JP7069800B2 - Hard particle powder for sintered body - Google Patents

Hard particle powder for sintered body Download PDF

Info

Publication number
JP7069800B2
JP7069800B2 JP2018026177A JP2018026177A JP7069800B2 JP 7069800 B2 JP7069800 B2 JP 7069800B2 JP 2018026177 A JP2018026177 A JP 2018026177A JP 2018026177 A JP2018026177 A JP 2018026177A JP 7069800 B2 JP7069800 B2 JP 7069800B2
Authority
JP
Japan
Prior art keywords
mass
powder
sintered body
wear
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018026177A
Other languages
Japanese (ja)
Other versions
JP2019143176A (en
Inventor
石根 長瀬
知己 山本
隆久 遠藤
俊介 河野
広基 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2018026177A priority Critical patent/JP7069800B2/en
Priority to US16/271,620 priority patent/US20190256955A1/en
Priority to CN201910112970.3A priority patent/CN110153405B/en
Priority to KR1020190017923A priority patent/KR20190099141A/en
Publication of JP2019143176A publication Critical patent/JP2019143176A/en
Application granted granted Critical
Publication of JP7069800B2 publication Critical patent/JP7069800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/052Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/18Testing or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/02Lubrication

Description

本発明は、焼結体用硬質粒子粉末に関し、さらに詳しくは、REMが添加された硬質粒子粉末であって、粉末特性や焼結特性に優れており、かつ、これを用いて焼結体(例えば、自動車エンジンバルブシート)を作製した時に高い耐摩耗性が得られる焼結体用硬質粒子粉末に関する。 The present invention relates to a hard particle powder for a sintered body, and more particularly, it is a hard particle powder to which REM is added, which is excellent in powder characteristics and sintering characteristics, and a sintered body (sintered body) using the same. For example, the present invention relates to a hard particle powder for a sintered body, which can obtain high wear resistance when a car engine valve seat) is manufactured.

トリバロイ(登録商標)T-400は、Mo珪化物を主とした硬質相を形成するCo基の耐摩耗性の高い硬質粒子として周知である。トリバロイ(登録商標)T-400相当材であるCo-2.5Si-28Mo-8.5Cr系合金粉末は、自動車エンジンバルブシート(以下、単に「バルブシート」という)の耐摩耗性の向上に大きく寄与する硬質粒子として、高負荷がかかる自動車エンジンで多用されている。そのため、多くの先行技術が提案されている。 Trivalois (registered trademark) T-400 is well known as hard particles having a high wear resistance of Co groups forming a hard phase mainly composed of Mo silice. Co-2.5Si-28Mo-8.5Cr-based alloy powder, which is equivalent to Trivalois (registered trademark) T-400, greatly improves the wear resistance of automobile engine valve seats (hereinafter simply referred to as "valve seats"). As a contributing hard particle, it is often used in automobile engines that are subject to high loads. Therefore, many prior arts have been proposed.

例えば、特許文献1には、耐摩耗性や強度等を損なうことなく、硬質層をより多量に基地中に分散させることを目的として、
(a)基地形成粉末(鉄、SUS316、SUS304、SUS310、SUS430)と、硬質層形成粉末(Co-28Mo-2.5Si-8Cr)を含む原料粉末を圧縮成形し、焼結する耐摩耗性焼結部材の製造方法において、
(b)基地形成粉末の90質量%以上が最大粒径46μmの微粉末であり、硬質層形成粉末の原料粉末に占める割合が40~70質量%である
耐摩耗性焼結部材の製造方法が開示されている。
For example, Patent Document 1 aims to disperse a larger amount of a hard layer in a substrate without impairing wear resistance, strength, and the like.
(A) Abrasion-resistant firing in which a raw material powder containing a matrix-forming powder (iron, SUS316, SUS304, SUS310, SUS430) and a hard layer-forming powder (Co-28Mo-2.5Si-8Cr) is compression-molded and sintered. In the method of manufacturing the connecting member
(B) A method for manufacturing a wear-resistant sintered member in which 90% by mass or more of the matrix-forming powder is a fine powder having a maximum particle size of 46 μm and the ratio of the hard layer-forming powder to the raw material powder is 40 to 70% by mass. It has been disclosed.

また、特許文献2には、耐摩耗性に優れた鉄基焼結合金材を得ることを目的として、
(a)純鉄粉、合金鉄粉、炭素粉末、微細炭化物析出鋼粉末、及び硬質粒子粉末(Cr-Mo-Co系、Ni-Cr-Mo-Co系等)からなる鉄基合金粉100重量部に対して、0.2~3.0重量部の固体潤滑材粉末(硫化物、フッ化物)及び/又は0.2~5.0重量部の酸化物安定化粉末(希土類元素の酸化物であるY23、CeO2、CaTiO3)を添加した鉄基合金粉を圧縮成形し、
(b)次いで焼結して焼結体を得る
バルブシート用耐摩耗性鉄基合金材の製造方法が開示されている。
Further, in Patent Document 2, for the purpose of obtaining an iron-based sintered alloy material having excellent wear resistance,
(A) 100 weight of iron-based alloy powder composed of pure iron powder, alloy iron powder, carbon powder, fine carbide-precipitated steel powder, and hard particle powder (Cr-Mo-Co-based, Ni-Cr-Mo-Co-based, etc.) 0.2 to 3.0 parts by weight of solid lubricant powder (sulfide, fluoride) and / or 0.2 to 5.0 parts by weight of oxide stabilized powder (oxide of rare earth element). The iron-based alloy powder to which Y 2 O 3 , CeO 2 , CaTIO 3 ) was added was compression-molded.
(B) Next, a method for manufacturing a wear-resistant iron-based alloy material for a valve seat to obtain a sintered body by sintering is disclosed.

しかしながら、エンジン要求特性の高負荷化に伴い、バルブシート材にはより高い耐摩耗性が要求されるようになっている。そのため、特許文献1、2等に開示された硬質粒子では、バルブシート材に要求される耐摩耗性が十分でないという問題があった。さらに、バルブシート材に要求される耐摩耗性を向上させようとすると、粉末特性(成形性)や焼結特性が損なわれることが考えられる。そのため、粉末特性や焼結特性を損なうことなく、バルブシート材に要求される耐摩耗性を向上させる技術が求められている。 However, as the load of engine required characteristics increases, valve seat materials are required to have higher wear resistance. Therefore, the hard particles disclosed in Patent Documents 1 and 2 have a problem that the wear resistance required for the valve seat material is not sufficient. Further, if an attempt is made to improve the wear resistance required for the valve seat material, it is considered that the powder characteristics (moldability) and the sintering characteristics are impaired. Therefore, there is a demand for a technique for improving the wear resistance required for a valve seat material without impairing the powder characteristics and the sintering characteristics.

さらに、近年、CO2削減、石油資源枯渇などの地球規模の社会問題に対応するため、直噴エンジン、予混合圧縮着火(HCCI)エンジンなど省燃料のリーンバーン燃焼技術や、化石燃料を使わない植物原料のバイオメタノール燃料エンジンが推進されている。
リーンバーン燃焼エンジンやアルコール燃料エンジンでは、燃焼時の煤が従来エンジンに比較して少ないため、エンジン始動後の低温状態では煤によりバルブシートが保護されなくなり、摩耗が増加することが懸念される。
Furthermore, in recent years, in order to respond to global social problems such as CO 2 reduction and depletion of petroleum resources, fuel-saving lean-burn combustion technologies such as direct injection engines and premixed compression ignition (HCCI) engines, and fossil fuels are not used. A plant-based biomethanol fuel engine is being promoted.
In a lean-burn combustion engine or an alcohol fuel engine, the amount of soot during combustion is smaller than that of a conventional engine, so that the valve seat is not protected by the soot in a low temperature state after the engine is started, and there is a concern that wear will increase.

特開2007-107034号公報Japanese Unexamined Patent Publication No. 2007-107034 特開2003-193173号公報Japanese Patent Application Laid-Open No. 2003-193173

本発明が解決しようとする課題は、焼結体に添加される硬質粒子であって、粉末特性や焼結特性を損なうことなく、焼結体の耐摩耗性を向上させることが可能な焼結体用硬質粒子粉末を提供することにある。 The problem to be solved by the present invention is the hard particles added to the sintered body, which can improve the wear resistance of the sintered body without impairing the powder characteristics and the sintered characteristics. The purpose is to provide a hard particle powder for a body.

上記課題を解決するために本発明に係る焼結体用硬質粒子粉末は、
0.01≦C≦3.5mass%、
0.5≦Si≦4.0mass%、
4.0≦Mn≦10.0mass%、
27.0≦Ni≦35.0mass%、
0.1≦Cr≦40.0mass%、
5.0≦Mo≦50.0mass%、
0.1≦Fe≦30.0mass%、及び
0.01≦REM≦0.5mass%
を含有し、残部がCo及び不可避的不純物からなることを要旨とする。
In order to solve the above problems, the hard particle powder for a sintered body according to the present invention is
0.01 ≤ C ≤ 3.5 mass%,
0.5 ≤ Si ≤ 4.0 mass%,
4.0 ≤ Mn ≤ 10.0 mass%,
27.0 ≤ Ni ≤ 35.0 mass%,
0.1 ≤ Cr ≤ 40.0 mass%,
5.0 ≤ Mo ≤ 50.0 mass%,
0.1 ≤ Fe ≤ 30.0 mass%, and 0.01 ≤ REM ≤ 0.5 mass%
The gist is that the balance is composed of Co and unavoidable impurities.

REMを含むCo系の硬質粒子において、成分を最適化すると、粉末特性や焼結特性を損なうことなく、硬質粒子を含む焼結体の耐摩耗性を向上させることができる。これは、硬質粒子に適量のREMを添加することによって、600℃程度の低温域において焼結体表面に酸化被膜が生成し、この酸化被膜が潤滑作用を示すためと考えられる。 By optimizing the components of Co-based hard particles containing REM, the wear resistance of the sintered body containing the hard particles can be improved without impairing the powder characteristics and the sintering characteristics. It is considered that this is because an oxide film is formed on the surface of the sintered body in a low temperature range of about 600 ° C. by adding an appropriate amount of REM to the hard particles, and this oxide film exhibits a lubricating action.

バルブシート単体摩耗試験機の概要を示す断面図である。It is sectional drawing which shows the outline of the valve seat single-unit wear tester. 摩耗試験片の摩耗量の測定箇所を説明するための図である。It is a figure for demonstrating the measurement point of the wear amount of the wear test piece. 参考例2及び比較例13で得られた硬質粒子粉末の重量増加と温度との関係を示す図である。It is a figure which shows the relationship between the weight increase and the temperature of the hard particle powder obtained in Reference Example 2 and Comparative Example 13.

以下に、本発明の一実施の形態について詳細に説明する。
[1. 焼結体用硬質粒子粉末]
本発明に係る焼結体硬質粒子粉末は、以下のような元素を含み、残部がCo及び不可避的不純物からなる。添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Hard particle powder for sintered body]
The sintered hard particle powder according to the present invention contains the following elements, and the balance consists of Co and unavoidable impurities. The types of additive elements, their component ranges, and the reasons for their limitation are as follows.

(1) 0.01≦C≦3.5mass%:
C含有量が過剰になると、炭化物の生成により靱性が低下する。従って、C含有量は、3.5mass%以下である必要がある。C含有量は、好ましくは、2.0mass%以下である。
一方、必要以上にC含有量を低減しても、効果に差がなく、実益がない。従って、C含有量は、0.01mass%以上である必要がある。C含有量は、好ましくは、0.5mass%以上である。
(1) 0.01 ≤ C ≤ 3.5 mass%:
When the C content becomes excessive, the toughness decreases due to the formation of carbides. Therefore, the C content needs to be 3.5 mass% or less. The C content is preferably 2.0 mass% or less.
On the other hand, even if the C content is reduced more than necessary, there is no difference in the effect and there is no actual benefit. Therefore, the C content needs to be 0.01 mass% or more. The C content is preferably 0.5 mass% or more.

(2) 0.5≦Si≦4.0mass%:
Siは、ケイ化物の生成による硬さ向上を目的として含有させる成分元素である。Si含有量が少なすぎると、硬さが低くなりすぎ、硬質粒子として機能しない。従って、Si含有量は、0.5mass%以上である必要がある。Si含有量は、好ましくは、0.8mass%以上である。
一方、Si含有量が過剰になると、硬さが高くなりすぎる。その結果、硬質粒子を含む焼結体から硬質粒子が割れて脱落し、焼結体の摩耗量がかえって大きくなる。従って、Si含有量は、4.0mass%以下である必要がある。Si含有量は、好ましくは、3.0mass%以下である。
(2) 0.5 ≤ Si ≤ 4.0 mass%:
Si is a component element contained for the purpose of improving hardness by forming silicide. If the Si content is too low, the hardness will be too low and it will not function as hard particles. Therefore, the Si content needs to be 0.5 mass% or more. The Si content is preferably 0.8 mass% or more.
On the other hand, if the Si content is excessive, the hardness becomes too high. As a result, the hard particles are cracked and fall off from the sintered body containing the hard particles, and the amount of wear of the sintered body is rather large. Therefore, the Si content needs to be 4.0 mass% or less. The Si content is preferably 3.0 mass% or less.

(3) 0.1≦Mn≦10.0mass%:
Mn含有量が少なすぎると、粉末の表面に酸化皮膜が生成しにくくなり、潤滑性が低下する。その結果、耐摩耗性が劣化する。従って、Mn含有量は、0.1mass%以上である必要がある。Mn含有量は、好ましくは、0.2mass%以上、さらに好ましくは、4.0mass%以上である。
一方、Mn含有量が過剰になると、粉末酸化量の増加により焼結特性が劣化する。従って、Mn含有量は、10.0mass%以下である必要がある。Mn含有量は、好ましくは、7.0mass%以下である。
(3) 0.1 ≤ Mn ≤ 10.0 mass%:
If the Mn content is too small, an oxide film is less likely to be formed on the surface of the powder, and the lubricity is lowered. As a result, wear resistance deteriorates. Therefore, the Mn content needs to be 0.1 mass% or more. The Mn content is preferably 0.2 mass% or more, more preferably 4.0 mass% or more.
On the other hand, when the Mn content becomes excessive, the sintering characteristics deteriorate due to the increase in the amount of powder oxidation. Therefore, the Mn content needs to be 10.0 mass% or less. The Mn content is preferably 7.0 mass% or less.

(4) 0.1≦Ni≦35.0mass%:
Ni含有量が少なすぎると、耐熱性の低下により耐摩耗性が劣化する。従って、Ni含有量は、0.1mass%以上である必要がある。Ni含有量は、好ましくは、0.3mass%以上、さらに好ましくは、9.0mass%以上である。
一方、Ni含有量が過剰になると、耐熱性の低下により耐摩耗性が劣化する。従って、Ni含有量は、35.0mass%以下である必要がある。Ni含有量は、好ましくは、30.0mass%以下である。
(4) 0.1 ≤ Ni ≤ 35.0 mass%:
If the Ni content is too low, the heat resistance deteriorates and the wear resistance deteriorates. Therefore, the Ni content needs to be 0.1 mass% or more. The Ni content is preferably 0.3 mass% or more, more preferably 9.0 mass% or more.
On the other hand, when the Ni content becomes excessive, the wear resistance deteriorates due to the decrease in heat resistance. Therefore, the Ni content needs to be 35.0 mass% or less. The Ni content is preferably 30.0 mass% or less.

(5) 0.1≦Cr≦40.0mass%:
Crは、耐酸化性の保持を目的として含有させる元素である。Cr含有量が少なすぎると、耐酸化性の低下により耐摩耗性が劣化する。従って、Cr含有量は、0.1mass%以上である必要がある。Cr含有量は、好ましくは、3.0mass%以上である。
一方、Cr含有量が過剰になると、耐熱性の低下により耐摩耗性が劣化する。従って、Cr含有量は、40.0mass%以下である必要がある。Cr含有量は、好ましくは、30.0mass%以下である。
(5) 0.1 ≤ Cr ≤ 40.0 mass%:
Cr is an element contained for the purpose of maintaining oxidation resistance. If the Cr content is too low, the wear resistance deteriorates due to the deterioration of the oxidation resistance. Therefore, the Cr content needs to be 0.1 mass% or more. The Cr content is preferably 3.0 mass% or more.
On the other hand, when the Cr content becomes excessive, the wear resistance deteriorates due to the decrease in heat resistance. Therefore, the Cr content needs to be 40.0 mass% or less. The Cr content is preferably 30.0 mass% or less.

(6) 5.0≦Mo≦50.0mass%:
Moは、粉末粒子の硬さ保持を目的として含有させる成分元素である。Mo含有量が少なすぎると、硬質粒子粉末を含む焼結体の耐摩耗性が不十分となる。従って、Mo含有量は、5.0mass%以上である必要がある。Mo含有量は、好ましくは、14.0mass%以上である。
一方、Mo含有量が過剰になると、硬さが高くなりすぎる。その結果、硬質粒子粉末を含む焼結体から硬質粒子が割れて脱落し、焼結体の摩耗量がかえって大きくなる。従って、Mo含有量は、50.0mass%以下である必要がある。Mo含有量は、好ましくは、40.0mass%以下である。
(6) 5.0 ≤ Mo ≤ 50.0 mass%:
Mo is a component element contained for the purpose of maintaining the hardness of powder particles. If the Mo content is too low, the wear resistance of the sintered body containing the hard particle powder becomes insufficient. Therefore, the Mo content needs to be 5.0 mass% or more. The Mo content is preferably 14.0 mass% or more.
On the other hand, when the Mo content is excessive, the hardness becomes too high. As a result, the hard particles are cracked and fall off from the sintered body containing the hard particle powder, and the amount of wear of the sintered body is rather large. Therefore, the Mo content needs to be 50.0 mass% or less. The Mo content is preferably 40.0 mass% or less.

(7) 0.1≦Fe≦30.0mass%:
Feは、硬質粒子粉末の鉄粉への拡散性を向上させる役割を果たす元素である。Fe含有量が少なすぎると、鉄粉への拡散性の低下により、硬質粒子粉末を含む焼結体から硬質粒子粉末が脱落しやすくなる。その結果、耐摩耗性が劣化する。従って、Fe含有量は、0.1mass%以上である必要がある。Fe含有量は、好ましくは、2.0mass%以上である。
一方、Fe含有量が過剰になると、Co含有量が減少する。Feは、Coより耐熱性、耐摩耗性が低いため、Fe含有量が過剰になると、耐熱性、及び耐摩耗性が著しく低下する。従って、Fe含有量は、30.0mass%以下である必要がある。Fe含有量は、好ましくは、20.0mass%以下である。
(7) 0.1 ≤ Fe ≤ 30.0 mass%:
Fe is an element that plays a role in improving the diffusivity of hard particle powder into iron powder. If the Fe content is too low, the diffusibility to the iron powder is lowered, and the hard particle powder is likely to fall off from the sintered body containing the hard particle powder. As a result, wear resistance deteriorates. Therefore, the Fe content needs to be 0.1 mass% or more. The Fe content is preferably 2.0 mass% or more.
On the other hand, when the Fe content becomes excessive, the Co content decreases. Since Fe has lower heat resistance and wear resistance than Co, if the Fe content is excessive, the heat resistance and wear resistance are significantly lowered. Therefore, the Fe content needs to be 30.0 mass% or less. The Fe content is preferably 20.0 mass% or less.

(8) 0.01≦REM≦0.5mass%:
本発明において、「REM」とは、ランタノイド元素の少なくとも1種を含むものをいる。REMは、粉末特性や焼結特性を損なうことなく、硬質粒子粉末を含む焼結体の耐摩耗性を向上させるために含有させる成分元素である。REM含有量が少なすぎると、焼結体の耐摩耗性の向上に殆ど寄与しない。従って、REM含有量は、0.01mass%以上である必要がある。REM含有量は、好ましくは、0.05mass%以上である。
一方、REM含有量が過剰になると、粉末酸化量の増加により焼結特性が劣化し、さらに耐摩耗性も低下する。従って、REM含有量は、0.5mass%以下である必要がある。REM含有量は、好ましくは、0.3mass%以下である。
(8) 0.01 ≤ REM ≤ 0.5 mass%:
In the present invention, "REM" includes those containing at least one kind of lanthanoid element. REM is a component element contained in order to improve the wear resistance of the sintered body containing the hard particle powder without impairing the powder characteristics and the sintering characteristics. If the REM content is too low, it hardly contributes to the improvement of the wear resistance of the sintered body. Therefore, the REM content needs to be 0.01 mass% or more. The REM content is preferably 0.05 mass% or more.
On the other hand, when the REM content becomes excessive, the sintering characteristics deteriorate due to the increase in the amount of powder oxidation, and the wear resistance also deteriorates. Therefore, the REM content needs to be 0.5 mass% or less. The REM content is preferably 0.3 mass% or less.

[2. 焼結体の製造方法]
本発明に係る焼結体用硬質粒子粉末を含む焼結体は、
(a)本発明に係る焼結体用硬質粒子粉末と、純鉄粉と、黒鉛粉末とを混合し、
(b)混合粉末を圧粉成形して圧粉体とし、
(c)圧粉体を焼結する
ことにより製造することができる。
[2. Manufacturing method of sintered body]
The sintered body containing the hard particle powder for a sintered body according to the present invention is
(A) The hard particle powder for a sintered body according to the present invention, pure iron powder, and graphite powder are mixed.
(B) The mixed powder is compacted to obtain a compact.
(C) It can be produced by sintering a green compact.

[2.1. 混合工程]
まず、本発明に係る焼結体用硬質粒子粉末(以下、単に「硬質粒子粉末」ともいう)と、純鉄粉と、黒鉛粉末とを混合する(混合工程)。各成分の配合量は、目的に応じて最適な配合量を選択するのが好ましい。また、成形性を向上させるために、原料中に成形潤滑剤を添加するのが好ましい。
[2.1. Mixing process]
First, the hard particle powder for a sintered body according to the present invention (hereinafter, also simply referred to as “hard particle powder”), pure iron powder, and graphite powder are mixed (mixing step). As for the blending amount of each component, it is preferable to select the optimum blending amount according to the purpose. Further, in order to improve the moldability, it is preferable to add a molding lubricant to the raw material.

硬質粒子粉末の配合量が少なすぎると、焼結体の耐摩耗性が低下する。従って、硬質粒子粉末の配合量は、5.0mass%以上が好ましい。硬質粒子粉末の配合量は、好ましくは、10.0mass%以上である。
一方、硬質粒子粉末の配合量が過剰になると、焼結特性が低下する。従って、硬質粒子粉末の配合量は、50.0mass%以下が好ましい。硬質粒子粉末の配合量は、好ましくは、30.0mass%以下である。
If the amount of the hard particle powder is too small, the wear resistance of the sintered body is lowered. Therefore, the blending amount of the hard particle powder is preferably 5.0 mass% or more. The blending amount of the hard particle powder is preferably 10.0 mass% or more.
On the other hand, if the blending amount of the hard particle powder becomes excessive, the sintering characteristics deteriorate. Therefore, the blending amount of the hard particle powder is preferably 50.0 mass% or less. The blending amount of the hard particle powder is preferably 30.0 mass% or less.

黒鉛粉末の配合量が少なすぎると、焼結体の耐摩耗性が低下する。従って、黒鉛粉末の配合量は、0.5mass%以上が好ましい。黒鉛粉末の配合量は、好ましくは、0.8mass%以上である。
一方、黒鉛粉末の配合量が過剰になると、焼結特性が低下する。従って、黒鉛粉末の配合量は、2.0mass%以下が好ましい。黒鉛粉末の配合量は、好ましくは、1.5mass%以下である。
If the blending amount of the graphite powder is too small, the wear resistance of the sintered body is lowered. Therefore, the blending amount of the graphite powder is preferably 0.5 mass% or more. The blending amount of the graphite powder is preferably 0.8 mass% or more.
On the other hand, if the blending amount of the graphite powder is excessive, the sintering characteristics are deteriorated. Therefore, the blending amount of the graphite powder is preferably 2.0 mass% or less. The blending amount of the graphite powder is preferably 1.5 mass% or less.

[2.2. 成形工程]
次に、混合粉末を圧粉成形し、圧粉体を得る。成形条件は、特に限定されるものではなく、目的に応じて最適な条件を選択することができる。一般に、成形圧力が高くなるほど、成形密度が向上する。成形後、圧粉体を大気中において焼成し、脱脂する。
[2.2. Molding process]
Next, the mixed powder is compacted to obtain a compact. The molding conditions are not particularly limited, and the optimum conditions can be selected according to the purpose. Generally, the higher the molding pressure, the higher the molding density. After molding, the green compact is calcined in the air to degreas.

[2.3. 焼結工程]
次に、圧粉体を焼結させる(焼結工程)。
焼結条件は、圧粉体の組成に応じて最適な条件を選択するのが好ましい。一般に、焼結温度が高くなるほど、短時間の熱処理で緻密な焼結体を得ることができる。一方、焼結温度が高くなりすぎると、硬質粒子が鉄基マトリックスに拡散しすぎたり、溶融したりするという問題がある。最適な焼結条件は、圧粉体の組成により異なるが、通常、1100℃~1300℃で0.5時間~3時間焼結するのが好ましい。さらに、焼結は、還元雰囲気下(例えば、分解アンモニア雰囲気下)で行うのが好ましい。
[2.3. Sintering process]
Next, the green compact is sintered (sintering step).
As the sintering conditions, it is preferable to select the optimum conditions according to the composition of the green compact. Generally, the higher the sintering temperature, the denser the sintered body can be obtained by heat treatment for a short time. On the other hand, if the sintering temperature becomes too high, there is a problem that the hard particles diffuse too much into the iron-based matrix or melt. The optimum sintering conditions vary depending on the composition of the green compact, but it is usually preferable to sinter at 1100 ° C to 1300 ° C for 0.5 hours to 3 hours. Further, the sintering is preferably performed in a reducing atmosphere (for example, in a decomposed ammonia atmosphere).

[3. 作用]
REMを含むCo系の硬質粒子において、成分を最適化すると、粉末特性や焼結特性を損なうことなく、硬質粒子を含む焼結体の耐摩耗性を向上させることができる。これは、硬質粒子に適量のREMを添加することによって、600℃程度の低温域において焼結体表面に酸化被膜が生成し、この酸化被膜が潤滑作用を示すためと考えられる。
[3. Action]
By optimizing the components of Co-based hard particles containing REM, the wear resistance of the sintered body containing the hard particles can be improved without impairing the powder characteristics and the sintering characteristics. It is considered that this is because an oxide film is formed on the surface of the sintered body in a low temperature range of about 600 ° C. by adding an appropriate amount of REM to the hard particles, and this oxide film exhibits a lubricating action.

参考例1~16、実施例17~18、参考例19~30、比較例1~44)
[1. 試料の作製]
[1.1. 硬質粒子粉末の作製]
表1及び表2に示す組成となるように原料を配合した。原料混合物を溶解し、アトマイズ法を用いて硬質粒子粉末を得た。なお、表1及び表2には、硬質粒子粉末を含む焼結体の焼結密度、及び後述する耐摩耗試験を行った時の焼結体の摩耗量も併せて示した。
( Reference Examples 1 to 16, Examples 17 to 18, Reference Examples 19 to 30, Comparative Examples 1 to 44)
[1. Preparation of sample]
[1.1. Preparation of hard particle powder]
The raw materials were blended so as to have the compositions shown in Tables 1 and 2. The raw material mixture was dissolved and a hard particle powder was obtained by an atomizing method. Tables 1 and 2 also show the sintering density of the sintered body containing the hard particle powder and the amount of wear of the sintered body when the wear resistance test described later was performed.

Figure 0007069800000001
Figure 0007069800000001

Figure 0007069800000002
Figure 0007069800000002

[1.2. 焼結体の作製]
純鉄粉(ASC100.29)69.2mass%、硬質粒子粉末30mass%、及び黒鉛粉末(CPB)0.8mass%を配合した。これを100重量部として、さらに、Zn-St(成形潤滑剤)0.5重量部を添加して混合した。
次に、原料を成形圧力8t/cm2で圧縮成形した。圧粉体形状は、
(a)径35mm×厚さ14mmのディスク形状、又は、
(b)外径28mm×内径20mm×厚さ4mmのリング形状
とした。
次に、圧粉体を大気雰囲気中において、400℃で1時間脱脂した。さらに、脱脂体を分解アンモニア雰囲気(N2+3H2)において、1160℃で1時間焼結し、焼結体を得た。
[1.2. Fabrication of sintered body]
Pure iron powder (ASC100.29) 69.2 mass%, hard particle powder 30 mass%, and graphite powder (CPB) 0.8 mass% were blended. This was taken as 100 parts by weight, and 0.5 part by weight of Zn—St (molding lubricant) was further added and mixed.
Next, the raw material was compression molded at a molding pressure of 8 t / cm 2 . The green compact shape is
(A) Disc shape with a diameter of 35 mm and a thickness of 14 mm, or
(B) A ring shape having an outer diameter of 28 mm, an inner diameter of 20 mm, and a thickness of 4 mm was formed.
Next, the green compact was degreased at 400 ° C. for 1 hour in the air atmosphere. Further, the degreased body was sintered at 1160 ° C. for 1 hour in a decomposed ammonia atmosphere (N 2 + 3H 2 ) to obtain a sintered body.

[2. 試験方法]
[2.1. 粉末特性]
得られた硬質粒子粉末について、粉末特性(粒度分布、見掛密度、流動度、粉末硬さ、酸化開始温度)を調査した。ここで、
(a)粒度分布は、日本工業会規格:JIS Z 2510-2004により、
(b)見掛密度は、日本工業会規格:JIS Z 2504-2012により、
(c)流動度は、日本工業会規格:JIS Z 2502-2012により、
(d)粉末硬さは、微小硬さ測定機により、
(e)酸化開始温度は、熱天秤により
それぞれ、測定した。
[2. Test method]
[2.1. Powder characteristics]
The powder characteristics (particle size distribution, apparent density, fluidity, powder hardness, oxidation start temperature) of the obtained hard particle powder were investigated. here,
(A) Particle size distribution is based on Japanese Industrial Standards: JIS Z 2510-2004.
(B) The apparent density is based on the Japanese Industrial Standards: JIS Z 2504-2012.
(C) The fluidity is determined according to the Japanese Industrial Standards: JIS Z 2502-2012.
(D) The powder hardness is determined by a micro hardness measuring machine.
(E) The oxidation start temperature was measured by a thermal balance.

[2.2. 成形特性及び焼結特性]
作製した圧粉体及び焼結体について、成形特性及び焼結特性(圧粉密度、焼結密度、化学成分、焼結体硬さ、圧環強度)を調査した。
ここで、圧粉密度及び焼結密度は、日本工業会規格:JIS Z 2508、JIS Z 2509-2004により測定した。化学成分は、赤外線吸収法により求めた。
焼結体硬さ(HRA)は、ロックウェル硬さ試験機により測定した。圧環強度は、リング形状の焼結体を用いて、アムスラー試験機により測定した。
[2.2. Molding and sintering properties]
The molding properties and sintering characteristics (compact density, sintering density, chemical composition, sintered body hardness, and crimp strength) of the prepared powder compacts and sintered body were investigated.
Here, the powder density and the sintering density were measured according to the Japanese Industrial Standards: JIS Z 2508 and JIS Z 2509-2004. The chemical composition was determined by the infrared absorption method.
Sintered body hardness (HRA) was measured by a Rockwell hardness tester. The pressure ring strength was measured by an Amsler tester using a ring-shaped sintered body.

[2.3. 焼結体の耐摩耗試験]
図1に示すバルブシート単体摩耗試験機(以下、単に「摩耗試験機」ともいう)を用いて、焼結体の耐摩耗試験を行った。ディスク形状の焼結体(径35mm×厚さ14mm)をバルブシート形状に加工し、これを各摩耗試験片とした。そして、摩耗試験片をシートホルダに圧入することにより摩耗試験機にセットした。
表3に示す試験条件で摩耗試験機を駆動し、バルブをガス火炎加熱することにより摩耗試験片を間接的に加熱しながら、クランク駆動によるたたき入力によって摩耗試験片を摩耗させた。
[2.3. Abrasion resistance test of sintered body]
The wear resistance test of the sintered body was performed using the valve seat single-unit wear tester shown in FIG. 1 (hereinafter, also simply referred to as “wear tester”). A disk-shaped sintered body (diameter 35 mm × thickness 14 mm) was processed into a valve seat shape, and this was used as each wear test piece. Then, the wear test piece was press-fitted into the seat holder and set in the wear tester.
The wear tester was driven under the test conditions shown in Table 3, and the wear test piece was indirectly heated by heating the valve with a gas flame, while the wear test piece was worn by the tapping input by the crank drive.

Figure 0007069800000003
Figure 0007069800000003

形状測定器を用いて、摩耗試験前後の摩耗試験片の形状を測定した。図2(図1の矢印Aで示す部分の拡大図)に示すように、摩耗試験片面に対して垂直方向の差Dを求め、これを摩耗試験片の摩耗量とした。 The shape of the wear test piece before and after the wear test was measured using a shape measuring instrument. As shown in FIG. 2 (enlarged view of the portion indicated by the arrow A in FIG. 1), the difference D in the direction perpendicular to the wear test piece surface was obtained, and this was used as the wear amount of the wear test piece.

[3. 結果]
[3.1. 粉末特性]
表4に、参考例1~3及び比較例9~10で得られた硬質粒子粉末の粉体特性を示す。図3に、参考例2及び比較例13で得られた硬質粒子粉末の重量増加と温度との関係を示す。表4及び図3より、以下のことが分かる。
(1)参考例1~3の粒度分布及び粉末特性は、比較例9~10の粒度分布及び粉末特性とほぼ同等であった。
(2)参考例1~3と比較例9~10の粒度分布に関し、-100~+145mesh、及び-145~+200meshにおける両者の粒度分布に差は少なく、粉末製造時のバラツキによるものと考えられる。
(3)参考例1~3の硬さは、比較例9~10とほぼ同等であった。
(4)参考例2は、比較例13に比べて酸化開始温度が低い。これは、硬質粒子粉末にREMを添加することによって、酸化しやすくなったためである。
[3. result]
[3.1. Powder characteristics]
Table 4 shows the powder characteristics of the hard particle powders obtained in Reference Examples 1 to 3 and Comparative Examples 9 to 10. FIG. 3 shows the relationship between the weight increase and the temperature of the hard particle powders obtained in Reference Example 2 and Comparative Example 13. From Table 4 and FIG. 3, the following can be seen.
(1) The particle size distribution and powder characteristics of Reference Examples 1 to 3 were almost the same as the particle size distribution and powder characteristics of Comparative Examples 9 to 10.
(2) Regarding the particle size distributions of Reference Examples 1 to 3 and Comparative Examples 9 to 10, there is little difference in the particle size distributions between -100 to +145 mesh and -145 to +200 mesh, which is considered to be due to variations during powder production.
(3) The hardness of Reference Examples 1 to 3 was almost the same as that of Comparative Examples 9 to 10.
(4) Reference Example 2 has a lower oxidation start temperature than Comparative Example 13. This is because the addition of REM to the hard particle powder facilitates oxidation.

Figure 0007069800000004
Figure 0007069800000004

[3.2. 成形特性及び焼結特性]
表5に、参考例1~3及び比較例9~10で得られた圧粉体及び焼結体の特性を示す。表5より、以下のことが分かる。
(1)参考例1~3及び比較例9~10は、それぞれ、組成は異なるが、ほぼ同等の圧粉密度、焼結密度、及び焼結体硬さが得られた。
(2)参考例1~3は、比較例9~10に比べて、圧環強度が高い。圧環強度は、焼結体硬さに起因するため、焼結体硬さが高いと圧環強度も高くなる傾向にある。
[3.2. Molding and sintering properties]
Table 5 shows the characteristics of the green compact and the sintered body obtained in Reference Examples 1 to 3 and Comparative Examples 9 to 10. From Table 5, the following can be seen.
(1) Reference Examples 1 to 3 and Comparative Examples 9 to 10 had almost the same powder density, sintered density, and sintered body hardness, although their compositions were different.
(2) Reference Examples 1 to 3 have higher ring strength than Comparative Examples 9 to 10. Since the annulus strength is due to the hardness of the sintered body, the higher the hardness of the sintered body, the higher the annulus strength tends to be.

Figure 0007069800000005
Figure 0007069800000005

[3.3. 耐摩耗試験]
表1及び表2に、各硬質粒子粉末の組成、硬質粒子粉末を用いた焼結体の焼結密度、及び耐摩耗試験時の焼結体の摩耗量を示す。表1及び表2より、以下のことがわかる。
(1)参考例1~16、実施例17~18、参考例19~30は、いずれも摩耗量が20μm未満であった。一方、比較例1~44は、いずれも摩耗量が20μm以上であった。すなわち、参考例1~16、実施例17~18、参考例19~30は、比較例1~44と比べて摩耗量が少なかった。
[3.3. Wear resistance test]
Tables 1 and 2 show the composition of each hard particle powder, the sintering density of the sintered body using the hard particle powder, and the amount of wear of the sintered body during the wear resistance test. The following can be seen from Tables 1 and 2.
(1) In Reference Examples 1 to 16, Examples 17 to 18, and Reference Examples 19 to 30 , the amount of wear was less than 20 μm. On the other hand, in all of Comparative Examples 1 to 44, the amount of wear was 20 μm or more. That is, in Reference Examples 1 to 16, Examples 17 to 18, and Reference Examples 19 to 30 , the amount of wear was smaller than that in Comparative Examples 1 to 44.

(2)参考例1~16、実施例17~18、参考例19~30と比較例13~28を比較すると、これらは、REMの有無以外はいずれも本発明の好ましい成分範囲を満たしている。従って、参考例1~16、実施例17~18、参考例19~30に係る成分組成(REMを除く)において、REMの添加は、焼結体(バルブシート)の耐摩耗性を向上させる効果があることがわかった。
(3)比較例29~44に示すように、REMの含有量が多すぎると、焼結体(バルブシート)の耐摩耗性を向上させる効果が得られないことがわかる。これらのことから、REM含有量は、0.6mass%を超えない方が良いことがわかる。このことから、REM含有量は、好ましくは、0.5mass%以下、さらに好ましくは、0.25mass%以下であることがわかった。
(2) Comparing Reference Examples 1 to 16, Examples 17 to 18, Reference Examples 19 to 30 and Comparative Examples 13 to 28, all of them satisfy the preferable component range of the present invention except for the presence or absence of REM. .. Therefore, in the component compositions (excluding REM) according to Reference Examples 1 to 16, Examples 17 to 18, and Reference Examples 19 to 30 , the addition of REM has the effect of improving the wear resistance of the sintered body (valve seat). It turned out that there is.
(3) As shown in Comparative Examples 29 to 44, it can be seen that if the content of REM is too large, the effect of improving the wear resistance of the sintered body (valve seat) cannot be obtained. From these facts, it can be seen that the REM content should not exceed 0.6 mass%. From this, it was found that the REM content was preferably 0.5 mass% or less, more preferably 0.25 mass% or less.

(4)比較例1は、摩耗量が多い。これは、C量が多すぎるために、硬さが高くなりすぎ、硬質粒子粉末が破砕したためと考えられる。
(5)比較例2は、摩耗量が多い。これは、Si量が多すぎるために、硬さが高くなりすぎ、硬質粒子粉末が脱落したためと考えられる。
(6)比較例3は、摩耗量が多い。これは、Mnを含んでいないために、粉末酸化膜が形成されず、潤滑性が低下したためと考えられる。
(7)比較例4は、摩耗量が多い。これは、Mn量が多いため、粉末酸化量が増加し、焼結特性が劣化したためと考えられる。
(8)比較例5は、摩耗量が多い。これは、Niを含んでいないために、耐熱性が低下したためと考えられる。
(9)比較例6は、摩耗量が多い。これは、Ni量が多すぎるために、逆にバランス元素のCoが減少し、耐熱、耐摩耗性が低下したためと考えられる。
(4) Comparative Example 1 has a large amount of wear. It is considered that this is because the amount of C is too large, the hardness becomes too high, and the hard particle powder is crushed.
(5) Comparative Example 2 has a large amount of wear. It is considered that this is because the amount of Si is too large, the hardness becomes too high, and the hard particle powder falls off.
(6) Comparative Example 3 has a large amount of wear. It is considered that this is because the powder oxide film was not formed because Mn was not contained, and the lubricity was deteriorated.
(7) Comparative Example 4 has a large amount of wear. It is considered that this is because the amount of Mn is large, the amount of powder oxidation increases, and the sintering characteristics deteriorate.
(8) Comparative Example 5 has a large amount of wear. It is considered that this is because the heat resistance is lowered because it does not contain Ni.
(9) Comparative Example 6 has a large amount of wear. It is considered that this is because the amount of Ni is too large, and on the contrary, the balance element Co is reduced, and the heat resistance and wear resistance are lowered.

(10)比較例7は、摩耗量が多い。これは、Crを含んでいないために、耐熱性が低下したためと考えられる。
(11)比較例8は、摩耗量が多い。これは、Cr量が多すぎるために、逆にバランス元素のCoが減少し、耐熱、耐摩耗性が低下したためと考えられる。
(12)比較例9は、摩耗量が多い。これは、Mo量が少なすぎるために、硬さが低下し、耐摩耗性が低下したためと考えられる。
(13)比較例10は、摩耗量が多い。これは、Mo量が多すぎるために、硬さが高くなりすぎ、硬質粒子粉末が脱落したためと考えられる。
(14)比較例11は、摩耗量が多い。これは、Feを含んでいないために、鉄粉への拡散性が低下し、硬質粒子粉末が脱落しやすくなったためと考えられる。
(15)比較例12は、摩耗量が多い。これは、Fe量が多すぎるために、耐熱性が低下したためと考えられる。
(10) Comparative Example 7 has a large amount of wear. It is considered that this is because the heat resistance is lowered because it does not contain Cr.
(11) Comparative Example 8 has a large amount of wear. It is considered that this is because the amount of Cr is too large, so that the balance element Co is conversely reduced, and the heat resistance and wear resistance are lowered.
(12) Comparative Example 9 has a large amount of wear. It is considered that this is because the amount of Mo is too small, so that the hardness is lowered and the wear resistance is lowered.
(13) Comparative Example 10 has a large amount of wear. It is considered that this is because the amount of Mo is too large, the hardness becomes too high, and the hard particle powder falls off.
(14) Comparative Example 11 has a large amount of wear. It is considered that this is because the diffusibility to the iron powder is lowered because Fe is not contained, and the hard particle powder is easily dropped off.
(15) Comparative Example 12 has a large amount of wear. It is considered that this is because the heat resistance is lowered because the amount of Fe is too large.

(16)比較例13~28は、摩耗量が多い。これは、REMを含んでいないために、低温での酸化が起こらず、バルブ表面での潤滑性が低下したためと考えられる。
(17)比較例29~44は、摩耗量が多い。これは、REM量が多いために、粉末酸化量が増加し、焼結特性が低下したためと考えられる。
(16) Comparative Examples 13 to 28 have a large amount of wear. It is considered that this is because oxidation at a low temperature does not occur because REM is not contained, and the lubricity on the valve surface is lowered.
(17) Comparative Examples 29 to 44 have a large amount of wear. It is considered that this is because the amount of REM oxidation is large, the amount of powder oxidation is increased, and the sintering characteristics are deteriorated.

以上のことから、所定の成分系からなる硬質粒子粉末にREMを添加すると、粉末特性や焼結特性をほとんど損なうことなく、焼結体(バルブシート)の耐摩耗性を向上させることができること、及び、耐摩耗性に優れた焼結体が得られることが分かった。 From the above, when REM is added to a hard particle powder composed of a predetermined component system, the wear resistance of the sintered body (valve seat) can be improved with almost no loss of powder characteristics and sintering characteristics. It was also found that a sintered body having excellent wear resistance can be obtained.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.

本発明に係る焼結体用硬質粒子粉末は、バルブシート、バルブガイド、その他の機械構造部品として用いられる各種焼結体に対し、耐摩耗性の向上を目的として添加される硬質粒子粉末として用いることができる。 The hard particle powder for a sintered body according to the present invention is used as a hard particle powder added for the purpose of improving wear resistance to various sintered bodies used as valve seats, valve guides, and other mechanical structural parts. be able to.

Claims (2)

0.01≦C≦3.5mass%、
0.5≦Si≦4.0mass%、
4.0≦Mn≦10.0mass%、
27.0≦Ni≦35.0mass%、
0.1≦Cr≦40.0mass%、
5.0≦Mo≦50.0mass%、
0.1≦Fe≦30.0mass%、及び
0.01≦REM≦0.5mass%
を含有し、残部がCo及び不可避的不純物からなる焼結体用硬質粒子粉末。
0.01 ≤ C ≤ 3.5 mass%,
0.5 ≤ Si ≤ 4.0 mass%,
4.0 ≤ Mn ≤ 10.0 mass%,
27.0 ≤ Ni ≤ 35.0 mass%,
0.1 ≤ Cr ≤ 40.0 mass%,
5.0 ≤ Mo ≤ 50.0 mass%,
0.1 ≤ Fe ≤ 30.0 mass%, and 0.01 ≤ REM ≤ 0.5 mass%
Hard particle powder for sintered body containing Co and the balance consisting of Co and unavoidable impurities.
4.0≦Mn≦7.0mass%である請求項1に記載の焼結体用硬質粒子粉末。 The hard particle powder for a sintered body according to claim 1, wherein 4.0 ≤ Mn ≤ 7.0 mass%.
JP2018026177A 2018-02-16 2018-02-16 Hard particle powder for sintered body Active JP7069800B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018026177A JP7069800B2 (en) 2018-02-16 2018-02-16 Hard particle powder for sintered body
US16/271,620 US20190256955A1 (en) 2018-02-16 2019-02-08 Hard particle powder for sintered body
CN201910112970.3A CN110153405B (en) 2018-02-16 2019-02-13 Hard particle powder for sintered body
KR1020190017923A KR20190099141A (en) 2018-02-16 2019-02-15 Hard particle powder for sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018026177A JP7069800B2 (en) 2018-02-16 2018-02-16 Hard particle powder for sintered body

Publications (2)

Publication Number Publication Date
JP2019143176A JP2019143176A (en) 2019-08-29
JP7069800B2 true JP7069800B2 (en) 2022-05-18

Family

ID=67616707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018026177A Active JP7069800B2 (en) 2018-02-16 2018-02-16 Hard particle powder for sintered body

Country Status (4)

Country Link
US (1) US20190256955A1 (en)
JP (1) JP7069800B2 (en)
KR (1) KR20190099141A (en)
CN (1) CN110153405B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156193B2 (en) * 2019-07-12 2022-10-19 トヨタ自動車株式会社 Hard particles and sintered sliding member using the same
JP2023015718A (en) * 2021-07-20 2023-02-01 大同特殊鋼株式会社 Hard particle powder for sintered body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155681A (en) 2007-12-26 2009-07-16 Daido Steel Co Ltd Hard-particle powder for sintered body, and sintered body
JP2011157617A (en) 2010-02-04 2011-08-18 Daido Steel Co Ltd Hard particle for sintered compact, and the sintered compact
JP2012052167A (en) 2010-08-31 2012-03-15 Toyota Motor Corp Iron-based mixed powder for sintering and iron-based sintered alloy
JP2017133046A (en) 2016-01-25 2017-08-03 トヨタ自動車株式会社 Manufacturing method of abrasion resistant iron-based sintered alloy, molded body for sintered alloy and abrasion resistant iron-based sintered alloy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550449A (en) * 1978-10-03 1980-04-12 Boc Ltd Surfacing or welding alloy or consumable material
JPS59110755A (en) * 1982-12-15 1984-06-26 Hitachi Metals Ltd Composite alloy powder
GB2181156A (en) * 1985-10-04 1987-04-15 London Scandinavian Metall Grain refining copper-bowed metals
JPH0753900B2 (en) * 1986-10-27 1995-06-07 日産自動車株式会社 Heat and wear resistant iron-based sintered alloy
JP3763782B2 (en) 2001-12-28 2006-04-05 日本ピストンリング株式会社 Method for producing wear-resistant iron-based sintered alloy material for valve seat
US7892481B2 (en) * 2005-10-12 2011-02-22 Hitachi Powdered Metals Co., Ltd. Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor
JP4582587B2 (en) 2005-10-12 2010-11-17 日立粉末冶金株式会社 Method for producing wear-resistant sintered member
JP5428546B2 (en) * 2009-06-04 2014-02-26 三菱マテリアル株式会社 Method for producing aluminum composite having porous aluminum sintered body
CN101658931B (en) * 2009-09-22 2011-06-01 常熟市华德粉末冶金有限公司 Rare earth powder metallurgy iron aldurbra-containing oil bearing material and preparation technology thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155681A (en) 2007-12-26 2009-07-16 Daido Steel Co Ltd Hard-particle powder for sintered body, and sintered body
JP2011157617A (en) 2010-02-04 2011-08-18 Daido Steel Co Ltd Hard particle for sintered compact, and the sintered compact
JP2012052167A (en) 2010-08-31 2012-03-15 Toyota Motor Corp Iron-based mixed powder for sintering and iron-based sintered alloy
JP2017133046A (en) 2016-01-25 2017-08-03 トヨタ自動車株式会社 Manufacturing method of abrasion resistant iron-based sintered alloy, molded body for sintered alloy and abrasion resistant iron-based sintered alloy

Also Published As

Publication number Publication date
CN110153405A (en) 2019-08-23
KR20190099141A (en) 2019-08-26
JP2019143176A (en) 2019-08-29
CN110153405B (en) 2022-02-08
US20190256955A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP4948636B2 (en) Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats
JP4584158B2 (en) Valve seat material made of iron-based sintered alloy for internal combustion engines
JP4624600B2 (en) Sintered alloy, manufacturing method thereof and valve seat
JP3596751B2 (en) Hard particle for blending sintered alloy, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat
JP6527459B2 (en) Valve seat for internal combustion engine with excellent wear resistance
JP6305811B2 (en) Ferrous sintered alloy material for valve seat and method for producing the same
CN103361576A (en) Sintered alloy for valve seat and manufacturing method of exhaust valve seat using the same
JP2005248234A (en) Iron-based sintered alloy for valve seat
JP5125488B2 (en) Hard particle powder for sintered body and sintered body
JP7069800B2 (en) Hard particle powder for sintered body
JP2006316745A (en) Manufacturing method for iron-based sintered alloy valve seat exhibiting excellent wear resistance in high temperature/dry condition and the valve seat
JP6392796B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP6392530B2 (en) Ferrous sintered alloy valve seat
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
KR101363024B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
JP3942136B2 (en) Iron-based sintered alloy
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JP2018178143A (en) Manufacturing method of abrasion resistant iron-based sintered alloy
KR101363025B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
KR101333747B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
JP2005154798A (en) Alloy powder for forming hard phase, iron-based mixed powder using the same, method for manufacturing abrasion-resistant sintered alloy, and abrasion-resistant sintered alloy
JP4223370B2 (en) High-strength Fe-based sintered alloy valve seat with excellent high-temperature oxidation resistance
JPH059668A (en) Valve seat made of fe-based sintered alloy having high strength and high toughness
JPH11302805A (en) Sintered valve seat and its production
JPH09235659A (en) Sintered alloy material for valve seat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7069800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150