JP7074062B2 - Polyurethane / nylon 6 eccentric core sheath composite fiber - Google Patents

Polyurethane / nylon 6 eccentric core sheath composite fiber Download PDF

Info

Publication number
JP7074062B2
JP7074062B2 JP2018539443A JP2018539443A JP7074062B2 JP 7074062 B2 JP7074062 B2 JP 7074062B2 JP 2018539443 A JP2018539443 A JP 2018539443A JP 2018539443 A JP2018539443 A JP 2018539443A JP 7074062 B2 JP7074062 B2 JP 7074062B2
Authority
JP
Japan
Prior art keywords
eccentric core
sheath composite
cross
nylon
thermoplastic polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018539443A
Other languages
Japanese (ja)
Other versions
JPWO2018235754A1 (en
Inventor
大輔 吉岡
隆宏 栗林
健太郎 ▲たか▼木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018235754A1 publication Critical patent/JPWO2018235754A1/en
Application granted granted Critical
Publication of JP7074062B2 publication Critical patent/JP7074062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B11/00Hosiery; Panti-hose
    • A41B11/14Panti-hose; Body-stockings
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/56Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads elastic
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/22Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
    • D04B1/24Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration wearing apparel
    • D04B1/26Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration wearing apparel stockings
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/20Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting articles of particular configuration
    • D04B21/207Wearing apparel or garment blanks
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/02Underwear
    • D10B2501/021Hosiery; Panti-hose

Description

本発明は、ポリウレタンとナイロン6からなる偏心芯鞘複合繊維に関するものである。 The present invention relates to an eccentric core sheath composite fiber composed of polyurethane and nylon 6.

ポリウレタンとポリアミドとを偏心的に複合させてなる自己捲縮性複合繊維は、優れた捲縮特性を持ちソフトストレッチ性および透明性を有する編地とすることができるので、高級ストッキング用素材として高く評価されている。 The self-crimping composite fiber, which is an eccentric composite of polyurethane and polyamide, has excellent crimping properties and can be a knitted fabric with soft stretchability and transparency, so it is highly suitable as a material for high-class stockings. It has been evaluated.

一方で、自己捲縮性複合繊維を用いたストッキングは、繊維の捲縮特性バラツキがそのままスジやムラ等の編地欠点が発生し易い問題があった。スジやムラ等の編地欠点を発生させないために、自己捲縮性複合繊維を全数、捲縮特性検査、編み検査を実施し選別使用している。そのため、繊維の捲縮特性バラツキが小さく、ストッキングを作製した際にスジやムラ等が発生し難い、自己捲縮性複合繊維が要望されている。 On the other hand, stockings using self-crimpable composite fibers have a problem that knitted fabric defects such as streaks and unevenness are likely to occur as the crimping characteristics of the fibers vary. In order not to cause knitted fabric defects such as streaks and unevenness, all self-crimping composite fibers are subjected to crimping characteristic inspection and knitting inspection and sorted and used. Therefore, there is a demand for a self-crimping composite fiber that has a small variation in the crimping characteristics of the fiber and is less likely to cause streaks or unevenness when the stocking is manufactured.

過去より、ポリウレタンとポリアミドとを偏心的に複合させてなる自己捲縮性複合繊維の検討が盛んに行われている。例えば特許文献1には、ポリ炭酸エステル系ポリウレタンを共重合成分あるいは混合成分として少なくとも10重量%含有し、かつジメチルアセトアミド相対粘度が1.80~3.00であるポリウレタン組成物を使用し、複合紡糸および製糸時の安定性を向上させ、ポリウレタン弾性体のポリマー間のバラツキを抑える自己捲縮性複合繊維が記載されている。 From the past, self-crimping composite fibers made by eccentrically composited polyurethane and polyamide have been actively studied. For example, Patent Document 1 uses a polyurethane composition containing at least 10% by weight of a polycarbonate ester-based polyurethane as a copolymerization component or a mixed component and having a dimethylacetamide relative viscosity of 1.80 to 3.00, and is composited. Self-crimping composite fibers have been described that improve stability during spinning and spinning and reduce variations between polymers of polyurethane elastics.

また、特許文献2には、ポリアミドと溶融状態の熱可塑性ポリウレタンに分子量400以上のポリイソシアネート化合物を5~20重量%添加・混合したポリウレタン弾性体とを接合重量比80/20~20/80の割合で単一フィラメントの横断面内で偏芯的に配置接合する如く複合溶融紡糸し、次いで延伸した後弛緩熱処理することにより得られたフィラメントであり、該ポリウレタン弾性体のジメチルホルムアミドに対する溶解減少率が80重量%以下で、且つフィラメントの直線収縮率が10%程度、捲縮発現率が68%以上であることを特徴とし、ポリアミドとポリウレタン弾性体の耐剥離性が優れ、かつ弛緩熱処理後に於いても十分な捲縮発現力と捲縮の伸張回復性を有する自己捲縮性複合フィラメントが記載されている。 Further, in Patent Document 2, a polyurethane elastic body obtained by adding and mixing 5 to 20% by weight of a polyisocyanate compound having a molecular weight of 400 or more to polyamide and a molten thermoplastic polyurethane is bonded to each other with a bonding weight ratio of 80/20 to 20/80. It is a filament obtained by composite melt spinning so that it is eccentrically arranged and bonded in the cross section of a single filament at a ratio, then stretched and then relaxed and heat-treated. Is 80% by weight or less, the linear shrinkage rate of the filament is about 10%, the crimp development rate is 68% or more, the peel resistance of the polyamide and polyurethane elastic body is excellent, and after relaxation heat treatment. However, a self-crimping composite filament having sufficient crimping ability and stretch recovery property of crimping has been described.

日本国特開平2-80616号公報Japanese Patent Application Laid-Open No. 2-80616 日本国特公平7-91693号公報Japan Special Fairness 7-91693 Gazette

しかしながら、特許文献1に記載の複合繊維は、溶融紡糸安定性および製糸性が優れ、安定した物性を有する複合繊維を工業的に製造することはできるものの、捲縮特性バラツキに関する示唆はない。依然として、捲縮バラツキがそのままスジやムラ等の編地欠点が発生し易い問題が残されていた。 However, although the composite fiber described in Patent Document 1 is excellent in melt-spinning stability and silk-reeling property and can industrially produce a composite fiber having stable physical properties, there is no suggestion regarding variation in crimping characteristics. Still, there remains the problem that knitted fabric defects such as streaks and unevenness are likely to occur as the crimping variation remains.

また、特許文献2に記載の複合繊維は、ポリアミドとポリウレタン弾性体の耐剥離性が優れ、捲縮発現力と捲縮の伸張回復性を有するものの、捲縮特性バラツキに関する示唆はない。依然として、捲縮バラツキがそのままスジやムラ等の編地欠点が発生し易い問題が残されていた。 Further, although the composite fiber described in Patent Document 2 has excellent peeling resistance between polyamide and polyurethane elastic body, has crimp-developing power and crimp stretch recovery property, there is no suggestion about variation in crimp characteristics. Still, there remains the problem that knitted fabric defects such as streaks and unevenness are likely to occur as the crimping variation remains.

そこで、本発明では、前記従来技術の問題点を克服し、優れたソフトストレッチ織編物、ストッキングの品位が得られるポリウレタン・ナイロン6偏心芯鞘複合繊維を提供することを目的とする。 Therefore, an object of the present invention is to provide a polyurethane / nylon 6 eccentric core-sheath composite fiber that overcomes the problems of the prior art and can obtain excellent soft stretch woven knitted fabric and stocking quality.

本発明は、上記課題を解決するために、下記の構成からなる。
(1)芯成分が熱可塑性ポリウレタン、鞘成分がナイロン6である偏心芯鞘複合繊維において、断面湾曲率が15%以下、断面湾曲率CV値が0.40以下であることを特徴とする偏心芯鞘複合繊維。
(2)伸縮伸長率が90%以上である(1)に記載の偏心芯鞘複合繊維。
(3)(1)、または(2)に記載の芯鞘複合繊維を少なくとも一部に有する織編物。
(4)(1)、または(2)に記載の芯鞘複合繊維をレッグ部の少なくとも一部に有するストッキング。
The present invention has the following configuration in order to solve the above problems.
(1) An eccentric core-sheath composite fiber having a core component of thermoplastic polyurethane and a sheath component of nylon 6 is characterized in that the cross-sectional curvature rate is 15% or less and the cross-sectional curvature rate CV value is 0.40 or less. Core-sheath composite fiber.
(2) The eccentric core sheath composite fiber according to (1), which has an expansion / contraction rate of 90% or more.
(3) A woven or knitted fabric having at least a part of the core-sheath composite fiber according to (1) or (2).
(4) Stockings having the core-sheath composite fiber according to (1) or (2) in at least a part of the leg portion.

本発明によれば、優れたソフトストレッチ織編物やストッキングの品位が得られるポリウレタン・ナイロン6偏心芯鞘複合繊維を提供することが出来る。 According to the present invention, it is possible to provide a polyurethane / nylon 6 eccentric core sheath composite fiber capable of obtaining excellent soft stretch woven knitted fabric or stocking quality.

図1(a)及び図1(b)は、本発明の偏心芯鞘複合繊維の断面を例示するモデル図である。1 (a) and 1 (b) are model views illustrating a cross section of the eccentric core sheath composite fiber of the present invention. 図2は、本発明の偏心芯鞘複合繊維の断面湾曲率測定のモデル図である。FIG. 2 is a model diagram for measuring the cross-sectional curvature of the eccentric core sheath composite fiber of the present invention.

本発明の偏心芯鞘複合繊維は、織編物、ストッキング製造過程(以下、高次工程と称す)でコイル状の捲縮が発現する潜在捲縮糸である。特に、ストッキング等の編物類は、複数の糸を編機に供給し編立てされるため、潜在捲縮性の異なる糸が供給されて編立てられると、編立て直後でスジやムラ等の欠点が見つからない場合でも、高次工程で捲縮バラツキが発生し、スジやムラ等の欠点が発生する。 The eccentric core-sheath composite fiber of the present invention is a latent crimped yarn in which coiled crimp is developed in a woven or knitted fabric or stocking manufacturing process (hereinafter referred to as a higher-order process). In particular, knitted fabrics such as stockings are knitted by supplying a plurality of yarns to a knitting machine, so if yarns having different latent crimping properties are supplied and knitted, there are drawbacks such as streaks and unevenness immediately after knitting. Even if it is not found, shrinkage variation occurs in the higher-order process, and defects such as streaks and unevenness occur.

本発明者らは、捲縮発現前の偏心芯鞘繊維の横断面における界面を制御することで安定した捲縮を発現させ、捲縮バラツキを抑制し、スジやムラの無い優れた品位のソフトストレッチ織編物やストッキングが得られることを見いだした。 The present inventors develop stable crimping by controlling the interface in the cross section of the eccentric core sheath fiber before the onset of crimping, suppress the crimping variation, and have excellent quality soft without streaks or unevenness. We have found that stretch woven knits and stockings are available.

本発明の偏心芯鞘複合繊維は、芯成分が熱可塑性ポリウレタン、鞘成分がナイロン6からなる。 The eccentric core-sheath composite fiber of the present invention has a core component of thermoplastic polyurethane and a sheath component of nylon 6.

本発明において、偏心芯鞘とは複合繊維断面において芯部の熱可塑性ポリウレタンの重心点位置が複合繊維断面中心と異なっていることを指す。具体的には図1(a)、図1(b)に示すような形態をいう。偏心芯鞘構造とすることにより、均一なコイル状の捲縮が発現する。また、芯成分熱可塑性ポリウレタンと鞘成分ナイロン6の粘度差等からその界面は熱可塑性ポリウレタンがやや凸となって湾曲している。芯成分は図1(b)のように一部露出してもよいが、図1(a)のように芯成分である熱可塑性ポリウレタンを鞘成分ナイロン6が包含している方がさらに好ましい。 In the present invention, the eccentric core sheath means that the position of the center of gravity of the thermoplastic polyurethane in the core portion is different from the center of the composite fiber cross section in the composite fiber cross section. Specifically, it refers to a form as shown in FIGS. 1 (a) and 1 (b). By adopting an eccentric core sheath structure, uniform coil-like crimping is developed. Further, due to the difference in viscosity between the core component thermoplastic polyurethane and the sheath component nylon 6, the interface thereof is curved with the thermoplastic polyurethane slightly convex. The core component may be partially exposed as shown in FIG. 1 (b), but it is more preferable that the sheath component nylon 6 includes the thermoplastic polyurethane which is the core component as shown in FIG. 1 (a).

また、芯成分を覆っている鞘成分のナイロン6の最小となる厚みは複合繊維の直径の0.01~0.1倍であることが好ましい。さらに好ましくは、0.02~0.08倍である。この範囲であれば、十分な捲縮発現力とストレッチ性能を得ることが出来る。偏心芯鞘複合繊維の複合比率は、80/20~20/80が好ましい。複合比率80/20よりポリウレタン比率が大きくなり、ナイロン比率が小さくなると、染色性や耐久性が悪化し、実用性に劣る。また複合比率20/80よりポリウレタン比率が小さくなり、ナイロン比率が大きくなると、捲縮の発現が不十分となる。均一なコイル状の捲縮が発現し、優れたソフトストレッチ性の点から、さらに好ましくは40/60~60/40である。 Further, the minimum thickness of nylon 6 as a sheath component covering the core component is preferably 0.01 to 0.1 times the diameter of the composite fiber. More preferably, it is 0.02 to 0.08 times. Within this range, sufficient crimp-developing power and stretching performance can be obtained. The composite ratio of the eccentric core sheath composite fiber is preferably 80/20 to 20/80. When the polyurethane ratio is larger than the composite ratio of 80/20 and the nylon ratio is small, the dyeability and durability are deteriorated, and the practicality is inferior. Further, when the polyurethane ratio is smaller than the composite ratio of 20/80 and the nylon ratio is large, the occurrence of crimping becomes insufficient. It is more preferably 40/60 to 60/40 in terms of uniform coil-like crimping and excellent soft stretchability.

本発明の偏心芯鞘複合繊維は、断面湾曲率が15%以下であることが必要である。ここで言う断面湾曲率とは、芯成分熱可塑性ポリウレタンと鞘成分ナイロン6の界面の湾曲度合いを示し、数値が大きいほど界面の湾曲の程度が大きく、細かい捲縮が発現し、数値が小さいほど界面の湾曲の程度が小さく、大きな捲縮が発現することを示す。 The eccentric core sheath composite fiber of the present invention needs to have a cross-sectional curvature of 15% or less. The cross-sectional curvature rate referred to here indicates the degree of curvature of the interface between the core component thermoplastic polyurethane and the sheath component nylon 6, and the larger the value, the greater the degree of interface curvature, the finer the crimps appear, and the smaller the value. It is shown that the degree of curvature of the interface is small and a large crimp is developed.

断面湾曲率を15%以下とすることにより、均一で密な捲縮が発現し、優れたソフトストレッチ性や品位が得られるソフトストレッチ織編物、ストッキングが得られる。好ましくは0~10%である。さらに好ましくは0~5%である。 By setting the cross-sectional curvature ratio to 15% or less, a soft stretch woven knit or stocking can be obtained in which uniform and dense crimping is developed and excellent soft stretchability and quality can be obtained. It is preferably 0 to 10%. More preferably, it is 0 to 5%.

また、本発明の偏心芯鞘複合繊維は、断面湾曲率CV値が0.40以下であることが必要である。特に、ストッキングでは、4口給糸の靴下編機が主流であるため、ストッキングを構成する4本で評価する必要がある。そのため、ここでいう断面湾曲率CV値は、4本の偏心芯鞘複合繊維の全フィラメントの断面を測定し、その標準偏差を平均値で除した値である。かかる範囲とすることにより、捲縮バラツキが少ない、スジやムラの無い優れた品位のソフトストレッチ織編物、ストッキングが得られる。さらに好ましくは0.20以下である。 Further, the eccentric core sheath composite fiber of the present invention needs to have a cross-sectional curvature rate CV value of 0.40 or less. In particular, in stockings, a sock knitting machine with four yarns is the mainstream, so it is necessary to evaluate with four stockings. Therefore, the cross-sectional curvature CV value referred to here is a value obtained by measuring the cross-sections of all the filaments of the four eccentric core-sheath composite fibers and dividing the standard deviation by the average value. Within this range, it is possible to obtain a soft stretch woven knitted fabric and stockings of excellent quality with little variation in crimping and no streaks or unevenness. More preferably, it is 0.20 or less.

本発明の偏心芯鞘複合繊維は、伸縮伸長率が90%以上であることが好ましい。かかる範囲とすることにより、均一で密なコイル捲縮が発現し、優れたソフトストレッチ性や品位が得られるソフトストレッチ織編物、ストッキングが得られる。さらに好ましくは100%以上である。 The eccentric core-sheath composite fiber of the present invention preferably has an expansion / contraction rate of 90% or more. Within such a range, uniform and dense coil crimping is developed, and soft stretch woven knitted fabrics and stockings with excellent soft stretchability and quality can be obtained. More preferably, it is 100% or more.

本発明の偏心芯鞘複合繊維の強度は、高次工程での生産性や衣料品の耐久性という点で、2.5cN/dtex以上が好ましい。さらに好ましくは3.0cN/dtex以上である。 The strength of the eccentric core-sheath composite fiber of the present invention is preferably 2.5 cN / dtex or more in terms of productivity in higher-order processes and durability of clothing. More preferably, it is 3.0 cN / dtex or more.

本発明の偏心芯鞘複合繊維の伸度は、高次工程での生産性という点で、35%以上が好ましい。さらに好ましくは40~65%である。 The elongation of the eccentric core-sheath composite fiber of the present invention is preferably 35% or more in terms of productivity in higher-order steps. More preferably, it is 40 to 65%.

本発明の偏心芯鞘複合繊維の総繊度やフィラメント数は、衣料用途に要求されるストレッチ性や風合いの点で任意に設計できる。衣料用途を考慮すると、総繊度5~235dtex、フィラメント数1~144が好ましい。例えば、ストッキング用途の場合は、総繊度5~33dtex、フィラメント数1~3が好ましい。 The total fineness and the number of filaments of the eccentric core sheath composite fiber of the present invention can be arbitrarily designed in terms of stretchability and texture required for clothing applications. Considering the use for clothing, the total fineness of 5 to 235 dtex and the number of filaments of 1 to 144 are preferable. For example, in the case of stocking applications, a total fineness of 5 to 33 dtex and a filament number of 1 to 3 are preferable.

本発明の偏心芯鞘複合繊維において、断面湾曲率および断面湾曲率CV値をかかる範囲に制御するためには、熱可塑性ポリウレタン、ナイロン6のポリマー選択、酸化防止剤に加えて、偏心芯鞘複合断面を形成する前段階の溶融条件(ポリマー温度、ポリマー温度差、紡糸温度など)を組み合わせることにより好ましく制御することができる。 In the eccentric core-sheath composite fiber of the present invention, in order to control the cross-sectional curvature and the cross-sectional curvature CV value within such a range, in addition to the thermoplastic polyurethane, the polymer selection of nylon 6, and the antioxidant, the eccentric core-sheath composite It can be preferably controlled by combining the melting conditions (polymer temperature, polymer temperature difference, spinning temperature, etc.) in the stage before forming the cross section.

本発明で使用する熱可塑性ポリウレタンは、ジイソシアネート、ポリオール、鎖伸長剤の3成分の反応によって得られる高分子化合物である。 The thermoplastic polyurethane used in the present invention is a polymer compound obtained by the reaction of three components, diisocyanate, polyol, and chain extender.

ジイソシアネートの具体例として、例えばトリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、ジフェニルメタンジイソシアネートなどが挙げられる。反応性の観点からジフェニルメタンジイソシアネートが好ましい。 Specific examples of diisocyanates include, for example, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanetmethyl) cyclohexane, 1,4-bis (isocyanismethyl) cyclohexane, and 1,3-cyclohexanediisocyanate. , 1,4-Cyclohexane diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalenediocyanide, 2,4-toluene diisocyanate, 2,6- Examples thereof include toluene diisocyanate and diphenylmethane diisocyanate. Diphenylmethane diisocyanate is preferable from the viewpoint of reactivity.

ポリオールの具体例として、例えばポリエーテルポリオール、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオールなどが挙げられ、特に限定はされず、単独使用や2種以上用いてもよい。耐熱性の観点からポリカーボネートポリオールが好ましい。 Specific examples of the polyol include, for example, a polyether polyol, a polyester polyol, a polycaprolactone polyol, a polycarbonate polyol, and the like, and the present invention is not particularly limited, and the polyol may be used alone or in combination of two or more. Polycarbonate polyol is preferable from the viewpoint of heat resistance.

鎖伸長剤の具体例として、例えばエタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコールなどが挙げられる。反応性の観点から1,4-ブタンジオールが好ましい。 Specific examples of the chain extender include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol and the like. From the viewpoint of reactivity, 1,4-butanediol is preferable.

本発明の偏心芯鞘複合繊維で芯部に使用する熱可塑性ポリウレタンの重量平均分子量(Mw)は、80,000以上180,000以下であることが好ましい。Mwを80,000以上とすることで、後述する好ましいポリマー温度範囲内での熱劣化を防ぐことが可能となり、製糸性が良好となる。180,000以下とすることで、ナイロン6との溶融粘度差を小さくすることが可能となり、断面湾曲率を15%以下とすることが可能となる。さらに好ましくは、80,000以上140,000以下である。 The weight average molecular weight (Mw) of the thermoplastic polyurethane used for the core portion of the eccentric core-sheath composite fiber of the present invention is preferably 80,000 or more and 180,000 or less. By setting Mw to 80,000 or more, it is possible to prevent thermal deterioration within a preferable polymer temperature range described later, and the silk-reeling property is improved. By setting it to 180,000 or less, it is possible to reduce the difference in melt viscosity with nylon 6, and it is possible to set the cross-sectional curvature rate to 15% or less. More preferably, it is 80,000 or more and 140,000 or less.

また、熱可塑性ポリウレタンの平均分子量(Mz)と重量平均分子量(Mw)の関係Mz/Mwは、3.0以下であることが好ましい。Mz/Mwは高い側への広がりを示す指標であり、この範囲とすることで、溶融粘度バラツキが低下することで、断面湾曲率CV値を0.40以下とすることが可能となる。 Further, the relationship Mz / Mw between the average molecular weight (Mz) and the weight average molecular weight (Mw) of the thermoplastic polyurethane is preferably 3.0 or less. Mz / Mw is an index showing the spread to the higher side, and by setting it in this range, the variation in melt viscosity is reduced, and the cross-sectional curvature CV value can be set to 0.40 or less.

また、熱可塑性ポリウレタンは、熱劣化が進み易いポリマーであるため、後述する好ましいポリマー温度範囲内では熱分解が発生し易く、製糸性に影響を及ぼす。また、熱分解により、分子量の低下が起こり、ナイロンとの溶融粘度差が大きくなり、湾曲率が大きくなるばかりか、溶融粘度斑が発生し、断面湾曲率の悪化にも繋がる。そのため、芯部の熱可塑性ポリウレタンには、ラジカルを補足する酸化防止剤であるヒンダードフェノール系安定剤を添加することが好ましい。 Further, since the thermoplastic polyurethane is a polymer in which thermal deterioration is liable to proceed, thermal decomposition is liable to occur within a preferable polymer temperature range described later, which affects the silk-reeling property. Further, due to thermal decomposition, the molecular weight is lowered, the difference in melt viscosity with nylon becomes large, the bending rate becomes large, and melt viscosity unevenness occurs, which leads to deterioration of the cross-sectional bending rate. Therefore, it is preferable to add a hindered phenol-based stabilizer, which is an antioxidant that captures radicals, to the thermoplastic polyurethane at the core.

ヒンダードフェノール系安定剤の量は、熱可塑性ポリウレタンの重量に対して、0.1重量%以上1.0重量%以下が好ましい。0.1重量%以上とすることで、後述する好ましいポリマー温度範囲内での熱可塑性ポリウレタンポリマーの熱劣化を防ぐことが可能となり、粘度のバラツキや糸切れを防ぐことが出来る。1.0重量%以下とすることで繊維表面への酸化防止剤の析出がなく好ましい。また、必要に応じてHALSやリン系、イオウ系等の別の酸化防止剤を併用しても良い。 The amount of the hindered phenol-based stabilizer is preferably 0.1% by weight or more and 1.0% by weight or less with respect to the weight of the thermoplastic polyurethane. When the content is 0.1% by weight or more, it is possible to prevent thermal deterioration of the thermoplastic polyurethane polymer within a preferable polymer temperature range described later, and it is possible to prevent variations in viscosity and yarn breakage. When the content is 1.0% by weight or less, the antioxidant does not precipitate on the fiber surface, which is preferable. Further, if necessary, another antioxidant such as HALS, phosphorus-based, sulfur-based, etc. may be used in combination.

ヒンダードフェノール系安定剤は、例えば、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](IR1010)、2,4,6-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)メシチレン(IR1330)、(1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)ベンゼン(AO-330)、1,3,5-トリス[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(IR3114)、N,N’-ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパンアミド](IR1098)が挙げられる。 Hindered phenolic stabilizers include, for example, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (IR1010), 2,4,6-tris (3', 5). '-Di-tert-butyl-4'-hydroxybenzyl) Mesitylene (IR1330), (1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxyphenyl) ) Benzene (AO-330), 1,3,5-tris [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] -1,3,5-triazine-2,4 , 6 (1H, 3H, 5H) -trione (IR3114), N, N'-hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanamide] (IR1098). Be done.

本発明における芯部の熱可塑性ポリウレタンには、各種の添加剤、たとえば、艶消剤、難燃剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤、吸湿性ポリマー、カーボンなどを添加してもよい。添加する場合は総添加物含有量が0.001~10重量%の間で必要に応じて共重合または混合していてもよい。 The thermoplastic polyurethane of the core in the present invention has various additives such as a matting agent, a flame retardant, an ultraviolet absorber, an infrared absorber, a crystal nucleating agent, a fluorescent whitening agent, an antistatic agent, and a hygroscopic agent. Polymers, carbon and the like may be added. When added, the total additive content may be between 0.001 and 10% by weight, if necessary, copolymerized or mixed.

本発明の鞘部のナイロン6には、各種の添加剤、たとえば、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤、吸湿性ポリマー、カーボンなどを添加してもよい。また、添加する場合は総添加物含有量が0.001~10重量%の間で必要に応じて共重合または混合していてもよい。 Nylon 6 in the sheath portion of the present invention has various additives such as a matting agent, a flame retardant, an antioxidant, an ultraviolet absorber, an infrared absorber, a crystal nucleating agent, a fluorescent whitening agent, and an antioxidant. , Hygroscopic polymer, carbon and the like may be added. When added, the total additive content may be between 0.001 and 10% by weight, if necessary, copolymerized or mixed.

本発明の鞘部ナイロン6の硫酸相対粘度は、2.0以上2.3以下であることが好ましい。かかる範囲とすることにより、熱可塑性ポリウレタンとの溶融粘度差を小さくすることが可能となり、断面形成性を安定させ、断面湾曲率を15%以下とすることが可能となる。 The relative sulfuric acid viscosity of the sheath nylon 6 of the present invention is preferably 2.0 or more and 2.3 or less. Within such a range, the difference in melt viscosity with the thermoplastic polyurethane can be reduced, the cross-sectional formability can be stabilized, and the cross-sectional curvature can be set to 15% or less.

本発明の偏心芯鞘複合繊維は、公知の溶融紡糸、複合紡糸方法にて製造できる。例えば、熱可塑性ポリウレタン(芯部)とナイロン6(鞘部)を別々に溶融し、紡糸パックに供し、偏心芯鞘型の複合紡糸口金から吐出して糸条を形成する。偏心芯鞘構造を形成する方法は特に限定しないが、例えばポリウレタンにナイロン6の薄い鞘を同心円状にかぶせ、これと第2のナイロン6の流れをサイドバイサイドで複合させる方法や、ポリウレタンとナイロン6をサイドバイサイド状に複合した後、ナイロン6の薄い鞘をかぶせる方法などがある。複合紡糸口金の下流側に設けた冷却装置により糸条を室温まで均一に冷却した後、油剤を付与し、低速で巻き取る。その後、3~5倍で延伸することが好ましい。 The eccentric core sheath composite fiber of the present invention can be produced by a known melt spinning or composite spinning method. For example, thermoplastic polyurethane (core portion) and nylon 6 (sheath portion) are separately melted, subjected to a spinning pack, and discharged from an eccentric core-sheath type composite spinneret to form a yarn. The method for forming the eccentric core sheath structure is not particularly limited, but for example, a method in which a thin sheath of nylon 6 is concentrically covered with polyurethane and this and the flow of the second nylon 6 are combined side by side, or polyurethane and nylon 6 are used. There is a method of covering with a thin sheath of nylon 6 after compounding in a side-by-side manner. After the yarn is uniformly cooled to room temperature by a cooling device provided on the downstream side of the composite spinneret, an oil agent is applied and the yarn is wound at a low speed. After that, it is preferable to stretch it 3 to 5 times.

熱可塑性ポリウレタンの210℃での溶融粘度は、5,000~18,000poiseであることが好ましい。かかる範囲とすることにより、上記の相対粘度範囲のナイロン6と紡糸する温度とした際、溶融粘度差が小さくなるため、断面形成性を安定させ、断面湾曲率を15%以下とすることが可能となる。さらに好ましくは、8,000~15,000poiseである。 The melt viscosity of the thermoplastic polyurethane at 210 ° C. is preferably 5,000 to 18,000 poise. By setting this range, the difference in melt viscosity becomes smaller when the temperature is set to spin with nylon 6 in the relative viscosity range, so that the cross-sectional formability can be stabilized and the cross-sectional curvature can be set to 15% or less. Will be. More preferably, it is 8,000 to 15,000 poise.

また、ナイロンの240℃での溶融粘度は、200~2,000poiseであることが好ましい。かかる範囲とすることにより、上記の記載の熱可塑性ポリウレタンと紡糸した際、溶融粘度差が小さくなるため、断面形成性を安定させ、断面湾曲率を15%以下とすることが可能となる。さらに好ましくは、300~1,500poiseである。 The melt viscosity of nylon at 240 ° C. is preferably 200 to 2,000 poise. Within such a range, when spinning with the above-mentioned thermoplastic polyurethane, the difference in melt viscosity becomes small, so that the cross-sectional formability can be stabilized and the cross-sectional curvature can be set to 15% or less. More preferably, it is 300 to 1,500 poise.

断面形成の際に熱可塑性ポリウレタンとナイロン6の溶融粘度差を小さくすることで、断面湾曲率を低下させることが可能となるが、紡糸パック内の実際の溶融粘度を測定することは不可能であるため、熱可塑性ポリウレタンは210℃、ナイロンは240℃の溶融粘度を基準とした。かかる範囲の熱可塑性ポリウレタンおよびナイロン6を使用することで、後述する好ましいポリマー温度において、溶融粘度差を十分小さくすることができる。 By reducing the difference in melt viscosity between the thermoplastic polyurethane and nylon 6 during cross-section formation, it is possible to reduce the cross-sectional curvature rate, but it is not possible to measure the actual melt viscosity in the spinning pack. Therefore, the melt viscosity of thermoplastic polyurethane at 210 ° C and nylon at 240 ° C was used as a reference. By using the thermoplastic polyurethane and nylon 6 in such a range, the difference in melt viscosity can be sufficiently reduced at a preferable polymer temperature described later.

熱可塑性ポリウレタンとナイロン6の各ポリマー温度における溶融粘度差は300poise以下が好ましく、さらに好ましくは100poise以下である。 The difference in melt viscosity between the thermoplastic polyurethane and nylon 6 at each polymer temperature is preferably 300 poise or less, and more preferably 100 poise or less.

熱可塑性ポリウレタンのポリマー温度は、235℃以上245℃以下とすることが好ましい。ここで言うポリマー温度とは、紡糸パック内に入る前の温度である。 The polymer temperature of the thermoplastic polyurethane is preferably 235 ° C. or higher and 245 ° C. or lower. The polymer temperature referred to here is the temperature before entering the spinning pack.

かかる範囲とすることにより、ナイロン6との溶融粘度差を小さくすることが可能となり、断面形成性を安定させ、断面湾曲率を15%以下とすることが可能となる。さらに好ましくは、240℃以上245℃以下である。 Within such a range, the difference in melt viscosity with nylon 6 can be reduced, the cross-sectional formability can be stabilized, and the cross-sectional curvature can be set to 15% or less. More preferably, it is 240 ° C. or higher and 245 ° C. or lower.

また、熱可塑性ポリウレタンとナイロン6のポリマー温度差を10℃以内とすることが好ましい。なお、紡糸温度とポリマー温度は等しいことが望ましいが、ポリマー溶融後、紡糸パック内まで、ポリマー配管長など紡糸機によりまちまちであり温度低下があることを考慮すると、ポリマー温度をかかる範囲とするために適切な紡糸温度設定をすればよい。ポリマー温度およびポリマー温度差をかかる範囲に制御することにより、紡糸パック内部で、熱可塑性ポリウレタンとナイロン6間で行われる、熱量の移動が小さくすることが可能となり、複合断面を形成する口金吐出孔部での温度差が小さくなり、断面形成性を安定させ、断面湾曲率を15%以下、断面湾曲率CV値を0.40以下とすることが可能となる。 Further, it is preferable that the polymer temperature difference between the thermoplastic polyurethane and nylon 6 is within 10 ° C. It is desirable that the spinning temperature and the polymer temperature be the same, but considering that the temperature varies depending on the spinning machine such as the length of the polymer pipe, even inside the spinning pack after the polymer is melted, the polymer temperature is within the range. The appropriate spinning temperature may be set. By controlling the polymer temperature and the polymer temperature difference within such a range, it is possible to reduce the heat transfer between the thermoplastic polyurethane and the nylon 6 inside the spinning pack, and the base discharge hole forming the composite cross section can be reduced. The temperature difference between the parts is reduced, the cross-sectional shapeability is stabilized, the cross-sectional curvature rate is 15% or less, and the cross-sectional curvature rate CV value is 0.40 or less.

好ましくは、ポリマー温度差7℃以内である。ポリマー温度差が10℃を超えると、複合断面を形成する際に熱量の移動が大きくなり、芯部側の界面の湾曲大きくなる、湾曲が安定しないなど断面形成性が悪くなり、断面湾曲率が15%を超えやすくなり、断面湾曲率CV値が0.40を超えやすくなる。 Preferably, the polymer temperature difference is within 7 ° C. If the polymer temperature difference exceeds 10 ° C, the transfer of heat becomes large when forming a composite cross section, the curvature of the interface on the core side becomes large, the curvature becomes unstable, and the cross-section formability deteriorates, resulting in a cross-section curvature rate. It tends to exceed 15%, and the cross-sectional curvature CV value tends to exceed 0.40.

例えば、上記特許文献1や特許文献2に記載の溶融条件では、熱可塑性ポリウレタンとナイロン6の紡糸温度差が20℃であるため、ポリマー温度差が10℃を超え、そのために断面湾曲率および断面湾曲率CV値をかかる範囲とすることができない。 For example, under the melting conditions described in Patent Document 1 and Patent Document 2, since the spinning temperature difference between the thermoplastic polyurethane and nylon 6 is 20 ° C., the polymer temperature difference exceeds 10 ° C., and therefore the cross-sectional curvature rate and cross-section. The curvature rate CV value cannot be within such a range.

口金面温度差を5℃以内とすることが好ましい。ここで言う口金面温度とは、口金中心点、外側3点を測定し、最大値と最小値の差を算出した値である。かかる範囲とすることで、断面湾曲率CV値を0.40以下とすることが可能となる。 It is preferable that the temperature difference on the base surface is within 5 ° C. The base surface temperature referred to here is a value obtained by measuring the center point of the base and three outer points and calculating the difference between the maximum value and the minimum value. Within such a range, the cross-sectional curvature CV value can be set to 0.40 or less.

本発明の偏心芯鞘複合繊維は、布帛、衣料品に好ましく用いられる。布帛形態としては、織物、編物など目的に応じて選択でき、衣料も含まれる。また、衣料品としては、ストッキング、インナーウエア、スポーツウエアなどの各種衣料用製品とすることができる。 The eccentric core sheath composite fiber of the present invention is preferably used for fabrics and clothing. The fabric form can be selected according to the purpose such as woven fabric and knitted fabric, and clothing is also included. Further, as clothing, various clothing products such as stockings, innerwear, and sportswear can be used.

本発明の偏心芯鞘複合繊維は、レッグ部の少なくとも一部に用いたストッキングに用いられることが好ましい。ここで、ストッキングとは、パンティストッキング、ロングストッキング、ショートストッキングで代表されるストッキング製品が挙げられる。レッグ部とは、例えばパンティストッキングの場合、ガーター部からつま先までの範囲を指す。 The eccentric core sheath composite fiber of the present invention is preferably used for stockings used for at least a part of the leg portion. Here, the stocking includes stocking products typified by pantyhose, long stocking, and short stocking. The leg portion refers to the range from the garter portion to the toes in the case of pantyhose, for example.

また、ストッキングの編機としては特に制限されず、通常の靴下編機を用いることができ、例えば2口あるいは4口給糸の靴下編機を用い、本発明の偏心芯鞘複合糸を供給して編成するという通常の方法で編成すればよい。例えば、本発明の偏心芯鞘複合糸のみを供給して編成するゾッキタイプのストッキングや、弾性糸を芯糸とし、被服糸を一重もしくは二重に巻き付けるカバリング糸と本発明の偏心芯鞘複合繊維を交互に供給して編成する交編タイプのストッキングなどが挙げられる。 Further, the knitting machine for stockings is not particularly limited, and a normal sock knitting machine can be used. For example, a sock knitting machine with two or four yarns is used to supply the eccentric core sheath composite yarn of the present invention. It can be organized by the usual method of knitting. For example, a Zokki type stocking that is knitted by supplying only the eccentric core sheath composite yarn of the present invention, a covering yarn that uses an elastic yarn as a core yarn and winds a clothing yarn single or double, and an eccentric core sheath composite fiber of the present invention. Examples include cross-knit type stockings that are knitted by alternately supplying.

以下、実施例を挙げて本発明をさらに具体的に説明する。なお実施例における特性値の測定法等は次のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples. The method for measuring the characteristic value in the examples is as follows.

(1)ナイロン6の硫酸相対粘度
ナイロン6チップ試料0.25gを濃度98重量%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98重量%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
(1) Relative viscosity of nylon 6 with sulfuric acid Dissolve 0.25 g of nylon 6 chip sample in 100 ml of sulfuric acid with a concentration of 98% by weight so as to be 1 g, and use an Ostwald viscometer to flow down at 25 ° C. (T1). ) Was measured. Subsequently, the flow time (T2) of sulfuric acid having a concentration of 98% by weight was measured. The ratio of T1 to T2, that is, T1 / T2, was defined as the relative viscosity of sulfuric acid.

(2)熱可塑性ポリウレタンの分子量(Mw、Mz/Mw)測定
熱可塑性ポリウレタンチップ試料10mgに測定溶媒(0.05M臭化リチウム添加ジメチルホルムアミド)を5ml加え、室温で約60分間攪拌した。その後、0.45μmメンブレンフィルターを用いて濾過した。精製した試料を以下の条件にて、各分子量について測定した。
装置:ゲル浸透クロマトグラフGPC
検出器:示差屈折率検出器 RI(東ソー製RI-8020型、感度32)
カラム:TSKgel α-M、α-3000 各1本(φ7.8mm×30cm、東ソー製)
溶媒:0.05M臭化リチウム添加ジメチルホルムアミド
流速:0.8mL/min
カラム温度:0.2mL
注入量:0.2mL
標準試料:東ソー製単分散ポリスチレン
データ処理:TRC製GPCデータ処理システム
(2) Measurement of molecular weight (Mw, Mz / Mw) of thermoplastic polyurethane 5 ml of a measurement solvent (0.05 M lithium bromide-added dimethylformamide) was added to 10 mg of a thermoplastic polyurethane chip sample, and the mixture was stirred at room temperature for about 60 minutes. Then, it was filtered using a 0.45 μm membrane filter. The purified sample was measured for each molecular weight under the following conditions.
Equipment: Gel Permeation Chromatograph GPC
Detector: Differential refractometer detector RI (Tosoh RI-8020 type, sensitivity 32)
Column: TSKgel α-M, α-3000 1 each (φ7.8 mm x 30 cm, manufactured by Tosoh)
Solvent: 0.05 M Lithium bromide added Dimethylformamide Flow rate: 0.8 mL / min
Column temperature: 0.2 mL
Injection volume: 0.2 mL
Standard sample: Tosoh monodisperse polystyrene Data processing: TRC GPC data processing system

(3)溶融粘度
島津製作所社製“フローテスタ”CFT-500型を用い、ダイ:1.0mmφ×1.0mm、プランジャー面積:1cm、温度:210℃(熱可塑性ポリウレタン)、240℃(ナイロン6)、時間:4分、荷重:200N、サンプル量:1gの条件で測定した。
(3) Melt viscosity Using "Float Tester" CFT-500 manufactured by Shimadzu Corporation, die: 1.0 mmφ x 1.0 mm, plunger area: 1 cm 2 , temperature: 210 ° C (thermoplastic polyurethane), 240 ° C ( Nylon 6), time: 4 minutes, load: 200N, sample volume: 1g.

(4)繊度
1.125m/周の検尺器に繊維試料をセットし、200回転させて、ループ状かせを作成し、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせ質量を量り、公定水分率を乗じた値から繊度を算出した。なお、芯鞘複合糸の公定水分率は、4.5%とした。
(4) Fineness 1. Set the fiber sample on a measuring instrument with a circumference of 125 m / circumference, rotate it 200 times to make a loop-shaped skein, dry it with a hot air dryer (105 ± 2 ° C x 60 minutes), and then balance. The fineness was calculated from the value obtained by measuring the skein mass and multiplying by the official moisture content. The official moisture content of the core-sheath composite yarn was 4.5%.

(5)強度・伸度
繊維試料を、オリエンテック(株)製“TENSILON”(登録商標)、UCT-100でJIS L1013(化学繊維フィラメント糸試験方法、2010年)に示される定速伸長条件で測定した。伸度は、引張強さ-伸び曲線における最大強力を示した点の伸びから求めた。また、強度は、最大強力を繊度で除した値を強度とした。測定は10回行い、平均値を強度および伸度とした。
(5) Strength / Elongation Fiber samples are subjected to "TENSILON" (registered trademark) manufactured by Orientec Co., Ltd. under the constant speed elongation conditions shown in JIS L1013 (chemical fiber filament yarn test method, 2010) with UCT-100. It was measured. Elongation was determined from the elongation of the point showing the maximum strength in the tensile strength-elongation curve. The strength was defined as the value obtained by dividing the maximum strength by the fineness. The measurement was performed 10 times, and the average value was taken as strength and elongation.

(6)断面湾曲率
A.断面写真の撮影
パラフィン、ステアリン酸、エチルセルロースからなる包理剤を溶解し、繊維を導入後室温放置により固化させ、包理剤中の原糸を横断面方向に切断したものを東京電子(株)製のCCDカメラ(CS5270)にて繊維横断面を撮影し、三菱電機製のカラービデオプロセッサー(SCT-CP710)にて1500倍でプリントアウトした。
B.断面湾曲率の測定
4本の偏心芯鞘複合繊維の全てのフィラメントの断面を下記(a)~(e)の手順でそれぞれ測定し、その平均値を断面湾曲率とした。以下、図2を用いて説明する。
a)繊維横断面にて、熱可塑性ポリウレタンとポリアミドの複合界面が最も凸な点(点a)に接線Aを引く。
b)線Aと平行で、芯部の内径が最大となる二点(点b-1、点b-2)を結んだ線Bを引く。
c)点aと芯部の内径が最大となる二点(点b-1、点b-2)の中間点(点b-3)とを結ぶ線Cを引く(繊維表面まで延長させる)。
d)点aとの距離が近い線Cと繊維表面との交点を点c、他の繊維表面との交点を点dとする。
e)断面湾曲率=(点a-点b-3の長さ/点c-点dの長さ)/100
(6) Cross-sectional curvature A. Taking a cross-sectional photograph Tokyo Denshi Co., Ltd. Co., Ltd., which melts a packaging agent consisting of paraffin, stearic acid, and ethyl cellulose, introduces fibers, solidifies them by leaving them at room temperature, and cuts the raw yarn in the packaging agent in the cross-sectional direction. The cross section of the fiber was photographed with a CCD camera (CS5270) manufactured by Mitsubishi Electric, and printed out at 1500 times with a color video processor (SCT-CP710) manufactured by Mitsubishi Electric.
B. Measurement of cross-sectional curvature The cross-sections of all the filaments of the four eccentric core-sheath composite fibers were measured by the following procedures (a) to (e), and the average value was taken as the cross-sectional curvature. Hereinafter, it will be described with reference to FIG.
a) In the cross section of the fiber, a tangent line A is drawn at the point (point a) where the composite interface between the thermoplastic polyurethane and the polyamide is most convex.
b) Draw a line B that is parallel to the line A and connects two points (points b-1 and b-2) that have the maximum inner diameter of the core.
c) Draw a line C (extending to the fiber surface) connecting the point a and the intermediate point (point b-3) of the two points (points b-1 and b-2) where the inner diameter of the core portion is maximum.
d) Let the point c be the intersection of the line C having a short distance from the point a and the fiber surface, and the point d be the intersection with another fiber surface.
e) Cross-sectional curvature = (length of point a-point b-3 / length of point c-point d) / 100

(7)断面湾曲率CV値
4本の偏心芯鞘複合繊維の全てのフィラメントの断面湾曲率を測定し、その標準偏差を平均値で除した値を断面湾曲率CV値とした。
断面湾曲率CV値=断面湾曲率の標準偏差値σ/断面湾曲率の平均値
(7) Cross-sectional curvature CV value The cross-sectional curvature of all the filaments of the four eccentric core-sheath composite fibers was measured, and the value obtained by dividing the standard deviation by the average value was taken as the cross-sectional curvature CV value.
Cross-section curvature CV value = standard deviation of cross-section curvature σ / average value of cross-section curvature

(8)伸縮伸長率
伸縮伸長率はJIS L1090(合成繊維フィラメントかさ高加工糸試験方法)、5.7項C法(簡便法)に従い、以下に示す式にて伸縮伸長率とした。
伸縮伸長率(%)=[(L1-L0)/L0]×100%
L0:繊維カセに0.0018cN/dtex荷重を吊した状態で90℃熱水処理を20分間行い、1昼夜風乾した後のカセ長
L1:L0測定後、L0測定荷重を取り除いて0.09cN/dtex荷重を吊して30秒後のカセ長
(8) Stretching / stretching ratio The stretching / stretching ratio was determined by the following formula according to JIS L1090 (synthetic fiber filament bulk processed yarn test method) and Section 5.7 C method (simple method).
Expansion and contraction rate (%) = [(L1-L0) / L0] × 100%
L0: 90 ° C. hot water treatment is performed for 20 minutes with a 0.0018 cN / dtex load suspended on the fiber skein, and the skein length after air-drying for one day and night L1: After measuring L0, the L0 measured load is removed and 0.09 cN / The length of the skein 30 seconds after suspending the dtex load

(9)ストッキング作製方法
4本の偏心芯鞘複合繊維をレッグ部用の糸に用いて、永田精機(株)製のスーパー4靴下編機(針数400本)で、天竺組織に編成しストッキングの生地を得た。
次いで、該生地を吊り下げた状態で、90℃スチーム、100℃加圧スチームで順次プレセットを行った後、股部およびトウ部を縫製した。
繊維の油剤を充分に洗浄除去した後、95℃で40分間パンティストッキングの一般色であるベージュに染色、柔軟仕上げ剤処理を施した後、通常の足型にかぶせて110℃15秒でファイナルセットを行い、ストッキングを得た。
(9) Stocking manufacturing method Using four eccentric core sheath composite fibers for the thread for the leg part, a super 4 sock knitting machine (400 needles) manufactured by Nagata Seiki Co., Ltd. is used to knit into a stocking tissue. I got the dough.
Next, with the fabric suspended, presetting was sequentially performed with 90 ° C. steam and 100 ° C. pressurized steam, and then the crotch portion and the toe portion were sewn.
After thoroughly cleaning and removing the fiber oil, dye it in beige, which is the general color of pantyhose, at 95 ° C for 40 minutes, apply a fabric softener treatment, and then cover it with a normal foot mold and set it at 110 ° C for 15 seconds. And got stockings.

(10)ストッキングの品位評価
前記(9)で作製したストッキングを以下の基準にて4段階評価し、△以上を合格とした。
◎:スジが無く高品位
○:スジがほとんど無く品位良好
△:スジが若干あるものの品位問題なし
×:スジがはっきり確認でき、低品位
(10) Evaluation of stocking quality The stockings produced in (9) above were evaluated on a four-point scale according to the following criteria, and a score of Δ or higher was judged as acceptable.
◎: High quality with no streaks ○: Good quality with almost no streaks △: No problem with quality although there are some streaks ×: Low quality with clear streaks

(11)ストッキングのソフトストレッチ評価
前記(9)で作製したストッキングを以下の基準にて4段階評価し、△以上を合格とした。
◎:非常に良好
○:良好
△:やや良好
×:劣る
(11) Evaluation of soft stretch of stockings The stockings produced in (9) above were evaluated on a four-point scale according to the following criteria, and a score of Δ or higher was judged as acceptable.
◎: Very good ○: Good △: Slightly good ×: Inferior

[実施例1]
ジイソシアネートがジフェニルメタンジイソシアネート、ポリオールがポリエステルポリオールとポリカーボネートポリオールの2成分、鎖伸長剤が1,4-ブタンジオールである熱可塑性ポリウレタン(重量平均分子量(Mw)=114,000、Mz/Mw=2.0、溶融粘度=8,000poise)を芯部とした。なお、耐熱剤としてヒンダードフェノール系安定剤Irganox1010(BASFジャパン社製)を0.25重量%とIrganox1330(BASFジャパン社製)を0.25重量%それぞれ重合時に添加した。
ここで、硫酸相対粘度2.20であるナイロン6を鞘部とした。
熱可塑性ポリウレタンチップを紡糸温度(設定値)242℃、ナイロン6チップを紡糸温度(設定値)255℃でそれぞれ溶融した。紡糸パック入り前のポリマー温度(実測値)は、熱可塑性ポリウレタン:238℃、ナイロン6:246℃であった。偏心芯鞘複合紡糸口金(丸孔、8孔)を用いて、芯部熱可塑性ポリウレタン/鞘部ナイロン6重量比率50/50で溶融吐出した。口金面温度は、平均値226℃、差1.7℃であった。
口金から吐出された糸条は、糸条冷却装置で糸条を冷却固化し、油剤付与(給油)し、600m/分で巻取った。そして、延伸機で4.29倍に延伸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントをボビンに巻き取り、8本得た。糸の強度は3.8cN/dtex、伸度は44%であった。得られた偏心芯鞘複合モノフィラメントの断面湾曲率は8.0%、断面湾曲率CV値は0.20、伸縮伸長率は115%であった。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがほとんどなく品位良好(○)であった。また、ソフトストレッチ性も良好(○)であった。
[Example 1]
Thermoplastic polyurethane (weight average molecular weight (Mw) = 114,000, Mz / Mw = 2.0) in which diisocyanate is diphenylmethane diisocyanate, polyol is polyester polyol and polycarbonate polyol, and chain extender is 1,4-butanediol. , Melt viscosity = 8,000 polyester) was used as the core. As heat-resistant agents, 0.25% by weight of hindered phenol-based stabilizer Irganox1010 (manufactured by BASF Japan) and 0.25% by weight of Irganox1330 (manufactured by BASF Japan) were added at the time of polymerization.
Here, nylon 6 having a relative sulfuric acid viscosity of 2.20 was used as the sheath portion.
The thermoplastic polyurethane chip was melted at a spinning temperature (set value) of 242 ° C, and the nylon 6 chip was melted at a spinning temperature (set value) of 255 ° C. The polymer temperature (measured value) before entering the spinning pack was thermoplastic polyurethane: 238 ° C. and nylon 6: 246 ° C. Using an eccentric core-sheath composite spinneret (round hole, 8 holes), melt-discharging was performed at a core thermoplastic polyurethane / sheath nylon 6 weight ratio of 50/50. The base surface temperature had an average value of 226 ° C and a difference of 1.7 ° C.
The yarn discharged from the mouthpiece was cooled and solidified by a yarn cooling device, oiled (lubricated), and wound at 600 m / min. Then, it was stretched 4.29 times with a stretching machine, and 18 dtex, 1 filament eccentric core sheath composite monofilament was wound around a bobbin to obtain 8 pieces. The strength of the yarn was 3.8 cN / dtex, and the elongation was 44%. The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 8.0%, a cross-sectional curvature rate CV value of 0.20, and an expansion / contraction rate of 115%.
The stockings produced using the obtained eccentric core-sheath composite monofilament had almost no streaks and were of good quality (◯). The soft stretchability was also good (◯).

[実施例2]
熱可塑性ポリウレタンの重量平均分子量(Mw)を130,000(Mz/Mw=2.0、溶融粘度=9,500poise)とした以外、実施例1と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメントの断面湾曲率は10.0%、CV値は0.20、伸縮伸長率は105%であった。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがほとんどなく品位良好(○)であった。また、ソフトストレッチ性も良好(○)であった。
[Example 2]
The thermoplastic polyurethane was spun in the same manner as in Example 1 except that the weight average molecular weight (Mw) was 130,000 (Mz / Mw = 2.0, melt viscosity = 9,500 pose), and 18dtex and 1 filament were used. Eccentric core sheath composite monofilament was obtained.
The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 10.0%, a CV value of 0.20, and an expansion / contraction rate of 105%.
The stockings produced using the obtained eccentric core-sheath composite monofilament had almost no streaks and were of good quality (◯). The soft stretchability was also good (◯).

[実施例3]
熱可塑性ポリウレタンの重量平均分子量(Mw)を150,000(Mz/Mw=2.5、溶融粘度=11,500poise)とした以外、実施例1と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメントの断面湾曲率は12.5%、CV値は0.30、伸縮伸長率は100%であった。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジが若干あるものの品位問題なし(△)であった。また、ソフトストレッチ性もやや良好(△)であった。
[Example 3]
The thermoplastic polyurethane was spun in the same manner as in Example 1 except that the weight average molecular weight (Mw) was 150,000 (Mz / Mw = 2.5, melt viscosity = 11,500 pose), and 18dtex and 1 filament were used. Eccentric core sheath composite monofilament was obtained.
The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 12.5%, a CV value of 0.30, and an expansion / contraction rate of 100%.
The stockings produced using the obtained eccentric core-sheath composite monofilament had no quality problem (Δ), although there were some streaks. The soft stretchability was also slightly good (Δ).

[実施例4]
熱可塑性ポリウレタンの重量平均分子量(Mw)を180,000(Mz/Mw=2.8、溶融粘度=14,000poise)とした以外、実施例1と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメントの断面湾曲率は14.5%、CV値は0.35、伸縮伸長率は93%であった。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジが若干あるものの品位問題なし(△)であった。また、ソフトストレッチ性もやや良好(△)であった。
[Example 4]
The thermoplastic polyurethane was spun by the same method as in Example 1 except that the weight average molecular weight (Mw) was 180,000 (Mz / Mw = 2.8, melt viscosity = 14,000 poise), and 18dtex and 1 filament were used. Eccentric core sheath composite monofilament was obtained.
The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 14.5%, a CV value of 0.35, and an expansion / contraction rate of 93%.
The stockings produced using the obtained eccentric core-sheath composite monofilament had no quality problem (Δ), although there were some streaks. The soft stretchability was also slightly good (Δ).

[実施例5]
熱可塑性ポリウレタンの重量平均分子量(Mw)を80,000(Mz/Mw=1.9、溶融粘度=5,000poise)とした以外、実施例1と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメントの断面湾曲率は5.0%、CV値は0.18、伸縮伸長率は120%であった。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがなく高品位(◎)であった。また、ソフトストレッチ性も非常に良好(◎)であった。
[Example 5]
The thermoplastic polyurethane was spun by the same method as in Example 1 except that the weight average molecular weight (Mw) was 80,000 (Mz / Mw = 1.9, melt viscosity = 5,000 pose), and 18dtex and 1 filament were used. Eccentric core sheath composite monofilament was obtained.
The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 5.0%, a CV value of 0.18, and an expansion / contraction rate of 120%.
The stockings produced using the obtained eccentric core-sheath composite monofilament had no streaks and were of high quality (⊚). The soft stretchability was also very good (◎).

[実施例6]
熱可塑性ポリウレタンチップを紡糸温度(設定値)247℃、ナイロン6チップを紡糸温度(設定値)255℃でそれぞれ溶融し、紡糸パック入り前のポリマー温度(実測値)は、熱可塑性ポリウレタン:240℃、ナイロン6:246℃であった。口金面温度は、平均値227℃、差1.8℃であった。熱可塑性ポリウレタンの溶融条件を変更した以外、実施例1と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメントの断面湾曲率は5.0%、CV値は0.18、伸縮伸長率は120%であった。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがなく高品位(◎)であった。また、ソフトストレッチ性も非常に良好(◎)であった。
[Example 6]
The thermoplastic polyurethane chip is melted at a spinning temperature (set value) of 247 ° C, and the nylon 6 chip is melted at a spinning temperature (set value) of 255 ° C. , Nylon 6: 246 ° C. The base surface temperature had an average value of 227 ° C and a difference of 1.8 ° C. Spinning was performed in the same manner as in Example 1 except that the melting conditions of the thermoplastic polyurethane were changed to obtain an eccentric core-sheath composite monofilament of 18 dtex and 1 filament.
The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 5.0%, a CV value of 0.18, and an expansion / contraction rate of 120%.
The stockings produced using the obtained eccentric core-sheath composite monofilament had no streaks and were of high quality (⊚). The soft stretchability was also very good (◎).

[実施例7]
熱可塑性ポリウレタンチップを紡糸温度(設定値)252℃、ナイロン6チップを紡糸温度(設定値)255℃でそれぞれ溶融した。紡糸パック入り前のポリマー温度(実測値)は、熱可塑性ポリウレタン:244℃、ナイロン6:246℃であった。口金面温度は、平均値229℃、差0.8℃であった。熱可塑性ポリウレタンの溶融条件を変更した以外、実施例1と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメント原糸の断面湾曲率は3.0%、CV値は0.15、伸縮伸長率は125%であった。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがなく高品位(◎)であった。また、ソフトストレッチ性も非常に良好(◎)であった。
[Example 7]
The thermoplastic polyurethane chips were melted at a spinning temperature (set value) of 252 ° C, and the nylon 6 chips were melted at a spinning temperature (set value) of 255 ° C. The polymer temperature (measured value) before entering the spinning pack was thermoplastic polyurethane: 244 ° C. and nylon 6: 246 ° C. The base surface temperature had an average value of 229 ° C and a difference of 0.8 ° C. Spinning was performed in the same manner as in Example 1 except that the melting conditions of the thermoplastic polyurethane were changed to obtain an eccentric core-sheath composite monofilament of 18 dtex and 1 filament.
The obtained eccentric core-sheath composite monofilament yarn had a cross-sectional curvature rate of 3.0%, a CV value of 0.15, and an expansion / contraction rate of 125%.
The stockings produced using the obtained eccentric core-sheath composite monofilament had no streaks and were of high quality (⊚). The soft stretchability was also very good (◎).

[実施例8]
熱可塑性ポリウレタンの重量平均分子量(Mw)を80,000(Mz/Mw=1.9、溶融粘度=5,000poise)とした以外、実施例7と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメントの断面湾曲率は1.0%、CV値は0.10、伸縮伸長率は130%であった。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがなく高品位(◎)であった。また、ソフトストレッチ性も非常に良好(◎)であった。
[Example 8]
The thermoplastic polyurethane was spun by the same method as in Example 7 except that the weight average molecular weight (Mw) was 80,000 (Mz / Mw = 1.9, melt viscosity = 5,000 pose), and 18dtex and 1 filament were used. Eccentric core sheath composite monofilament was obtained.
The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 1.0%, a CV value of 0.10, and an expansion / contraction rate of 130%.
The stockings produced using the obtained eccentric core-sheath composite monofilament had no streaks and were of high quality (⊚). The soft stretchability was also very good (◎).

[実施例9]
ナイロン6の硫酸相対粘度を2.00(溶融粘度=300poise)とした以外、実施例8と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメントの断面湾曲率は1.0%、CV値は0.10、伸縮伸長率は120%であった。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがなく高品位(◎)であった。また、ソフトストレッチ性も非常に良好(◎)であった。
[Example 9]
Nylon 6 was spun in the same manner as in Example 8 except that the relative viscosity of sulfuric acid of nylon 6 was set to 2.00 (melt viscosity = 300 poise) to obtain 18 dtex, 1 filament eccentric core-sheath composite monofilament.
The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 1.0%, a CV value of 0.10, and an expansion / contraction rate of 120%.
The stockings produced using the obtained eccentric core-sheath composite monofilament had no streaks and were of high quality (⊚). The soft stretchability was also very good (◎).

[実施例10]
ナイロン6の硫酸相対粘度を2.30(溶融粘度=1500poise)とした以外、実施例7と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメントの断面湾曲率は10.0%、CV値は0.30、伸縮伸長率は103%であった。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがほとんどなく品位良好(○)であった。また、ソフトストレッチ性も良好(○)であった。
[Example 10]
Spinning was performed in the same manner as in Example 7 except that the relative sulfuric acid viscosity of nylon 6 was set to 2.30 (melt viscosity = 1500 poise) to obtain an eccentric core-sheath composite monofilament of 18 dtex and 1 filament.
The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 10.0%, a CV value of 0.30, and an expansion / contraction rate of 103%.
The stockings produced using the obtained eccentric core-sheath composite monofilament had almost no streaks and were of good quality (◯). The soft stretchability was also good (◯).

[比較例1]
熱可塑性ポリウレタンの重量平均分子量(Mw)を250,000(Mz/Mw=3.1、溶融粘度=21,000poise)とした以外、実施例1と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた原糸の断面湾曲率は19.0%、CV値は0.45、伸縮伸長率は80%であった。すなわち、芯部側の界面の湾曲が大きく、コイル状の捲縮が細かく不均一で、捲縮特性が低いことがわかる。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがはっきり確認でき、低品位(×)であった。また、ソフトストレッチ性も劣位(×)であった。
[Comparative Example 1]
The thermoplastic polyurethane was spun in the same manner as in Example 1 except that the weight average molecular weight (Mw) was 250,000 (Mz / Mw = 3.1, melt viscosity = 21,000 podise), and 18dtex and 1 filament were used. Eccentric core sheath composite monofilament was obtained.
The cross-sectional curvature of the obtained raw yarn was 19.0%, the CV value was 0.45, and the expansion / contraction elongation was 80%. That is, it can be seen that the interface on the core side has a large curvature, the coil-shaped crimping is fine and non-uniform, and the crimping characteristics are low.
The stockings produced using the obtained eccentric core-sheath composite monofilament were of low grade (x) with clearly visible streaks. The soft stretchability was also inferior (x).

[比較例2]
熱可塑性ポリウレタンチップを紡糸温度(設定値)236℃、ナイロン6チップを紡糸温度(設定値)255℃でそれぞれ溶融した。紡糸パック入り前のポリマー温度(実測値)は、熱可塑性ポリウレタン:230℃、ナイロン6:246℃であった。口金面温度は、平均値225℃、差6.2℃であった。熱可塑性ポリウレタンの溶融条件を変更した以外、実施例1と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメントの断面湾曲率は23.0%、CV値は0.55、伸縮伸長率は80%であった。すなわち、芯部側の界面の湾曲が大きく、コイル状の捲縮が細かく不均一で、捲縮特性が低いことがわかる。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがはっきり確認でき、低品位(×)であった。また、ソフトストレッチ性も劣位(×)であった。
[Comparative Example 2]
The thermoplastic polyurethane chips were melted at a spinning temperature (set value) of 236 ° C, and the nylon 6 chips were melted at a spinning temperature (set value) of 255 ° C. The polymer temperature (measured value) before entering the spinning pack was thermoplastic polyurethane: 230 ° C. and nylon 6: 246 ° C. The base surface temperature had an average value of 225 ° C and a difference of 6.2 ° C. Spinning was performed in the same manner as in Example 1 except that the melting conditions of the thermoplastic polyurethane were changed to obtain an eccentric core-sheath composite monofilament of 18 dtex and 1 filament.
The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 23.0%, a CV value of 0.55, and an expansion / contraction rate of 80%. That is, it can be seen that the interface on the core side has a large curvature, the coil-shaped crimping is fine and non-uniform, and the crimping characteristics are low.
The stockings produced using the obtained eccentric core-sheath composite monofilament were of low grade (x) with clearly visible streaks. The soft stretchability was also inferior (x).

[比較例3]
熱可塑性ポリウレタンチップを紡糸温度(設定値)230℃、ナイロン6チップを紡糸温度(設定値)250℃でそれぞれ溶融した。紡糸パック入り前のポリマー温度(実測値)は、熱可塑性ポリウレタン:225℃、ナイロン6:242℃であった。口金面温度は、平均値224℃、差7.5℃であった。熱可塑性ポリウレタンの溶融条件を変更した以外、実施例1と同様の方法にて紡糸し、18dtex、1フィラメントの偏心芯鞘複合モノフィラメントを得た。
得られた偏心芯鞘複合モノフィラメントの断面湾曲率は24.5%、CV値は0.55、伸縮伸長率は80%であった。すなわち、芯部側の界面の湾曲が大きく、コイル状の捲縮が細かく不均一で、捲縮特性が低いことがわかる。
得られた偏心芯鞘複合モノフィラメントを用いて作製したストッキングは、スジがはっきり確認でき、低品位(×)であった。また、ソフトストレッチ性も劣位(×)であった。
[Comparative Example 3]
The thermoplastic polyurethane chips were melted at a spinning temperature (set value) of 230 ° C., and the nylon 6 chips were melted at a spinning temperature (set value) of 250 ° C. The polymer temperature (measured value) before entering the spinning pack was thermoplastic polyurethane: 225 ° C. and nylon 6: 242 ° C. The base surface temperature had an average value of 224 ° C and a difference of 7.5 ° C. Spinning was performed in the same manner as in Example 1 except that the melting conditions of the thermoplastic polyurethane were changed to obtain an eccentric core-sheath composite monofilament of 18 dtex and 1 filament.
The obtained eccentric core-sheath composite monofilament had a cross-sectional curvature rate of 24.5%, a CV value of 0.55, and an expansion / contraction rate of 80%. That is, it can be seen that the interface on the core side has a large curvature, the coil-shaped crimping is fine and non-uniform, and the crimping characteristics are low.
The stockings produced using the obtained eccentric core-sheath composite monofilament were of low grade (x) with clearly visible streaks. The soft stretchability was also inferior (x).

Figure 0007074062000001
Figure 0007074062000001

Figure 0007074062000002
Figure 0007074062000002

Figure 0007074062000003
Figure 0007074062000003

本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2017年6月23日付で出願された日本特許出願(特願2017-123316)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible without departing from the intent and scope of the invention. This application is based on a Japanese patent application filed on June 23, 2017 (Japanese Patent Application No. 2017-123316), which is incorporated by reference in its entirety.

1:熱可塑性ポリウレタン
2:ナイロン6
1: Thermoplastic polyurethane 2: Nylon 6

Claims (4)

芯成分が熱可塑性ポリウレタン、鞘成分がナイロン6である偏心芯鞘複合繊維において、断面湾曲率が15%以下、断面湾曲率CV値が0.40以下であることを特徴とする偏心芯鞘複合繊維。 An eccentric core-sheath composite fiber in which the core component is thermoplastic polyurethane and the sheath component is nylon 6 has an eccentric core-sheath composite having a cross-sectional curvature rate of 15% or less and a cross-sectional curvature rate CV value of 0.40 or less. fiber. 伸縮伸長率が90%以上である請求項1に記載の偏心芯鞘複合繊維。 The eccentric core sheath composite fiber according to claim 1, wherein the expansion / contraction rate is 90% or more. 請求項1、または2に記載の偏心芯鞘複合繊維を少なくとも一部に有する織編物。 A woven or knitted fabric having at least a part of the eccentric core sheath composite fiber according to claim 1 or 2. 請求項1、または2に記載の偏心芯鞘複合繊維をレッグ部の少なくとも一部に有するストッキング。 A stocking having the eccentric core sheath composite fiber according to claim 1 or 2 in at least a part of a leg portion.
JP2018539443A 2017-06-23 2018-06-15 Polyurethane / nylon 6 eccentric core sheath composite fiber Active JP7074062B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017123316 2017-06-23
JP2017123316 2017-06-23
PCT/JP2018/023038 WO2018235754A1 (en) 2017-06-23 2018-06-15 Polyurethane-nylon 6 eccentric sheath-core conjugate fiber

Publications (2)

Publication Number Publication Date
JPWO2018235754A1 JPWO2018235754A1 (en) 2020-04-16
JP7074062B2 true JP7074062B2 (en) 2022-05-24

Family

ID=64735637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018539443A Active JP7074062B2 (en) 2017-06-23 2018-06-15 Polyurethane / nylon 6 eccentric core sheath composite fiber

Country Status (6)

Country Link
EP (1) EP3643817A4 (en)
JP (1) JP7074062B2 (en)
KR (1) KR102542862B1 (en)
CN (1) CN110799681B (en)
TW (1) TWI761538B (en)
WO (1) WO2018235754A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263778B2 (en) * 2019-01-08 2023-04-25 東レ株式会社 latent crimp yarn
CN115896965A (en) * 2022-11-16 2023-04-04 中纺院(浙江)技术研究院有限公司 Eccentric sheath-core polyamide-ammonia composite fully drawn yarn and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206124B2 (en) 1992-07-15 2001-09-04 日本メクトロン株式会社 Method for producing phosphonate ester
JP3206123B2 (en) 1992-07-07 2001-09-04 株式会社ソルテック Resist pattern
JP5285512B2 (en) 2008-06-26 2013-09-11 川崎重工業株式会社 Vehicle engine control device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1292301A (en) * 1968-11-06 1972-10-11 Monsanto Co A helically crimped bicomponent polyamidepolyurethane filament
JPS5285512A (en) * 1975-12-29 1977-07-15 Toray Ind Inc Polyurethane conjugate fiber
JPH0791693B2 (en) 1985-12-25 1995-10-04 鐘紡株式会社 Polycapramide-polyurethane elastic composite filament and method for producing the same
JPH0714369Y2 (en) * 1988-04-12 1995-04-05 鐘紡株式会社 Spinneret set for composite spinning
JPH0253925A (en) * 1988-08-12 1990-02-22 Toray Ind Inc Yarn for stocking and stocking product comprising the same yarn
JPH0280616A (en) 1988-09-14 1990-03-20 Toray Ind Inc Polyurethane-polycapramide based conjugate fiber
JP2580812B2 (en) * 1989-12-29 1997-02-12 東レ株式会社 Polyurethane / polyamide-based composite fiber and method for producing the same
JP2870909B2 (en) * 1989-12-29 1999-03-17 東レ株式会社 Method for producing polyurethane / polyamide composite fiber
JP3337783B2 (en) 1993-09-27 2002-10-21 高砂熱学工業株式会社 Ice heat storage system and its operation method
JP4354994B2 (en) * 2004-09-03 2009-10-28 帝人ファイバー株式会社 Composite fiber
EP2345754A4 (en) * 2008-09-30 2012-03-21 Kb Seiren Ltd Composite fiber for stockings
EP2347043B1 (en) * 2008-10-17 2018-11-21 Invista Technologies S.à.r.l. Bicomponent spandex
JP2012036541A (en) * 2010-08-11 2012-02-23 Seiren Co Ltd Stretchable woven fabric
JP2017123316A (en) 2016-01-08 2017-07-13 日本製紙株式会社 Method for producing transparent conductive film, and touch panel, display, solar cell, and illumination employing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206123B2 (en) 1992-07-07 2001-09-04 株式会社ソルテック Resist pattern
JP3206124B2 (en) 1992-07-15 2001-09-04 日本メクトロン株式会社 Method for producing phosphonate ester
JP5285512B2 (en) 2008-06-26 2013-09-11 川崎重工業株式会社 Vehicle engine control device

Also Published As

Publication number Publication date
EP3643817A1 (en) 2020-04-29
TWI761538B (en) 2022-04-21
WO2018235754A1 (en) 2018-12-27
CN110799681A (en) 2020-02-14
KR102542862B1 (en) 2023-06-14
TW201907061A (en) 2019-02-16
CN110799681B (en) 2022-03-15
JPWO2018235754A1 (en) 2020-04-16
EP3643817A4 (en) 2021-03-17
KR20200020716A (en) 2020-02-26

Similar Documents

Publication Publication Date Title
EP1595987B1 (en) Blended woven or knitted fabrics containing polyurethane elastic fibers and process for the production thereof
ES2590627T3 (en) Article comprising two component fuse Spandex
TWI631243B (en) Fusible bicomponent spandex
JP5168401B2 (en) Polyurethane elastic yarn and method for producing the same
US3418199A (en) Crimpable bicomponent nylon filament
AU2017201591B2 (en) High strength fabrics consisting of thin gauge constant compression elastic fibres
JP5467466B2 (en) Polyurethane elastic yarn and method for producing the same
JP6687035B2 (en) Polyamide multifilament and lace knitting and stockings using the same
JP7074062B2 (en) Polyurethane / nylon 6 eccentric core sheath composite fiber
US5164262A (en) Polyurethane polyamide self-crimping conjugate fiber
BR112012030940A2 (en) FUSED SPINNED FUSER, FABRIC, AND, PROCESS TO PRODUCE A FUSED FIBER
TWI537442B (en) Fusible elastic mutiple component fiber, fabric comprising the same and process for preparing the same
JP6090546B1 (en) Hygroscopic core-sheath composite yarn and method for producing the same
JP4974086B2 (en) Polyurethane elastic yarn and method for producing the same
JP2008184722A (en) Woven fabric made of polyurethane-urea elastic fibers
KR101103379B1 (en) Composite fibers of high elastic polyester with being improved dyeing and method of manufacturing the same
JP4867907B2 (en) Polyurethane yarn and method for producing the same
JPH0411021A (en) Conjugate fiber and stockings
KR101159522B1 (en) Polyurethane elastic fiber
JP2001146640A (en) Polyurethane yarn and method for producing the same
JP2009068147A (en) Covered elastic yarn
BR112015029817B1 (en) ARTICLE COMPRISING A SPANDEX TWO-COMPONENT WIRE AND PROCESS
JP2000178860A (en) Knit fabric
JPH0441701A (en) Stocking
JP2000178859A (en) Knit fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R151 Written notification of patent or utility model registration

Ref document number: 7074062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151