JP7074335B2 - Manufacturing method of variable friction coefficient block body - Google Patents

Manufacturing method of variable friction coefficient block body Download PDF

Info

Publication number
JP7074335B2
JP7074335B2 JP2018126215A JP2018126215A JP7074335B2 JP 7074335 B2 JP7074335 B2 JP 7074335B2 JP 2018126215 A JP2018126215 A JP 2018126215A JP 2018126215 A JP2018126215 A JP 2018126215A JP 7074335 B2 JP7074335 B2 JP 7074335B2
Authority
JP
Japan
Prior art keywords
friction coefficient
woven fabric
block body
variable
swell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018126215A
Other languages
Japanese (ja)
Other versions
JP2020001364A (en
Inventor
拓哉 大園
啓 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018126215A priority Critical patent/JP7074335B2/en
Publication of JP2020001364A publication Critical patent/JP2020001364A/en
Application granted granted Critical
Publication of JP7074335B2 publication Critical patent/JP7074335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、表面凹凸の形成状態を制御して該表面の摩擦係数を変化させ得る摩擦係数可変ブロック体の製造方法に関し、特に、表面近傍に埋設された織布の該表面への露出状態を制御してその摩擦係数を変化させ得る摩擦係数可変ブロック体の製造方法に関する。 The present invention relates to a method for manufacturing a block body having a variable friction coefficient that can change the friction coefficient of the surface by controlling the formation state of surface irregularities, and in particular, the exposed state of the woven fabric embedded in the vicinity of the surface to the surface. The present invention relates to a method for manufacturing a variable friction coefficient block body that can be controlled to change the friction coefficient.

表面凹凸の形成状態によって該表面の摩擦係数を小さくしたり、大きくしたり調整することが出来る。かかる構造は、物体を搬送するベルトコンベヤや、各種機械の送りローラなどに適用されている。 The coefficient of friction of the surface can be reduced, increased or adjusted depending on the formation state of the surface unevenness. Such a structure is applied to a belt conveyor for transporting an object, a feed roller of various machines, and the like.

例えば、特許文献1では、荷物を搬送するコンベヤベルトのゴム表面に織布を埋設し表面に配列した突起構造を与えることで、コンベヤベルトの摩擦係数を下げ、また、塵埃の堆積を抑えることができるとしている。また、特許文献2では、軸受けや軸シールなどの摺動部に用いられるゴム部材において、ゴム組成物に多孔性炭素材粒子を分散させてから架橋させることで、他のゴムと比較して摩擦係数をより小さくできて、摺動特性を向上できるとしている。 For example, in Patent Document 1, the friction coefficient of the conveyor belt can be lowered and the accumulation of dust can be suppressed by embedding a woven cloth in the rubber surface of the conveyor belt for transporting the load and giving the protrusion structure arranged on the surface. It is said that it can be done. Further, in Patent Document 2, in a rubber member used for a sliding portion such as a bearing or a shaft seal, the porous carbon material particles are dispersed in a rubber composition and then crosslinked to cause friction as compared with other rubbers. It is said that the coefficient can be made smaller and the sliding characteristics can be improved.

一方、表面凹凸の形成状態を可変的に制御することで機械動作中に摩擦係数を変化させ得る摩擦係数可変ブロック体も提案されている。 On the other hand, a variable friction coefficient block body that can change the friction coefficient during machine operation by variably controlling the formation state of surface irregularities has also been proposed.

例えば、特許文献3では、ゴム本体の表面に織布を埋設しこのゴム本体のうねり形状に重畳させて織布の突起部を周期的に与えることで、より大なる摩擦係数の変化幅を与え得る摩擦係数可変シート体を開示している。かかるシート体の製造方法として、平坦なガラス基板上の織物に液体状のゴム弾性体の前駆体液を注ぎ浸透させ、硬化させたPDMSの板状体を弾性体シートに押圧する。熱硬化後、ガラス基板から剥がすと摩擦係数可変シート体が得られる。これに小型圧縮機を用いて横糸の糸軸方向への1軸の面内圧縮を加えると、うねりが形成されるとともに、これに織布の周期的な突起が重畳して形成される。 For example, in Patent Document 3, a woven cloth is embedded in the surface of the rubber body and superposed on the wavy shape of the rubber body to periodically give a protrusion of the woven cloth to give a larger change width of the friction coefficient. The obtained friction coefficient variable sheet body is disclosed. As a method for producing such a sheet body, a liquid rubber elastic body precursor liquid is poured into a woven fabric on a flat glass substrate and permeated, and the cured PDMS plate-like body is pressed against the elastic body sheet. After thermosetting, it is peeled off from the glass substrate to obtain a sheet body having a variable friction coefficient. When uniaxial in-plane compression of the weft in the yarn axis direction is applied to this using a small compressor, undulations are formed and periodic protrusions of the woven fabric are superimposed on the undulations.

また、非特許文献1でも、ゴム本体の表面に配列した突起構造を含む摩擦係数可変シート体を開示している。ナイロン66繊維からなる平織物をシリコーンゴム基材の表面に載置し、シリコーンゴムの前駆体である未硬化液を含浸させ加圧しながら熱硬化させる。このとき、ゴム基材を1軸方向に延伸させておき、硬化後に延伸を解除すると表面方向に圧縮ひずみが印加され、包埋された織物層が座屈、周期的なシワ構造が形成されるのである。 In addition, Non-Patent Document 1 also discloses a variable friction coefficient sheet body including a protrusion structure arranged on the surface of a rubber body. A plain fabric made of nylon 66 fibers is placed on the surface of a silicone rubber base material, impregnated with an uncured liquid which is a precursor of silicone rubber, and heat-cured while being pressurized. At this time, when the rubber base material is stretched in the uniaxial direction and the stretching is released after curing, compressive strain is applied in the surface direction, the embedded woven fabric layer buckles, and a periodic wrinkle structure is formed. It is.

国際公開第2015/186435号パンフレットInternational Publication No. 2015/186435 Pamphlet 特開2016-060846号公報Japanese Unexamined Patent Publication No. 2016-060846 特開2017-190537号公報Japanese Unexamined Patent Publication No. 2017-190537

「織物包埋ゴム表面のシワでの静摩擦力の荷重に対する特異な増加」;大園拓哉、寺岡啓著:トライボロジスト誌、第62巻 第8号 (2017) 532~536頁"Peculiar increase in static friction force on wrinkles on the surface of woven rubber embedded rubber"; Takuya Osono, Kei Teraoka: Tribologist, Vol. 62, No. 8 (2017) pp. 532-536

上記した摩擦係数可変シートやブロック体において、織布による突起の周期構造や、この織布を埋め込んだ本体部のうねりにムラが生じると、所与の摩擦係数変化を得られなくなってしまう。この傾向は、特に、ロボットなどで要望される大面積の部材への適用において顕著である。 In the above-mentioned variable friction coefficient sheet or block body, if the periodic structure of the protrusions due to the woven fabric or the undulation of the main body in which the woven fabric is embedded becomes uneven, a given change in the friction coefficient cannot be obtained. This tendency is particularly remarkable in the application to large-area members required for robots and the like.

本発明は、かかる状況に鑑みてなされたものであって、その目的とするところは、表面近傍に埋設された織布の該表面への露出状態を制御してその摩擦係数を変化させ得る摩擦係数可変シートやブロック体の製造方法において、安定した摩擦係数変化を与え得る摩擦係数可変シートやブロック体を効率よく製造できる方法を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is friction that can change the friction coefficient by controlling the exposure state of the woven fabric embedded in the vicinity of the surface to the surface. In a method for manufacturing a variable coefficient sheet or a block body, it is an object of the present invention to provide a method capable of efficiently manufacturing a variable friction coefficient sheet or a block body capable of giving a stable change in the friction coefficient.

本発明による製造方法は、ゴム弾性体の表面に沿って埋設された織布の該表面への露出状態を制御して摩擦係数を変化させ得る摩擦係数可変ブロック体の製造方法であって、基台の上に前記織布を配置しこの上から前記ゴム弾性体の前駆体である未硬化液を付与するとともに、前記基台に向けて押圧部材を押し付けつつ前記織布に含浸させて前記未硬化液を硬化させプレシート体を形成する工程と、前記ゴム弾性体からなる本体部の貼付面に前記プレシート体を貼付する貼付工程と、を含むことを特徴とする。 The manufacturing method according to the present invention is a manufacturing method of a friction coefficient variable block body capable of changing the friction coefficient by controlling the exposure state of the woven fabric embedded along the surface of the rubber elastic body to the surface. The woven fabric is placed on a table, and an uncured liquid which is a precursor of the rubber elastic body is applied from above, and the woven fabric is impregnated with the pressing member while being pressed against the base. It is characterized by including a step of curing a curing liquid to form a presheet body, and a sticking step of sticking the presheet body to a sticking surface of a main body made of the rubber elastic body.

かかる発明によれば、織布による突起や表面のうねりに影響を与える表層部分を本体部分と切り離して製造できるから、本体部分の形状や性状に影響を受けることなく、安定した摩擦係数変化を与え得る摩擦係数可変シートやブロック体を効率よく、特に、大面積且つ厚手のブロック体であっても、精度良く製造できるのである。 According to such an invention, since the surface layer portion that affects the protrusions and surface waviness caused by the woven fabric can be manufactured separately from the main body portion, a stable friction coefficient change can be provided without being affected by the shape and properties of the main body portion. The obtained friction coefficient variable sheet or block body can be efficiently manufactured, and in particular, even a large area and thick block body can be manufactured with high accuracy.

上記した発明において、前記貼付工程は、前記貼付面をあらかじめ伸張させておく工程を含むことを特徴としてもよい。かかる発明によれば、特に、表面のうねりを本体部分の形状や性状に影響を受けることなく形成できて、安定した摩擦係数変化を与え得る摩擦係数可変シートやブロック体を効率よく製造できるのである。 In the above-mentioned invention, the sticking step may be characterized by including a step of preliminarily stretching the sticking surface. According to such an invention, in particular, it is possible to efficiently manufacture a variable friction coefficient sheet or a block body which can form undulations on the surface without being affected by the shape and properties of the main body portion and can give a stable change in the friction coefficient. ..

上記した発明において、前記貼付工程は、前記押圧部材に接した面を前記貼付面に貼付することを特徴としてもよい。かかる発明によれば、織布を表面近傍に精度良く与えることができて、安定した摩擦係数変化を与え得る摩擦係数可変シートやブロック体を効率よく製造できるのである。 In the above-described invention, the sticking step may be characterized in that a surface in contact with the pressing member is pasted on the sticking surface. According to such an invention, the woven fabric can be accurately applied to the vicinity of the surface, and a variable friction coefficient sheet or a block body capable of giving a stable change in the coefficient of friction can be efficiently manufactured.

本発明による製造方法で得られる摩擦係数可変ブロック体の(a)表面写真(拡大率大)、(b)表面写真(拡大率小)、(c)断面写真、及び、(d)断面斜視図である。(A) Surface photograph (large magnification), (b) Surface photograph (small magnification), (c) Cross-sectional photograph, and (d) Cross-sectional perspective view of the variable friction coefficient block body obtained by the manufacturing method according to the present invention. Is. 摩擦係数可変ブロック体の周期的なうねりを生じた状態の表面写真である。It is a surface photograph of the state where the periodic swell of the friction coefficient variable block body was generated. 摩擦係数可変ブロック体において、うねりに重畳して形成される周期的な突起の(a)表面写真と圧縮方向に直行する方向の表面形状を示す図、及び(b)突起の形成メカニズムを説明する織布の斜視図である。In the friction coefficient variable block body, (a) a surface photograph of periodic protrusions formed by superimposing on undulations, a diagram showing a surface shape in a direction orthogonal to the compression direction, and (b) a projection formation mechanism will be described. It is a perspective view of a woven cloth. 摩擦係数可変ブロック体の比較例による製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method by the comparative example of the friction coefficient variable block body. 摩擦係数可変ブロック体の実施例による製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method by Example of the friction coefficient variable block body. 比較例1により製造した摩擦係数可変ブロック体の表面写真である。It is a surface photograph of the friction coefficient variable block body manufactured by the comparative example 1. FIG. 実施例により製造した摩擦係数可変ブロック体の表面写真である。It is a surface photograph of the friction coefficient variable block body manufactured by Example. 摩擦係数可変ブロック体の評価試験結果の一覧表である。It is a list of evaluation test results of the friction coefficient variable block body. 摩擦係数可変ブロック体の摩擦係数の計測結果を示すグラフである。It is a graph which shows the measurement result of the friction coefficient of a friction coefficient variable block body.

まず、本発明による製造方法にて製造される摩擦係数可変ブロック体について、図1乃至図3を用いて説明する。 First, the friction coefficient variable block body manufactured by the manufacturing method according to the present invention will be described with reference to FIGS. 1 to 3.

図1に示すように、摩擦係数可変ブロック体10は、ゴム弾性体からなる板状の本体部1の主面上に織布2及びゴム弾性体による積層部5を備える。積層部5は、その表面に沿ってその直下に織布2を埋設させており、主面を全体として平坦に形成されるとともに、織布2の一部を露出可能にしている。織布2は、直行する縦糸2a及び横糸2bを編みこまれた2軸織布からなる。 As shown in FIG. 1, the variable friction coefficient block body 10 includes a woven fabric 2 and a laminated portion 5 made of a rubber elastic body on the main surface of a plate-shaped main body portion 1 made of a rubber elastic body. The woven fabric 2 is embedded in the laminated portion 5 along the surface thereof and directly below the woven fabric 2, so that the main surface is formed flat as a whole and a part of the woven fabric 2 can be exposed. The woven fabric 2 is composed of a biaxial woven fabric in which orthogonal warp threads 2a and weft threads 2b are woven.

図2に示すように、摩擦係数可変ブロック体10は、織布2の縦糸2a又は横糸2bのいずれか一方が圧縮されるように、その主面に沿った方向に圧縮されることで、圧縮方向に尾根3a及び谷3bの繰り返される周期的な「うねり」を織布2の埋設されている側の主面に形成する。また、かかる圧縮(歪み)を解除することで、もとの平坦な形状に戻る。つまり、「うねり」を可逆的に形成させることができる。うねりの尾根3aの谷3bに対する高さは、圧縮方向のひずみに応じて変化し、例えば、うねりの周期長に対して0~0.2倍の範囲内で推移する。このような「うねり」の形成は「表面座屈」とも称される。 As shown in FIG. 2, the variable friction coefficient block body 10 is compressed by being compressed in a direction along the main surface of the woven fabric 2 so that either the warp threads 2a or the weft threads 2b are compressed. Repeated periodic "waviness" of ridges 3a and valleys 3b in the direction is formed on the main surface of the woven fabric 2 on the embedded side. Also, by releasing the compression (distortion), it returns to the original flat shape. That is, the "waviness" can be reversibly formed. The height of the ridge 3a with respect to the valley 3b of the swell changes according to the strain in the compression direction, and changes, for example, in the range of 0 to 0.2 times the period length of the swell. The formation of such "waviness" is also called "surface buckling".

上記したようなうねりは、本体部1を弾性率の低い材料とし、織布2を弾性率の高い材料とすることで形成し得る。このとき、例えば、本体部1の弾性率(Ea)の縦糸2a及び横糸2bの糸軸方向の実効弾性率(Eb)に対する比(Ea/Eb)を10-1以下とすることが好ましい。また、うねりの周期長は、本体部1及び織布2のヤング率の比と、織布2の厚みによって調整可能である。 The swell as described above can be formed by using the main body 1 as a material having a low elastic modulus and the woven fabric 2 as a material having a high elastic modulus. At this time, for example, the ratio (Ea / Eb) of the elastic modulus (Ea) of the main body 1 to the effective elastic modulus (Eb) of the warp threads 2a and the weft threads 2b in the yarn axis direction is preferably 10 -1 or less. Further, the cycle length of the swell can be adjusted by the ratio of the Young's modulus of the main body 1 and the woven fabric 2 and the thickness of the woven fabric 2.

図3に示すように、摩擦係数可変ブロック体10は、圧縮したときに、縦糸2a及び横糸2bの交差部に周期的な突起4をうねりに重畳させて形成させ得る。つまり、織布2の表面への露出状態を制御して突起4を形成させるのである。 As shown in FIG. 3, the variable friction coefficient block body 10 can be formed by superimposing periodic protrusions 4 on the intersections of the warp threads 2a and the weft threads 2b in a swell when compressed. That is, the protrusion 4 is formed by controlling the exposure state of the woven fabric 2 to the surface.

図3(a)に示すように紙面横方向への圧縮により、同方向のうねりが形成される。つまり、圧縮方向に直行する方向に延びる尾根3aと谷3bを有するうねりを形成する。このとき、尾根3aの頂部の高さを尾根3aの延びる方向(紙面上下方向)に沿って計測すると、例えば、10μm程度の高さのピーク4aが観察される。つまり、このピーク4aの形状を有する突起4がうねりの尾根3aに位置的に同期して形成されていることになる。 As shown in FIG. 3A, undulations in the same direction are formed by compression in the lateral direction of the paper surface. That is, it forms a swell with ridges 3a and valleys 3b extending perpendicular to the compression direction. At this time, when the height of the top of the ridge 3a is measured along the extending direction of the ridge 3a (vertical direction on the paper surface), for example, a peak 4a having a height of about 10 μm is observed. That is, the protrusion 4 having the shape of the peak 4a is formed in synchronization with the ridge 3a of the swell.

図3(b)を合わせて参照すると、まず、織布2に応力の付与されていないとき、摩擦係数可変ブロック体10の表面は平坦である。これに対し、例えば、横糸2bを圧縮させるように、本体部1(図1参照)を主面に沿って圧縮すると、これと直行する方向、すなわち縦糸2aの延びる方向の引っ張り応力が本体部1に生じる。かかる引っ張り応力により、本体部1が縦糸2aの延びる方向に延伸し、これとともに縦糸2aを引っ張って直線に近づけるように伸長させる。これによって、縦糸2aの上下を通過するように編みこまれた横糸2bの交差部での曲り度合いが大きくなる。このとき、縦糸2aとの交差部のうち、横糸2bが表面側に位置する部分では、突起4が形成されるのである。すなわち、うねりの形成に時間的に同期して、つまり、うねりに重畳して周期的な突起4が形成されるのである。突起4の高さは、圧縮の付与されていないときに0である。つまり、縦糸2a及び横糸2bの交差部の高さはいずれも同じである。一方、横糸2b方向の面内圧縮によって縦糸2aを伸ばしたときに突起4の高さは最も高くなり、縦糸2aを直線状にした場合に横糸2bの直径と同等の高さとなる。なお、縦糸2aと横糸2bとの間で圧縮方向を換えても同様である。 Also referring to FIG. 3B, first, when no stress is applied to the woven fabric 2, the surface of the variable friction coefficient block body 10 is flat. On the other hand, for example, when the main body 1 (see FIG. 1) is compressed along the main surface so as to compress the weft 2b, the tensile stress in the direction perpendicular to this, that is, in the extending direction of the warp 2a, is applied to the main body 1. Occurs in. Due to the tensile stress, the main body 1 is stretched in the extending direction of the warp 2a, and at the same time, the warp 2a is pulled and stretched so as to approach a straight line. As a result, the degree of bending at the intersection of the weft 2b knitted so as to pass above and below the warp 2a is increased. At this time, the protrusion 4 is formed at the portion of the intersection with the warp 2a where the weft 2b is located on the surface side. That is, the periodic protrusions 4 are formed in synchronization with the formation of the swell, that is, superimposed on the swell. The height of the protrusion 4 is 0 when no compression is applied. That is, the heights of the intersections of the warp threads 2a and the weft threads 2b are the same. On the other hand, the height of the protrusion 4 becomes the highest when the warp 2a is stretched by in-plane compression in the weft 2b direction, and becomes the same height as the diameter of the weft 2b when the warp 2a is made linear. The same applies even if the compression direction is changed between the warp threads 2a and the weft threads 2b.

摩擦係数可変ブロック体10は、圧縮応力の付与によってその主面の形状を平坦な形状からうねりを形成させるように変化させ、さらにこれと同時に織布2の表面への露出を増して突起4を形成させる。つまり、うねりと突起4とを重畳させた周期的な凹凸構造を形成する。ここで、うねりの谷3bに入りこまない形状の物体に対して接触する面積は、平坦なときと比べて、うねりを形成することでも小さくなる。これに加えて、摩擦係数可変ブロック体10は、うねりの形成に時間的に同期して突起4を形成するので接触面積をさらに小さくする。これによって、接触する物体に対する表面の摩擦係数の変化幅をより大きくすることができる。つまり、織布2のゴム弾性体による積層部5の表面への露出状態を制御して摩擦係数を変化させる。 The variable friction coefficient block body 10 changes the shape of its main surface from a flat shape to form a swell by applying compressive stress, and at the same time, increases the exposure of the woven fabric 2 to the surface to form protrusions 4. Form. That is, a periodic uneven structure is formed in which the undulations and the protrusions 4 are superimposed. Here, the area of contact with an object having a shape that does not enter the swell valley 3b becomes smaller by forming the swell than when it is flat. In addition to this, the variable friction coefficient block body 10 forms the protrusions 4 in synchronization with the formation of the waviness, so that the contact area is further reduced. This makes it possible to increase the range of change in the coefficient of friction of the surface with respect to the object in contact. That is, the coefficient of friction is changed by controlling the exposure state of the laminated portion 5 to the surface of the laminated portion 5 by the rubber elastic body of the woven fabric 2.

次に、このような摩擦係数可変ブロック体10の製造方法に関し、比較例及び実施例のそれぞれの方法で摩擦係数可変ブロック体を製造した試験結果について説明する。 Next, regarding the method for manufacturing such a variable friction coefficient block body 10, the test results of manufacturing the variable friction coefficient block body by each of the comparative examples and the examples will be described.

[比較例のブロック体]
図4に示すように、摩擦係数可変ブロック体は、例えば、本体部1の前駆体である未硬化又は溶融した液体状態の材料を織布2に浸透させてその空隙部分を満たし、別途用意した固体状の本体部1の表面に圧着して前駆体を硬化又は凝固させる方法で製造した。すなわち、1段階での圧着による製造方法である。
[Block body of comparative example]
As shown in FIG. 4, the variable friction coefficient block body is prepared separately by, for example, infiltrating the uncured or melted liquid state material which is the precursor of the main body 1 into the woven fabric 2 to fill the void portion thereof. It was manufactured by a method of crimping to the surface of a solid main body 1 to cure or solidify the precursor. That is, it is a manufacturing method by crimping in one step.

詳細には、本体部1として2mm厚さのシリコーンゴムの板状体を用い、これを主面に沿った方向に12%の歪みで一軸伸張させておいた。なお、主面の寸法は180mm×180mmである。織布2としては、繊維間の距離を約80μmとした直径35μmのナイロン6,6繊維からなる平織布を用い、かかる織布2にシリコーンゴムの前駆体であるポリジメチルシロキサン(PDMS)ゾル11を含浸させて伸張させた本体部1の上に載せた。次いで、2枚の板状の支持ガラスからなる基台21a及び押圧部材21bをそれぞれ下方及び上方に配置して、一定の圧力で圧着させるように挟持させ、余剰のPDMSゾル11を絞り出しつつ(矢印S参照)、室温(295K)で24時間保持してPDMSゾルを硬化させた。最後に基台21a及び押圧部材21bを剥がして摩擦係数可変ブロック体(比較例)を得た。基台21a及び押圧部材21bを剥離したことで、予め与えた伸張による歪みを開放させて表面に700μm程度の周期を有するうねりを生じた。なお、圧着する圧力は、12kPa及び60kPaの2通りとし、それぞれ比較例1及び比較例2による摩擦係数可変ブロック体として作成した。 Specifically, a plate-shaped body of silicone rubber having a thickness of 2 mm was used as the main body 1, and this was uniaxially stretched with a strain of 12% in the direction along the main surface. The dimensions of the main surface are 180 mm × 180 mm. As the woven fabric 2, a plain woven fabric made of nylon 6,6 fibers having a diameter of 35 μm with a distance between the fibers of about 80 μm is used, and the woven fabric 2 is provided with a polydimethylsiloxane (PDMS) sol which is a precursor of silicone rubber. It was placed on the main body 1 which was impregnated with 11 and stretched. Next, a base 21a and a pressing member 21b made of two plate-shaped support glasses are arranged below and above, respectively, and sandwiched so as to be crimped at a constant pressure, while squeezing out the surplus PDMS sol 11 (arrows). (See S), the PDMS sol was cured by holding at room temperature (295 K) for 24 hours. Finally, the base 21a and the pressing member 21b were peeled off to obtain a variable friction coefficient block body (comparative example). By peeling off the base 21a and the pressing member 21b, the strain due to the stretching given in advance was released, and a swell having a period of about 700 μm was generated on the surface. The pressure for crimping was set to 12 kPa and 60 kPa, respectively, and the pressure was created as a variable friction block body according to Comparative Example 1 and Comparative Example 2, respectively.

[実施例のブロック体]
図5に示すように、本実施例のブロック体は、2段階での圧着により製造した。この製造方法は、基台21aの上に織布2を配置し、この上からゴム弾性体の前駆体である未硬化液を付与し、基台21aに向けて押圧部材21bを押し付けつつ、未硬化液を織布2に含浸させ硬化させてプレシート体2’を形成させる第1段階の圧着であるプレシート体形成工程と、本体部1の上面を貼り付け面としてプレシート体2’を貼り付けする第2段階の圧着である貼付け工程とを有する。
[Block body of example]
As shown in FIG. 5, the block body of this example was manufactured by crimping in two stages. In this manufacturing method, the woven fabric 2 is placed on the base 21a, the uncured liquid which is the precursor of the rubber elastic body is applied from above, and the pressing member 21b is pressed against the base 21a without being pressed. The pre-sheet body forming step, which is the first step of crimping to form the pre-sheet body 2'by impregnating the woven fabric 2 with the curing liquid and curing the woven fabric 2, and the pre-sheet body 2'with the upper surface of the main body 1 as the pasting surface are attached. It has a pasting step which is a second stage crimping.

詳細には、図5(a)に示すように、プレシート体形成工程では、まず、織布2を支持ガラスである基台21aの上に置いてPDMSゾル11を含浸させた。さらにもう1枚の支持ガラスである押圧部材21bで上から挟み、12kPaの一定の圧力で圧着させるように挟持させ、余剰のPDMSゾル11を絞り出しつつ(矢印S参照)、室温(295K)で24時間保持してPDMSゾルを硬化させ、織布2を含むプレシート体2’とした。 Specifically, as shown in FIG. 5A, in the presheet body forming step, first, the woven fabric 2 was placed on the base 21a which is the support glass and impregnated with the PDMS sol 11. Further, it is sandwiched from above by another supporting glass, a pressing member 21b, and sandwiched so as to be crimped at a constant pressure of 12 kPa, and while squeezing out the surplus PDMS sol 11 (see arrow S), 24 at room temperature (295 K). The PDMS sol was cured for a long time to obtain a presheet body 2'containing the woven fabric 2.

次いで、図5(b)に示すように、貼付け工程では、まず、2mm厚さのシリコーンゴムのシート体による本体部1を主面に沿った方向に12%の歪みで一軸伸張させておき、その上面を貼り付け面として、PDMSゾル11を下方の面に塗布したプレシート体2’を載置した。比較例と同様に、主面の寸法は180mm×180mmである。上下に配置した基台21a及び押圧部材21bによって、12kPa以下の一定の圧力で圧着させるように挟持させ、余剰のPDMSゾル11を絞り出しつつ(矢印S参照)、室温(295K)で24時間保持してPDMSゾルを硬化させ、プレシート体2’を本体部1に貼り付けた。最後に基台21a及び押圧部材21bを剥がして摩擦係数可変ブロック体(実施例)を得た。基台21a及び押圧部材21bを剥離したことで、予め与えた伸張による歪みを開放させて表面に700μm程度の周期を有するうねりを生じた。 Next, as shown in FIG. 5B, in the pasting step, first, the main body 1 made of a 2 mm thick silicone rubber sheet is uniaxially stretched in the direction along the main surface with a strain of 12%. A presheet body 2'coated with PDMS sol 11 on the lower surface was placed on the upper surface as a sticking surface. Similar to the comparative example, the dimensions of the main surface are 180 mm × 180 mm. The base 21a and the pressing member 21b arranged one above the other are sandwiched so as to be crimped at a constant pressure of 12 kPa or less, and the surplus PDMS sol 11 is squeezed out (see arrow S) and held at room temperature (295 K) for 24 hours. The PDMS sol was cured, and the presheet body 2'was attached to the main body 1. Finally, the base 21a and the pressing member 21b were peeled off to obtain a variable friction coefficient block body (Example). By peeling off the base 21a and the pressing member 21b, the strain due to the stretching given in advance was released, and a swell having a period of about 700 μm was generated on the surface.

[評価試験]
上記した実施例、比較例1及び2によって得られた試料(摩擦係数可変ブロック)のそれぞれについて、表面観察をするとともに、光学顕微鏡及びレーザー共焦点光学顕微鏡を用いて表面トポグラフィーを得た。また、それぞれの試料について、ピン・オン・プレート型摩擦試験機を用いて摺動摩擦係数の計測を行った。なお、うねりを生じた状態でこれらの評価試験をするとともに、製造時に本体部1を一軸伸張したのと同じ方向に12%の歪みを与えるように伸張して、うねりのない状態においても同様に評価試験を行った。
[Evaluation test]
Surface observation was performed on each of the samples (variable friction coefficient blocks) obtained in Examples 1 and 2 described above, and surface topography was obtained using an optical microscope and a laser cofocal optical microscope. In addition, the sliding friction coefficient was measured for each sample using a pin-on-plate type friction tester. In addition to conducting these evaluation tests in a state where swells are generated, the main body 1 is stretched so as to give a distortion of 12% in the same direction as when the main body 1 is uniaxially stretched at the time of manufacture, and the same applies even in a state without swells. An evaluation test was conducted.

表面トポグラフィーにおいては、その断面像、透過像、レーザー反射像を得るとともに、部位による表面の高さの差を求めた。高さの差は、縦糸2aと横糸2bとの交差する交差部分のうち突起4を形成する部分をAとし、隣り合う他の交差部分との間(例えば横糸2bの上で2つの交差部分の間)をB、隣り合う2本の縦糸2aの間で且つ隣り合う2本の横糸2bの間の位置、つまり織布2の開口部分の位置をCとし、AとBとの高さの差、AとCとの高さの差をそれぞれ求めた。 In the surface topography, the cross-sectional image, the transmission image, and the laser reflection image were obtained, and the difference in the height of the surface depending on the part was obtained. The difference in height is such that the portion of the intersecting portion where the warp 2a and the weft 2b intersects and forms the protrusion 4 is A, and the portion between the other adjacent intersections (for example, the intersection of the two intersections on the weft 2b). B, the position between the two adjacent warp threads 2a and the position between the two adjacent weft threads 2b, that is, the position of the opening portion of the woven fabric 2, and the difference in height between A and B. , The difference in height between A and C was calculated respectively.

摺動摩擦係数の計測においては、試料を剛性の高い板材に貼付し、半径12.7mmの球状のガラス圧子を1.5Nの荷重で押し付けるとともに、うねりの尾根の延びる方向に対して垂直な方向に10mm/sの速度で1秒間移動させて移動方向の抵抗力をフォースゲージで測定し、摩擦力とした。また、各試料に対して5回の測定を行い、その摩擦力の平均値を荷重で割って摺動摩擦係数とした。 In measuring the sliding friction coefficient, a sample is attached to a plate with high rigidity, a spherical glass indenter with a radius of 12.7 mm is pressed with a load of 1.5 N, and the direction is perpendicular to the direction in which the ridge of the swell extends. It was moved at a speed of 10 mm / s for 1 second, and the resistance force in the moving direction was measured with a force gauge and used as the frictional force. Further, each sample was measured 5 times, and the average value of the frictional force was divided by the load to obtain the sliding friction coefficient.

図6に示すように、比較例1の表面観察では、不均一に光を反射しており、白く光って見える部分Pにおいて織布2の露出がなく、薄いシリコーンゴムによって表面が覆われていた。 As shown in FIG. 6, in the surface observation of Comparative Example 1, the light was reflected unevenly, the woven fabric 2 was not exposed in the portion P that appeared to shine white, and the surface was covered with a thin silicone rubber. ..

一方、図7に示すように、実施例の表面観察では、織布2の露出しない部分Pは観察されず、一様に織布2を露出させて良好な表面を呈していた。 On the other hand, as shown in FIG. 7, in the surface observation of the example, the unexposed portion P of the woven fabric 2 was not observed, and the woven fabric 2 was uniformly exposed to exhibit a good surface.

また、図8に示すように、比較例1において、表面トポグラフィーからも表面に織布2の露出のない部分が観察された。このような部位においては、うねりを生じた状態においても表面の高さの差が2~3μm程度しかなく、接触する物体に対する接触面積を大きくして、摩擦係数を小さくできないものと考えられる。このことについては、後述する摩擦係数の計測によっても裏付けられた。 Further, as shown in FIG. 8, in Comparative Example 1, an unexposed portion of the woven fabric 2 was observed on the surface from the surface topography. In such a portion, the difference in surface height is only about 2 to 3 μm even in the state where the swell is generated, and it is considered that the contact area with the contacting object cannot be increased and the friction coefficient cannot be reduced. This was supported by the measurement of the coefficient of friction, which will be described later.

また、比較例2では、うねりを生じた状態(うねりあり)で織布2を十分露出できているものの、うねりのない状態(うねりなし)で高さの差が大きい。A-B間では4μm程度であるものの、A-C間では、16μm程度もある。つまり、うねりのない状態においても表面が平坦になっておらず、摩擦係数を大きく変化させることができていないものと考えられる。このことについても、摩擦係数の計測によって裏付けられたので後述する。 Further, in Comparative Example 2, although the woven fabric 2 can be sufficiently exposed in the state where the swell is generated (with swell), the difference in height is large in the state without swell (without swell). The distance between A and B is about 4 μm, but the distance between A and C is about 16 μm. That is, it is considered that the surface is not flat even in a state without swell, and the coefficient of friction cannot be changed significantly. This is also supported by the measurement of the coefficient of friction, and will be described later.

実施例では、うねりを生じた状態で織布2を十分露出でき、表面の高さの差もA-B間で9μm程度、A-C間で21μm程度と大きくでき、他方、うねりのない場合においてA-B間で1μm程度、A-C間で2μm程度と小さくできた。つまり、うねりのある場合に接触する物体に対する接触面積を小さくして摩擦係数を小さくし、うねりのない場合に接触する物体に対する接触面積を大きくして摩擦係数を大とし得る。 In the embodiment, the woven fabric 2 can be sufficiently exposed with undulations, and the difference in surface height can be as large as about 9 μm between AB and 21 μm between A and C, while there is no undulation. In, it was possible to make it as small as about 1 μm between AB and about 2 μm between A and C. That is, the contact area with the object in contact with the swell can be reduced to reduce the friction coefficient, and the contact area with the object with no swell can be increased to increase the friction coefficient.

図9に示すように、摩擦係数の計測結果に関し、実施例においては、うねりのある場合に摩擦係数を小さくし、うねりのない場合に摩擦係数を大きくしていた。比較例1においては、うねりのない場合に実施例と同様に摩擦係数を大きくするが、うねりのある場合に摩擦係数をあまり小さくできず、うねりの有無による摩擦係数の差を小さくしてしまった。比較例2においては、うねりの有無によらず摩擦係数は小さかった。 As shown in FIG. 9, regarding the measurement result of the friction coefficient, in the embodiment, the friction coefficient was reduced when there was swell, and the friction coefficient was increased when there was no swell. In Comparative Example 1, the coefficient of friction was increased in the case of no swell as in the embodiment, but the coefficient of friction could not be reduced so much in the case of swell, and the difference in the coefficient of friction depending on the presence or absence of swell was reduced. .. In Comparative Example 2, the coefficient of friction was small regardless of the presence or absence of swell.

つまり、比較例1では織布2の露出のない部分Pを生じて、うねりを生じた状態においても摩擦係数を小さくできなかった。これに対し、過去の経験において主面を50mm×50mm程度以下の小面積とする場合では、このような露出のない部分Pを生じることなく、うねりを生じた状態で摩擦係数を大きくできていた。つまり、織布2の露出のない部分Pは、例えば比較例1のように180mm×180mmとしたときなど、100mm×100mm以上の大面積としたときに発生しやすくなる。これは、1段階での圧着による製造方法において、ゴム弾性体の前駆体である未硬化液(PDMSゾル11)の余剰分を絞り出しているが、絞り出しによって排出されるべき未硬化液の量に部位によるムラが生じたものと言える。特に、本体部1はゴム弾性体であり、圧着時にその弾性変形によって余剰の未硬化液の残存を許容しやすく、その結果、上記したように部分的に織布2を露出させることができなかったものと考えられる。 That is, in Comparative Example 1, the unexposed portion P of the woven fabric 2 was generated, and the friction coefficient could not be reduced even in the state where the swell was generated. On the other hand, in the past experience, when the main surface has a small area of about 50 mm × 50 mm or less, the friction coefficient can be increased in a state where the swell is generated without forming such an unexposed portion P. .. That is, the unexposed portion P of the woven fabric 2 is likely to occur when the area is 100 mm × 100 mm or more, for example, when the area is 180 mm × 180 mm as in Comparative Example 1. This is because the surplus of the uncured liquid (PDMS sol 11), which is the precursor of the rubber elastic body, is squeezed out in the one-step crimping manufacturing method, but the amount of the uncured liquid to be discharged by the squeezing out. It can be said that unevenness occurred depending on the part. In particular, the main body 1 is a rubber elastic body, and it is easy to allow excess uncured liquid to remain due to its elastic deformation during crimping, and as a result, the woven fabric 2 cannot be partially exposed as described above. It is thought that it was.

比較例2では余剰の未硬化液を全て排出させるべく圧着時の圧力を高く設定した。そのため、織布2を十分露出させることができた。しかし、うねりのない状態において、高さの差が大きかった。これは、圧着時の織布2の部分的な厚さの不均一により、表面の高さの差を大きくしてしまったためと考えられる。すなわち、織布2において、縦糸2aと横糸2bとの交差する交差部分(図8のA部)は最も厚いため、圧着時にめり込むように本体部1を変形させる。これに対して、厚さの薄い部分、特に、織布2の開口部分の位置(図3のC部)では本体部1をほとんど変形させない。そのため、圧着後においてC部よりA部ではスプリングバックが大きく、うねりのない状態でも高さの差を大きくしてしまったものと考えられる。 In Comparative Example 2, the pressure at the time of crimping was set high so that all the excess uncured liquid was discharged. Therefore, the woven fabric 2 could be sufficiently exposed. However, there was a large difference in height in the absence of swell. It is considered that this is because the difference in the height of the surface is increased due to the non-uniformity of the partial thickness of the woven fabric 2 at the time of crimping. That is, in the woven fabric 2, since the intersecting portion (the portion A in FIG. 8) where the warp threads 2a and the weft threads 2b intersect is the thickest, the main body portion 1 is deformed so as to be sunk during crimping. On the other hand, the main body 1 is hardly deformed at the position of the thin portion, particularly the opening portion of the woven fabric 2 (the C portion in FIG. 3). Therefore, it is probable that the springback was larger in the A part than in the C part after the crimping, and the difference in height was increased even in the state where there was no swell.

これに対し、実施例では、2段階での圧着により、余剰の未硬化液の排出を良好にするとともに、うねりのない状態での表面形状を平坦にすることができた。すなわち、1段階目の圧着(図5(a)参照)においては、基台21aの弾性変形が小さいため、余剰の未硬化液の残存を許容しづらく、未硬化液の排出を良好にする。また、2段階目のプレシート体2’の圧着(図5(b)参照)においては、プレシート体2’の裏面(貼付面)の未硬化液の排出が不十分だったとしても、プレシート体2’の表面である摩擦係数可変ブロック体の表面には直接の影響を与えず、織布2を全体的に均一に露出できたものと考えられる。積層部5を本体部1と切り離して製造するため、本体部1の形状や性状に影響を受けず、織布2露出を均一にできることで、摩擦係数可変ブロック体において安定した摩擦係数変化を与え得る。これによって、大面積かつ厚手のブロック体であっても摩擦係数可変ブロック体を精度よく製造できる。 On the other hand, in the example, by crimping in two steps, it was possible to improve the discharge of excess uncured liquid and to flatten the surface shape in a state without waviness. That is, in the first-stage crimping (see FIG. 5A), since the elastic deformation of the base 21a is small, it is difficult to tolerate the residual of excess uncured liquid, and the uncured liquid is discharged well. Further, in the crimping of the presheet body 2'in the second stage (see FIG. 5 (b)), even if the uncured liquid on the back surface (attached surface) of the presheet body 2'is insufficiently discharged, the presheet body 2 is used. It is probable that the woven fabric 2 could be uniformly exposed as a whole without directly affecting the surface of the variable friction coefficient block body, which is the surface of ‘’. Since the laminated portion 5 is manufactured separately from the main body portion 1, the woven fabric 2 can be uniformly exposed without being affected by the shape and properties of the main body portion 1, thereby providing a stable friction coefficient change in the variable friction coefficient block body. obtain. This makes it possible to accurately manufacture a block body having a variable friction coefficient even if the block body has a large area and is thick.

また、本実施例では、比較例1及び比較例2に比べて圧着工程を1つ多くするものの、圧着工程において特に難しい操作を必要とするものではなく、歩留まりよく、つまり効率よく摩擦係数可変ブロック体を製造することができる。 Further, in this embodiment, although the crimping process is increased by one as compared with Comparative Example 1 and Comparative Example 2, the crimping process does not require a particularly difficult operation, and the yield is good, that is, the friction coefficient variable block is efficiently performed. The body can be manufactured.

以上のように、上記した実施例によれば、主面を100mm×100mm以上とするような、大面積の摩擦係数可変ブロック体であっても、安定した摩擦係数変化を与え得る摩擦係数可変シートやブロック体を効率よく製造できる。 As described above, according to the above-described embodiment, the friction coefficient variable sheet that can give a stable friction coefficient change even in a large-area friction coefficient variable block body having a main surface of 100 mm × 100 mm or more. And blocks can be manufactured efficiently.

なお、摩擦係数可変ブロック体10は、本体部1をシート体としてもよく、摩擦係数可変シート体としても同様に製造できる。また、圧着工程において予め一軸伸張させずとも、圧縮によって表面にうねりを形成させる表面座屈を生じるものであれば同様の摩擦係数可変ブロック体とできる。 The variable friction coefficient block body 10 may have the main body 1 as a sheet body, and can be similarly manufactured as a variable friction coefficient sheet body. Further, a similar friction coefficient variable block body can be obtained as long as it causes surface buckling that forms waviness on the surface by compression without preliminarily stretching one axis in the crimping step.

また、プレシート体形成工程において押圧部材21bに接した面を、貼り付け工程において本体部1の貼り付け面に貼付するようにしてもよい。プレシート体2’において基台21aに接した面を摩擦係数可変ブロック体10の表面とするため、織布2を表面近傍に精度良く配置することができて、摩擦係数の変化を安定して得ることができる。 Further, the surface in contact with the pressing member 21b in the presheet body forming step may be attached to the attachment surface of the main body portion 1 in the attachment step. Since the surface of the presheet body 2'that is in contact with the base 21a is the surface of the variable friction coefficient block body 10, the woven fabric 2 can be placed in the vicinity of the surface with high accuracy, and the change in the friction coefficient can be stably obtained. be able to.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the examples according to the present invention and the modifications based on the present invention have been described above, the present invention is not necessarily limited to this, and those skilled in the art deviate from the gist of the present invention or the scope of the attached claims. Without doing so, various alternative and modified examples could be found.

1 本体部
2 織布
2’ プレシート体
10 摩擦係数可変ブロック体
11 PDMSゾル(未硬化液)
21a 基台
21b 押圧部材
1 Main body 2 Woven fabric 2'Presheet body 10 Variable coefficient of friction block body 11 PDMS sol (uncured liquid)
21a Base 21b Pressing member

Claims (2)

ゴム弾性体の表面に沿って埋設された織布の該表面への露出状態を制御して摩擦係数を変化させ得る摩擦係数可変ブロック体の製造方法であって、
基台の上に前記織布を配置しこの上から前記ゴム弾性体の前駆体である未硬化液を付与するとともに、前記基台に向けて押圧部材を押し付けつつ前記織布に含浸させて前記未硬化液を硬化させプレシート体を形成する工程と、
前記ゴム弾性体からなる本体部の貼付面をあらかじめ伸張させておいてこれに前記プレシート体を貼付する貼付工程と、を含むことを特徴とする摩擦係数可変ブロック体の製造方法。
A method for manufacturing a variable friction coefficient block body capable of changing the friction coefficient by controlling the exposure state of the woven fabric embedded along the surface of the rubber elastic body to the surface.
The woven fabric is placed on a base, an uncured liquid which is a precursor of the rubber elastic body is applied from above, and the woven fabric is impregnated with the pressing member while being pressed against the base. The process of curing the uncured liquid to form a precursor and
A method for manufacturing a block body having a variable friction coefficient, which comprises a step of stretching a sticking surface of a main body made of a rubber elastic body in advance and sticking the presheet body to the sticking surface.
前記貼付工程は、前記押圧部材に接した面を前記貼付面に貼付することを特徴とする請求項記載の摩擦係数可変ブロック体の製造方法。 The method for manufacturing a block body having a variable friction coefficient according to claim 1 , wherein the sticking step is to stick a surface in contact with the pressing member to the sticking surface.
JP2018126215A 2018-07-02 2018-07-02 Manufacturing method of variable friction coefficient block body Active JP7074335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018126215A JP7074335B2 (en) 2018-07-02 2018-07-02 Manufacturing method of variable friction coefficient block body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126215A JP7074335B2 (en) 2018-07-02 2018-07-02 Manufacturing method of variable friction coefficient block body

Publications (2)

Publication Number Publication Date
JP2020001364A JP2020001364A (en) 2020-01-09
JP7074335B2 true JP7074335B2 (en) 2022-05-24

Family

ID=69098264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126215A Active JP7074335B2 (en) 2018-07-02 2018-07-02 Manufacturing method of variable friction coefficient block body

Country Status (1)

Country Link
JP (1) JP7074335B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190537A (en) 2016-04-13 2017-10-19 国立研究開発法人産業技術総合研究所 Sheet body with variable friction coefficient and friction coefficient varying apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001887A (en) * 2001-06-22 2003-01-08 Seiko Epson Corp Platen roll

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190537A (en) 2016-04-13 2017-10-19 国立研究開発法人産業技術総合研究所 Sheet body with variable friction coefficient and friction coefficient varying apparatus

Also Published As

Publication number Publication date
JP2020001364A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US8142700B2 (en) Dry adhesives and methods for making dry adhesives
Balijepalli et al. Numerical study of adhesion enhancement by composite fibrils with soft tip layers
US7090747B2 (en) Belt for papermarking and process for producing papermaking belt
JP2009137208A (en) Hot-press cushioning material and manufacturing method of laminated sheet
Suzuki et al. Wrinkles on a textile-embedded elastomer surface with highly variable friction
JP2011519168A5 (en)
RU2695290C2 (en) Method of making die with pattern, die with pattern and method for printing
JP7445999B2 (en) Tube and pump using it
KR101986619B1 (en) Apparatus and method for laminating a film to a substrate
TW200427548A (en) Controlled penetration subpad
US20150158206A1 (en) Dry adhesives and methods for making dry adhesives
TW201832946A (en) Screen plate and method for manufacturing same
JP7074335B2 (en) Manufacturing method of variable friction coefficient block body
CN112752641A (en) Hot-pressing cushioning material and method for manufacturing hot-pressing cushioning material
US8161607B2 (en) Method for opening fabric, fabric, and composite material
Huraux et al. Wrinkling of a nanometric glassy skin/crust induced by drying in poly (vinyl alcohol) gels
JP6694647B2 (en) Friction coefficient variable sheet body and friction coefficient variable device
US20070084029A1 (en) Paper machine belt
CN111373095B (en) Method and apparatus for coating on a sagging web
KR102292282B1 (en) Anisotropic mechanical expansion substrate and crack-based pressure sensor using the anisotropic substrate
TWI510328B (en) Base layer, polishing pad including the same and polishing method
JP7338295B2 (en) Molded body manufacturing method
TWI235115B (en) Seamless, composite belts
JP6811695B2 (en) Imprint method using soft mold and soft mold
CN106103032B (en) Micro pattern manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7074335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150