JP7074634B2 - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
JP7074634B2
JP7074634B2 JP2018186539A JP2018186539A JP7074634B2 JP 7074634 B2 JP7074634 B2 JP 7074634B2 JP 2018186539 A JP2018186539 A JP 2018186539A JP 2018186539 A JP2018186539 A JP 2018186539A JP 7074634 B2 JP7074634 B2 JP 7074634B2
Authority
JP
Japan
Prior art keywords
region
temperature
sensitive
emissivity
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018186539A
Other languages
Japanese (ja)
Other versions
JP2019101019A (en
Inventor
俊哉 大矢
拓也 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to DE102018130043.3A priority Critical patent/DE102018130043A1/en
Priority to CN201811489405.0A priority patent/CN110006547A/en
Publication of JP2019101019A publication Critical patent/JP2019101019A/en
Application granted granted Critical
Publication of JP7074634B2 publication Critical patent/JP7074634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Description

本開示は、感温部と、長手方向の先端が閉じて後端が開口する有底筒状に形成されて、内部に感温部を収容するチューブ部と、を備える温度センサに関する。 The present disclosure relates to a temperature sensor including a temperature sensing portion and a tube portion formed in a bottomed cylindrical shape in which the tip in the longitudinal direction is closed and the rear end is opened to accommodate the temperature sensing portion inside.

特許文献1には、感温部と、長手方向の先端が閉じて後端が開口する有底筒状に形成されて、内部に感温部を収容するチューブ部と、を備える温度センサが記載されている。
このような温度センサは、用途によって高温環境(例えば、850℃以上)で使用される場合がある。
Patent Document 1 describes a temperature sensor including a temperature-sensitive portion and a tube portion formed in a bottomed cylindrical shape in which the tip in the longitudinal direction is closed and the rear end is opened to accommodate the temperature-sensitive portion inside. Has been done.
Such a temperature sensor may be used in a high temperature environment (for example, 850 ° C. or higher) depending on the application.

特開2017-116360号公報Japanese Unexamined Patent Publication No. 2017-116360

しかしながら、温度センサは、高温環境で使用される場合、時間経過に伴い、温度検出精度が低下する場合がある。
例えば、温度センサのうち測定対象に当接する部分(チューブ部)が高温の影響で変質した場合には、測定対象が同一温度であっても、変質前と変質後とで、感温部での検出結果に違いが生じる場合がある。このような状況が発生すると、温度検出精度が低下することになる。
However, when the temperature sensor is used in a high temperature environment, the temperature detection accuracy may decrease with the passage of time.
For example, when the part (tube part) of the temperature sensor that comes into contact with the measurement target is altered by the influence of high temperature, even if the measurement target is at the same temperature, the temperature sensitive portion is used before and after the alteration. There may be differences in the detection results. When such a situation occurs, the temperature detection accuracy is lowered.

そこで、本開示は、時間経過に伴う温度検出精度の低下が生じがたい温度センサを提供することを目的とする。 Therefore, an object of the present disclosure is to provide a temperature sensor in which the temperature detection accuracy is unlikely to decrease with the passage of time.

本開示の一態様は、感温部と、チューブ部と、を備える温度センサである。チューブ部は、長手方向の先端が閉じて後端が開口する有底筒状に形成されて、内部に感温部を収容する。 One aspect of the present disclosure is a temperature sensor including a temperature sensitive portion and a tube portion. The tube portion is formed in a bottomed cylindrical shape in which the tip in the longitudinal direction is closed and the rear end is open, and the temperature-sensitive portion is housed inside.

チューブ部の外表面は、放射率が0.88以上の放射率特定領域を備える。チューブ部の外表面のうち長手方向における感温部の配置領域である感温部領域は、放射率特定領域である。感温部における仮想円の直径寸法Aと、チューブ部の内表面の直径寸法Bとは、比率A/B<65%の関係を有する。直径寸法Aは、感温部のうち長手方向に垂直な断面形状を内包する仮想円における直径寸法であって、前記断面形状を内包する仮想円のうち径寸法が最小の仮想円における直径寸法である。直径寸法Bは、チューブ部の内表面における長手方向に垂直な断面の直径寸法であって、前記断面のうち感温部領域における断面の直径寸法である。 The outer surface of the tube portion includes an emissivity specific region having an emissivity of 0.88 or more. Of the outer surface of the tube portion, the temperature-sensitive portion region, which is the region where the temperature-sensitive portion is arranged in the longitudinal direction, is the emissivity specific region. The diameter dimension A of the virtual circle in the temperature sensitive portion and the diameter dimension B of the inner surface of the tube portion have a relationship of ratio A / B <65%. The diameter dimension A is the diameter dimension of the virtual circle including the cross-sectional shape perpendicular to the longitudinal direction of the temperature-sensitive portion, and is the diameter dimension of the virtual circle having the smallest diameter dimension among the virtual circles including the cross-sectional shape. be. The diameter dimension B is the diameter dimension of the cross section perpendicular to the longitudinal direction on the inner surface of the tube portion, and is the diameter dimension of the cross section in the temperature sensitive portion region of the cross section.

放射率特定領域は、放射率が上記数値範囲であることで、高温環境(例えば、900℃以上)に長期(例えば、500時間)にわたり配置されても、放射率の変化が生じがたい。このため、チューブ部の外表面のうち感温部領域は、放射率特定領域であることにより、温度センサの使用時間の経過に伴う放射率の変化が生じ難いため、測定対象物からの熱量吸収性能が変化し難くなる。これにより、温度センサの使用時間の経過に伴う、感温部領域の熱量吸収性能の変化を抑制できるとともに、感温部に到達する熱量の変化を抑制できる。 Since the emissivity is in the above numerical range, the emissivity specific region is unlikely to change in emissivity even if it is placed in a high temperature environment (for example, 900 ° C. or higher) for a long period of time (for example, 500 hours). For this reason, since the temperature-sensitive region of the outer surface of the tube portion is the emissivity specific region, the emissivity is unlikely to change with the lapse of the usage time of the temperature sensor, so that the amount of heat absorbed from the object to be measured is absorbed. Performance is less likely to change. As a result, it is possible to suppress changes in the heat absorption performance of the temperature-sensitive region with the lapse of the usage time of the temperature sensor, and it is also possible to suppress changes in the heat reaching the temperature-sensitive portion.

また、感温部における仮想円の直径寸法Aと、チューブ部の内表面の直径寸法Bとが、比率A/B<65%の関係を有する場合、感温部とチューブ部の内表面との間に所定の隙間が生じる。このような構成の温度センサにおいても、チューブ部の外表面のうち感温部領域が放射率特定領域であることで、感温部領域での熱量吸収性能の変化を抑制できるとともに、感温部に到達する熱量の変化を抑制できる。 Further, when the diameter dimension A of the virtual circle in the temperature sensitive portion and the diameter dimension B of the inner surface of the tube portion have a ratio A / B <65%, the temperature sensitive portion and the inner surface of the tube portion A predetermined gap is created between them. Even in a temperature sensor having such a configuration, since the temperature-sensitive region of the outer surface of the tube portion is the emissivity specific region, it is possible to suppress the change in the heat absorption performance in the temperature-sensitive region and the temperature-sensitive region. It is possible to suppress the change in the amount of heat that reaches.

よって、この温度センサは、時間経過に伴う感温部領域の変化に起因する温度検出誤差が生じることを抑制でき、時間経過に伴う温度検出精度の低下を抑制できる。
次に、上述の温度センサにおいては、チューブ部の外表面のうち感温部領域よりも先端側の領域は、放射率特定領域であってもよい。
Therefore, this temperature sensor can suppress the occurrence of a temperature detection error due to the change in the temperature sensing portion region with the passage of time, and can suppress the deterioration of the temperature detection accuracy with the passage of time.
Next, in the above-mentioned temperature sensor, the region of the outer surface of the tube portion on the tip side of the temperature-sensitive portion region may be the emissivity specific region.

このように、感温部領域およびその先端側の領域がそれぞれ放射率特定領域であることで、感温部領域のみならずその先端側の領域も、温度センサの使用時間の経過に伴う放射率の変化が生じ難いため測定対象物からの熱量吸収性能が変化し難くなる。これにより、温度センサの使用時間の経過に伴う、感温部領域およびその先端側の領域の熱量吸収性能の変化を抑制できるとともに、感温部に到達する熱量の変化をさらに抑制できる。 In this way, since the temperature-sensitive region and the region on the tip side thereof are emissivity specific regions, not only the temperature-sensitive region but also the region on the tip side thereof has the emissivity with the lapse of the usage time of the temperature sensor. It is difficult for the heat absorption performance from the object to be measured to change because the change in the temperature is unlikely to occur. As a result, it is possible to suppress changes in the heat absorption performance of the temperature-sensitive region and the region on the tip side thereof with the lapse of the usage time of the temperature sensor, and further suppress the change in the heat reaching the temperature-sensitive region.

よって、この温度センサは、時間経過に伴う感温部領域およびその先端側の領域の変化に起因する温度検出誤差が生じることを抑制でき、時間経過に伴う温度検出精度の低下をさらに抑制できる。 Therefore, this temperature sensor can suppress the occurrence of a temperature detection error due to a change in the temperature sensing portion region and the region on the tip side thereof with the passage of time, and can further suppress a decrease in temperature detection accuracy with the passage of time.

次に、上述の温度センサにおいては、チューブ部における感温部領域よりも後端側の部位のうち、外径寸法が感温部領域の後端の外径寸法よりも大きくなる部位を段差部とした場合に、チューブ部の外表面のうち感温部領域と段差部との間の領域は、放射率特定領域であってもよい。 Next, in the above-mentioned temperature sensor, among the portions of the tube portion on the rear end side of the temperature-sensitive portion region, the portion where the outer diameter dimension is larger than the outer diameter dimension of the rear end of the temperature-sensitive portion region is the step portion. In this case, the region between the temperature-sensitive portion region and the stepped portion on the outer surface of the tube portion may be an emissivity specific region.

この温度センサは、感温部領域のみならず感温部領域と段差部との間の領域についても、温度センサの使用時間の経過に伴う放射率の変化が生じ難いため、測定対象物からの熱量吸収性能が変化し難くなる。これにより、温度センサの使用時間の経過に伴う、感温部領域および感温部領域と段差部との間の領域の熱量吸収性能の変化を抑制できるとともに、感温部に到達する熱量の変化をさらに抑制できる。 In this temperature sensor, not only in the temperature-sensitive region but also in the region between the temperature-sensitive region and the stepped portion, the emissivity is unlikely to change with the lapse of the usage time of the temperature sensor. The heat absorption performance is less likely to change. As a result, it is possible to suppress changes in the heat absorption performance in the temperature-sensitive region and the region between the temperature-sensitive region and the step portion with the lapse of the usage time of the temperature sensor, and at the same time, the change in the heat quantity reaching the temperature-sensitive portion. Can be further suppressed.

よって、この温度センサは、時間経過に伴う感温部領域および感温部領域と段差部との間の領域の変化に起因する温度検出誤差が生じることを抑制でき、時間経過に伴う温度検出精度の低下をさらに抑制できる。 Therefore, this temperature sensor can suppress the occurrence of a temperature detection error due to a change in the temperature-sensitive region and the region between the temperature-sensitive region and the step portion with the passage of time, and the temperature detection accuracy with the passage of time can be suppressed. The decrease in the temperature can be further suppressed.

次に、上述の温度センサにおいては、チューブ部の外表面のうち測定対象物に晒される全ての領域は、放射率特定領域であってもよい。
この温度センサは、放射率特定領域を大きく確保でき、温度検出誤差を抑制できる。よって、この温度センサは、時間経過に伴う温度検出誤差が生じることを抑制でき、時間経過に伴う温度検出精度の低下をさらに抑制できる。
Next, in the above-mentioned temperature sensor, all the regions of the outer surface of the tube portion exposed to the object to be measured may be emissivity specific regions.
This temperature sensor can secure a large emissivity specific area and suppress a temperature detection error. Therefore, this temperature sensor can suppress the occurrence of a temperature detection error with the passage of time, and can further suppress the deterioration of the temperature detection accuracy with the passage of time.

次に、上述の温度センサにおいては、チューブ部は、第1領域、第2領域、連結部を備え、感温部は、一対の熱電対素線の接合点として備えられ、当該温度センサは、一対の熱電対素線を支持する支持部を備え、支持部の先端部は連結部の内面に当接してもよい。 Next, in the above-mentioned temperature sensor, the tube portion includes a first region, a second region, and a connecting portion, and the temperature sensing portion is provided as a junction point of a pair of thermocouple strands. A support portion for supporting the pair of thermocouple strands may be provided, and the tip end portion of the support portion may abut on the inner surface of the connecting portion.

第1領域は、感温部領域を含むとともに長手方向にわたり外径寸法が一定である。第2領域は、第1領域よりも後端側に形成されるとともに長手方向にわたり外径寸法が一定であり、第1領域よりも外径寸法が大きい。連結部は、第1領域と第2領域とを連結する。支持部は、一対の熱電対素線と電気的に絶縁されて、感温部が先端側に配置された状態で一対の熱電対素線を支持する。 The first region includes the temperature-sensitive portion region and has a constant outer diameter dimension over the longitudinal direction. The second region is formed on the rear end side of the first region and has a constant outer diameter dimension in the longitudinal direction, and has a larger outer diameter dimension than the first region. The connecting portion connects the first region and the second region. The support portion is electrically insulated from the pair of thermocouple strands and supports the pair of thermocouple strands with the temperature sensitive portion arranged on the tip side.

このようなチューブ部を備える温度センサは、支持部の先端部が連結部の内面に当接することで、チューブ部の内部における感温部の位置決め精度が向上する。
なお、一対の熱電対素線は、例えば、第1熱電対素線および第2熱電対素線で構成してもよい。第1熱電対素線は、金属で形成されており、第2熱電対素線は、第1熱電対素線とは異なる金属で形成されている。
In the temperature sensor provided with such a tube portion, the tip end portion of the support portion abuts on the inner surface of the connecting portion, so that the positioning accuracy of the temperature sensitive portion inside the tube portion is improved.
The pair of thermocouple strands may be composed of, for example, a first thermocouple strand and a second thermocouple strand. The first thermocouple strand is made of metal, and the second thermocouple strand is made of a metal different from that of the first thermocouple strand.

また、上述の温度センサにおいては、放射率特定領域の放射率が0.98以下であってもよい。より好ましくは放射率特定領域の放射率が0.94以下であってもよい。このような温度センサにおいては、生産効率を落とすことなく、感温部領域での熱量吸収性能の変化を抑制できるとともに、感温部に到達する熱量の変化を抑制できる。 Further, in the above-mentioned temperature sensor, the emissivity in the emissivity specific region may be 0.98 or less. More preferably, the emissivity of the specific emissivity region may be 0.94 or less. In such a temperature sensor, it is possible to suppress the change in the heat absorption performance in the temperature sensitive region and suppress the change in the heat reaching the temperature sensitive portion without lowering the production efficiency.

温度センサの構造を示す部分破断断面図である。It is a partial fracture sectional view which shows the structure of a temperature sensor. 温度センサの先端部分の構造を拡大して模式的に示す部分破断断面図である。It is a partial fracture sectional view schematically showing the structure of the tip portion of a temperature sensor in an enlarged manner. 第1測定および第2測定のそれぞれの測定結果を表す説明図である。It is explanatory drawing which shows the measurement result of each of the 1st measurement and the 2nd measurement. 第3測定の測定結果を表す説明図である。It is explanatory drawing which shows the measurement result of the 3rd measurement. 第3測定における試料1~5のそれぞれの指示温度の変化状態を示した波形を表す説明図である。It is explanatory drawing which shows the waveform which showed the change state of each indicated temperature of the sample 1 to 5 in the 3rd measurement. 温度センサのうち測温接点が備えられる部分を拡大して模式的に示す部分破断断面図である。It is a partial fracture sectional view schematically showing an enlarged part of a temperature sensor provided with a temperature measuring contact. 図6における温度センサのうちVII-VII線で示す部分の端面を示す端面図である。It is an end view which shows the end face of the part shown by the line VII-VII of the temperature sensor in FIG.

以下、本開示が適用された実施形態について、図面を用いて説明する。
尚、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
[1.第1実施形態]
[1-1.全体構成]
本実施形態の温度センサは、例えば、流通管(本実施形態では、車両の内燃機関の排気管)に取り付けられて、流通管内に流れる測定対象ガス(本実施形態では、排気ガス)の温度を検出するものである。
Hereinafter, embodiments to which the present disclosure has been applied will be described with reference to the drawings.
It is needless to say that the present disclosure is not limited to the following embodiments, and various forms can be adopted as long as they belong to the technical scope of the present disclosure.
[1. First Embodiment]
[1-1. overall structure]
The temperature sensor of the present embodiment is attached to, for example, a flow pipe (in the present embodiment, the exhaust pipe of the internal combustion engine of the vehicle) and measures the temperature of the gas to be measured (exhaust gas in the present embodiment) flowing in the flow pipe. It is to detect.

まず、本実施形態の温度センサの構成を説明する。
図1に示すように、温度センサ1は、一対の熱電対素線(第1熱電対素線2、第2熱電対素線3)と、シース4と、金属チューブ5と、取付部材6と、外筒7と、ナット部材8とを備えている。以下、図1の上下方向(軸線AXに沿った方向)を温度センサ1の軸線方向といい、図1の下側を温度センサ1の先端といい、図1の上側を温度センサ1の後端という。
First, the configuration of the temperature sensor of this embodiment will be described.
As shown in FIG. 1, the temperature sensor 1 includes a pair of thermocouple strands (first thermocouple strand 2, second thermocouple strand 3), a sheath 4, a metal tube 5, and a mounting member 6. , The outer cylinder 7 and the nut member 8 are provided. Hereinafter, the vertical direction (direction along the axis AX) of FIG. 1 is referred to as the axial direction of the temperature sensor 1, the lower side of FIG. 1 is referred to as the tip of the temperature sensor 1, and the upper side of FIG. 1 is the rear end of the temperature sensor 1. That is.

第1熱電対素線2および第2熱電対素線3は、互いに異なる金属で形成されている。詳しくは、+極(即ち+脚)を構成する第1熱電対素線2は、Ni、Cr、Siを主成分とする合金(いわゆるナイクロシル)で形成されている。一方、-極(即ち-脚)を構成する第2熱電対素線3は、Ni、Siを主成分とする合金(いわゆるナイシル)で形成されている。 The first thermocouple strand 2 and the second thermocouple strand 3 are made of different metals from each other. Specifically, the first thermocouple strand 2 constituting the + pole (that is, the + leg) is formed of an alloy (so-called nichromeyl) containing Ni, Cr, and Si as main components. On the other hand, the second thermocouple strand 3 constituting the − pole (that is, − leg) is formed of an alloy (so-called Nisyl) containing Ni and Si as main components.

また、第1熱電対素線2における先端側の端部と、第2熱電対素線3における先端側の端部とが接合され、測温接点10が形成されている。
そして、シース4の先端から突出している部分において、第1熱電対素線2および測温接点10の表面には、全面にわたって、Ni、CrおよびSiを含有する第1酸化膜層(図示省略)が形成されている。また、同様にシース4の先端から突出している部分において、第2熱電対素線3の表面には、全面にわたって、NiおよびSiを含有する第2酸化膜層(図示省略)が形成されている。
Further, the end portion on the distal end side of the first thermocouple strand 2 and the end portion on the distal end side of the second thermocouple strand 3 are joined to form a temperature measuring contact 10.
Then, in the portion protruding from the tip of the sheath 4, the surface of the first thermocouple strand 2 and the temperature measuring contact 10 covers the entire surface of the first oxide film layer containing Ni, Cr and Si (not shown). Is formed. Similarly, in the portion protruding from the tip of the sheath 4, a second oxide film layer (not shown) containing Ni and Si is formed on the entire surface of the second thermocouple strand 3. ..

シース4は、筒状に形成された金属製(例えば、SUS310Sなどのステンレス合金)の部材である。シース4は、その内部に両熱電対素線2,3が挿入され、両熱電対素線2,3の軸線方向における両端部以外の部分で両熱電対素線2,3の周囲を覆う。シース4と両熱電対素線2,3との間には、図示しない絶縁粉末(即ち電気絶縁性を有する絶縁材)が充填される。これにより、シース4は、両熱電対素線2,3と電気的に絶縁されて、測温接点10が先端側に配置された状態で両熱電対素線2,3を内部に保持(支持)する。 The sheath 4 is a member made of metal (for example, a stainless alloy such as SUS310S) formed in a cylindrical shape. Both thermocouple strands 2 and 3 are inserted into the sheath 4, and the sheath 4 covers the periphery of both thermocouple strands 2 and 3 at a portion other than both ends in the axial direction of both thermocouple strands 2 and 3. An insulating powder (that is, an insulating material having electrical insulating properties) (not shown) is filled between the sheath 4 and the two thermocouple strands 2 and 3. As a result, the sheath 4 is electrically insulated from both thermocouple strands 2 and 3, and holds (supports) both thermocouple strands 2 and 3 inside with the temperature measuring contact 10 arranged on the tip side. )do.

金属チューブ5は、耐腐食性金属(例えば、SUS310Sなどのステンレス合金)を材料として、先端に底部を有するとともに後端に開口部を有して軸線方向に延びる有底筒状に形成された部材である。 The metal tube 5 is a member made of a corrosion-resistant metal (for example, a stainless alloy such as SUS310S) and formed in a bottomed tubular shape having a bottom at the tip and an opening at the rear end and extending in the axial direction. Is.

金属チューブ5は、縮径部21と、小径部22と、大径部23と、段差部24とを備える。縮径部21は、後端側から先端側に向かうにつれて縮径する形状に形成され、先端側の端部で閉塞されている。小径部22は、縮径部21よりも後端側で軸線方向に延びて一定の外径を有する筒状に形成された部位である。大径部23は、小径部22よりも後端側で軸線方向に延びる筒状に形成された部位である。大径部23は、その外径が小径部22の外径よりも大きくなるように形成されている。 The metal tube 5 includes a reduced diameter portion 21, a small diameter portion 22, a large diameter portion 23, and a stepped portion 24. The reduced diameter portion 21 is formed in a shape that shrinks in diameter from the rear end side toward the front end side, and is closed at the end portion on the front end side. The small diameter portion 22 is a portion formed in a cylindrical shape extending in the axial direction on the rear end side of the reduced diameter portion 21 and having a constant outer diameter. The large-diameter portion 23 is a portion formed in a cylindrical shape extending in the axial direction on the rear end side of the small-diameter portion 22. The large diameter portion 23 is formed so that its outer diameter is larger than the outer diameter of the small diameter portion 22.

段差部24は、小径部22と大径部23との間に配置され、小径部22と大径部23とを接続するようにして軸線方向に延びる筒状に形成された部位である。段差部24は、その外径が先端側端部および後端側端部でそれぞれ小径部22および大径部23の外径と同じになるように形成されている。そして段差部24は、後端側から先端側へ向うにつれて外径が徐々に小さくなるように形成されている。 The step portion 24 is a portion arranged between the small diameter portion 22 and the large diameter portion 23 and formed in a cylindrical shape extending in the axial direction so as to connect the small diameter portion 22 and the large diameter portion 23. The step portion 24 is formed so that its outer diameter is the same as the outer diameter of the small diameter portion 22 and the large diameter portion 23 at the front end side end portion and the rear end side end portion, respectively. The step portion 24 is formed so that the outer diameter gradually decreases from the rear end side to the front end side.

金属チューブ5は、小径部22の内部に測温接点10を収容するとともに、大径部23の内部にシース4の一部分を収容する。
取付部材6は、金属チューブ5のうち後端の外周面を取り囲んで金属チューブ5を支持する部材であり、突出部31と、後端側鞘部32を備える。
The metal tube 5 houses the temperature measuring contact 10 inside the small diameter portion 22, and also houses a part of the sheath 4 inside the large diameter portion 23.
The mounting member 6 is a member of the metal tube 5 that surrounds the outer peripheral surface of the rear end and supports the metal tube 5, and includes a protruding portion 31 and a rear end side sheath portion 32.

突出部31は、金属チューブ5の後端の外周面から金属チューブ5の径方向外側に向かって突出するように形成された部位である。後端側鞘部32は、突出部31の後端側端部から軸線方向に延びる筒状に形成された部位である。突出部31および後端側鞘部32の内部に金属チューブ5の後端側端部が挿入された後に、後端側鞘部32と金属チューブ5とがレーザ溶接されることにより、取付部材6と金属チューブ5とが互いに結合される。 The protruding portion 31 is a portion formed so as to protrude outward in the radial direction of the metal tube 5 from the outer peripheral surface of the rear end of the metal tube 5. The rear end side sheath portion 32 is a portion formed in a cylindrical shape extending in the axial direction from the rear end side end portion of the protruding portion 31. After the rear end side end portion of the metal tube 5 is inserted into the protrusion 31 and the rear end side sheath portion 32, the rear end side sheath portion 32 and the metal tube 5 are laser-welded, whereby the mounting member 6 is formed. And the metal tube 5 are coupled to each other.

外筒7は、その外径が金属チューブ5の外径よりも大きくなるように筒状に形成された金属製の部材である。外筒7は、その先端側端部において後端側鞘部32を内部に挿入した状態でレーザ溶接されることにより、取付部材6に結合される。 The outer cylinder 7 is a metal member formed in a tubular shape so that its outer diameter is larger than the outer diameter of the metal tube 5. The outer cylinder 7 is coupled to the mounting member 6 by laser welding with the rear end side sheath portion 32 inserted inside at the front end side end portion thereof.

ナット部材8は、外筒7の先端側端部を内部に挿入した状態で軸線方向に平行な軸を中心に回転可能に設置されている。ナット部材8は、六角ナット部41とネジ部42を備える。 The nut member 8 is rotatably installed around an axis parallel to the axial direction with the tip end side end of the outer cylinder 7 inserted inside. The nut member 8 includes a hexagon nut portion 41 and a screw portion 42.

六角ナット部41は、外筒7の外周から径方向に沿って外側へ延びて外周が六角形の板状に形成された部位である。六角ナット部41は、温度センサ1を排気管に取り付けるときにレンチ等の取付工具を嵌合させるための部位である。ネジ部42は、六角ナット部41の先端側端部から温度センサ1の先端へ向けて軸線方向に延びる円筒状に形成された部位であり、その外周に雄ネジが形成されている。 The hexagon nut portion 41 is a portion extending outward from the outer circumference of the outer cylinder 7 along the radial direction and having an outer circumference formed in a hexagonal plate shape. The hexagon nut portion 41 is a portion for fitting a mounting tool such as a wrench when mounting the temperature sensor 1 on the exhaust pipe. The screw portion 42 is a portion formed in a cylindrical shape extending in the axial direction from the tip end side end portion of the hexagon nut portion 41 toward the tip end of the temperature sensor 1, and a male screw is formed on the outer periphery thereof.

なお、排気管の外周から突出するように設けられた図示しないボスのネジ穴に金属チューブ5を挿入して、ネジ部42の雄ネジをボスのネジ穴の内周壁に形成された雌ネジに螺合することで、温度センサ1が排気管に取り付けられる。 A metal tube 5 is inserted into a screw hole of a boss (not shown) provided so as to protrude from the outer periphery of the exhaust pipe, and a male screw of the screw portion 42 is inserted into a female screw formed on the inner peripheral wall of the screw hole of the boss. By screwing, the temperature sensor 1 is attached to the exhaust pipe.

両熱電対素線2,3は、それぞれ補償導線51、52に直接に接合されている。なお、補償導線51、52は、それぞれ電気絶縁材61、62により被覆されている。また、各熱電対素線2,3と各補償導線51、52との接合部分の周囲は、それぞれ絶縁チューブ55,56で覆われている。補償導線51、52は、外部回路を介して、車両の電子制御装置に接続される。外筒7の後端側の開口部は、耐熱ゴム製のグロメット65により閉塞されており、補償導線51、52は、このグロメット65を貫いて配置されている。 Both thermocouple strands 2 and 3 are directly joined to the compensating conductors 51 and 52, respectively. The compensating conductors 51 and 52 are covered with electrical insulating materials 61 and 62, respectively. Further, the periphery of the joint portion between the thermocouple strands 2 and 3 and the compensating conductors 51 and 52 is covered with insulating tubes 55 and 56, respectively. The compensating conductors 51 and 52 are connected to the electronic control device of the vehicle via an external circuit. The opening on the rear end side of the outer cylinder 7 is closed by a grommet 65 made of heat-resistant rubber, and the compensating conductors 51 and 52 are arranged so as to penetrate the grommet 65.

次に、測温接点10の大きさについて説明する。特に、測温接点10のうち軸線AXに垂直な断面形状の大きさであって、金属チューブ5の内表面に対する大きさについて、図6および図7を用いて説明する。 Next, the size of the temperature measuring contact 10 will be described. In particular, the size of the cross-sectional shape of the temperature measuring contact 10 perpendicular to the axis AX and the size with respect to the inner surface of the metal tube 5 will be described with reference to FIGS. 6 and 7.

図6に示す測温接点10のうち軸線AXに垂直な断面形状は、図7に示すように、楕円形状である。この測温接点10の断面形状を内包する仮想円のうち径寸法が最小の仮想円を仮想円C1(図7にて、破線で示す円)とする。また、金属チューブ5のうち、測温接点10が配置される領域(後述する感温部領域RE1)の内表面を内表面C2とする。 Of the temperature measuring contacts 10 shown in FIG. 6, the cross-sectional shape perpendicular to the axis AX is an elliptical shape as shown in FIG. Of the virtual circles including the cross-sectional shape of the temperature measuring contact 10, the virtual circle having the smallest diameter is defined as the virtual circle C1 (the circle shown by the broken line in FIG. 7). Further, in the metal tube 5, the inner surface of the region where the temperature measuring contact 10 is arranged (the temperature sensitive region RE1 described later) is referred to as the inner surface C2.

仮想円C1の直径寸法Aは、1.13mmであり、内表面C2の直径寸法Bは、2.05mmである。つまり、仮想円C1の直径寸法Aと内表面C2の直径寸法Bとの比率A/Bは、55%である。 The diameter dimension A of the virtual circle C1 is 1.13 mm, and the diameter dimension B of the inner surface C2 is 2.05 mm. That is, the ratio A / B of the diameter dimension A of the virtual circle C1 and the diameter dimension B of the inner surface C2 is 55%.

つまり、測温接点10は、金属チューブ5の内表面C2に対して、仮想円C1の直径寸法Aと内表面C2の直径寸法Bとの比率A/Bが65%よりも小さい関係を有するように構成されている。 That is, the temperature measuring contact 10 has a relationship in which the ratio A / B of the diameter dimension A of the virtual circle C1 and the diameter dimension B of the inner surface C2 is smaller than 65% with respect to the inner surface C2 of the metal tube 5. It is configured in.

[1-2.金属チューブの外表面における放射率特定領域]
次に、金属チューブ5について説明する。
金属チューブ5は、上述のように、耐腐食性金属を材料として有底筒状に形成された部材である。
[1-2. Emissivity specific area on the outer surface of the metal tube]
Next, the metal tube 5 will be described.
As described above, the metal tube 5 is a member formed in a bottomed tubular shape using a corrosion-resistant metal as a material.

金属チューブ5は、図2に示すように、自身の外表面において軸線方向(長手方向)の位置が異なる複数の領域(感温部領域RE1、感温部先端領域RE2、感温部後端領域RE3、段差部領域RE4、後端大径領域RE5)を備えている。なお、図2では、金属チューブ5のうち後端大径領域RE5の一部を省略して図示している。 As shown in FIG. 2, the metal tube 5 has a plurality of regions (temperature sensing portion region RE1, temperature sensing portion tip region RE2, temperature sensing portion rear end region) having different positions in the axial direction (longitudinal direction) on its outer surface. It is provided with RE3, a stepped portion region RE4, and a rear end large diameter region RE5). In FIG. 2, a part of the rear end large diameter region RE5 of the metal tube 5 is omitted.

感温部領域RE1は、金属チューブ5の外表面のうち軸線方向における測温接点10(感温部)の配置領域である。感温部先端領域RE2は、金属チューブ5の外表面のうち感温部領域RE1よりも先端側の領域である。感温部後端領域RE3は、金属チューブ5の外表面のうち感温部領域RE1と段差部24との間の領域である。換言すれば、感温部後端領域RE3は、金属チューブ5の外表面のうち感温部領域RE1よりも後端側で、かつ段差部24よりも先端側の領域である。段差部領域RE4は、金属チューブ5の外表面のうち軸線方向における段差部24の形成領域である。後端大径領域RE5は、金属チューブ5の外表面のうち段差部24よりも後端側で、かつ取付部材6よりも先端側の領域である。 The temperature sensing portion region RE1 is a region on the outer surface of the metal tube 5 where the temperature measuring contact 10 (temperature sensing portion) is arranged in the axial direction. The temperature-sensitive portion tip region RE2 is a region on the outer surface of the metal tube 5 on the tip side of the temperature-sensitive portion region RE1. The temperature-sensitive portion rear end region RE3 is a region on the outer surface of the metal tube 5 between the temperature-sensitive portion region RE1 and the step portion 24. In other words, the temperature-sensitive portion rear end region RE3 is a region on the outer surface of the metal tube 5 on the rear end side of the temperature-sensitive portion region RE1 and on the distal end side of the step portion 24. The stepped portion region RE4 is a region of the outer surface of the metal tube 5 where the stepped portion 24 is formed in the axial direction. The rear end large diameter region RE5 is a region of the outer surface of the metal tube 5 on the rear end side of the step portion 24 and on the front end side of the mounting member 6.

金属チューブ5は、自身の外表面のうち、感温部領域RE1、感温部先端領域RE2、感温部後端領域RE3、段差部領域RE4、後端大径領域RE5のそれぞれが、放射率εが0.88以上の放射率特定領域である。 Of the outer surface of the metal tube 5, each of the temperature-sensitive portion region RE1, the temperature-sensitive portion tip region RE2, the temperature-sensitive portion rear end region RE3, the stepped portion region RE4, and the rear end large-diameter region RE5 has emissivity. The emissivity specific region where ε is 0.88 or more.

金属チューブ5の外表面における放射率は、金属チューブ5の熱処理条件(熱処理温度、熱処理時間)を制御することで調整できる。例えば、熱処理温度を900℃、熱処理時間を2.0時間とする熱処理条件で金属チューブ5を熱処理した場合、金属チューブ5の外表面の放射率は、0.88以上となる。なお、熱処理温度をより高い温度としたり、熱処理時間をより長い時間とすることにより、金属チューブ5の放射率を非常に高い値とすることができるが生産効率が落ちる場合がある。そのため、生産性の観点から例えば放射率εは0.98以下であるとよい。また、さらなる生産性向上のためには、放射率εは0.94以下であるとさらによい。 The emissivity on the outer surface of the metal tube 5 can be adjusted by controlling the heat treatment conditions (heat treatment temperature, heat treatment time) of the metal tube 5. For example, when the metal tube 5 is heat-treated under heat treatment conditions where the heat treatment temperature is 900 ° C. and the heat treatment time is 2.0 hours, the emissivity of the outer surface of the metal tube 5 is 0.88 or more. By setting the heat treatment temperature to a higher temperature or setting the heat treatment time to a longer time, the emissivity of the metal tube 5 can be set to a very high value, but the production efficiency may decrease. Therefore, from the viewpoint of productivity, for example, the emissivity ε is preferably 0.98 or less. Further, in order to further improve the productivity, it is better that the emissivity ε is 0.94 or less.

[1-3.測定結果]
ここで、金属チューブ5の熱処理条件の変化に対する放射率の変化傾向を測定した測定結果について説明する。以下、この測定を第1測定ともいう。
[1-3. Measurement result]
Here, the measurement result of measuring the change tendency of the emissivity with respect to the change of the heat treatment condition of the metal tube 5 will be described. Hereinafter, this measurement is also referred to as a first measurement.

図3に示すように、熱処理条件については、熱処理時間は一定(2時間)とし、熱処理温度を3段階(400℃、600℃、900℃)に変化させた。600℃および900℃についてはそれぞれ2つの金属チューブ5(試料)を用いており、合計5個の金属チューブ5(試料1~5)について熱処理を実施した。なお、図3では、試料1~5それぞれの外観を撮影した画像を含んでいる。 As shown in FIG. 3, regarding the heat treatment conditions, the heat treatment time was constant (2 hours), and the heat treatment temperature was changed in three stages (400 ° C, 600 ° C, 900 ° C). Two metal tubes 5 (samples) were used at 600 ° C. and 900 ° C., respectively, and a total of five metal tubes 5 (samples 1 to 5) were heat-treated. Note that FIG. 3 includes images of the appearance of each of the samples 1 to 5.

図3の「第1測定結果」に示すとおり、熱処理温度が400℃および600℃の場合(試料1,2,3)は放射率εが0.88未満となり、熱処理温度が900℃場合(試料4,5)は放射率εが0.88以上となる。よって、熱処理温度が900℃以上、かつ熱処理時間が2時間以上の熱処理条件で金属チューブ5を熱処理することで、外表面の放射率εが0.88以上の金属チューブ5を製造できる。 As shown in the "first measurement result" of FIG. 3, when the heat treatment temperature is 400 ° C. and 600 ° C. (samples 1, 2 and 3), the emissivity ε is less than 0.88 and the heat treatment temperature is 900 ° C. (sample). In 4 and 5), the emissivity ε is 0.88 or more. Therefore, by heat-treating the metal tube 5 under the heat treatment conditions where the heat treatment temperature is 900 ° C. or higher and the heat treatment time is 2 hours or longer, the metal tube 5 having an emissivity ε on the outer surface of 0.88 or higher can be manufactured.

次に、熱処理済みの金属チューブ5であって放射率εが異なる複数の金属チューブ5を用いて、高温環境下に配置した場合の放射率の変化状態を測定した測定結果(以下、第2測定結果ともいう)について説明する。以下、この測定を第2測定ともいう。 Next, the measurement result of measuring the change state of the emissivity when the metal tube 5 which has been heat-treated and has a different emissivity ε is arranged in a high temperature environment (hereinafter, the second measurement). The result) will be explained. Hereinafter, this measurement is also referred to as a second measurement.

第2測定では、950℃の環境下に5時間にわたり金属チューブ5を配置した後の放射率εを測定した。
第2測定における測定後の試料1~5のそれぞれの放射率εは、図3の「第2測定結果」に示すとおりである。この「第2測定結果」に示すとおり、測定前の放射率εが0.88未満の試料1~3に比べて、測定前の放射率εが0.88以上の試料4および5は、測定前後における放射率εの変化割合が小さいことが分かる。
In the second measurement, the emissivity ε after placing the metal tube 5 in an environment of 950 ° C. for 5 hours was measured.
The emissivity ε of each of the samples 1 to 5 after the measurement in the second measurement is as shown in the “second measurement result” of FIG. As shown in this "second measurement result", the samples 4 and 5 having an emissivity ε of 0.88 or more before measurement are measured as compared with the samples 1 to 3 having an emissivity ε less than 0.88 before measurement. It can be seen that the rate of change in emissivity ε before and after is small.

次に、試料1~5の金属チューブ5を用いて構成された温度センサ1について、950℃の環境下に配置して、配置から15分経過時点での指示温度と配置から5時間経過時点での指示温度とを比較することで、温度検出時の指示温度変化量を測定した測定結果について説明する。以下、この測定を第3測定ともいう。 Next, the temperature sensor 1 configured by using the metal tubes 5 of the samples 1 to 5 was placed in an environment of 950 ° C., and the indicated temperature 15 minutes after the placement and 5 hours after the placement. The measurement result of measuring the indicated temperature change amount at the time of temperature detection will be described by comparing with the indicated temperature of. Hereinafter, this measurement is also referred to as a third measurement.

第3測定では、温度センサ1を950℃の環境下に配置して、温度センサ1が指示する温度の変化状態(指示温度変化量)を測定した。
図4に示す第3測定結果によれば、測定前の放射率εが0.88以上の試料4および5は、指示温度変化量が測定許容範囲(±1.0℃以内)に収まり、測定前の放射率εが0.88未満の試料1~3は、指示温度変化量が測定許容範囲を超えている。なお、図4では、測定前の金属チューブ5における先端部分の放射率εと、指示温度変化量との相関関係を表している。
In the third measurement, the temperature sensor 1 was placed in an environment of 950 ° C., and the temperature change state (indicated temperature change amount) indicated by the temperature sensor 1 was measured.
According to the third measurement result shown in FIG. 4, for the samples 4 and 5 having a radiation coefficient ε of 0.88 or more before the measurement, the indicated temperature change amount is within the measurement allowable range (within ± 1.0 ° C.) and the measurement is performed. In the previous samples 1 to 3 having a radiation coefficient ε of less than 0.88, the indicated temperature change amount exceeds the measurement allowable range. Note that FIG. 4 shows the correlation between the emissivity ε of the tip portion of the metal tube 5 before measurement and the indicated temperature change amount.

図5は、第3測定における試料1~5のそれぞれの指示温度の変化状態を示した波形である。図5によれば、試料4および5は、試料1~3に比べて、時間経過に伴う指示温度の変化量が小さいことが分かる。 FIG. 5 is a waveform showing a change state of each indicated temperature of the samples 1 to 5 in the third measurement. According to FIG. 5, it can be seen that the amount of change in the indicated temperature with the passage of time is smaller in the samples 4 and 5 than in the samples 1 to 3.

[1-4.効果]
以上説明したように、本実施形態の温度センサ1は、測温接点10(感温部)と、金属チューブ5(チューブ部)と、取付部材6(フランジ部)と、を備える。金属チューブ5は、長手方向の先端が閉じて後端が開口する有底筒状に形成されて、内部に測温接点10収容する。取付部材6は、金属チューブ5を支持する。
[1-4. effect]
As described above, the temperature sensor 1 of the present embodiment includes a temperature measuring contact 10 (temperature sensing portion), a metal tube 5 (tube portion), and a mounting member 6 (flange portion). The metal tube 5 is formed in a bottomed cylindrical shape in which the tip in the longitudinal direction is closed and the rear end is open, and the temperature measuring contact 10 is housed inside. The mounting member 6 supports the metal tube 5.

金属チューブ5の外表面は、放射率εが0.88以上の放射率特定領域を備える。金属チューブ5の外表面のうち、長手方向における複数の領域(感温部領域RE1、感温部先端領域RE2、感温部後端領域RE3、段差部領域RE4、後端大径領域RE5)は、それぞれ放射率特定領域である。 The outer surface of the metal tube 5 includes an emissivity specific region having an emissivity ε of 0.88 or more. Of the outer surface of the metal tube 5, a plurality of regions in the longitudinal direction (temperature sensitive region RE1, temperature sensitive tip region RE2, temperature sensitive rear end region RE3, step region RE4, rear end large diameter region RE5) are , Each is an emissivity specific area.

放射率特定領域は、放射率εが上記数値範囲であることで、高温環境(例えば、900℃以上)に長期(例えば、500時間)にわたり配置されても、放射率εの変化が生じがたい。このため、金属チューブ5の外表面のうち、感温部領域RE1、感温部先端領域RE2、感温部後端領域RE3、段差部領域RE4、後端大径領域RE5は、それぞれ放射率特定領域であることにより、温度センサ1の使用時間の経過に伴う放射率εの変化が生じ難いため、測定対象物(排気ガス)からの熱量吸収性能が変化し難くなる。これにより、温度センサ1の使用時間の経過に伴う、金属チューブ5の外表面における各領域(RE1~RE5)の熱量吸収性能の変化を抑制できるとともに、測温接点10に到達する熱量の変化を抑制できる。 Since the emissivity ε is in the above numerical range, the emissivity specific region is unlikely to change in the emissivity ε even if it is placed in a high temperature environment (for example, 900 ° C. or higher) for a long period of time (for example, 500 hours). .. Therefore, among the outer surfaces of the metal tube 5, the emissivity of the temperature-sensitive portion region RE1, the temperature-sensitive portion tip region RE2, the temperature-sensitive portion rear end region RE3, the stepped portion region RE4, and the rear end large-diameter region RE5 is specified. Since it is in the region, the emissivity ε is unlikely to change with the lapse of the usage time of the temperature sensor 1, so that the heat absorption performance from the object to be measured (exhaust gas) is unlikely to change. As a result, it is possible to suppress the change in the heat absorption performance of each region (RE1 to RE5) on the outer surface of the metal tube 5 with the lapse of the usage time of the temperature sensor 1, and also to suppress the change in the heat amount reaching the temperature measuring contact 10. Can be suppressed.

また、温度センサ1は、測温接点10における仮想円C1の直径寸法Aと金属チューブ5の内表面C2の直径寸法Bとの比率A/Bが65%よりも小さい関係を有するように構成されている。このように、測温接点10と金属チューブ5の内表面との間に所定の隙間が生じる構成の温度センサ1、具体的には仮想円C1の直径寸法Aと内表面C2の直径寸法Bとが「比率A/B<65%」の関係を有するような構成の温度センサ1においても、金属チューブ5の外表面のうち感温部領域RE1が放射率特定領域であることで、感温部領域RE1での熱量吸収性能の変化を抑制できるとともに、測温接点10に到達する熱量の変化を抑制できる。 Further, the temperature sensor 1 is configured so that the ratio A / B of the diameter dimension A of the virtual circle C1 in the temperature measuring contact 10 and the diameter dimension B of the inner surface C2 of the metal tube 5 is smaller than 65%. ing. As described above, the temperature sensor 1 having a configuration in which a predetermined gap is formed between the temperature measuring contact 10 and the inner surface of the metal tube 5, specifically, the diameter dimension A of the virtual circle C1 and the diameter dimension B of the inner surface C2. Even in the temperature sensor 1 having a structure such that the ratio A / B <65%, the temperature-sensitive region RE1 on the outer surface of the metal tube 5 is the radiation coefficient specific region, so that the temperature-sensitive region is located. The change in the heat absorption performance in the region RE1 can be suppressed, and the change in the heat amount reaching the temperature measuring contact 10 can be suppressed.

よって、温度センサ1は、時間経過に伴う金属チューブ5の外表面における各領域(RE1~RE5)の変化に起因する温度検出誤差が生じることを抑制でき、時間経過に伴う温度検出精度の低下を抑制できる。 Therefore, the temperature sensor 1 can suppress the occurrence of a temperature detection error due to the change of each region (RE1 to RE5) on the outer surface of the metal tube 5 with the passage of time, and the temperature detection accuracy is lowered with the passage of time. Can be suppressed.

また、温度センサ1は、金属チューブ5の外表面のうち、感温部領域RE1のみが放射率特定領域となる構成ではなく、感温部先端領域RE2、感温部後端領域RE3、段差部領域RE4、後端大径領域RE5も放射率特定領域となる構成である。このように、金属チューブ5の外表面における広範囲の領域が放射率特定領域であることで、金属チューブ5の広範囲において、温度センサ1の使用時間の経過に伴う放射率の変化が生じ難いため測定対象物からの熱量吸収性能が変化し難くなる。 Further, the temperature sensor 1 is not configured such that only the temperature-sensitive portion region RE1 of the outer surface of the metal tube 5 is the emissivity specific region, but the temperature-sensitive portion front end region RE2, the temperature-sensitive portion rear end region RE3, and the step portion. The region RE4 and the rear end large diameter region RE5 are also configured to be emissivity specific regions. As described above, since a wide range of the outer surface of the metal tube 5 is the emissivity specific region, the emissivity is unlikely to change with the lapse of the usage time of the temperature sensor 1 in the wide range of the metal tube 5, so that the measurement is performed. The heat absorption performance from the object is less likely to change.

さらに、温度センサ1においては、金属チューブ5の外表面のうち測定対象物(排気ガス)に晒される全ての領域(RE1~RE5)は放射率特定領域である。このため、温度センサ1は、金属チューブ5の外表面において放射率特定領域を大きく確保でき、温度検出誤差を抑制できる。よって、温度センサ1は、時間経過に伴う温度検出誤差が生じることを抑制でき、時間経過に伴う温度検出精度の低下をさらに抑制できる。 Further, in the temperature sensor 1, all the regions (RE1 to RE5) of the outer surface of the metal tube 5 exposed to the object to be measured (exhaust gas) are emissivity specific regions. Therefore, the temperature sensor 1 can secure a large emissivity specific region on the outer surface of the metal tube 5, and can suppress the temperature detection error. Therefore, the temperature sensor 1 can suppress the occurrence of a temperature detection error with the passage of time, and can further suppress the deterioration of the temperature detection accuracy with the passage of time.

次に、温度センサ1においては、測温接点10が先端側に配置された状態で第1熱電対素線2および第2熱電対素線3を支持する支持部(シース4)を備える。測温接点10は、第1熱電対素線2と第2熱電対素線3との接合点として備えられる。金属チューブ5は、小径部22(第1領域)と、大径部23(第2領域)と、段差部24(連結部)とを備え、シース4は、金属チューブ5のうち段差部24の内面に当接する。 Next, the temperature sensor 1 includes a support portion (sheath 4) that supports the first thermocouple wire 2 and the second thermocouple wire 3 in a state where the temperature measuring contact 10 is arranged on the tip side. The temperature measuring contact 10 is provided as a junction between the first thermocouple strand 2 and the second thermocouple strand 3. The metal tube 5 includes a small diameter portion 22 (first region), a large diameter portion 23 (second region), and a step portion 24 (connecting portion), and the sheath 4 is a step portion 24 of the metal tube 5. Contact the inner surface.

小径部22は、感温部領域RE1を含むとともに長手方向(軸線方向)にわたり外径寸法が一定である。大径部23は、小径部22よりも後端側に形成されるとともに長手方向にわたり外径寸法が一定であり、小径部22よりも外径寸法が大きい。段差部24は、小径部22と大径部23とを連結する。 The small diameter portion 22 includes the temperature sensitive portion region RE1 and has a constant outer diameter dimension over the longitudinal direction (axis direction). The large diameter portion 23 is formed on the rear end side of the small diameter portion 22, and has a constant outer diameter dimension in the longitudinal direction, and has a larger outer diameter dimension than the small diameter portion 22. The step portion 24 connects the small diameter portion 22 and the large diameter portion 23.

このような金属チューブ5を備える温度センサ1は、シース4の先端部が段差部24の内面に当接することで、金属チューブ5の内部における測温接点10の位置決めが容易となり、金属チューブ5の内部における測温接点10の位置決め精度が向上する。 In the temperature sensor 1 provided with such a metal tube 5, the tip portion of the sheath 4 abuts on the inner surface of the stepped portion 24, so that the temperature measuring contact 10 inside the metal tube 5 can be easily positioned, and the metal tube 5 can be easily positioned. The positioning accuracy of the temperature measuring contact 10 inside is improved.

[1-5.文言の対応関係]
ここで、文言の対応関係について説明する。
温度センサ1が温度センサの一例に相当し、測温接点10が感温部の一例に相当し、金属チューブ5がチューブ部の一例に相当し、段差部24が段差部および連結部の一例に相当する。
[1-5. Correspondence of words]
Here, the correspondence between words will be described.
The temperature sensor 1 corresponds to an example of a temperature sensor, the temperature measuring contact 10 corresponds to an example of a temperature sensitive portion, the metal tube 5 corresponds to an example of a tube portion, and the step portion 24 corresponds to an example of a step portion and a connecting portion. Equivalent to.

感温部領域RE1が感温部領域に相当し、感温部先端領域RE2がチューブ部の外表面のうち感温部領域よりも先端側の領域に相当し、感温部後端領域RE3がチューブ部の外表面のうち感温部領域と段差部との間の領域に相当する。感温部領域RE1、感温部先端領域RE2、感温部後端領域RE3、段差部領域RE4、後端大径領域RE5が、チューブ部の外表面のうち測定対象物に晒される全ての領域に相当する。 The temperature-sensitive region RE1 corresponds to the temperature-sensitive region, the temperature-sensitive region tip region RE2 corresponds to the region of the outer surface of the tube portion on the tip side of the temperature-sensitive region, and the temperature-sensitive region rear end region RE3. It corresponds to the region between the temperature-sensitive region and the stepped portion on the outer surface of the tube portion. The temperature-sensitive region RE1, the temperature-sensitive region tip region RE2, the temperature-sensitive rear end region RE3, the step region RE4, and the rear-end large-diameter region RE5 are all regions of the outer surface of the tube portion that are exposed to the object to be measured. Corresponds to.

小径部22が第1領域の一例に相当し、大径部23が第2領域の一例に相当し、段差部24が連結部の一例に相当し、第1熱電対素線2および第2熱電対素線3が一対の熱電対素線の一例に相当し、シース4が支持部の一例に相当する。 The small diameter portion 22 corresponds to an example of the first region, the large diameter portion 23 corresponds to an example of the second region, the stepped portion 24 corresponds to an example of the connecting portion, and the first thermocouple strand 2 and the second thermoelectric wire 2 and the second thermocouple. The counterwire 3 corresponds to an example of a pair of thermocouple strands, and the sheath 4 corresponds to an example of a support portion.

[2.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
[2. Other embodiments]
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and can be implemented in various embodiments without departing from the gist of the present disclosure.

例えば、上記実施形態では、金属チューブ5の外表面における各領域RE1~RE5がいずれも放射率特定領域である形態について説明したが、本開示は、このような形態に限られることはない。金属チューブ5の外表面のうち感温部領域RE1のみが放射率特定領域であってもよいし、感温部領域RE1および感温部先端領域RE2が放射率特定領域であってもよいし、感温部領域RE1、感温部先端領域RE2、感温部後端領域RE3が放射率特定領域であってもよい。 For example, in the above embodiment, the embodiment in which each region RE1 to RE5 on the outer surface of the metal tube 5 is an emissivity specific region has been described, but the present disclosure is not limited to such an embodiment. Of the outer surface of the metal tube 5, only the temperature-sensitive region RE1 may be the emissivity specific region, or the temperature-sensitive region RE1 and the temperature-sensitive tip region RE2 may be the emissivity specific region. The temperature-sensitive portion region RE1, the temperature-sensitive portion front end region RE2, and the temperature-sensitive portion rear end region RE3 may be emissivity specific regions.

次に、金属チューブ5の段差部24の内面に当接するのは、シース4に限られることはなく、感温部であってもよい。その場合の感温部は、段差部24から小径部22の先端側領域に至る長尺形状であってもよい。 Next, the contact with the inner surface of the step portion 24 of the metal tube 5 is not limited to the sheath 4, and may be a temperature-sensitive portion. In that case, the temperature sensitive portion may have a long shape extending from the step portion 24 to the tip end side region of the small diameter portion 22.

次に、上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を、省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 Next, the function of one component in each of the above embodiments may be shared by a plurality of components, or the function of the plurality of components may be exerted by one component. Further, a part of the configuration of each of the above embodiments may be omitted. Further, at least a part of the configuration of each of the above embodiments may be added or substituted with respect to the configuration of the other embodiments. It should be noted that all aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

1…温度センサ、2…第1熱電対素線、3…第2熱電対素線、4…シース、5…金属チューブ、6…取付部材、7…外筒、8…ナット部材、10…測温接点、21…縮径部、22…小径部、23…大径部、24…段差部、RE1…感温部領域、RE2…感温部先端領域、RE3…感温部後端領域、RE4…段差部領域、RE5…後端大径領域。 1 ... Temperature sensor, 2 ... 1st thermocouple wire, 3 ... 2nd thermocouple wire, 4 ... Sheath, 5 ... Metal tube, 6 ... Mounting member, 7 ... Outer cylinder, 8 ... Nut member, 10 ... Measurement Thermocouple, 21 ... reduced diameter part, 22 ... small diameter part, 23 ... large diameter part, 24 ... stepped part, RE1 ... temperature sensitive part region, RE2 ... temperature sensitive part tip region, RE3 ... temperature sensitive part rear end region, RE4 ... Step area, RE5 ... Large diameter area at the rear end.

Claims (7)

感温部と、
長手方向の先端が閉じて後端が開口する有底筒状に形成されて、前記感温部を収容するチューブ部と、
を備える温度センサであって、
前記チューブ部は耐腐食性金属であって、熱処理により外表面は、放射率が0.88以上の放射率特定領域を備えており、
前記チューブ部の外表面のうち前記長手方向における前記感温部の配置領域である感温部領域は、前記放射率特定領域であり、
前記感温部のうち前記長手方向に垂直な断面形状を内包する仮想円であって径寸法が最小の仮想円における直径寸法Aと、前記チューブ部の内表面における前記長手方向に垂直な断面のうち前記感温部領域における断面の直径寸法Bとは、比率A/B<65%の関係を有する、
温度センサ。
The temperature sensitive part and
A tube portion that is formed in a bottomed cylindrical shape with the tip closed in the longitudinal direction and the rear end opened to accommodate the temperature-sensitive portion, and a tube portion.
It is a temperature sensor equipped with
The tube portion is a corrosion-resistant metal, and the outer surface is provided with an emissivity specific region having an emissivity of 0.88 or more due to heat treatment .
Of the outer surface of the tube portion, the temperature-sensitive portion region, which is the arrangement region of the temperature-sensitive portion in the longitudinal direction, is the emissivity specific region.
Of the temperature sensitive portions, the diameter dimension A in the virtual circle that includes the cross-sectional shape perpendicular to the longitudinal direction and the smallest diameter dimension, and the cross section perpendicular to the longitudinal direction on the inner surface of the tube portion. Of these, the diameter dimension B of the cross section in the temperature-sensitive portion region has a relationship of ratio A / B <65%.
Temperature sensor.
前記チューブ部の外表面のうち前記感温部領域よりも先端側の領域は、前記放射率特定領域である、
請求項1に記載の温度センサ。
The region on the outer surface of the tube portion on the tip side of the temperature-sensitive region is the emissivity specific region.
The temperature sensor according to claim 1.
前記チューブ部における前記感温部領域よりも後端側の部位のうち、外径寸法が感温部領域の後端の外径寸法よりも大きくなる部位を段差部とした場合に、
前記チューブ部の外表面のうち前記感温部領域と前記段差部との間の領域は、前記放射率特定領域である、
請求項1または請求項2に記載の温度センサ。
When a step portion is defined as a portion of the tube portion on the rear end side of the temperature sensitive portion region where the outer diameter dimension is larger than the outer diameter dimension of the rear end of the temperature sensitive portion region.
The region between the temperature-sensitive region and the stepped portion on the outer surface of the tube portion is the emissivity specific region.
The temperature sensor according to claim 1 or 2.
前記チューブ部の外表面のうち測定対象物に晒される全ての領域は、前記放射率特定領域である、
請求項1から請求項3のうちいずれか一項に記載の温度センサ。
All the regions of the outer surface of the tube portion exposed to the object to be measured are the emissivity specific regions.
The temperature sensor according to any one of claims 1 to 3.
前記チューブ部は、
前記感温部領域を含むとともに前記長手方向にわたり外径寸法が一定である第1領域と、
前記第1領域よりも後端側に形成されるとともに前記長手方向にわたり外径寸法が一定であり、前記第1領域よりも外径寸法が大きい第2領域と、
前記第1領域と前記第2領域とを連結する連結部と、
を備え、
前記感温部は、一対の熱電対素線の接合点として備えられ、
当該温度センサは、前記一対の熱電対素線と電気的に絶縁されて、前記感温部が先端側に配置された状態で前記一対の熱電対素線を支持する支持部を備え、
前記支持部の先端部は、前記連結部の内面に当接する、
請求項1から請求項4のうちいずれか一項に記載の温度センサ。
The tube portion
A first region that includes the temperature-sensitive region and has a constant outer diameter over the longitudinal direction.
A second region formed on the rear end side of the first region, having a constant outer diameter dimension over the longitudinal direction, and having a larger outer diameter dimension than the first region.
A connecting portion connecting the first region and the second region,
Equipped with
The temperature sensitive portion is provided as a junction of a pair of thermocouple strands, and is provided.
The temperature sensor is provided with a support portion that is electrically insulated from the pair of thermocouple wires and supports the pair of thermocouple wires in a state where the temperature sensing portion is arranged on the tip side.
The tip of the support portion abuts on the inner surface of the connecting portion.
The temperature sensor according to any one of claims 1 to 4.
前記放射率特定領域の放射率が0.98以下である、
請求項1から請求項5のうちいずれか一項に記載の温度センサ。
The emissivity of the emissivity specific region is 0.98 or less.
The temperature sensor according to any one of claims 1 to 5.
前記放射率特定領域の放射率が0.94以下である、
請求項6に記載の温度センサ。
The emissivity of the emissivity specific region is 0.94 or less.
The temperature sensor according to claim 6.
JP2018186539A 2017-12-06 2018-10-01 Temperature sensor Active JP7074634B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102018130043.3A DE102018130043A1 (en) 2017-12-06 2018-11-28 temperature sensor
CN201811489405.0A CN110006547A (en) 2017-12-06 2018-12-06 Temperature sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017234420 2017-12-06
JP2017234420 2017-12-06

Publications (2)

Publication Number Publication Date
JP2019101019A JP2019101019A (en) 2019-06-24
JP7074634B2 true JP7074634B2 (en) 2022-05-24

Family

ID=66976804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186539A Active JP7074634B2 (en) 2017-12-06 2018-10-01 Temperature sensor

Country Status (2)

Country Link
JP (1) JP7074634B2 (en)
CN (1) CN110006547A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215314A (en) 2016-05-31 2017-12-07 日本特殊陶業株式会社 Multichannel temperature measuring device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181330U (en) * 1985-04-30 1986-11-12
JPH0355538U (en) * 1989-10-03 1991-05-29
EP1298423A1 (en) * 2001-10-01 2003-04-02 Vesuvius Crucible Company Pyrometer
JP4192823B2 (en) * 2003-06-06 2008-12-10 株式会社デンソー Gas sensor
US8047706B2 (en) * 2007-12-07 2011-11-01 Asm America, Inc. Calibration of temperature control system for semiconductor processing chamber
JP5324536B2 (en) * 2010-08-19 2013-10-23 日本特殊陶業株式会社 Temperature sensor
JP5756415B2 (en) * 2011-05-19 2015-07-29 日本特殊陶業株式会社 Sensor
JP6234755B2 (en) * 2013-09-19 2017-11-22 日本特殊陶業株式会社 Temperature sensor
JP6421690B2 (en) * 2014-07-17 2018-11-14 株式会社デンソー Temperature sensor
JP2017116360A (en) * 2015-12-23 2017-06-29 株式会社デンソー Temperature sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215314A (en) 2016-05-31 2017-12-07 日本特殊陶業株式会社 Multichannel temperature measuring device

Also Published As

Publication number Publication date
JP2019101019A (en) 2019-06-24
CN110006547A (en) 2019-07-12

Similar Documents

Publication Publication Date Title
JP5615305B2 (en) Flow sensor with bushing on cover, production method of flow sensor, and sensor chip
US9581565B2 (en) Gas sensor
EP2420807B1 (en) Temperature sensor
JP4253642B2 (en) Temperature sensor
CN108344521B (en) Transient heat flow sensor
KR101630452B1 (en) Temperature sensor
JP6301753B2 (en) Temperature sensor
JP5814991B2 (en) Temperature sensor
JP2009270989A (en) Temperature sensor
JP2009527761A (en) Temperature sensor device
US20160018268A1 (en) Temperature sensor for high temperature
US10428716B2 (en) High-temperature exhaust sensor
JP7074634B2 (en) Temperature sensor
JP5139373B2 (en) Gas sensor mounting structure and gas sensor with protective cover
US9989506B2 (en) Gas sensor and gas sensor manufacturing method
JP6239899B2 (en) Gas sensor
JP2019027994A (en) Temperature sensor
JP5268874B2 (en) Temperature sensor
JP2009300237A (en) Temperature sensor and method of manufacturing the same
JP6531511B2 (en) Sensor
JP6321470B2 (en) Thermistor element and temperature sensor
JP6491061B2 (en) Gas sensor and gas sensor manufacturing method
JP2017015504A (en) Temperature sensor
JP2012032235A (en) Temperature sensor
JP6483361B2 (en) Thermistor element and temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R150 Certificate of patent or registration of utility model

Ref document number: 7074634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150