前記外槽側壁3b構築のためのコンクリート打設中心高さHpまで上昇させる。
続いて、浮屋根高さ計測器25で内槽4内の浮屋根6が浮上した高さを計測する。
続いて、前記浮屋根6が浮上した高さに基づいて、線材13が電動巻き取り機14に巻き取られて外側型枠3b1が前記外槽側壁3b構築のためのコンクリート打設中心高さHpまで上昇する。
続いて、加圧バッグ6a内に、圧力制御装置6cを有する加圧装置6c1から配管6bを介して、流体注入口6dを経由して流体8(液体又は気体)を注入し、該加圧バッグ6aをその流体の内圧Pfで内槽側板4b内周面に密着するように膨張させ、該内槽側板4bを加圧補強する。
続いて、浮屋根6の加圧バッグ6aの圧力Pfが、コンクリートの打設圧Pcと平衡するように、前記加圧バッグ6aに注入する流体8の圧力Pfを調整し、前記内圧Pfとコンクリートの打設圧Pcを平衡させることが可能な高さまで外槽側壁3bのコンクリートを打設し、凝固させる。
コンクリート凝固後は、圧力制御装置6cにより、配管6bを介して、加圧バッグ6a内の流体8を排出し、加圧バッグ6aの流体8の内圧Pfを減圧状態とした後、タンク1内に再び注水し、浮屋根6を次のコンクリート打設中心高さHpまで順次上昇させるとともに、前記外側型枠3b1を連動して上昇させ、加圧バッグ6aを膨張させ、前記内圧Pfとコンクリートの打設圧Pcが平衡する高さの外槽側壁3bのコンクリートを前記の凝固したコンクリート上部に打設し、凝固させる。
上記手順を複数回順次繰り返し、設計された高さHcのコンクリート製の外槽側壁3bを構築する。
前記圧力制御装置6cは、浮屋根6上昇時は加圧バッグ6aから流体8を排出して減圧状態とし、浮屋根6停止時は加圧バッグ6a内に流体8を注入して高圧状態とするよう制御する。
The
The procedure for pressure control during concrete placement is as follows.
First, water is injected into the
Subsequently, the height of the floating
Subsequently, based on the height at which the floating
Subsequently, the fluid 8 (liquid or gas) is injected into the pressurizing
Subsequently, the pressure Pf of the
After the concrete is solidified, the
The above procedure is sequentially repeated a plurality of times to construct a concrete outer
When the floating
前記外側型枠3b1は、複数の型枠昇降装置11で吊持され、外槽3のコンクリート打設箇所の外側に形成されたリング状のトラス梁3b2と、該トラス梁3b2の上面に取付けた作業足場3b5と、前記トラス梁3b2の内周面に取付けた型枠支持部3b4と、該型枠支持部3b4の内周面に取付け、コンクリートと接する型枠パネル3b3と、前記内槽側板4b1外面と該型枠パネル3b3との間隙の間隔を保持するガイド部材3b7と、前記作業足場3b5上に設置した手摺り3b8とで構成する。
前記型枠支持部3b4は、H形鋼やみぞ形鋼等で形成し、前記型枠パネル3b3の外周部に沿って環状に複数段取付ける。該型枠支持部3b4及び型枠パネル3b3は、全体で円筒状になるように円周方向に溶接等によって繋ぎ合わせる。また、該型枠支持部3b4及び型枠パネル3b3は、外槽3のコンクリート打設圧の影響を受けないようにその数量、大きさ、位置を設計する。
前記型枠パネル3b3は、外槽3を高さ方向に複数分割した内の一回のコンクリート打設高さより大きい高さを有すパネルとする。また、当該型枠パネル3b3の下部が前段の凝固したコンクリートと接触するように高さを設計することが好ましい。
前記型枠支持部3b4又は型枠パネル3b3に沿って前記作業足場3b5同士を環状に連結する。
前記ガイド部材3b7は、前記内槽側板4b1外面と型枠パネル3b3の内面間の間隙の間隔を保持することが可能な長さを有し、前記型枠パネル3b3の内周面上部に水平方向に取付け、外側型枠3b1を上下方向に移動した際に、前記内槽側板4b1外周面と該型枠パネル3b3内周面との間隙の間隔を保持する。また、このガイド部材3b7の先端部にローラー3b6を設け、当該ローラー3b6を回転させて前記外側型枠3b1昇降時に内槽側板4b1外面に沿ってガイドさせても良い。
また、外側型枠3b1外周部を囲繞するように、ワイヤーやターンバックルで締結したり、押さえ金具や重り等(何れも図示しない)を設置することにより、外側型枠3b1が外槽3のコンクリート打設圧で水平方向に揺動しないようにする。
なお、27はコンクリート打設用の鉄筋類である。
The outer formwork 3b1 was suspended by a plurality of
The formwork support portion 3b4 is formed of H-shaped steel, groove-shaped steel, or the like, and is attached in a plurality of steps in an annular shape along the outer peripheral portion of the formwork panel 3b3. The formwork support portion 3b4 and the formwork panel 3b3 are joined by welding or the like in the circumferential direction so as to form a cylindrical shape as a whole. Further, the quantity, size, and position of the formwork support portion 3b4 and the formwork panel 3b3 are designed so as not to be affected by the concrete placing pressure of the
The formwork panel 3b3 is a panel having a height higher than the height of one concrete placement among a plurality of
The work scaffolds 3b5 are connected in an annular shape along the formwork support portion 3b4 or the formwork panel 3b3.
The guide member 3b7 has a length capable of maintaining a gap between the outer surface of the inner tank side plate 4b1 and the inner surface of the formwork panel 3b3, and is horizontal to the upper part of the inner peripheral surface of the formwork panel 3b3. When the outer formwork 3b1 is moved in the vertical direction, the space between the outer peripheral surface of the inner tank side plate 4b1 and the inner peripheral surface of the formwork panel 3b3 is maintained. Further, a roller 3b6 may be provided at the tip of the guide member 3b7, and the roller 3b6 may be rotated to guide along the outer surface of the inner tank side plate 4b1 when the outer formwork 3b1 is raised or lowered.
In addition, the outer formwork 3b1 is made of concrete in the
内槽4内に浮上させた浮屋根6の加圧バッグ6a内に充填した流体の内圧Pfとコンクリート打設圧Pcを平衡させることにより、内槽側板4bを変形させることなく、内槽側板4bの垂直立設状態を維持して設計高さHcが大きいコンクリート製の外槽側壁3bを構築することが可能になる。
By balancing the internal pressure Pf of the fluid filled in the
前記加圧バッグ6aは、図4の外槽3のコンクリート側壁3bを凝固させる工程(f)の後に、前記加圧バッグ6aに接続された仮設の前記配管6b及び圧力制御装置6cを撤去し、前記加圧バッグ6aの流体注入口6dを塞ぎ、前記加圧バッグ6aが加圧された状態で、タンク1供用時の貯蔵液(重油等)の蒸気逸出を防止するシール装置として使用することが可能である。
また、加圧バッグ6aをシール装置として使用する場合、該加圧バッグ6aは貯蔵液の性質を考慮した耐油性や耐候性等を有していることとする。
In the
Further, when the
このように、加圧バッグ6aを取り替えることなく、そのままタンクのシール装置として転用できるため、施工性、経済性が向上する。
As described above, since the
なお、前記加圧バッグ6aを浮屋根6外周部に内槽側板4bの補強材として取付け、タンク供用前に別途用意したシール装置と取り替えても良い。
The
図6及び図7は、コンクリート壁を備えたタンクの構築のための型枠スライド工法の外側型枠3b1及び浮屋根6の制御機構の全体構成の概略を説明するための線図である。図6は液面計28、図7は浮屋根6に固定した線材13aの巻き上げ量で浮上高さを計測する場合の事例である。
前記型枠昇降装置11は、前記内槽4内の浮屋根6の高さを計測する浮屋根高さ計測器25と、該浮屋根高さ計測器25で計測した前記浮屋根6の昇降高さに基づいて、前記外側型枠3b1を前記外槽側壁3b構築のためのコンクリート打設中心高さHpまで前記浮屋根6と連動して昇降するよう制御する型枠昇降制御装置19とを備えている。
図6の場合、浮屋根6の液面計28で計測された液面高さを基に得られた前記浮屋根6の高さ位置情報の浮屋根高さ信号24(液位高さ信号24a)が型枠昇降制御装置19に伝送された後、該型枠昇降制御装置19から伝送される型枠昇降信号23により外側型枠3b1の昇降駆動装置18を駆動させ、前記外側型枠3b1に固定された線材13bを電動巻き取り機14bで上方に巻き取るか下方に送り出して、該外側型枠3b1を前記浮屋根6と連動して前記外槽側壁3b構築のためのコンクリート打設中心高さHpまで昇降するよう制御する。
図7の場合、浮屋根高さ計測器25は、一端部13a1が前記浮屋根6の上部に固定され、他端部13a2が張力を一定にする緊張装置16に結合された線材13aと、前記浮屋根6の昇降に伴う該線材13aの緩みが生じないように、該線材13aに生じる張力Tをほぼ一定に保持するように制御される電動巻き取り機14aと、該線材13aの張力を計測するための張力計測器21とを具備し、該線材13aの巻取り長さを電気的又は光学的に計測することにより、前記浮屋根6の浮上高さ位置を測定する。
浮屋根6の昇降後に、電動巻き取り機14aで線材13aを巻き取り、張力検出器21で該線材13aに張力Tが作用していることを検出した段階で、線材張力検出信号26が前記電動巻き取り機14aに伝送され、前記浮屋根高さ計測器25から浮屋根高さ信号24が前記型枠昇降制御装置19に伝送された後、該型枠昇降制御装置19から伝送される型枠昇降信号23により外側型枠3b1の昇降駆動装置18の電動巻き取り機14bを駆動させ、前記外側型枠3b1に固定された線材13bを電動巻き取り機14bで上方に巻き取るか下方に送り出して、該外側型枠3b1を前記浮屋根6と連動して前記外槽側壁3b構築のためのコンクリート打設中心高さHpまで昇降するよう制御する。
6 and 7 are diagrams for explaining the outline of the overall configuration of the control mechanism of the outer formwork 3b1 and the floating
The
In the case of FIG. 6, the floating roof height signal 24 (liquid level height signal 24a) of the height position information of the floating
In the case of FIG. 7, the floating roof height measuring instrument 25 includes a
After the floating
また、前記浮屋根高さ計測器25から前記内槽4内に注排水する水5の量を調整する注排水装置22の開閉弁30に注排水バルブ開閉信号20が伝送され、浮屋根6を浮上させる場合は開閉弁30を開けてタンク1の内槽4内に水5を注入し、浮屋根6が設定したコンクリート打設中心高さHpに到達して停止させる場合は、開閉弁30を閉めて内槽4内への注水を停止し、浮屋根6を降下させる場合は排水するよう制御する。
さらに、前記浮屋根高さ計測器25は、加圧バッグ6aの圧力制御装置6cに圧力制御信号29を伝送し、浮屋根6を浮上させる場合は前記圧力制御装置6cで加圧バッグ6a内から流体8を排出して減圧し、浮屋根6が設定したコンクリート打設中心高さHpに到達して停止させた後は、前記圧力制御装置6cの加圧装置6c1で加圧バッグ6a内に流体8を注入して加圧するよう制御する。
Further, the water injection / drainage valve opening / closing signal 20 is transmitted from the floating roof height measuring instrument 25 to the on / off valve 30 of the water injection / drainage device 22 for adjusting the amount of water to be injected / drained into the
Further, the floating roof height measuring instrument 25 transmits a pressure control signal 29 to the
内槽4内の浮屋根6の高さ情報をフィードバックさせて、内槽4内に注排水する水5の量や加圧バッグ6aの内圧を調整することにより、設計された高さHcのコンクリート製の外槽側壁3bの構築作業が効率化される。
Concrete with a height of Hc designed by feeding back the height information of the floating
また、外側型枠3b1を吊り上げる装置として、電動巻き取り機14の代わりに、クライミングジャッキや電動ウィンチ等を使用することも可能である。
Further, as a device for lifting the outer formwork 3b1, a climbing jack, an electric winch, or the like can be used instead of the
前記コンクリート壁を備えたタンクのコンクリート製外槽側壁の構築のための型枠スライド工法は、地震時のタンクの耐震性能の向上、殊に外部からの津波対策などが望まれる固定屋根式タンク、タンク以外の貯蔵庫などの構築物にも適用することができ、特に設計高さが大きいコンクリート製の外槽側壁を打設する必要がある構築物に有効である。
The formwork slide method for constructing the concrete outer tank side wall of the tank equipped with the concrete wall is a fixed roof type tank, which is desired to improve the seismic performance of the tank in the event of an earthquake, especially to prevent tsunami from the outside. It can also be applied to structures such as storages other than tanks, and is particularly effective for structures that require the placement of concrete outer tank side walls with a large design height.
1 タンク
2 基礎
3 (コンクリート製の)外槽
3a 底版
3b 側壁
3b1 外側型枠
3b2 トラス梁
3b3 型枠パネル
3b4 型枠支持部
3b5 作業足場
3b6 ローラー
3b7 ガイド部材
3b8 手摺り
4(金属製の)内槽
4a 底板
4b 側板(内側型枠)
5 水
6 浮屋根
6a 加圧バッグ
6b 配管
6c 圧力制御装置
6c1 加圧装置
6d 流体注入口
6e 頂板
6f デッキサポート
7 トップアングル
8 流体(液体又は気体)
9 雨水浸入防止措置
10 貯蔵液
11 型枠昇降装置(手段)
12 (型枠昇降装置設置用の)架台
13 線材
13a 浮屋根6の線材
13a1 浮屋根6の線材の一端部
13a2 浮屋根6の線材の他端部
13b 外側型枠3b1の線材
13b1 外側型枠3b1の線材の一端部
13b2 外側型枠3b1の線材の他端部
14 電動巻き取り機
14a 浮屋根6の電動巻き取り機
14b 外側型枠3b1の電動巻き取り機
15 (型枠昇降装置11の)滑車
15a 第1の滑車
15b 第2の滑車
16 緊張装置
17 支持部材
17a (浮屋根6の)支持部材
17b (外側型枠3b1の)支持部材
18 型枠昇降駆動装置
19 型枠昇降制御装置(手段)
20 注排水バルブ開閉信号
21 線材13aの張力検出器
22 注排水装置
23 型枠昇降信号
24 浮屋根高さ信号
24a 液位高さ信号
25 浮屋根高さ検出器
26 線材張力信号
27 鉄筋類
28 液面計
28a フロート
28b フロートボックス
28c ガイドパイプ
28d サポート
28e 測定ワイヤー
28f ゲージポール
29 圧力制御信号
30 開閉弁
Hcコンクリート側壁3bの設計高さ
Pcコンクリート打設の外圧
Pf加圧バッグ6a内に充填した流体の圧力
T弛んだ線材13に加える張力
Hr 補強の中心高さ
Hp コンクリートの打設中心高さ
Hp1 凝固したコンクリートの高さ
Hp2 打設するコンクリートの下端(又は上端)から中心までの高さ
1 tank
2 Basics
3 (Concrete)
5
6c Pressure control device
9 Rainwater intrusion prevention measures 10 Storage liquid
11 Formwork lifting device (means)
12 Stand 13 (for installing formwork lifting device)
20 Injection / drain valve open /
Hc Design height of
Claims (4)
The floating roof comprises a single or a plurality of detachably attached pressure bags connected in an annular shape along the outer periphery of the floating roof, and the pressure bag is a liquid in the pressure bag. Alternatively , it is provided with a fluid inlet for injecting a fluid made of gas or discharging a fluid made of liquid or gas from the pressure bag, and is connected to the fluid inlet via a pipe to take in and out the fluid. A pressure bag detachably connected to a pressure device having a pressure control device for controlling the internal pressure in the pressure bag, wherein the inner tank side plate according to claim 1 is attached to the floating roof and the pressure bag. In the process of placing concrete between the inner tank side plate and the outer mold and solidifying it while reinforcing with, the concrete is placed so that it can counter the pressure of the concrete placed at one time. The pressure is adjusted by injecting the fluid into the pressurizing bag according to the setting height, and the pressurizing bag is expanded so as to be in close contact with the inner surface of the side plate of the inner tank and the side surface of the floating roof, and the inner tank is expanded. After the side plate is pressurized and reinforced from the inner surface side and the concrete on the side wall of the outer tank is solidified, the fluid is introduced from the pressure bag in order to freely raise and lower the floating roof for the next step. The method for constructing a flat-bottomed cylindrical tank provided with a concrete wall according to claim 1, wherein the pressure is controlled by discharging and depressurizing the inside of the pressure bag.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018022886A JP7076074B2 (en) | 2018-02-13 | 2018-02-13 | How to install a flat-bottomed cylindrical tank with a concrete wall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018022886A JP7076074B2 (en) | 2018-02-13 | 2018-02-13 | How to install a flat-bottomed cylindrical tank with a concrete wall |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019138065A JP2019138065A (en) | 2019-08-22 |
JP7076074B2 true JP7076074B2 (en) | 2022-05-27 |
Family
ID=67693358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018022886A Active JP7076074B2 (en) | 2018-02-13 | 2018-02-13 | How to install a flat-bottomed cylindrical tank with a concrete wall |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7076074B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118183491B (en) * | 2024-03-07 | 2024-09-13 | 北京浩京强华科技发展有限公司 | Tank top balancing device and method for large LNG low-temperature storage tank gas jacking |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019100061A (en) | 2017-11-30 | 2019-06-24 | 株式会社石井鐵工所 | Construction method of tank with concrete wall |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54125832A (en) * | 1978-03-23 | 1979-09-29 | Tobishima Construct Co Ltd | Yoke for slip form |
JPS6361462A (en) * | 1986-08-30 | 1988-03-17 | Omron Tateisi Electronics Co | Card carrying device |
-
2018
- 2018-02-13 JP JP2018022886A patent/JP7076074B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019100061A (en) | 2017-11-30 | 2019-06-24 | 株式会社石井鐵工所 | Construction method of tank with concrete wall |
Also Published As
Publication number | Publication date |
---|---|
JP2019138065A (en) | 2019-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11655600B2 (en) | Method for installing steel tube arches | |
CN100591863C (en) | Underwater no-bottom closing concrete boxed cofferdam and method of use thereof | |
JP6351776B1 (en) | Installation method of temporary closing structure used for bridge pier repair and reinforcement work | |
CN106758841B (en) | A kind of whole construction process of the double rope face low-pylon cable-stayed bridges of double tower | |
US20150292229A1 (en) | Method for producing a tower construction from reinforced concrete | |
JP6688263B2 (en) | Temporary cutoff method, temporary cutoff structure, support work, support work unit | |
CN105421248A (en) | Swivel and closure construction method for large-span continuous beam crossing existing station | |
CN104452597B (en) | Pier prestressed cap beam with extra length Construction Supporting System in water | |
CN109594478B (en) | High pile cap steel hanging box bottom sealing method applied to long-period wave surge condition | |
CN111119214B (en) | Construction method of bridge underwater bearing platform | |
US3893304A (en) | Method and a device for the underwater construction of concrete structures | |
CN114150766A (en) | Prefabricated reinforced concrete column connecting joint and construction method thereof | |
JP7076074B2 (en) | How to install a flat-bottomed cylindrical tank with a concrete wall | |
CN107142954B (en) | Steel hanging box lifting system for integral lifting and lifting method thereof | |
CN108425374B (en) | Integral construction method of steel suspension box cofferdam with tie beam dumbbell-shaped bearing platform under complex sea condition | |
CN113494055A (en) | Double-locking structure for closure section of long-span bridge and construction method | |
US4312167A (en) | Method of constructing a storage tank | |
KR101580111B1 (en) | A Continuous Construction-Method with Steel Form for Pier Structure | |
US4578921A (en) | Storage tank construction | |
JP4560557B2 (en) | Seismic reinforcement method for bridges | |
EP0029044B1 (en) | A method of carrying out slip form casting of concrete structures under water and apparatus for carrying out the method | |
CN114108485A (en) | Gate-type pier capping beam construction method | |
JP6832466B1 (en) | Bridge step suppression member, bridge step suppression structure, and bridge girder restoration method | |
JP7019921B2 (en) | How to build a tank with a concrete wall | |
CN211173029U (en) | A liftable platform structure for chimney reinforcement construction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7076074 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |