JP7070015B2 - Powder supply method - Google Patents

Powder supply method Download PDF

Info

Publication number
JP7070015B2
JP7070015B2 JP2018079803A JP2018079803A JP7070015B2 JP 7070015 B2 JP7070015 B2 JP 7070015B2 JP 2018079803 A JP2018079803 A JP 2018079803A JP 2018079803 A JP2018079803 A JP 2018079803A JP 7070015 B2 JP7070015 B2 JP 7070015B2
Authority
JP
Japan
Prior art keywords
powder
hopper
screw
rotation
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018079803A
Other languages
Japanese (ja)
Other versions
JP2019189363A (en
Inventor
広平 松延
丈典 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018079803A priority Critical patent/JP7070015B2/en
Publication of JP2019189363A publication Critical patent/JP2019189363A/en
Application granted granted Critical
Publication of JP7070015B2 publication Critical patent/JP7070015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)

Description

本発明は、ホッパに投入された粉体をホッパから供給する方法に関する。 The present invention relates to a method of supplying powder charged into a hopper from the hopper.

従来から、ホッパに粉体を投入し、ホッパの下部に設けられた開口から粉体を供給する粉体供給方法がある。このような粉体供給方法では、例えば、粉体の種類によっては、ホッパ内で粉体同士が付着してブリッジとなり、粉体が開口に落ちなくなる場合がある。ブリッジが発生すると、粉体の供給量のばらつきが大きくなることから、従来より、ブリッジを抑制する技術が提案されている。例えば、特許文献1には、ホッパ内に回転する攪拌部材を設け、攪拌部材によって粉体を攪拌してブリッジを抑制する粉体の供給技術が開示されている。 Conventionally, there is a powder supply method in which powder is charged into a hopper and the powder is supplied from an opening provided at the bottom of the hopper. In such a powder supply method, for example, depending on the type of powder, the powders may adhere to each other in the hopper to form a bridge, and the powder may not fall into the opening. When a bridge occurs, the amount of powder supplied varies widely. Therefore, a technique for suppressing the bridge has been conventionally proposed. For example, Patent Document 1 discloses a powder supply technique in which a rotating stirring member is provided in a hopper, and the powder is stirred by the stirring member to suppress a bridge.

特開2013-139333号公報Japanese Unexamined Patent Publication No. 2013-139333

しかしながら、ホッパ内に攪拌部材を設けると、粉体と攪拌部材とが接触することによる問題点があった。例えば、攪拌部材とホッパの内壁面との間で、粉体の圧密化が発生する可能性がある。圧密化が発生すると、ホッパから供給される粉体の重量がばらつき、計量精度が悪化する。また、粉体に直接接触する攪拌部材を設けた場合、攪拌部材に由来する異物が、粉体に混入する可能性がある。 However, if the stirring member is provided in the hopper, there is a problem that the powder and the stirring member come into contact with each other. For example, consolidation of powder may occur between the stirring member and the inner wall surface of the hopper. When consolidation occurs, the weight of the powder supplied from the hopper varies, and the weighing accuracy deteriorates. Further, when the stirring member that comes into direct contact with the powder is provided, foreign matter derived from the stirring member may be mixed in the powder.

本発明は、前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは、ホッパから粉体を供給する供給方法であって、粉体に接触する部材を設けることなくブリッジの発生を抑制する技術を提供することにある。 The present invention has been made to solve the problems of the above-mentioned conventional techniques. That is, the problem is to provide a supply method for supplying powder from a hopper, which is a technique for suppressing the generation of bridges without providing a member in contact with the powder.

この課題の解決を目的としてなされた本発明の一態様における粉体供給方法は、ホッパから粉体を供給する粉体供給方法であって、前記ホッパに前記粉体を投入し、前記ホッパの下部の開口から前記粉体を供給し、前記ホッパの内部に前記粉体がある状態で、前記開口の内部を通る回転軸を中心として前記ホッパを回転させ、前記ホッパを、一定の正回転速度で正回転期間にわたり正回転させるのと、一定の逆回転速度で逆回転期間にわたり逆回転させるのとを、交互に繰り返す、ものである。 The powder supply method according to one aspect of the present invention, which has been made for the purpose of solving this problem, is a powder supply method for supplying powder from a hopper, in which the powder is charged into the hopper and the lower part of the hopper is charged. The powder is supplied from the opening of the hopper, and the hopper is rotated around a rotation axis passing through the inside of the opening while the powder is inside the hopper, and the hopper is rotated at a constant forward rotation speed. The forward rotation over the forward rotation period and the reverse rotation at a constant reverse rotation speed over the reverse rotation period are alternately repeated.

上述の一態様における粉体供給方法によれば、ホッパの正回転と逆回転とを交互に繰り返すので、回転方向の反転時には、ホッパの内部の粉体に慣性力が働く。慣性力によって、粉体がホッパから離れて動くことで、ブリッジの発生が抑制される。ホッパの回転は、ホッパの外部から行うことができるため、ホッパの内部に粉体に接触する部材を設ける必要はない。 According to the powder supply method in one aspect described above, forward rotation and reverse rotation of the hopper are alternately repeated, so that an inertial force acts on the powder inside the hopper when the rotation direction is reversed. The inertial force causes the powder to move away from the hopper, which suppresses the formation of bridges. Since the hopper can be rotated from the outside of the hopper, it is not necessary to provide a member that comes into contact with the powder inside the hopper.

本発明によれば、ホッパから粉体を供給する供給方法であって、粉体に接触する部材を設けることなくブリッジの発生を抑制する技術が実現される。 According to the present invention, a technique for supplying powder from a hopper and suppressing the generation of bridges without providing a member in contact with the powder is realized.

本形態の粉体供給装置を示す概略構成図である。It is a schematic block diagram which shows the powder supply apparatus of this embodiment. 粉体供給装置の接続部を示す概略斜視図である。It is a schematic perspective view which shows the connection part of the powder supply device. 粉体供給装置の接続部を示す概略断面図である。It is a schematic sectional drawing which shows the connection part of the powder supply apparatus. 粉体の移動方向の例を示す説明図である。It is explanatory drawing which shows the example of the moving direction of a powder. 粉体に圧密化が発生した場合の例を示す説明図である。It is explanatory drawing which shows the example of the case where consolidation occurs in the powder. 粉体にブリッジが発生した場合の例を示す説明図である。It is explanatory drawing which shows the example of the case where the bridge occurs in the powder. 回転方向の反転タイミングの例を示す説明図である。It is explanatory drawing which shows the example of the reversal timing in a rotation direction. 実施例と比較例との実験結果を示す説明図である。It is explanatory drawing which shows the experimental result of an Example and a comparative example.

以下、本形態の粉体供給方法について、添付図面を参照しつつ詳細に説明する。本形態は、ホッパから粉体を供給する供給方法である。 Hereinafter, the powder supply method of this embodiment will be described in detail with reference to the attached drawings. This embodiment is a supply method for supplying powder from a hopper.

本形態で用いる粉体供給装置1は、その概略構成を図1に示すように、ホッパ部10と、スクリュー部20と、接続部30と、ホッパ駆動部40と、スクリュー駆動部50と、制御部60と、を備える。なお、本形態の粉体供給装置1では、ホッパ部10の上方には、例えば、図示しない蓋部材や投入装置などが接続され、ホッパ部10内へ継続的に粉体が投入される。 As shown in FIG. 1, the powder supply device 1 used in the present embodiment controls the hopper portion 10, the screw portion 20, the connection portion 30, the hopper drive unit 40, and the screw drive unit 50, as shown in FIG. A unit 60 is provided. In the powder supply device 1 of the present embodiment, for example, a lid member (not shown), a charging device, or the like is connected above the hopper portion 10, and powder is continuously charged into the hopper portion 10.

ホッパ部10は、図1に示すように、鉛直方向に配置された漏斗状の容器であり、上方ほど開口面積が大きい中空円錐台形状である。ホッパ部10は、接続部30を介して、スクリュー部20に連通している。そして、ホッパ部10は、スクリュー部20に対して、回転軸11を中心として回転可能な構成を有している。回転軸11は、ホッパ部10の中心軸である。ホッパ部10は、ホッパ駆動部40によって正逆いずれの方向へも回転駆動される。つまり、ホッパ駆動部40は、ホッパ部10を正方向へも逆方向へも回転させることができる。 As shown in FIG. 1, the hopper portion 10 is a funnel-shaped container arranged in the vertical direction, and has a hollow truncated cone shape with a larger opening area toward the upper side. The hopper portion 10 communicates with the screw portion 20 via the connecting portion 30. The hopper portion 10 has a configuration that allows the screw portion 20 to rotate about the rotation shaft 11. The rotation shaft 11 is the central shaft of the hopper portion 10. The hopper unit 10 is rotationally driven by the hopper drive unit 40 in either the forward or reverse direction. That is, the hopper drive unit 40 can rotate the hopper unit 10 in both the forward direction and the reverse direction.

スクリュー部20は、図1に示すように、水平方向に配置された円筒状の排出筒21と、排出筒21内に配置されたスクリュー22と、排出筒21とホッパ部10とを連通する連結管23と、を備える。スクリュー22は、スクリュー駆動部50によって一方向に回転駆動されることで、スクリュー羽根の間の粉体を一端側に押し出す。排出筒21の一端側には開口211が設けられており、スクリュー22によって押し出された粉体が、開口211から排出される。排出筒21内が粉体で適切に満たされていれば、スクリュー羽根の大きさやピッチとスクリューの回転速度とによって、スクリュー部20からの粉体の排出量を制御できる。 As shown in FIG. 1, the screw portion 20 communicates a cylindrical discharge cylinder 21 arranged in the horizontal direction, a screw 22 arranged in the discharge cylinder 21, and the discharge cylinder 21 and the hopper portion 10. A tube 23 and the like are provided. The screw 22 is rotationally driven in one direction by the screw drive unit 50 to push out the powder between the screw blades to one end side. An opening 211 is provided on one end side of the discharge cylinder 21, and the powder extruded by the screw 22 is discharged from the opening 211. If the inside of the discharge cylinder 21 is appropriately filled with powder, the amount of powder discharged from the screw portion 20 can be controlled by the size and pitch of the screw blades and the rotation speed of the screw.

接続部30は、図1に示すように、ホッパ部10の下部とスクリュー部20の連結管23とを互いに回転可能に接続する。ホッパ駆動部40は、スクリュー部20の排出筒21や連結管23を固定した状態で、ホッパ部10のみを回転させる。スクリュー駆動部50は、スクリュー部20のスクリュー22を所定の回転速度で回転させる。そして、制御部60は、ホッパ駆動部40とスクリュー駆動部50とを制御する。 As shown in FIG. 1, the connecting portion 30 rotatably connects the lower portion of the hopper portion 10 and the connecting pipe 23 of the screw portion 20 to each other. The hopper drive unit 40 rotates only the hopper unit 10 with the discharge cylinder 21 and the connecting pipe 23 of the screw unit 20 fixed. The screw drive unit 50 rotates the screw 22 of the screw unit 20 at a predetermined rotation speed. Then, the control unit 60 controls the hopper drive unit 40 and the screw drive unit 50.

接続部30は、図2と図3とに示すように、ホッパ部10の下部の開口12とスクリュー部20の連結管23とを接続する。図3は、図2の径方向の断面図である。図3に示すように、接続部30は、円環状のベアリング31と、固定ねじ32と、保持部33と、を備える。ベアリング31は、ボール311と、内輪312と、外輪313とを備え、ボール311によって内輪312と外輪313とを互いに回転可能に保持する。ベアリング31の内輪312は、固定ねじ32によって、ホッパ部10に固定されている。ベアリング31の外輪313は、保持部33を介して、スクリュー部20の連結管23に固定されている。 As shown in FIGS. 2 and 3, the connecting portion 30 connects the opening 12 at the lower part of the hopper portion 10 and the connecting pipe 23 of the screw portion 20. FIG. 3 is a cross-sectional view in the radial direction of FIG. As shown in FIG. 3, the connecting portion 30 includes an annular bearing 31, a fixing screw 32, and a holding portion 33. The bearing 31 includes a ball 311, an inner ring 312, and an outer ring 313, and the ball 311 holds the inner ring 312 and the outer ring 313 rotatably with each other. The inner ring 312 of the bearing 31 is fixed to the hopper portion 10 by the fixing screw 32. The outer ring 313 of the bearing 31 is fixed to the connecting pipe 23 of the screw portion 20 via the holding portion 33.

本形態では、図1に示した回転軸11は開口12の中心を通る。ホッパ部10の開口12は、連結管23と同径であり、連結管23の開口を形成する端面に対して摺動する。従って、開口12と連結管23とは、隙間や段差が無く接続し、ホッパ部10を回転させても常時連通している。なお、ホッパ駆動部40は、図2と図3とに示す範囲よりも上方の位置で、ホッパ部10を回転駆動する。 In this embodiment, the rotation shaft 11 shown in FIG. 1 passes through the center of the opening 12. The opening 12 of the hopper portion 10 has the same diameter as the connecting pipe 23, and slides on the end face forming the opening of the connecting pipe 23. Therefore, the opening 12 and the connecting pipe 23 are connected without any gap or step, and are always in communication with each other even if the hopper portion 10 is rotated. The hopper drive unit 40 rotationally drives the hopper unit 10 at a position above the range shown in FIGS. 2 and 3.

本形態の粉体供給装置1による供給対象の粉体は、例えば、リチウムイオン二次電池の電極製造に用いられる導電材であり、かさ密度0.1g/cm3以下の超軽量の粉体である。リチウムイオン二次電池の電極の製造時には、導電材として、例えば、アセチレンブラック粉末等の導電性の高い炭素材料の粉末を、電極活物質に加えることがある。安定した性能の電極を連続して製造するためには、安定した供給量で、導電材を供給し続けることが望ましい。 The powder to be supplied by the powder supply device 1 of the present embodiment is, for example, a conductive material used for manufacturing electrodes of a lithium ion secondary battery, and is an ultralight powder having a bulk density of 0.1 g / cm 3 or less. be. When manufacturing an electrode for a lithium ion secondary battery, a highly conductive carbon material powder such as acetylene black powder may be added to the electrode active material as a conductive material. In order to continuously manufacture electrodes with stable performance, it is desirable to continue to supply the conductive material with a stable supply amount.

なお、本明細書では、「かさ密度」は、ゆるめかさ密度を意味する。ゆるめかさ密度は、自由落下させた粉体を容器に静かに充填してすり切ることで所定の体積とし、得られた粉体の重量を計測することで求められる。アセチレンブラック粉末等のかさ密度が小さい粉体では、粉体同士が付着し易く、ブリッジが発生しやすい。 In addition, in this specification, "bulk density" means loose bulk density. The looseness density is determined by gently filling a container with the freely dropped powder and grinding it to obtain a predetermined volume, and measuring the weight of the obtained powder. In powders with a small bulk density such as acetylene black powder, the powders tend to adhere to each other and bridges are likely to occur.

本形態の粉体供給装置1は、例えば、図4に矢印で示すように、粉体Pを供給する。粉体Pは、上方からホッパ部10内に投入され、重力によってホッパ部10内を下方へ移動し、さらに接続部30を介してスクリュー部20に落下する。スクリュー部20は、スクリュー22の回転により、スクリュー羽根の間の所定の空間に含まれる粉体Pを開口211から供給する。粉体Pの圧密化やブリッジの発生がなく、スクリュー部20内が適切に粉体Pで満ちていれば、単位時間当たりの粉体Pの供給量は、スクリュー22の回転速度に応じた所定の重量となる。 The powder supply device 1 of the present embodiment supplies the powder P, for example, as shown by an arrow in FIG. The powder P is thrown into the hopper portion 10 from above, moves downward in the hopper portion 10 due to gravity, and further falls to the screw portion 20 via the connecting portion 30. The screw portion 20 supplies the powder P contained in the predetermined space between the screw blades from the opening 211 by the rotation of the screw 22. If the powder P is not compacted or bridges are not generated and the inside of the screw portion 20 is appropriately filled with the powder P, the supply amount of the powder P per unit time is predetermined according to the rotation speed of the screw 22. Will be the weight of.

一方、例えば、図5に示すように、ホッパ部10内で粉体Pの圧密化が生じると、粉体Pが部分的に塊状の粉体Qとなる場合がある。粉体Qは、圧密化によって粉体Pよりも圧縮された状態であり、粉体Pよりもかさ密度が大きくなっている。スクリュー部20内の粉体に塊状の粉体Qが混じっていると、単位時間当たりに供給される粉体Pの重量は、圧密化の無い場合より大きくなる可能性がある。 On the other hand, for example, as shown in FIG. 5, when the powder P is consolidated in the hopper portion 10, the powder P may partially become a lumpy powder Q. The powder Q is in a state of being compressed more than the powder P by consolidation, and has a higher bulk density than the powder P. When the powder in the screw portion 20 is mixed with the lumpy powder Q, the weight of the powder P supplied per unit time may be larger than that in the case without consolidation.

また、ブリッジが発生すると、例えば、図6に示すように、スクリュー部20内に粉体Pの少ない空洞箇所ができる場合がある。空洞箇所では、スクリュー22を回転させても粉体Pが供給されない。そのため、ブリッジが発生した状態で単位時間当たりに供給される粉体Pの重量は,ブリッジの無い場合よりも小さくなる可能性がある。 Further, when a bridge is generated, for example, as shown in FIG. 6, a hollow portion having a small amount of powder P may be formed in the screw portion 20. In the hollow portion, the powder P is not supplied even if the screw 22 is rotated. Therefore, the weight of the powder P supplied per unit time with the bridge generated may be smaller than that without the bridge.

本形態の粉体供給装置1は、ホッパ駆動部40によってホッパ部10を回転させ、その回転方向を定期的に反転させることで、正回転と逆回転とを交互に繰り返す。具体的には、本形態の制御部60は、例えば、図7に示すように、回転開始後、所定の回転速度で定回転期間tの正回転の後、回転方向を反転させ、反転期間rの後、定回転期間tの逆回転を行う。反転期間rは、回転方向の反転に要する期間であり、ホッパ部10やホッパ駆動部40の構成、定回転期間tにおける回転速度等に応じて決定される。本形態では、正回転と逆回転とで、回転速度や定回転期間tは等しく、各反転期間rは等しい。 In the powder supply device 1 of the present embodiment, the hopper unit 10 is rotated by the hopper drive unit 40, and the rotation direction thereof is periodically reversed, so that forward rotation and reverse rotation are alternately repeated. Specifically, as shown in FIG. 7, for example, the control unit 60 of the present embodiment reverses the rotation direction after the normal rotation of the constant rotation period t at a predetermined rotation speed after the start of rotation, and the inversion period r. After that, the reverse rotation of the constant rotation period t is performed. The inversion period r is a period required for inversion in the rotation direction, and is determined according to the configuration of the hopper unit 10 and the hopper drive unit 40, the rotation speed in the constant rotation period t, and the like. In this embodiment, the rotation speed and the constant rotation period t are the same for the forward rotation and the reverse rotation, and each inversion period r is the same.

そして、粉体供給装置1の制御部60は、定回転期間tが送出期間Tより短い時間となるように、ホッパ駆動部40を制御する。送出期間Tは、スクリュー部20の連結管23の管幅分の粉体がスクリュー22によって送り出されるまでの期間である。連結管23の管幅とは、連結管23と排出筒21の連通箇所におけるスクリュー22の送出方向の最大開口幅であり、本形態では連結管23の開口径であるとともにホッパ部10の開口12の開口径である。 Then, the control unit 60 of the powder supply device 1 controls the hopper drive unit 40 so that the constant rotation period t is shorter than the delivery period T. The delivery period T is a period until the powder corresponding to the width of the connecting pipe 23 of the screw portion 20 is delivered by the screw 22. The pipe width of the connecting pipe 23 is the maximum opening width in the delivery direction of the screw 22 at the communication point between the connecting pipe 23 and the discharge pipe 21, which is the opening diameter of the connecting pipe 23 and the opening 12 of the hopper portion 10 in this embodiment. The opening diameter of.

送出期間Tは、以下のように求められる。管幅分の粉体の体積は、スクリュー22の1回転で送られる粉体の体積をV(m3)とし、管幅をw(m)、スクリュー22の1ピッチ分の長さをL(m)とすると、(V×w/L)(m3)である。また、1秒間に送出される粉体の体積は、スクリュー22の回転速度をn(rpm)とすると、(V×n/60)(m3)である。従って、送出期間T(s)は、以下の式1で表される。
T = (V×w/L)/(V×n/60)
T = (60×w)/(n×L) … 式1
そして、制御部60は、t<Tとなるように、定回転期間t(s)を決定する。
The delivery period T is calculated as follows. For the volume of powder corresponding to the pipe width, the volume of powder sent by one rotation of the screw 22 is V (m 3 ), the pipe width is w (m), and the length of one pitch of the screw 22 is L (. If m), it is (V × w / L) (m 3 ). Further, the volume of the powder delivered per second is (V × n / 60) (m 3 ), where n (rpm) is the rotation speed of the screw 22. Therefore, the transmission period T (s) is expressed by the following equation 1.
T = (V × w / L) / (V × n / 60)
T = (60 × w) / (n × L)… Equation 1
Then, the control unit 60 determines the constant rotation period t (s) so that t <T.

回転方向の反転により、ホッパ部10内の粉体に慣性力が働き、ブリッジの発生が抑制される。定回転期間t中にブリッジが発生していたとしても、反転期間rにはブリッジが破壊され、管幅分の粉体が、スクリュー部20に落下する。t<Tとすることで、前回の反転によってスクリュー部20に供給された粉体が管幅を通過するより前に、次回の反転が行われ、管幅分の粉体が再びスクリュー部20に供給される。つまり、ホッパ部10内でブリッジが発生したとしても、ブリッジによる空洞部分が管幅内にある間に次回の反転による粉体が供給されるので、空洞は粉体で満たされる。従って、スクリュー部20からの供給量の変動は抑制される。 Due to the reversal of the rotation direction, an inertial force acts on the powder in the hopper portion 10 to suppress the generation of bridges. Even if the bridge is generated during the constant rotation period t, the bridge is broken during the inversion period r, and the powder corresponding to the pipe width falls on the screw portion 20. By setting t <T, the next inversion is performed before the powder supplied to the screw portion 20 by the previous inversion passes through the pipe width, and the powder corresponding to the pipe width is again sent to the screw portion 20. Will be supplied. That is, even if a bridge is generated in the hopper portion 10, the powder due to the next inversion is supplied while the cavity portion by the bridge is within the pipe width, so that the cavity is filled with the powder. Therefore, the fluctuation of the supply amount from the screw portion 20 is suppressed.

続いて、本形態の粉体供給装置1及び2種類の比較例の装置にて、かさ密度が約0.05g/cm3の粉体を供給させ、スクリュー部20からの排出量を計量した実験の結果について説明する。この実験では、本形態の粉体供給装置1による実施例1と、ホッパ内にスクレーパを備える比較例1と、ホッパの外部にノッカを備える比較例2と、のそれぞれにて、同種のスクリュー部20を用いて同種の粉体を排出させた。 Subsequently, in the powder supply device 1 of the present embodiment and the two types of devices of the comparative example, a powder having a bulk density of about 0.05 g / cm 3 was supplied and the amount discharged from the screw portion 20 was measured. The result of is explained. In this experiment, the same type of screw portion is used in Example 1 using the powder supply device 1 of the present embodiment, Comparative Example 1 having a scraper inside the hopper, and Comparative Example 2 having a knocker outside the hopper. 20 was used to discharge the same kind of powder.

実施例1では、定回転期間tを送出期間Tより小さい期間として、図7に示したように、回転方向を定期的に反転させた。つまり、実施例1の定回転期間tは、t<Tを満たす。比較例1では、ホッパの内側で、内壁面に沿って回転し粉体を攪拌するスクレーパを設け、スクレーパを定速で一方向に回転させた。比較例2では、ホッパの外壁面を叩いてホッパに振動を与えるノッカを設け、実施例1の定回転期間tと同じ間隔を空けて、定期的にノッカを駆動した。 In Example 1, the constant rotation period t was set to be smaller than the transmission period T, and the rotation direction was periodically reversed as shown in FIG. That is, the constant rotation period t of the first embodiment satisfies t <T. In Comparative Example 1, a scraper that rotates along the inner wall surface to stir the powder is provided inside the hopper, and the scraper is rotated in one direction at a constant speed. In Comparative Example 2, a knocker that hits the outer wall surface of the hopper to give vibration to the hopper was provided, and the knocker was periodically driven at the same interval as the constant rotation period t of the first embodiment.

本実験では、スクリュー22の回転速度を変えて、それぞれ複数回の供給実験を行い、30秒間に排出された粉体の重量(30秒排出量)を計測した。実験の結果を図8に示す。図8では、スクリュー22の回転速度(rpm)を横軸に、30秒排出量(g)を縦軸とし、実施例1による結果を「△」、比較例1による結果を「×」、比較例2による結果を「◇」でそれぞれ示している。また、30秒排出量の理論値をスクリュー部20等の構成から算出し、図8中に、理論値±1%の直線を示している。理論値±1%は、電極の製造時に許容される導電材の供給量の範囲である。 In this experiment, the rotation speed of the screw 22 was changed, each supply experiment was performed a plurality of times, and the weight of the powder discharged in 30 seconds (30-second discharge amount) was measured. The results of the experiment are shown in FIG. In FIG. 8, the rotation speed (rpm) of the screw 22 is on the horizontal axis, and the 30-second discharge amount (g) is on the vertical axis. The results of Example 2 are indicated by "◇". Further, the theoretical value of the 30-second discharge amount is calculated from the configuration of the screw portion 20 and the like, and a straight line of the theoretical value ± 1% is shown in FIG. The theoretical value ± 1% is the range of the amount of the conductive material supplied at the time of manufacturing the electrode.

図8に示すように、回転速度を上昇させても、理論値±1%の範囲内の排出量となったのは、実施例1のみであった。本形態の粉体供給装置1によれば、スクリュー22の回転速度を速くしても、適切な供給量が確保されることが確認できた。 As shown in FIG. 8, even if the rotation speed was increased, the emission amount was within the range of the theoretical value ± 1% only in Example 1. According to the powder supply device 1 of the present embodiment, it was confirmed that an appropriate supply amount can be secured even if the rotation speed of the screw 22 is increased.

比較例1では、図8に示すように、回転速度の上昇につれて理論値よりも排出量が大きくなり、排出量のばらつきも大きかった。比較例1では、スクレーパとホッパ内壁との間で、粉体が圧密化されたと推定される。さらに、比較例1の排出物からは、スクレーパに由来すると推測される異物が見つかった。スクレーパは、粉体と接触することから、ブリッジを機械的に破壊できるものの、スクレーパの削れなどが発生する可能性がある。つまり、スクレーパによる攪拌では、圧密化による計量精度の悪化、および粉体への異物の混入の可能性がある。 In Comparative Example 1, as shown in FIG. 8, the emission amount became larger than the theoretical value as the rotation speed increased, and the variation in the emission amount was also large. In Comparative Example 1, it is presumed that the powder was consolidated between the scraper and the inner wall of the hopper. Further, in the discharge of Comparative Example 1, a foreign substance presumed to be derived from the scraper was found. Since the scraper comes into contact with the powder, the bridge can be mechanically broken, but the scraper may be scraped. That is, in stirring with a scraper, there is a possibility that the measurement accuracy may be deteriorated due to consolidation and foreign matter may be mixed into the powder.

比較例2では、図8に示すように、回転速度の上昇につれて理論値よりも排出量が小さく、特に、回転速度400rpm以上では理論値からの乖離が大きかった。これは、粉体のブリッジによるものと推定される。超軽量の粉体では、ホッパの振動が粉体に伝わりにくく、ノッカによる外部からの打撃ではブリッジの発生を抑制できない可能性が高い。 In Comparative Example 2, as shown in FIG. 8, the emission amount was smaller than the theoretical value as the rotation speed increased, and in particular, the deviation from the theoretical value was large at the rotation speed of 400 rpm or more. This is presumed to be due to the powder bridge. With ultra-lightweight powder, the vibration of the hopper is not easily transmitted to the powder, and there is a high possibility that the generation of bridges cannot be suppressed by external impact from the knocker.

以上詳細に説明したように、本形態の粉体供給方法によれば、ホッパ部10を回転させ、正回転と逆回転とを交互に繰り返すので、回転方向の反転によってホッパ部10内の粉体に慣性力が働き、ブリッジの発生を抑制できる。さらに、ホッパ部10内には、攪拌部材等の粉体と接触する部材は設けられていないので、異物が混入する可能性は小さい。 As described in detail above, according to the powder supply method of the present embodiment, the hopper portion 10 is rotated and forward rotation and reverse rotation are alternately repeated. Therefore, the powder in the hopper portion 10 is rotated by reversing the rotation direction. Inertial force acts on the surface, and the generation of bridges can be suppressed. Further, since the hopper portion 10 is not provided with a member such as a stirring member that comes into contact with the powder, the possibility of foreign matter being mixed is small.

なお、本形態は単なる例示にすぎず、本発明を何ら限定するものではない。したがって本発明は当然に、その要旨を逸脱しない範囲内で種々の改良、変形が可能である。例えば、本発明の供給方法にて供給する粉体は導電材に限らない。かさ密度が0.1g/cm3以下の粉体を供給する場合に特に有用である。 It should be noted that this embodiment is merely an example and does not limit the present invention in any way. Therefore, as a matter of course, the present invention can be improved and modified in various ways within the range not deviating from the gist thereof. For example, the powder supplied by the supply method of the present invention is not limited to the conductive material. It is particularly useful when supplying a powder having a bulk density of 0.1 g / cm 3 or less.

また、本形態では、一定の周期で反転を繰り返すとしたが、次回の反転までの期間が、いずれも送出期間Tより短ければよく、一定間隔でなくても良い。また、定回転期間tや回転速度は、正回転と逆回転とで異なっていても良いし、回転方向に関わらず、一定でなくても良い。その場合でも、直前の反転期間rから送出期間Tより短いタイミングで次回の反転を行うとよい。また、ホッパ部10を常時回転させ続ける必要はなく、停止期間があっても良い。 Further, in the present embodiment, the inversion is repeated at a fixed cycle, but the period until the next inversion may be shorter than the transmission period T, and may not be at regular intervals. Further, the constant rotation period t and the rotation speed may be different between the forward rotation and the reverse rotation, and may not be constant regardless of the rotation direction. Even in that case, it is preferable to perform the next inversion at a timing shorter than the transmission period T from the immediately preceding inversion period r. Further, it is not necessary to keep the hopper portion 10 constantly rotating, and there may be a stop period.

また、ホッパ部10の回転を開始するタイミングは、ホッパ部10に粉体を投入してからでも良いし、粉体の投入を開始する前でもよい。少なくともホッパ部10に粉体があり、かつ、スクリュー部20を動作させて粉体を供給する期間には、ホッパ部10の正回転と逆回転とを繰り返すことが望ましい。 Further, the timing at which the rotation of the hopper portion 10 is started may be after the powder is charged into the hopper portion 10 or before the powder is charged. It is desirable to repeat the forward rotation and the reverse rotation of the hopper portion 10 at least during the period when the hopper portion 10 has the powder and the screw portion 20 is operated to supply the powder.

また、ホッパ部10の形状は、円錐に限らず、楕円錐でも良いし、角錐でも良い。また、ホッパ部10は、漏斗状に限らず、例えば、円筒状であっても良い。また、スクリュー22は、1軸式でも2軸式でも良い。 Further, the shape of the hopper portion 10 is not limited to a cone, and may be an elliptical cone or a pyramid. Further, the hopper portion 10 is not limited to the funnel shape, and may be, for example, a cylindrical shape. Further, the screw 22 may be a uniaxial type or a biaxial type.

また、本形態では、直立位置に配置されたホッパ部10を図示したが、例えば、回転軸に対して傾いて配置されたホッパでも良い。また、ホッパの回転軸は、ホッパ部10の中心軸からずれていても良い。ただし、回転軸は、開口12の内部を通る位置であることが望ましい。 Further, in the present embodiment, the hopper portion 10 arranged in an upright position is shown, but for example, a hopper arranged at an angle with respect to the rotation axis may be used. Further, the rotation axis of the hopper may be deviated from the central axis of the hopper portion 10. However, it is desirable that the rotation axis is at a position that passes through the inside of the opening 12.

1 粉体供給装置
10 ホッパ部
11 回転軸
12 開口
P 粉体
1 Powder supply device 10 Hopper part 11 Rotating shaft 12 Opening P Powder

Claims (1)

ホッパから粉体を供給する粉体供給方法であって、
前記ホッパに前記粉体を投入し、
前記ホッパの下部の開口から前記粉体を供給し、
前記ホッパの内部に前記粉体がある状態で、前記開口の内部を通る回転軸を中心として前記ホッパを回転させ、
前記ホッパを、一定の正回転速度で正回転期間にわたり正回転させるのと、一定の逆回転速度で逆回転期間にわたり逆回転させるのとを、交互に繰り返す、
ことを特徴とする粉体供給方法。
It is a powder supply method that supplies powder from a hopper.
The powder is put into the hopper, and the powder is put into the hopper.
The powder is supplied from the opening at the bottom of the hopper,
With the powder inside the hopper, the hopper is rotated around a rotation axis passing through the inside of the opening.
The hopper is alternately rotated in the forward direction at a constant forward rotation speed for a forward rotation period and in the reverse rotation at a constant reverse rotation speed for a reverse rotation period .
A powder supply method characterized by this.
JP2018079803A 2018-04-18 2018-04-18 Powder supply method Active JP7070015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018079803A JP7070015B2 (en) 2018-04-18 2018-04-18 Powder supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018079803A JP7070015B2 (en) 2018-04-18 2018-04-18 Powder supply method

Publications (2)

Publication Number Publication Date
JP2019189363A JP2019189363A (en) 2019-10-31
JP7070015B2 true JP7070015B2 (en) 2022-05-18

Family

ID=68391567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079803A Active JP7070015B2 (en) 2018-04-18 2018-04-18 Powder supply method

Country Status (1)

Country Link
JP (1) JP7070015B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054683A (en) 2001-08-09 2003-02-26 Taiheiyo Cement Corp Powder storing hopper
JP2018503564A (en) 2014-11-25 2018-02-08 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Powder transfer device with improved flow

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325072U (en) * 1976-08-09 1978-03-03
JPS59221279A (en) * 1983-05-16 1984-12-12 タ−ボ工業株式会社 Hopper for powdered raw material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054683A (en) 2001-08-09 2003-02-26 Taiheiyo Cement Corp Powder storing hopper
JP2018503564A (en) 2014-11-25 2018-02-08 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Powder transfer device with improved flow

Also Published As

Publication number Publication date
JP2019189363A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US5333762A (en) Screw feeder with progressively decreasing screw confinement
JP2013139333A (en) Powder/granular material feeding device
JP6328240B2 (en) Electrostatic screen printer
JP7070015B2 (en) Powder supply method
US3791558A (en) Powder dispensing apparatus having a predictable, controlled flow rate
US2988249A (en) Powder feeder
KR101601689B1 (en) Feeding apparatus of granule or micropowder
JP6718447B2 (en) Powder transfer device with improved flow
CN116749332A (en) Concrete processing equipment and processing method convenient for siliceous stone powder uniform feeding
KR20200085664A (en) Loading of solid particles into a vessel
JP2002308445A (en) Quantitative powder and granular material supply device
UA75910C2 (en) Dosing device
CN207798225U (en) A kind of roller weighed for sticky powder body material
JP2004276956A (en) Apparatus for filling particulate
JP5964166B2 (en) Powder bridge prevention device and powder supply device
JP3124230U (en) Powder filling equipment
KR20200085665A (en) Loading of solid particles into a vessel
CN214139850U (en) Precoated sand storage bin
SU852354A1 (en) Apparatus for treating dispersed materials
RU138516U1 (en) RESONANT WAVE DOSER OF BULK MATTERS
CN109261000A (en) A kind of reciprocating building materials powder mixer
CN217663630U (en) Baking soda powder bin convenient to sieve material
JP6507664B2 (en) Filling apparatus and method of manufacturing container filled with powder
RU2316735C2 (en) Method and device for precision batching of high-energy agent
RU2163357C1 (en) Automatically controlled weighing sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R151 Written notification of patent or utility model registration

Ref document number: 7070015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151