JP7066966B2 - Manufacturing methods for protective materials, protective clothing, and recycled protective clothing - Google Patents

Manufacturing methods for protective materials, protective clothing, and recycled protective clothing Download PDF

Info

Publication number
JP7066966B2
JP7066966B2 JP2016161278A JP2016161278A JP7066966B2 JP 7066966 B2 JP7066966 B2 JP 7066966B2 JP 2016161278 A JP2016161278 A JP 2016161278A JP 2016161278 A JP2016161278 A JP 2016161278A JP 7066966 B2 JP7066966 B2 JP 7066966B2
Authority
JP
Japan
Prior art keywords
liquid
layer
protective material
shielding layer
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016161278A
Other languages
Japanese (ja)
Other versions
JP2018028163A (en
Inventor
志貴 渡邉
幸大 木山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016161278A priority Critical patent/JP7066966B2/en
Publication of JP2018028163A publication Critical patent/JP2018028163A/en
Application granted granted Critical
Publication of JP7066966B2 publication Critical patent/JP7066966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機化学物質から人体を防護するための防護材料、防護衣、および再生防護衣の製造方法に関する。 The present invention relates to a protective material for protecting the human body from organic chemical substances, a protective garment, and a method for manufacturing a regenerated protective garment.

有機化学物質等から人体を保護する防護材料として、従来から種々の技術が知られている。 Various techniques have been conventionally known as protective materials for protecting the human body from organic chemical substances and the like.

例えば特許文献1では、上層、中間層、下層の3層のシート材料が積層された防護シート層を有する防護材料において、上層の撥油度を低くして液状有機化学物質を拡散させ、下層の撥油度を高くして液状有機化学物質の透過を防ぐ技術が示されている。即ち、特許文献1では、上層で液状有機化学物質を拡散させ、下層で液状有機化学物質の透過を防ぐという役割を分担させることにより、耐液防護性を向上できることが示されている。 For example, in Patent Document 1, in a protective material having a protective sheet layer in which three sheet materials of an upper layer, an intermediate layer, and a lower layer are laminated, the oil repellency of the upper layer is lowered to diffuse a liquid organic chemical substance, and the lower layer is used. Techniques have been demonstrated to increase oil repellency and prevent the permeation of liquid organic chemicals. That is, Patent Document 1 shows that liquid protection can be improved by diffusing the liquid organic chemical substance in the upper layer and sharing the role of preventing the permeation of the liquid organic chemical substance in the lower layer.

特許文献2は、外層布、粒子除去層、ガス吸着層、内層布を含む積層構造を有する防護服に関し、積層構造の通気度および粒子捕集効率を所定の範囲内に制御することにより、袖口等の防護服の繋ぎ目から防護服内部へ進入する粒子の数を低減できることが示されている。 Patent Document 2 relates to a protective garment having a laminated structure including an outer layer cloth, a particle removing layer, a gas adsorption layer, and an inner layer cloth by controlling the air permeability and particle collection efficiency of the laminated structure within a predetermined range. It has been shown that the number of particles entering the inside of the protective clothing from the joint of the protective clothing such as the above can be reduced.

特開2014-24236号公報Japanese Unexamined Patent Publication No. 2014-24236 特開2014-141770号公報Japanese Unexamined Patent Publication No. 2014-141770

一般に撥水撥油加工が施された防護衣等は、使用と共に撥水撥油性が低下する。そのため、撥水撥油剤に浸す等の方法により再度、撥水撥油性を付与する必要がある。しかし、特許文献1のような従来の防護材料を用いて得られる防護衣等では、撥水撥油剤に浸すと、撥油度の低い層(以下では拡散層と呼ぶ場合がある。)の撥油度が高くなり、拡散層の拡散能が低下して、耐液防護性が低下するおそれがあった。そのため、防護衣等を一旦分解して拡散層を分離してから、撥水撥油剤に浸して撥水撥油加工を施し、その後、拡散層を再度積層させる必要があるため、手間がかかるという問題があった。 Generally, protective clothing or the like that has been subjected to water-repellent and oil-repellent treatment deteriorates in water- and oil-repellent properties with use. Therefore, it is necessary to impart water and oil repellency again by a method such as immersing in a water and oil repellent. However, in a protective garment or the like obtained by using a conventional protective material as in Patent Document 1, when immersed in a water-repellent oil-repellent agent, a layer having a low oil-repellent degree (hereinafter, may be referred to as a diffusion layer) is repelled. There was a risk that the oiliness would increase, the diffusivity of the diffusion layer would decrease, and the liquid protection would decrease. Therefore, it is necessary to disassemble the protective clothing or the like once to separate the diffusion layer, soak it in a water-repellent oil-repellent agent to perform a water-repellent oil-repellent treatment, and then re-laminate the diffusion layer, which is troublesome. There was a problem.

また、特許文献2は、ガス状、粒子状の有害化学物質に対する防護性能を有する防護服に関し、防護材料の通気度と粒子捕集効率を所定範囲に制御することにより、防護服内へ侵入する粒子の侵入を低減できることが示されている。しかし、特許文献2の実施例において、撥油度は測定されていない。 Further, Patent Document 2 relates to protective clothing having protective performance against gaseous and particulate hazardous chemical substances, and invades the protective clothing by controlling the air permeability and particle collection efficiency of the protective material within a predetermined range. It has been shown that particle intrusion can be reduced. However, in the examples of Patent Document 2, the oil repellency is not measured.

本発明はこうした状況の下になされたものであって、その目的は、分解せずに撥水撥油剤に浸して撥水撥油加工を施すことが可能な防護衣等を得るために有用な防護材料を提供することにある。 The present invention has been made under such circumstances, and an object thereof is useful for obtaining a protective garment or the like which can be dipped in a water-repellent oil-repellent agent without being decomposed and subjected to a water-repellent oil-repellent treatment. To provide protective materials.

本発明に係る防護材料は、外層付加層と液遮蔽層とをそれぞれ少なくとも1層以上有する防護材料であって、前記外層付加層は、繊維から構成され、最大細孔径が1.0~1000μmの細孔を有しており、前記液遮蔽層は、平均単繊維直径が0.5~10μmの繊維から構成され、且つ、AATCC試験法118-2002による撥油度が5.5級以上、最大細孔径が1.0~100μmであることを特徴とする。該構成により、分解せずに撥水撥油剤に浸して撥水撥油加工を施すことが可能な防護衣等を得るために有用な防護材料が実現できる。 The protective material according to the present invention is a protective material having at least one outer layer additional layer and a liquid shielding layer, respectively, and the outer layer additional layer is composed of fibers and has a maximum pore diameter of 1.0 to 1000 μm. The liquid shielding layer has pores, is composed of fibers having an average single fiber diameter of 0.5 to 10 μm, and has a maximum oil repellency of 5.5 grade or higher according to the AATCC test method 118-2002. It is characterized by having a pore diameter of 1.0 to 100 μm. With this configuration, it is possible to realize a protective material useful for obtaining a protective garment or the like that can be dipped in a water-repellent oil-repellent agent without being decomposed and subjected to a water-repellent oil-repellent treatment.

本発明の上記防護材料は、前記液遮蔽層の目付が5~50g/m2であることが好ましい。 In the protective material of the present invention, the basis weight of the liquid shielding layer is preferably 5 to 50 g / m 2 .

本発明の上記防護材料は、前記液遮蔽層の通気度が5~35cm3/cm2・secであることが好ましい。 In the protective material of the present invention, the air permeability of the liquid shielding layer is preferably 5 to 35 cm 3 / cm 2 · sec.

本発明の上記防護材料は、前記液遮蔽層のJIS L1092(2009)7.2に記載の撥水度試験による撥水度が2級以上であることが好ましい。 The protective material of the present invention preferably has a water repellency of 2nd grade or higher according to the water repellency test described in JIS L1092 (2009) 7.2 of the liquid shielding layer.

本発明の上記防護材料は、前記液遮蔽層にガス吸着層が積層されていることが好ましい。 In the protective material of the present invention, it is preferable that the gas adsorption layer is laminated on the liquid shielding layer.

本発明の上記防護材料は、前記外層付加層の通気度が5~800cm3/cm2・secであるのが好ましい。 In the protective material of the present invention, the air permeability of the outer layer additional layer is preferably 5 to 800 cm 3 / cm 2 · sec.

本発明の上記防護材料は、前記外層付加層が平均単繊維直径0.5~600μmの繊維から構成されていることが好ましい。 In the protective material of the present invention, it is preferable that the outer layer additional layer is composed of fibers having an average single fiber diameter of 0.5 to 600 μm.

本発明の上記防護材料は、前記外層付加層の目付が10~75g/m2であるのが好ましい。 In the protective material of the present invention, the basis weight of the outer layer additional layer is preferably 10 to 75 g / m 2 .

本発明の上記防護材料は、前記外層付加層の最大細孔径が、前記液遮蔽層の最大細孔径よりも大きいことが好ましい。 In the protective material of the present invention, it is preferable that the maximum pore diameter of the outer layer additional layer is larger than the maximum pore diameter of the liquid shielding layer.

本発明の上記防護材料は、前記液遮断層が不織布であることが好ましい。 In the protective material of the present invention, it is preferable that the liquid blocking layer is a non-woven fabric.

本発明の上記防護材料は、前記液遮断層がメルトブローン不織布であることが好ましい。 In the protective material of the present invention, it is preferable that the liquid blocking layer is a meltblown non-woven fabric.

本発明の上記防護材料は、前記外層付加層が不織布であることが好ましい。 In the protective material of the present invention, it is preferable that the outer layer additional layer is a non-woven fabric.

本発明の上記防護材料は、前記不織布がスパンポンド不織布またはスパンレース不織布であることが好ましい。 In the protective material of the present invention, it is preferable that the nonwoven fabric is a spunpond nonwoven fabric or a spunlaced nonwoven fabric.

本発明には、上記防護材料を用いて得られる防護衣も包含される。 The present invention also includes protective clothing obtained by using the above protective material.

また本発明は、再生防護衣の製造方法を含むものであって、該方法は、使用済みの上記防護衣を、分解せずに撥水撥油剤に浸して、撥水撥油加工を施す工程を含むところに特徴を有する。 The present invention also includes a method for manufacturing a recycled protective garment, which is a step of immersing the used protective garment in a water-repellent oil-repellent agent without disassembling it to perform a water-repellent oil-repellent treatment. It is characterized by including.

本発明によれば、外層付加層と液遮蔽層とをそれぞれ少なくとも1層以上有し、外層付加層は、繊維から構成され、最大細孔径が1.0~1000μmの細孔を有しており、液遮蔽層は、平均単繊維直径が0.5~10μmの繊維から構成され、且つ、AATCC試験法118-2002による撥油度が5.5級以上、最大細孔径が1.0~100μmであることにより、外層付加層と液遮蔽層を分解せずに撥水撥油剤に浸して撥水撥油加工を施すことが可能な防護衣等を得るために有用な防護材料が実現できる。 According to the present invention, each of the outer layer additional layer and the liquid shielding layer has at least one layer, and the outer layer additional layer is composed of fibers and has pores having a maximum pore diameter of 1.0 to 1000 μm. The liquid shielding layer is composed of fibers having an average single fiber diameter of 0.5 to 10 μm, an oil repellency of 5.5 grade or higher according to the AATCC test method 118-2002, and a maximum pore diameter of 1.0 to 100 μm. Therefore, it is possible to realize a protective material useful for obtaining a protective garment or the like that can be dipped in a water-repellent oil-repellent agent without decomposing the outer layer additional layer and the liquid shielding layer to be subjected to a water-repellent oil-repellent treatment.

図1は、耐液防護性試験を説明する図である。FIG. 1 is a diagram illustrating a liquid resistance test.

本発明者らは、分解せずに撥水撥油剤に浸して撥水撥油加工を施すことが可能な防護衣等を得るために有用な防護材料を提供するため検討を行った。その結果、外層付加層と液遮蔽層とをそれぞれ少なくとも1層以上有する防護材料において、外層付加層が、繊維から構成され、最大細孔径が1.0~1000μmの細孔を有しており、液遮蔽層が、平均単繊維直径が0.5~10μmの繊維から構成され、且つ、AATCC試験法118-2002による撥油度が5.5級以上、最大細孔径が1.0~100μmであることにより、上記目的が達成されることを見出し、本発明を完成した。 The present inventors have studied to provide a protective material useful for obtaining a protective garment or the like that can be dipped in a water-repellent oil-repellent agent without being decomposed and subjected to a water-repellent oil-repellent treatment. As a result, in the protective material having at least one outer layer additional layer and at least one liquid shielding layer, the outer layer additional layer is composed of fibers and has pores having a maximum pore diameter of 1.0 to 1000 μm. The liquid shielding layer is composed of fibers having an average single fiber diameter of 0.5 to 10 μm, an oil repellency of 5.5 grade or higher according to the AATCC test method 118-2002, and a maximum pore diameter of 1.0 to 100 μm. The present invention has been completed by finding that the above object is achieved.

詳細には、防護材料の液遮蔽層を、平均単繊維直径が0.5~10μmの繊維で構成して、且つ、AATCC試験法118-2002による撥油度を5.5級以上、最大細孔径を1.0~100μmとすることより、液遮蔽層の耐液防護性を向上させることができる。更に、外層付加層によって外部からの機械的な力を軽減することにより、耐液防護性をより向上させることができる。その結果、液状有機化学物質を拡散する撥油度の低い拡散層を積層させなくても優れた耐液防護性が得られることが分かった。即ち、上記防護材料を用いれば、上記撥油度の低い拡散層の有無にかかわらず優れた耐液防護性が得られるため、撥水撥油剤による拡散層の拡散能の低下等の影響を考慮する必要がなくなり、防護衣等を分解せずに撥水撥油剤に浸して撥水撥油加工を施すことが可能となることを見出した。 Specifically, the liquid shielding layer of the protective material is composed of fibers having an average single fiber diameter of 0.5 to 10 μm, and the oil repellency according to the AATCC test method 118-2002 is 5.5 grade or higher, which is the maximum fineness. By setting the pore diameter to 1.0 to 100 μm, the liquid shielding property of the liquid shielding layer can be improved. Further, the liquid protection can be further improved by reducing the mechanical force from the outside by the outer layer additional layer. As a result, it was found that excellent liquid resistance protection can be obtained without laminating a diffusion layer having a low oil repellency that diffuses a liquid organic chemical substance. That is, if the protective material is used, excellent liquid resistance can be obtained regardless of the presence or absence of the diffusion layer having a low oil repellency. It has been found that it is not necessary to do so, and it is possible to apply a water-repellent oil-repellent treatment by immersing it in a water-repellent oil-repellent agent without disassembling the protective clothing or the like.

また、従来の防護材料に耐液防護性を付与するためには、特許文献1のように防護シート層、すなわち液遮蔽性能を発現するための層を多層構造にしたり、目付を大きくしたりする必要があり、防護衣等に仕立てたときに、素材の厚みや重量により生理負担が大きくなる問題があった。これに対して本発明では、上記液遮蔽層と外層付加層を積層することにより優れた耐液防護性を発揮するため、素材の厚みや重量が小さい防護材料が得られることを見出した。更に、該防護材料を用いることにより、生理負担の少ない防護衣等を得られることを見出した。 Further, in order to impart liquid protection to the conventional protective material, as in Patent Document 1, the protective sheet layer, that is, the layer for exhibiting liquid shielding performance is made into a multi-layer structure or the basis weight is increased. It is necessary, and there is a problem that the physiological burden becomes large depending on the thickness and weight of the material when it is made into a protective garment or the like. On the other hand, in the present invention, it has been found that a protective material having a small thickness and weight can be obtained because excellent liquid resistance is exhibited by laminating the liquid shielding layer and the outer layer additional layer. Furthermore, it has been found that by using the protective material, protective clothing and the like with less physiological burden can be obtained.

本明細書において、撥水撥油性とは、撥油性、または撥水性および撥油性の性質を意味する。 As used herein, the term "water-repellent and oil-repellent" means oil-repellent properties, or water-repellent and oil-repellent properties.

以下では、まず本発明の防護材料の液遮蔽層について詳細に説明する。 In the following, first, the liquid shielding layer of the protective material of the present invention will be described in detail.

本発明の液遮蔽層とは、液状有機化学物質を遮蔽する層である。本発明の液遮蔽層は、繊維状物からなり、平均単繊維直径が0.5~10μmの繊維から構成され、且つ、AATCC試験法118-2002による撥油度:5.5級以上、最大細孔径:1.0~100μmを満たすものである。 The liquid shielding layer of the present invention is a layer that shields a liquid organic chemical substance. The liquid shielding layer of the present invention is made of a fibrous material, is composed of fibers having an average single fiber diameter of 0.5 to 10 μm, and has an oil repellency according to the AATCC test method 118-2002: 5.5 grade or higher, maximum. Pore diameter: 1.0 to 100 μm is satisfied.

本発明の液遮蔽層の下記の各特性の数値は、後述する内層付加層や外層付加層、保護層、接着層等を積層する場合には、内層付加層や外層付加層、保護層、接着層等を除いた数値である。 When the inner layer additional layer, the outer layer additional layer, the protective layer, the adhesive layer, etc., which will be described later, are laminated, the numerical values of the following characteristics of the liquid shielding layer of the present invention indicate the inner layer additional layer, the outer layer additional layer, the protective layer, and the adhesive. It is a numerical value excluding layers and the like.

本発明の液遮蔽層は、AATCC試験法118-2002による撥油度:5.5級以上とする。上記撥油度は高い程、耐液防護性は向上する。一方、上記撥油度が5.5級を下回ると耐液防護性が低下する。そのため、好ましくは6級以上、より好ましくは6.5級以上、更に好ましくは7級以上、最も好ましくは8級である。 The liquid shielding layer of the present invention has an oil repellency of 5.5 grade or higher according to the AATCC test method 118-2002. The higher the oil repellency, the better the liquid protection. On the other hand, if the oil repellency is lower than 5.5 grade, the liquid protection property is lowered. Therefore, it is preferably 6th grade or higher, more preferably 6.5 grade or higher, further preferably 7th grade or higher, and most preferably 8th grade.

本発明の液遮蔽層を構成する繊維の平均単繊維直径は、0.5~10μmとする。平均単繊維直径を上記範囲内にすることにより、防護材料の耐液防護性、通気度、柔軟性のバランスを良好に保ち、特に被服に適した防護材料が得られる。更に、上記範囲内であれば、優れた粒子除去性も付与することができる。詳細には、平均単繊維直径が0.5μmを下回ると液遮蔽層の間隙が少なくなり、防護材料の通気性が悪くなるため、防護衣等に仕立てたときに着用者の不快感が増す。また、平均単繊維直径が10μmを上回ると、液遮蔽層の間隙が多くなり、防護材料の耐液防護性が十分に発揮されず、液状有機化学物質が防護材料を透過するおそれがある。更に、平均単繊維直径が大きくなると柔軟性が低下する。平均単繊維直径は、好ましくは0.6~8μmであり、より好ましくは0.7~5μmである。 The average single fiber diameter of the fibers constituting the liquid shielding layer of the present invention is 0.5 to 10 μm. By keeping the average single fiber diameter within the above range, a protective material that is particularly suitable for clothing can be obtained by maintaining a good balance between liquid resistance, air permeability, and flexibility of the protective material. Further, if it is within the above range, excellent particle removability can be imparted. Specifically, when the average single fiber diameter is less than 0.5 μm, the gap between the liquid shielding layers is reduced and the air permeability of the protective material is deteriorated, so that the wearer feels uncomfortable when the protective material is made into a protective garment or the like. Further, if the average single fiber diameter exceeds 10 μm, the gaps in the liquid shielding layer increase, the liquid protective property of the protective material is not sufficiently exhibited, and the liquid organic chemical substance may permeate the protective material. Further, as the average single fiber diameter increases, the flexibility decreases. The average single fiber diameter is preferably 0.6 to 8 μm, more preferably 0.7 to 5 μm.

本発明の液遮蔽層を構成する繊維の融点は170℃以上であるのが好ましい。これにより、上記繊維に後述するキュアリングを150℃以上の高温域で施すことが可能となり、十分な撥水撥油性を付与することができるからである。繊維の融点は高い程よく、好ましくは180℃以上、より好ましくは190℃以上である。融点の上限は特に限定されないが、好ましくは280℃以下である。 The melting point of the fibers constituting the liquid shielding layer of the present invention is preferably 170 ° C. or higher. This makes it possible to apply the curing described below to the fiber in a high temperature range of 150 ° C. or higher, and it is possible to impart sufficient water and oil repellency. The higher the melting point of the fiber, the better, preferably 180 ° C. or higher, and more preferably 190 ° C. or higher. The upper limit of the melting point is not particularly limited, but is preferably 280 ° C. or lower.

本発明の液遮蔽層の最大細孔径は、後述する実施例に示す方法で測定される。液遮蔽層の最大細孔径は、好ましくは1.0~100μmとする。最大細孔径の下限を1.0μm以上とすることにより、通気度を確保し易くなる。最大細孔径の下限は、好ましくは2μm以上、より好ましくは5μm以上、更に好ましくは10μm以上である。一方、液遮蔽層の最大細孔径の上限を100μm以下とすることにより、上記撥水撥油性を有効に発揮することができ、耐液防護性を向上させることができる。最大細孔径の上限は、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは25μm以下である。 The maximum pore diameter of the liquid shielding layer of the present invention is measured by the method shown in Examples described later. The maximum pore diameter of the liquid shielding layer is preferably 1.0 to 100 μm. By setting the lower limit of the maximum pore diameter to 1.0 μm or more, it becomes easy to secure the air permeability. The lower limit of the maximum pore diameter is preferably 2 μm or more, more preferably 5 μm or more, still more preferably 10 μm or more. On the other hand, by setting the upper limit of the maximum pore diameter of the liquid shielding layer to 100 μm or less, the above water and oil repellency can be effectively exhibited, and the liquid protection can be improved. The upper limit of the maximum pore diameter is preferably 40 μm or less, more preferably 30 μm or less, still more preferably 25 μm or less.

本発明の液遮蔽層の目付は、好ましくは5~50g/m2とする。液遮蔽層の目付が上記範囲内であれば、防護材料の耐液防護性と通気度のバランスを維持することができる。更に、積層後の防護材料が分厚くなり過ぎず、防護衣等に仕立てたときに軽量性や運動追従性を損なわないため、着用者の負担を軽減できる。更に、上記範囲内であれば、優れた粒子除去性を付与することができる。目付は、より好ましくは7~47g/m2、更に好ましくは10~43g/m2である。 The basis weight of the liquid shielding layer of the present invention is preferably 5 to 50 g / m 2 . When the basis weight of the liquid shielding layer is within the above range, the balance between the liquid protection of the protective material and the air permeability can be maintained. Further, the protective material after laminating does not become too thick, and the lightness and motion followability are not impaired when the protective material is made into a protective clothing or the like, so that the burden on the wearer can be reduced. Further, if it is within the above range, excellent particle removability can be imparted. The basis weight is more preferably 7 to 47 g / m 2 , still more preferably 10 to 43 g / m 2 .

本発明の液遮蔽層の通気度は、好ましくは5~35cm3/cm2・secとする。上記範囲内であれば、防護材料の通気度を適正な範囲に調整できる。より好ましくは7~34cm3/cm2・sec、更に好ましくは8~32cm3/cm2・secである。 The air permeability of the liquid shielding layer of the present invention is preferably 5 to 35 cm 3 / cm 2 · sec. Within the above range, the air permeability of the protective material can be adjusted to an appropriate range. It is more preferably 7 to 34 cm 3 / cm 2 · sec, and even more preferably 8 to 32 cm 3 / cm 2 · sec.

本発明の液遮蔽層の撥水度は、JIS L1092(2009)7.2に記載の撥水度試験で、好ましくは2級以上とする。上記範囲内であれば、有機系以外の液状化学物質も浸透しにくくなる。上記撥水度は、より好ましくは4級以上、最も好ましくは5級である。 The water repellency of the liquid shielding layer of the present invention is preferably grade 2 or higher in the water repellency test described in JIS L1092 (2009) 7.2. Within the above range, it becomes difficult for liquid chemical substances other than organic substances to penetrate. The water repellency is more preferably 4th grade or higher, and most preferably 5th grade.

本発明の液遮蔽層の厚さは、好ましくは0.1~500μmとする。液遮蔽層の厚さを上記範囲内にすることにより、防護材料の耐液防護性、通気性、強度、柔軟性のバランスを良好なものにできる。上記厚さは、より好ましくは0.5~400μmである。 The thickness of the liquid shielding layer of the present invention is preferably 0.1 to 500 μm. By setting the thickness of the liquid shielding layer within the above range, the balance of liquid protection, air permeability, strength and flexibility of the protective material can be improved. The thickness is more preferably 0.5 to 400 μm.

本発明の液遮蔽層は繊維状物からなる。繊維状物は、好ましくは織物、編物、または不織布であり、より好ましくは不織布である。不織布であれば、優れた耐液防護性を付与できると共に、柔軟性と伸長性のバランスが良いため、防護服として仕立てたときに、着用者の作業性を確保でき、着用者のストレスを軽減することができる。更に、不織布であれば、優れた粒子除去性を付与することができる。 The liquid shielding layer of the present invention is made of a fibrous material. The fibrous material is preferably a woven fabric, a knitted fabric, or a non-woven fabric, and more preferably a non-woven fabric. Non-woven fabrics can provide excellent liquid resistance and have a good balance between flexibility and extensibility, so when tailored as protective clothing, the wearer's workability can be ensured and the wearer's stress is reduced. can do. Further, if it is a non-woven fabric, excellent particle removability can be imparted.

不織布形状の液遮蔽層を形成する方法は、特に限定されるものではないが、例えば、メルトブローン法、湿式法、乾式法、スパンボンド法、フラッシュ紡糸法、エレクトロスピニング法、複合繊維分割法等が挙げられる。適度な通気度を与え、かつ、得られる不織布の繊維径が小さく耐液防護性が良好なことから、メルトブローン法及びエレクトロスピニング法が好ましい。 The method for forming the liquid-shielding layer in the form of a non-woven fabric is not particularly limited, and examples thereof include a meltblown method, a wet method, a dry method, a spunbond method, a flash spinning method, an electrospinning method, and a composite fiber splitting method. Can be mentioned. The melt-blown method and the electrospinning method are preferable because they provide appropriate air permeability, the fiber diameter of the obtained non-woven fabric is small, and the liquid resistance is good.

なお、エレクトロスピニング法とは、溶融紡糸法の一種であり、具体的には、ポリマー溶液に正の電荷を与え、正電荷を与えられたポリマー溶液をアースまたは負に帯電した基盤表面にスプレーされる工程でポリマーを繊維化する手法をいう。 The electrospinning method is a kind of melt spinning method. Specifically, a positive charge is given to a polymer solution, and the positively charged polymer solution is sprayed on the ground or negatively charged substrate surface. A method of fiberizing a polymer in a process.

本発明の液遮蔽層を構成する繊維としては、熱可塑性樹脂の繊維が挙げられ、好ましくはナイロン6、ナイロン66等のポリアミド繊維;ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維等のポリエステル繊維;ポリウレタン繊維等の合成繊維;ポリフェニレンスルフィド繊維;等である。これらの繊維は複数を混紡・混綿して使用してもよい。 Examples of the fiber constituting the liquid shielding layer of the present invention include fiber of thermoplastic resin, preferably polyamide fiber such as nylon 6 and nylon 66; polyester fiber such as polyethylene terephthalate fiber and polybutylene terephthalate fiber; polyurethane fiber and the like. Synthetic fiber; polyphenylene sulfide fiber; etc. A plurality of these fibers may be blended or cotton-blended and used.

本発明の液遮蔽層を構成する繊維は、防護材料の柔軟性の観点からは、ポリウレタン繊維が好ましく、耐熱性の観点からはポリアミド繊維、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリフェニレンスルフィド繊維が好ましい。 As the fiber constituting the liquid shielding layer of the present invention, polyurethane fiber is preferable from the viewpoint of flexibility of the protective material, and polyamide fiber, polyethylene terephthalate fiber, polybutylene terephthalate fiber, and polyphenylene sulfide fiber are preferable from the viewpoint of heat resistance. ..

上記のとおり、本発明の液遮蔽層は、同一種の素材から形成してもよく、または異なる素材を複数用いて形成してもよい。 As described above, the liquid shielding layer of the present invention may be formed from the same kind of material, or may be formed by using a plurality of different materials.

本発明の液遮蔽層の撥油度を確保するためには、上記素材等に撥水撥油処理を施す必要がある。撥水撥油処理を施す方法としては、例えば、スプレーにより噴霧する方法、撥水撥油剤を含有する溶液中に浸漬させる方法(以下では含浸加工と呼ぶ場合がある)等が挙げられる。均一に撥水撥油処理を施す観点からは、含浸加工が好ましい。撥水撥油剤としては、フッ素樹脂、シリコン樹脂、ワックス等が挙げられる。 In order to secure the oil repellency of the liquid shielding layer of the present invention, it is necessary to apply a water repellent and oil repellent treatment to the above materials and the like. Examples of the method of applying the water-repellent and oil-repellent treatment include a method of spraying by spraying and a method of immersing in a solution containing a water- and oil-repellent agent (hereinafter, may be referred to as impregnation processing). From the viewpoint of uniformly applying water and oil repellent treatment, impregnation processing is preferable. Examples of the water-repellent and oil-repellent agent include fluororesin, silicone resin, and wax.

例えば、含浸加工を行う場合の好ましい態様は、以下の通りである。 For example, the preferred embodiment in the case of performing the impregnation process is as follows.

液遮蔽層の素材を、撥水撥油剤に浸した後、脱水し、乾燥して、高温域でキュアリングを行えばよい。 The material of the liquid shielding layer may be immersed in a water-repellent oil-repellent agent, dehydrated, dried, and cured in a high temperature range.

撥水撥油剤として、フッ素樹脂、シリコン樹脂、ワックス等を0.6~10wt%含有する溶液を用いることが好ましい。 As the water-repellent and oil-repellent agent, it is preferable to use a solution containing 0.6 to 10 wt% of fluororesin, silicon resin, wax and the like.

撥水撥油剤の添着量は、撥水撥油剤固形分で、0.5~10wt%が好ましい。 The amount of the water-repellent oil-repellent agent attached is preferably 0.5 to 10 wt% in terms of the solid content of the water-repellent oil-repellent agent.

含浸加工は、10~30℃の上記溶液に浸漬後、マングル等でニップ(圧搾)して脱水する方法が挙げられる。 Examples of the impregnation process include a method of immersing in the above solution at 10 to 30 ° C. and then niping (squeezing) with a mangle or the like to dehydrate.

脱水後の乾燥は、100~120℃で1~10分間行うことが好ましい。 Drying after dehydration is preferably performed at 100 to 120 ° C. for 1 to 10 minutes.

乾燥後のキュアリングは、150~185℃で1~5分間行うことが好ましい。これにより、優れた撥水撥油性を付与することができる。 The curing after drying is preferably performed at 150 to 185 ° C. for 1 to 5 minutes. Thereby, excellent water repellency and oil repellency can be imparted.

以上、本発明の液遮蔽層について説明した。 The liquid shielding layer of the present invention has been described above.

本発明の防護材料は、外層付加層と上記の液遮蔽層とをそれぞれ少なくとも1層以上含むものである。外層付加層と上記の液遮蔽層をそれぞれ少なくとも1層以上含んでいれば、公知のいずれの構造でもよい。例えば、本発明の防護材料は、ガス吸着層を積層したものであってもよい。更に、本発明の防護材料は、別の層を積層させることも可能であり、例えば、内層付加層、ガス吸着層、液遮蔽層、および外層付加層がこの順に積層されたものであってもよい。 The protective material of the present invention contains at least one layer each of the outer layer additional layer and the above-mentioned liquid shielding layer. Any known structure may be used as long as it contains at least one outer layer additional layer and at least one of the above liquid shielding layers. For example, the protective material of the present invention may be a laminated gas adsorption layer. Further, the protective material of the present invention can be laminated with another layer, for example, even if the inner layer additional layer, the gas adsorption layer, the liquid shielding layer, and the outer layer additional layer are laminated in this order. good.

上記各層について詳細を説明する。 The details of each of the above layers will be described.

外層付加層は、外部からの機械的な力から液遮蔽層等を保護するための層である。外層付加層によって、外部からの機械的な力を軽減することによって耐液防護性を向上させることができる。更に、外層付加層に撥水撥油性を付与すると、液状化学物質に対する耐液防護性をより一層、向上させることができる。一方、外層付加層の撥水撥油性が低い場合でも、毛管現象によって液状化学物質を拡散させることにより、防護材料の耐液防護性を向上させることができる。そのため、本発明の防護材料は、外層付加層を含む。 The outer layer additional layer is a layer for protecting the liquid shielding layer and the like from external mechanical forces. The liquid addition layer can improve the liquid resistance by reducing the mechanical force from the outside. Further, by imparting water and oil repellency to the outer layer additional layer, the liquid protection against liquid chemical substances can be further improved. On the other hand, even when the water and oil repellency of the outer layer additional layer is low, the liquid chemical resistance of the protective material can be improved by diffusing the liquid chemical substance by the capillary phenomenon. Therefore, the protective material of the present invention includes an outer layer additional layer.

本発明の防護材料の外層付加層は、最大細孔径が1.0~1000μmの細孔を有している。なお、最大細孔径は、後述する実施例に示す方法で測定される。外層付加層の最大細孔径の下限を1.0μm以上とすることにより、防護材料の通気度を確保し易くなる。最大細孔径の下限は、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは50μm以上である。一方、外層付加層の最大細孔径の上限を1000μm以下とすることにより、外部からの機械的な力を軽減することができ、液遮蔽層等を保護しつつ耐液防護性を向上させることができる。最大細孔径の上限は、好ましくは700μm以下、より好ましくは250μm以下、更に好ましくは210μm以下である。 The outer layer additional layer of the protective material of the present invention has pores having a maximum pore diameter of 1.0 to 1000 μm. The maximum pore diameter is measured by the method shown in Examples described later. By setting the lower limit of the maximum pore diameter of the outer layer additional layer to 1.0 μm or more, it becomes easy to secure the air permeability of the protective material. The lower limit of the maximum pore diameter is preferably 5 μm or more, more preferably 10 μm or more, still more preferably 50 μm or more. On the other hand, by setting the upper limit of the maximum pore diameter of the outer layer additional layer to 1000 μm or less, it is possible to reduce the mechanical force from the outside and improve the liquid resistance while protecting the liquid shielding layer and the like. can. The upper limit of the maximum pore diameter is preferably 700 μm or less, more preferably 250 μm or less, still more preferably 210 μm or less.

外層付加層の最大細孔径は、液遮蔽層の最大細孔径よりも大きいことが好ましい。これにより、外層付加層では液状化学物質を拡散して、液遮蔽層では液状化学物質の透過を防ぐという役割分担をすることができ、耐液防護性を向上させ易くすることができる。更に、防護材料の通気性を確保し易くすることができる。 The maximum pore diameter of the outer layer additional layer is preferably larger than the maximum pore diameter of the liquid shielding layer. As a result, the liquid chemical substance can be diffused in the outer layer additional layer, and the role of preventing the liquid chemical substance from permeating in the liquid shielding layer can be shared, and the liquid protection can be easily improved. Further, it is possible to easily secure the air permeability of the protective material.

外層付加層の撥油度は、AATCC試験法118-2002で、好ましくは2級以上、より好ましくは4級以上、更に好ましくは6級以上、最も好ましくは8級である。外層付加層に撥油性を付与すると、有機系の液状化学物質が浸透しにくくなる。 The oil repellency of the outer layer addition layer is preferably 2nd grade or higher, more preferably 4th grade or higher, further preferably 6th grade or higher, and most preferably 8th grade according to the AATCC test method 118-2002. When oil repellency is imparted to the outer layer additional layer, it becomes difficult for organic liquid chemical substances to permeate.

外層付加層の撥水度は、JIS L1092(2009)7.2に記載の撥水度試験で、好ましくは2級以上、より好ましくは4級以上、最も好ましくは5級である。上記範囲内であれば、有機系以外の液状化学物質も浸透しにくくなる。 The water repellency of the outer layer additional layer is preferably 2nd grade or higher, more preferably 4th grade or higher, and most preferably 5th grade in the water repellency test described in JIS L1092 (2009) 7.2. Within the above range, it becomes difficult for liquid chemical substances other than organic substances to penetrate.

外層付加層は繊維状物であるのが好ましく、繊維状物である場合、外層付加層を構成する繊維の平均単繊維直径は、好ましくは0.5~600μmとする。平均単繊維直径の下限を0.5μm以上とすることにより、防護材料の通気度を確保することができる。平均単繊維直径の下限は、好ましくは0.7μm以上、より好ましくは5μm以上、更に好ましくは10μm以上である。一方、平均単繊維直径の上限を600μm以下とすることにより、耐液防護性を向上させることができる。平均単繊維直径の上限は、好ましくは400μm以下、より好ましくは260μm以下、更に好ましくは215μm以下である。 The outer layer additional layer is preferably a fibrous material, and when it is a fibrous material, the average single fiber diameter of the fibers constituting the outer layer additional layer is preferably 0.5 to 600 μm. By setting the lower limit of the average single fiber diameter to 0.5 μm or more, the air permeability of the protective material can be ensured. The lower limit of the average single fiber diameter is preferably 0.7 μm or more, more preferably 5 μm or more, still more preferably 10 μm or more. On the other hand, by setting the upper limit of the average single fiber diameter to 600 μm or less, the liquid protection can be improved. The upper limit of the average single fiber diameter is preferably 400 μm or less, more preferably 260 μm or less, still more preferably 215 μm or less.

本発明の外層付加層を構成する繊維は、熱可塑性樹脂の繊維であることが好ましく、融点は、好ましくは170℃以上とする。これにより、上記繊維に後述するキュアリングを150℃以上の高温域で施すことが可能となり、十分な撥水撥油性を付与することができる。融点は高い程よく、より好ましくは180℃以上、更に好ましくは190℃以上である。融点の上限は特に限定されないが、好ましくは280℃以下である。 The fiber constituting the outer layer additional layer of the present invention is preferably a fiber made of a thermoplastic resin, and the melting point is preferably 170 ° C. or higher. This makes it possible to apply the curing described below to the fiber in a high temperature range of 150 ° C. or higher, and it is possible to impart sufficient water and oil repellency. The higher the melting point, the better, more preferably 180 ° C. or higher, still more preferably 190 ° C. or higher. The upper limit of the melting point is not particularly limited, but is preferably 280 ° C. or lower.

外層付加層の目付は、好ましくは5~200g/m2とする。外層付加層の目付の下限を5g/m2以上とすることにより、外部からの機械的な力を軽減することができ、液遮蔽層等を保護しつつ耐液防護性を向上させることができる。外層付加層の目付の下限は、好ましくは5g/m2以上、より好ましくは10g/m2以上、更に好ましくは13g/m2以上、更により好ましくは15g/m2以上、最も好ましくは17g/m2以上である。一方、外層付加層の目付の上限を200g/m2以下とすることにより、積層後の防護材料が分厚くなり過ぎず、防護衣等に仕立てたときに軽量性や運動追従性を損なわないため、着用者の負担を軽減できる。外層付加層の目付の上限は、好ましくは200g/m2以下、より好ましくは170g/m2以下、更に好ましくは150g/m2以下、更により好ましくは120g/m2以下、最も好ましくは75g/m2以下である。 The basis weight of the outer layer additional layer is preferably 5 to 200 g / m 2 . By setting the lower limit of the basis weight of the outer layer additional layer to 5 g / m 2 or more, it is possible to reduce the mechanical force from the outside and improve the liquid resistance while protecting the liquid shielding layer and the like. .. The lower limit of the basis weight of the outer layer additional layer is preferably 5 g / m 2 or more, more preferably 10 g / m 2 or more, still more preferably 13 g / m 2 or more, still more preferably 15 g / m 2 or more, and most preferably 17 g / m / or more. It is m 2 or more. On the other hand, by setting the upper limit of the basis weight of the outer layer additional layer to 200 g / m 2 or less, the protective material after lamination does not become too thick, and the lightness and motion followability are not impaired when tailored to a protective garment or the like. The burden on the wearer can be reduced. The upper limit of the basis weight of the outer layer additional layer is preferably 200 g / m 2 or less, more preferably 170 g / m 2 or less, still more preferably 150 g / m 2 or less, still more preferably 120 g / m 2 or less, and most preferably 75 g / m / or less. It is less than m 2 .

外層付加層の通気度は、好ましくは5~800cm3/cm2・secとする。外層付加層の通気度の下限を5cm3/cm2・sec以上とすることにより、防護材料の通気度を適正な範囲に調整できる。外層付加層の通気度の下限は、好ましくは5cm3/cm2・sec以上、より好ましくは120cm3/cm2・sec以上、更に好ましくは160cm3/cm2・sec以上、更により好ましくは250cm3/cm2・sec以上である。一方、外層付加層の通気度の上限を800cm3/cm2・sec以下とすることにより、耐液防護性を発揮し易くなる。外層付加層の通気度の上限は、好ましくは700cm3/cm2・sec以下、より好ましくは620cm3/cm2・sec以下である。 The air permeability of the outer layer additional layer is preferably 5 to 800 cm 3 / cm 2 · sec. By setting the lower limit of the air permeability of the outer layer additional layer to 5 cm 3 / cm 2 · sec or more, the air permeability of the protective material can be adjusted within an appropriate range. The lower limit of the air permeability of the outer layer additional layer is preferably 5 cm 3 / cm 2 · sec or more, more preferably 120 cm 3 / cm 2 · sec or more, still more preferably 160 cm 3 / cm 2 · sec or more, still more preferably 250 cm. It is 3 / cm 2 · sec or more. On the other hand, by setting the upper limit of the air permeability of the outer layer additional layer to 800 cm 3 / cm 2 · sec or less, it becomes easy to exhibit liquid resistance. The upper limit of the air permeability of the outer layer additional layer is preferably 700 cm 3 / cm 2 · sec or less, and more preferably 620 cm 3 / cm 2 · sec or less.

外層付加層の厚さは、好ましくは0.1~1000μmとする。外層付加層の厚さの下限を0.1μm以上とすることにより、外部からの機械的な力を軽減することができ、液遮蔽層等を保護しつつ耐液防護性を向上させることができる。外層付加層の厚さの下限は、好ましくは0.5μm以上、より好ましくは10μm以上、更により好ましくは100μm以上である。一方、外層付加層の厚さの上限を1000μm以下とすることにより、防護材料の耐液防護性、通気度、強度、柔軟性のバランスを良好なものにできる。外層付加層の厚さの上限は、好ましくは800μm以下、より好ましくは600μm以下、更に好ましくは400μm以下である。 The thickness of the outer layer additional layer is preferably 0.1 to 1000 μm. By setting the lower limit of the thickness of the outer layer additional layer to 0.1 μm or more, it is possible to reduce the mechanical force from the outside and improve the liquid resistance while protecting the liquid shielding layer and the like. .. The lower limit of the thickness of the outer layer additional layer is preferably 0.5 μm or more, more preferably 10 μm or more, and even more preferably 100 μm or more. On the other hand, by setting the upper limit of the thickness of the outer layer additional layer to 1000 μm or less, the balance between the liquid protection property, the air permeability, the strength, and the flexibility of the protective material can be improved. The upper limit of the thickness of the outer layer additional layer is preferably 800 μm or less, more preferably 600 μm or less, and further preferably 400 μm or less.

外層付加層は、繊維状物であるのが好ましい。繊維状物は、織物、編物、不織布等が好ましく、柔軟性を考慮したものが推奨される。耐液防護性を向上の観点からは、不織布が好ましい。不織布は、スパンポンド不織布、スパンレース不織布、メルトブローン不織布等が挙げられる。耐液防護性を向上し、かつ液遮蔽層の強度を補強するという観点からは、スパンポンド不織布、スパンレース不織布が好ましい。 The outer layer additional layer is preferably a fibrous material. As the fibrous material, woven fabrics, knitted fabrics, non-woven fabrics and the like are preferable, and those in consideration of flexibility are recommended. Nonwoven fabric is preferable from the viewpoint of improving liquid resistance protection. Examples of the non-woven fabric include spunpond non-woven fabric, spunlace non-woven fabric, melt-blown non-woven fabric and the like. From the viewpoint of improving liquid resistance protection and reinforcing the strength of the liquid shielding layer, spunpond non-woven fabric and spunlace non-woven fabric are preferable.

外層付加層が繊維状物である場合、形成する方法は、メルトブローン法、湿式法、乾式法、スパンボンド法、フラッシュ紡糸法、エレクトロスピニング法、複合繊維分割法等により形成すれば良い。例えば、適度な通気度と柔軟性、強度を与えることから、乾式法、スパンボンド法、フラッシュ紡糸法が好ましい。 When the outer layer additional layer is a fibrous material, it may be formed by a meltblown method, a wet method, a dry method, a spunbond method, a flash spinning method, an electrospinning method, a composite fiber splitting method or the like. For example, a dry method, a spunbond method, and a flash spinning method are preferable because they provide appropriate air permeability, flexibility, and strength.

外層付加層を構成する素材は、特に限定されず、液遮蔽層と同様の素材を使用してもよい。外層付加層を構成する素材は、防護材料の柔軟性の観点からは、ポリウレタン繊維が好ましく、耐熱性の観点からはポリアミド繊維、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリフェニレンスルフィド繊維が好ましい。また、外層付加層は、同一種の素材から形成してもよく、または異なる素材を複数用いて形成してもよい。 The material constituting the outer layer additional layer is not particularly limited, and the same material as the liquid shielding layer may be used. As the material constituting the outer layer additional layer, polyurethane fiber is preferable from the viewpoint of flexibility of the protective material, and polyamide fiber, polyethylene terephthalate fiber, polybutylene terephthalate fiber, and polyphenylene sulfide fiber are preferable from the viewpoint of heat resistance. Further, the outer layer additional layer may be formed from the same kind of material, or may be formed by using a plurality of different materials.

外層付加層の撥油度を確保するためには、液遮蔽層と同様に撥水撥油処理を施せばよい。 In order to secure the oil repellency of the outer layer additional layer, a water repellent and oil repellent treatment may be applied in the same manner as the liquid shielding layer.

内層付加層は、防護衣等の着用者の汗によるべたつき感を抑制する層である。更に、内層付加層を含むことにより外力に対して強くなる。そのため、本発明の防護材料は、内層付加層を含むことが好ましい。 The inner layer additional layer is a layer that suppresses the sticky feeling due to sweat of the wearer such as protective clothing. Further, by including the inner layer additional layer, it becomes stronger against external force. Therefore, the protective material of the present invention preferably contains an inner layer additional layer.

内層付加層の素材は、織物、編物、不織布、開孔フィルム等が挙げられる。通気性、柔軟性等の観点からは、粗い密度で製織、製編された織物または編物が好ましい。 Examples of the material of the inner layer additional layer include woven fabrics, knitted fabrics, non-woven fabrics, and perforated films. From the viewpoint of breathability, flexibility and the like, a woven or knitted fabric or knitted fabric having a coarse density is preferable.

ガス吸着層は、ガスに対する防護性を付与する層である。そのため、本発明の防護材料は、ガス吸着層を含むことが好ましい。 The gas adsorption layer is a layer that imparts protection against gas. Therefore, the protective material of the present invention preferably contains a gas adsorption layer.

ガス吸着層は、ガス吸着性能の観点からは、活性炭やゼオライト等からなるガス吸着材が挙げられる。そのうち、吸着性能に優れる繊維状活性炭布であることが好ましい。 As the gas adsorption layer, a gas adsorbent made of activated carbon, zeolite or the like can be mentioned from the viewpoint of gas adsorption performance. Of these, a fibrous activated carbon cloth having excellent adsorption performance is preferable.

内層付加層、ガス吸着層、液遮蔽層、および外層付加層は、接着剤により接着しても良いし、柔軟性を考慮し、接着せずに重ね合わせた状態で縫製加工してもよい。 The inner layer additional layer, the gas adsorption layer, the liquid shielding layer, and the outer layer additional layer may be adhered by an adhesive, or may be sewn in a state of being overlapped without being adhered in consideration of flexibility.

例えば、予め内層付加層とガス吸着層をキルティング加工した後、その積層体に液遮蔽層および外層付加層を接着剤により接着してもよい。 For example, the inner layer additional layer and the gas adsorption layer may be quilted in advance, and then the liquid shielding layer and the outer layer additional layer may be adhered to the laminated body with an adhesive.

キルティング加工は、従来公知の方法を採用することができ、ポリエステル、ナイロン、綿等のミシン糸を使用することが好ましい。なお、キルティング加工の縫い目に耐液防護性を付与するために、ミシン糸に撥水撥油性を付与してもよい。 For the quilting process, a conventionally known method can be adopted, and it is preferable to use a sewing thread such as polyester, nylon or cotton. In addition, in order to impart liquid resistance to the seams of the quilting process, water and oil repellency may be imparted to the sewing thread.

内層付加層、ガス吸着層、液遮蔽層、および外層付加層はそれぞれ1層に限らず、必要に応じてそれぞれ2層以上設けてもよい。 The inner layer additional layer, the gas adsorption layer, the liquid shielding layer, and the outer layer additional layer are not limited to one layer each, and two or more layers may be provided as needed.

なお、本発明の防護材料においては、内層付加層、ガス吸着層、液遮蔽層、および外層付加層以外の他の層を積層させることも可能である。 In the protective material of the present invention, it is also possible to laminate layers other than the inner layer additional layer, the gas adsorption layer, the liquid shielding layer, and the outer layer additional layer.

例えば、本発明の液遮蔽層の強度を補強するために、液遮蔽層の片面または両面に基材(以下では、保護層と称する場合がある)を積層させてもよい。 For example, in order to reinforce the strength of the liquid shielding layer of the present invention, a base material (hereinafter, may be referred to as a protective layer) may be laminated on one side or both sides of the liquid shielding layer.

保護層の通気度は、液遮蔽層の通気性能を損なわないために、好ましくは100cm3/cm2・sec以上、より好ましくは150cm3/cm2・sec以上とする。保護層の通気度の上限は限定されないが、例えば、600cm3/cm2・sec以下が好ましく、500cm3/cm2・sec以下がより好ましい。 The air permeability of the protective layer is preferably 100 cm 3 / cm 2 · sec or more, more preferably 150 cm 3 / cm 2 · sec or more so as not to impair the air permeability of the liquid shielding layer. The upper limit of the air permeability of the protective layer is not limited, but for example, 600 cm 3 / cm 2 · sec or less is preferable, and 500 cm 3 / cm 2 · sec or less is more preferable.

また、保護層の厚さは、好ましくは0.05~0.7mmとする。保護層の厚さを上記範囲内にすることにより、基材としての剛性と柔軟性のバランスを良好なものにできる。 The thickness of the protective layer is preferably 0.05 to 0.7 mm. By keeping the thickness of the protective layer within the above range, the balance between rigidity and flexibility as a base material can be improved.

保護層は、その形態は特に限定されないが、例えば、シート状の繊維状物、多孔フィルム、多孔膜等が挙げられる。 The form of the protective layer is not particularly limited, and examples thereof include a sheet-like fibrous material, a porous film, and a porous film.

保護層が繊維状物である場合、特に限定されないが、例えば、織物、編物、レース、網、不織布等の各種繊維状物が挙げられる。また、保護層の繊維状物は、液遮蔽層の素材の欄で挙げた各種繊維から形成されることが好ましい。これらの繊維は、単独で使用してもよく、混紡、混綿、交絡、交編して使用してもよい。 When the protective layer is a fibrous material, the present invention is not particularly limited, and examples thereof include various fibrous materials such as woven fabrics, knitted fabrics, laces, nets, and non-woven fabrics. Further, the fibrous material of the protective layer is preferably formed from various fibers listed in the column of the material of the liquid shielding layer. These fibers may be used alone or may be blended, cotton blended, entangled or knitted together.

また、保護層の多孔フィルム、または保護層の多孔膜を形成する樹脂としては、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、共重合ポリエステル、ポリウレタン、ポリエーテルポリウレタン、アクリレート等が挙げられる。これらの樹脂は単独で使用してもよく、混合あるいは順にコーティングすることにより積層構造としてもよい。 Examples of the resin forming the porous film of the protective layer or the porous film of the protective layer include polyethylene, polypropylene, polytetrafluoroethylene, copolymerized polyester, polyurethane, polyether polyurethane, and acrylate. These resins may be used alone, or may be mixed or coated in order to form a laminated structure.

液遮蔽層と保護層とを複合化する方法としては、例えば、液遮蔽層と保護層との間を、接着層を介して固定する方法が挙げられる。複合化方法としては、(1)ポリウレタン系接着剤、アクリル酸エステル系エマルジョン等に代表される各種化学系接着剤を液遮蔽層と保護層との間に塗工することによりこれらを貼り合わせて複合化する方法、(2)熱可塑性樹脂層(繊維状物、網状体、粉体、フィルム)を介して、液遮蔽層と保護層とを熱接着する方法、(3)液遮蔽層と保護層とを熱融着により複合化する方法等が例示できる。 As a method of combining the liquid shielding layer and the protective layer, for example, a method of fixing between the liquid shielding layer and the protective layer via an adhesive layer can be mentioned. As a compounding method, (1) various chemical adhesives typified by polyurethane adhesives, acrylic acid ester adhesives, etc. are applied between the liquid shielding layer and the protective layer, and these are bonded together. A method of compounding, (2) a method of thermally adhering a liquid shielding layer and a protective layer via a thermoplastic resin layer (fibrous material, network, powder, film), (3) a liquid shielding layer and protection. An example is an example of a method of forming a composite with a layer by heat fusion.

上記複合化方法(1)により液遮蔽層と保護層との間を複合化する場合は、液遮蔽層の通気度低下を防止し、かつ、防護材料の柔軟性を確保するために、化学系接着剤はドット状に部分接着することが好ましい。 When the liquid shielding layer and the protective layer are composited by the compounding method (1), a chemical system is used in order to prevent a decrease in the air permeability of the liquid shielding layer and to secure the flexibility of the protective material. The adhesive is preferably partially bonded in a dot shape.

上記複合化方法(2)により液遮蔽層と保護層との間を複合化する場合は、熱可塑性樹脂として、例えば、低融点の共重合ポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂等が例示できる。また、熱可塑性樹脂からなる繊維状物を介して複合化する場合、保護層の繊維状物は、目付が5~30g/m2程度と低いことが好ましい。特に、保護層の繊維状物として不織布を使用することにより、接着層を均一の厚さにすることができるため好ましい。これにより、接着剤を塗布する場合に比べ、接着剤の斑が少なくなるため、通気性や吸着性能に劣る箇所が生じにくくなる。 When the liquid shielding layer and the protective layer are composited by the composite method (2), examples of the thermoplastic resin include, for example, a low melting point copolymer polyester resin, a polyamide resin, and a polyolefin resin. Further, when the composite is formed via a fibrous material made of a thermoplastic resin, the fibrous material of the protective layer preferably has a low basis weight of about 5 to 30 g / m 2 . In particular, it is preferable to use a non-woven fabric as the fibrous material of the protective layer because the adhesive layer can have a uniform thickness. As a result, the number of spots on the adhesive is reduced as compared with the case where the adhesive is applied, so that it is less likely that a portion having poor air permeability and adsorption performance will occur.

上記複合化方法(3)により液遮蔽層と保護層との間を複合化する場合は、熱エンボス加工、超音波融着、高周波融着等が例示できる。液遮蔽層の通気度低下を防止するために、融着部分は少ない方が好ましい。 When the liquid shielding layer and the protective layer are composited by the composite method (3), thermal embossing, ultrasonic fusion, high frequency fusion and the like can be exemplified. In order to prevent a decrease in the air permeability of the liquid shielding layer, it is preferable that the number of fused portions is small.

本発明の防護材料を用いることにより、例えば、液状および粒子状有機化学物質から身体を守る防護衣、防護手袋、防護靴下、防護フード、フィルター、防護天幕、寝袋等が得られる。 By using the protective material of the present invention, for example, protective clothing, protective gloves, protective socks, protective hoods, filters, protective awnings, sleeping bags and the like that protect the body from liquid and particulate organic chemical substances can be obtained.

以上、本発明の防護材料について説明した。 The protective material of the present invention has been described above.

本発明の防護衣は、本発明の防護材料を素材として用いて、従来公知の方法により製造することができる。 The protective clothing of the present invention can be produced by a conventionally known method using the protective material of the present invention as a material.

更に、本発明には、使用済みの本発明の防護衣を、分解せずに撥水撥油剤に浸して、撥水撥油加工を施す工程を含む再生防護衣の製造方法も含まれる。 Further, the present invention also includes a method for manufacturing a recycled protective garment, which comprises a step of immersing a used protective garment of the present invention in a water-repellent oil-repellent agent without disassembling it to perform a water-repellent oil-repellent treatment.

再生防護衣の製造方法は、使用済みの本発明の防護衣を、分解せずに撥水撥油剤に浸して撥水撥油加工を施せばよく、従来公知の方法を採用することができる。 As a method for producing the recycled protective garment, the used protective garment of the present invention may be immersed in a water-repellent oil-repellent agent without being disassembled and subjected to a water-repellent oil-repellent treatment, and a conventionally known method can be adopted.

例えば、含浸加工を行う場合の好ましい態様は、以下のとおりである。 For example, the preferred embodiment in the case of performing the impregnation process is as follows.

使用済みの本発明の防護衣を、分解せずに撥水撥油剤に浸した後、脱水し、乾燥して、高温域でキュアリングを行うことが好ましい。 It is preferable that the used protective clothing of the present invention is immersed in a water-repellent oil-repellent agent without being decomposed, then dehydrated, dried, and cured in a high temperature range.

撥水撥油剤として、フッ素樹脂、シリコン樹脂、ワックス等を0.1~10wt%含有する溶液を用いることが好ましい。 As the water-repellent and oil-repellent agent, it is preferable to use a solution containing 0.1 to 10 wt% of fluororesin, silicon resin, wax and the like.

撥水撥油剤の添着量は、撥水撥油剤固形分で、0.1~10wt%が好ましい。 The amount of the water-repellent oil-repellent agent attached is preferably 0.1 to 10 wt% in terms of the solid content of the water-repellent oil-repellent agent.

含浸加工は、10~30℃で0.5~3分間行い、遠心脱水機等で脱水を1~5分間行うことが好ましい。 The impregnation process is preferably performed at 10 to 30 ° C. for 0.5 to 3 minutes, and dehydration is preferably performed for 1 to 5 minutes using a centrifugal dehydrator or the like.

含浸加工後の乾燥は、100~120℃で10~60分間行うことが好ましい。 Drying after the impregnation process is preferably performed at 100 to 120 ° C. for 10 to 60 minutes.

乾燥後のキュアリングは、110~185℃で5~30分間行うことが好ましい。これにより、優れた撥水撥油性を再度付与することができる。但し、使用済みの防護衣に熱変性し易いプラスティック材料等が含まれる場合には、乾燥後のキュアリングは、110~125℃で5~30分間行うことが好ましい。 The curing after drying is preferably performed at 110 to 185 ° C. for 5 to 30 minutes. Thereby, excellent water repellency and oil repellency can be imparted again. However, when the used protective clothing contains a plastic material or the like that is easily heat-denatured, it is preferable that the curing after drying is performed at 110 to 125 ° C. for 5 to 30 minutes.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples, and can be modified and carried out to the extent that it can meet the purposes of the preceding and the following. Yes, they are all within the technical scope of the invention.

(撥油度)
撥油度は、AATCC Test Method 118-2002に記載の方法に基づいて測定した。すなわち、表1に示した試験溶液を、液遮蔽層の上の5カ所に、それぞれ直径が約5mmになるように約0.6cm上方から滴下した。滴下から30秒後に、目視にて、5滴とも浸透しなかった試験液の最高の等級を撥油度とした。上記浸透しなかったとは、下記A~DのうちAまたはBの状態を意味する。更に、5滴のうち少なくとも3滴が下記Bの状態であった場合は、該等級から-0.5級とした等級を、撥油度とした。
A.滴が十分な丸みを帯びているもの。
B.滴が丸みを帯びているが、滴下部分が部分的に黒ずんでいるもの。
C.ウィッキングが発生および/または完全に浸透しているもの。
D.完全に浸透しているもの。
(Oil repellency)
The degree of oil repellency was measured based on the method described in AATCC Test Method 118-2002. That is, the test solutions shown in Table 1 were dropped onto the liquid shielding layer at five locations from above by about 0.6 cm so that the diameter was about 5 mm. Thirty seconds after the dropping, the highest grade of the test solution that did not permeate even five drops visually was defined as the oil repellency. The above-mentioned non-penetration means the state of A or B among the following A to D. Further, when at least 3 drops out of 5 drops were in the state of B below, the grade from the grade to -0.5 grade was defined as the oil repellency.
A. Drops that are sufficiently rounded.
B. The drops are rounded, but the drops are partially darkened.
C. Wicking has occurred and / or has completely penetrated.
D. Those that are completely infiltrated.

Figure 0007066966000001
Figure 0007066966000001

(平均単繊維直径)
平均単繊維直径は、走査型電子顕微鏡(SEM)にて撮影を行い、2000倍または5000倍のSEM画像に映し出された多数の繊維からランダムに20本の繊維を選び、単繊維直径を測定した。測定した20本の単繊維直径の平均値を算出し、平均単繊維直径とした。
(Average single fiber diameter)
The average single fiber diameter was measured with a scanning electron microscope (SEM), and 20 fibers were randomly selected from a large number of fibers projected on a 2000x or 5000x SEM image, and the single fiber diameter was measured. .. The average value of the measured 20 single fiber diameters was calculated and used as the average single fiber diameter.

(目付)
目付は、JIS L1096(2010)の8.3.2(標準状態における単位面積当たりの質量)に記載の方法に基づいて測定した。
(Metsuke)
The basis weight was measured based on the method described in 8.3.2 (mass per unit area in standard state) of JIS L1096 (2010).

(融点)
融点は、示差走査熱量計DSCを用い、昇温速度20℃/分で測定した。
(Melting point)
The melting point was measured at a heating rate of 20 ° C./min using a differential scanning calorimeter DSC.

(通気度)
通気度は、JIS L1096(2010)の8.26.1 A法(フラジール形法)に記載の方法に基づいて測定した。
(Draftness)
The air permeability was measured based on the method described in 8.26.1 A method (Frazil type method) of JIS L1096 (2010).

(撥水度)
撥水度は、JIS L1092(2009)の7.2 撥水度試験(スプレー試験)に記載の方法に基づいて測定した。以下の基準で撥水度を決定した。
1級.表面全体に湿潤を示すもの。
2級.表面の半分に湿潤を示し、小さな個々の湿潤があるもの。
3級.表面に小さな個々の水滴上の湿潤を示すもの。
4級.表面は湿潤しないが、小さな水滴の付着を示すもの。
5級.表面に湿潤や水滴の付着がないもの。
(Water repellency)
The water repellency was measured based on the method described in 7.2 Water repellency test (spray test) of JIS L1092 (2009). The water repellency was determined based on the following criteria.
First grade. Those that show wetness on the entire surface.
Level 2. Those that show moistness on half of the surface and have small individual moistness.
Level 3 An indication of wetness on a small individual drop of water on the surface.
4th grade. The surface is not wet, but shows the adhesion of small water droplets.
5th grade. No wetting or water droplets on the surface.

(最大細孔径)
最大細孔径は、バブルポイント法(JIS K 3832)に基づき、PMI社製のキャピラリー・フロー・ポロメーター「モデル:CFP-1200AE」を用い、測定サンプル径を20mmとして測定した。バブルポイント圧力における細孔径を求めて、最大細孔径とした。
(Maximum pore diameter)
The maximum pore diameter was measured using a capillary flow poromometer "Model: CFP-1200AE" manufactured by PMI based on the bubble point method (JIS K 3832) with a measurement sample diameter of 20 mm. The pore diameter at the bubble point pressure was determined and used as the maximum pore diameter.

(耐液防護性試験)
耐液防護性試験の説明図を図1に示す。スライドガラス6上にろ紙5を置き、その上に外層付加層3、液遮蔽層4を配置し、試験液2(赤色染料を溶解したフタル酸ジプロピル)10μLを滴下し、試験液2上へおもり1を乗せ加圧(1kg/cm)し、24時間経過後に、ろ紙の呈色の程度により耐液防護性を判定した。呈色なしを、耐液防護性に優れているとして○、呈色ありを、耐液防護性に劣っているとして×と評価した。
(Liquid protection test)
An explanatory diagram of the liquid resistance test is shown in FIG. The filter paper 5 is placed on the slide glass 6, the outer layer additional layer 3 and the liquid shielding layer 4 are placed on the filter paper 6, and 10 μL of the test solution 2 (dipropyl phthalate in which the red dye is dissolved) is dropped and weighted on the test solution 2. 1 was placed and pressurized (1 kg / cm 2 ), and after 24 hours had passed, the liquid resistance was judged by the degree of coloration of the filter paper. No coloration was evaluated as ◯ for excellent liquid protection, and coloration was evaluated as x for inferior liquid protection.

<実施例1>
液遮蔽層として、ポリアミド樹脂からなるメルトブローン不織布(融点250℃、目付10g/m2、平均単繊維直径0.94μm、最大細孔径10.3μm、厚さ120μm、通気度23cm3/cm2・sec)を使用し、5wt%のフッ素系撥水撥油剤(明成化学工業株式会社製 アサヒガード AG 7105)を含む25℃の加工浴に、1分間浸漬して、マングルでニップして脱水し、100℃で2分間乾燥後、170℃で2分間キュアリングを施し、撥水撥油剤固形分で2.5wt%添着させた。このようにして得られた液遮蔽層の撥水度および撥油度を測定した。
<Example 1>
As a liquid shielding layer, a meltblown non-woven fabric made of a polyamide resin (melting point 250 ° C., grain size 10 g / m 2 , average single fiber diameter 0.94 μm, maximum pore diameter 10.3 μm, thickness 120 μm, air permeability 23 cm 3 / cm 2 · sec ), Soaked in a processing bath at 25 ° C. containing 5 wt% fluorine-based water and oil repellent (Asahi Guard AG 7105 manufactured by Meisei Chemical Works, Ltd.) for 1 minute, niped with a mangle to dehydrate, and 100. After drying at ° C. for 2 minutes, the mixture was cured at 170 ° C. for 2 minutes and impregnated with 2.5 wt% of a water-repellent oil-repellent agent solid content. The water repellency and oil repellency of the liquid shielding layer thus obtained were measured.

外層付加層(上層)として、ポリエチレンテレフタレート樹脂からなるスパンボンド法により製造された長繊維のスパンボンド不織布(融点260℃、目付30g/m2、平均単繊維直径11.5μm、最大細孔径115.2μm、厚さ190μm、通気度327cm3/cm2・sec)を使用し、上記メルトブローン不織布と同様に含浸加工、脱水、乾燥、およびキュアリングを施し、撥水撥油剤固形分で2.8wt%添着させた。このようにして得られた外層付加層の撥水度および撥油度を測定した。 As the outer layer additional layer (upper layer), a long fiber spunbonded non-woven fabric (melting point 260 ° C., grain size 30 g / m 2 , average single fiber diameter 11.5 μm, maximum pore diameter 115. 2 μm, thickness 190 μm, air permeability 327 cm 3 / cm 2 · sec), impregnated, dehydrated, dried and cured in the same way as the above melt blown non-woven fabric, and the water and oil repellent solid content is 2.8 wt%. I was attached. The water repellency and oil repellency of the outer layer additional layer thus obtained were measured.

液遮蔽層と外層付加層をこの順に積層し、1インチダイヤ模様にて超音波融着して積層体を得た。次いで、この積層体の耐液防護性を評価した。 The liquid shielding layer and the outer layer additional layer were laminated in this order, and ultrasonically fused in a 1-inch diamond pattern to obtain a laminated body. Next, the liquid protection of this laminated body was evaluated.

<実施例2>
液遮蔽層として、実施例1と同じメルトブローン不織布を使用し、2wt%のフッ素系撥水撥油剤を含む加工浴を用いたこと以外は実施例1と同様に含浸加工、脱水、乾燥、およびキュアリングを施し、撥水撥油剤固形分で1.0wt%添着させた。このようにして得られた液遮蔽層の撥水度および撥油度を測定した。次いで、実施例1に記載の外層付加層を重ねて実施例1と同様の積層方法により得られた積層体の耐液防護性を評価した。
<Example 2>
As the liquid shielding layer, the same melt blown non-woven fabric as in Example 1 was used, and the same as in Example 1 was impregnated, dehydrated, dried, and cured except that a processing bath containing 2 wt% fluorine-based water repellent and oil repellent was used. A ring was applied and 1.0 wt% of the solid content of the water-repellent oil-repellent was impregnated. The water repellency and oil repellency of the liquid shielding layer thus obtained were measured. Next, the liquid-resistant protection of the laminated body obtained by stacking the outer layer additional layers described in Example 1 by the same laminating method as in Example 1 was evaluated.

<実施例3>
液遮蔽層として、ポリブチレンテレフタレート樹脂からなるメルトブローン不織布(融点225℃、目付30g/m2、平均単繊維直径1.93μm、最大細孔径13.8μm、厚さ260μm、通気度32cm3/cm2・sec)を使用し、実施例1と同様に含浸加工、脱水、乾燥、およびキュアリングを施し、撥水撥油剤固形分で2.8wt%添着させた。このようにして得られた液遮蔽層の撥水度および撥油度を測定した。次いで、実施例1に記載の外層付加層を重ねて実施例1と同様の積層方法により得られた積層体の耐液防護性を評価した。
<Example 3>
As a liquid shielding layer, a meltblown non-woven fabric made of polybutylene terephthalate resin (melting point 225 ° C., grain size 30 g / m 2 , average single fiber diameter 1.93 μm, maximum pore diameter 13.8 μm, thickness 260 μm, air permeability 32 cm 3 / cm 2 ). • Using sec), impregnation processing, dehydration, drying, and curing were performed in the same manner as in Example 1, and 2.8 wt% of the solid content of the water-repellent oil-repellent agent was impregnated. The water repellency and oil repellency of the liquid shielding layer thus obtained were measured. Next, the liquid-resistant protection of the laminated body obtained by stacking the outer layer additional layers described in Example 1 by the same laminating method as in Example 1 was evaluated.

<実施例4>
液遮蔽層として、ポリアミド樹脂からなるメルトブローン不織布(融点250℃、目付40g/m2、平均単繊維直径0.94μm、最大細孔径10.3μm、厚さ400μm、通気度8cm3/cm2・sec)を使用し、実施例1と同様に含浸加工、脱水、乾燥、およびキュアリングを施し、撥水撥油剤固形分で2.5wt%添着させた。このようにして得られた液遮蔽層の撥水度および撥油度を測定した。次いで、実施例1に記載の外層付加層を重ねて実施例1と同様の積層方法により得られた積層体の耐液防護性を評価した。
<Example 4>
As a liquid shielding layer, a meltblown non-woven fabric made of a polyamide resin (melting point 250 ° C., grain size 40 g / m 2 , average single fiber diameter 0.94 μm, maximum pore diameter 10.3 μm, thickness 400 μm, air permeability 8 cm 3 / cm 2 · sec ) Was impregnated, dehydrated, dried, and cured in the same manner as in Example 1, and 2.5 wt% of the solid content of the water-repellent oil-repellent agent was impregnated. The water repellency and oil repellency of the liquid shielding layer thus obtained were measured. Next, the liquid-resistant protection of the laminated body obtained by stacking the outer layer additional layers described in Example 1 by the same laminating method as in Example 1 was evaluated.

<実施例5>
液遮蔽層として、実施例1に記載の液遮蔽層を用いた。
<Example 5>
As the liquid shielding layer, the liquid shielding layer described in Example 1 was used.

外層付加層(上層)として、実施例1と同じスパンボンド不織布に撥水撥油加工を施さないものを用い、撥水度および撥油度を測定した。 As the outer layer additional layer (upper layer), the same spunbonded nonwoven fabric as in Example 1 without water-repellent and oil-repellent treatment was used, and the water repellency and the oil repellency were measured.

液遮蔽層と外層付加層をこの順に積層し、実施例1と同様の積層方法により得られた積層体の耐液防護性を評価した。 The liquid shielding layer and the outer layer additional layer were laminated in this order, and the liquid protection property of the laminated body obtained by the same laminating method as in Example 1 was evaluated.

<実施例6>
液遮蔽層として、実施例1に記載の液遮蔽層を用いた。
<Example 6>
As the liquid shielding layer, the liquid shielding layer described in Example 1 was used.

外層付加層(上層)として、ポリエチレンテレフタレート短繊維を用いたスパンレース不織布(融点260℃、目付30g/m2、平均単繊維直径12.9μm、最大細孔径152.2μm、厚さ440μm、通気度334cm3/cm2・sec)に撥水撥油加工を施さないものを用い、撥水度および撥油度を測定した。 Spun lace non-woven fabric using polyethylene terephthalate short fibers as an outer layer (upper layer) (melting point 260 ° C., grain size 30 g / m 2 , average single fiber diameter 12.9 μm, maximum pore diameter 152.2 μm, thickness 440 μm, air permeability The water repellency and the oil repellency were measured using a 334 cm 3 / cm 2 · sec) which was not subjected to the water repellent and oil repellent treatment.

液遮蔽層と外層付加層をこの順に積層し、実施例1と同様の積層方法により得られた積層体の耐液防護性を評価した。 The liquid shielding layer and the outer layer additional layer were laminated in this order, and the liquid protection property of the laminated body obtained by the same laminating method as in Example 1 was evaluated.

<実施例7>
液遮蔽層として、実施例1に記載の液遮蔽層を用いた。
<Example 7>
As the liquid shielding layer, the liquid shielding layer described in Example 1 was used.

外層付加層(上層)として、ポリエチレンテレフタレート樹脂からなるスパンボンド法により製造された長繊維のスパンボンド不織布(融点260℃、目付15g/m2、平均単繊維直径11.5μm、最大細孔径206.1μm、厚さ110μm、通気度585cm3/cm2・sec)に撥水撥油加工を施さないものを用い、撥水度および撥油度を測定した。 As the outer layer additional layer (upper layer), a long fiber spunbonded non-woven fabric (melting point 260 ° C., grain size 15 g / m 2 , average single fiber diameter 11.5 μm, maximum pore diameter 206. The water repellency and the oil repellency were measured using 1 μm, thickness 110 μm, air permeability 585 cm 3 / cm 2 · sec) without water and oil repellency treatment.

液遮蔽層と外層付加層をこの順に積層し、実施例1と同様の積層方法により得られた積層体の耐液防護性を評価した。 The liquid shielding layer and the outer layer additional layer were laminated in this order, and the liquid protection property of the laminated body obtained by the same laminating method as in Example 1 was evaluated.

<実施例8>
液遮蔽層として、実施例1に記載の液遮蔽層を用いた。
<Example 8>
As the liquid shielding layer, the liquid shielding layer described in Example 1 was used.

外層付加層(上層)として、綿糸40番手を使用した平織物(融点:溶解せずに240℃程度で炭化)、目付110g/m2、平均単繊維直径140μm、最大細孔径105.6μm、厚さ240μm、通気度105cm3/cm2・sec)を使用し、実施例1と同様に含浸加工、脱水、乾燥、およびキュアリングを施し、撥水撥油剤固形分で1.3wt%添着させた。このようにして得られた外層付加層の撥水度および撥油度を測定した。 As an outer layer additional layer (upper layer), a plain fabric using 40 count cotton yarn (melting point: carbonized at about 240 ° C without melting), a grain of 110 g / m 2 , an average single fiber diameter of 140 μm, a maximum pore diameter of 105.6 μm, and a thickness. Using 240 μm and a breathability of 105 cm 3 / cm 2 · sec), impregnation processing, dehydration, drying, and curing were performed in the same manner as in Example 1, and 1.3 wt% of water and oil repellent solid content was impregnated. .. The water repellency and oil repellency of the outer layer additional layer thus obtained were measured.

液遮蔽層と外層付加層をこの順に重ね合わせ、耐液防護性を評価した。 The liquid shielding layer and the outer layer additional layer were superposed in this order, and the liquid protection was evaluated.

<実施例9>
液遮蔽層として、実施例1に記載の液遮蔽層を用いた。
<Example 9>
As the liquid shielding layer, the liquid shielding layer described in Example 1 was used.

外層付加層(上層)として、実施例8と同じ平織物に撥水撥油加工を施さないものを用い、撥水度および撥油度を測定した。 As the outer layer additional layer (upper layer), the same plain woven fabric as in Example 8 was used and the water repellency and oil repellency were measured.

液遮蔽層と外層付加層をこの順に重ね合わせ、耐液防護性を評価した。 The liquid shielding layer and the outer layer additional layer were superposed in this order, and the liquid protection was evaluated.

<実施例10>
液遮蔽層として、実施例1に記載の液遮蔽層を用いた。
<Example 10>
As the liquid shielding layer, the liquid shielding layer described in Example 1 was used.

外層付加層(上層)として、綿糸27番手を使用した平織物(融点:溶解せずに240℃程度で炭化)、目付36g/m2、平均単繊維直径215μm、最大細孔径676μm、厚さ360μm、通気度563cm3/cm2・sec)に撥水撥油加工を施さないものを用い、撥水度および撥油度を測定した。 As an outer layer additional layer (upper layer), a plain fabric using 27th cotton yarn (melting point: carbonized at about 240 ° C without melting), a grain of 36 g / m 2 , an average single fiber diameter of 215 μm, a maximum pore diameter of 676 μm, and a thickness of 360 μm. , Water repellency and oil repellency were measured using a material having a breathability of 563 cm 3 / cm 2 · sec) and not subjected to water repellent and oil repellent treatment.

液遮蔽層と外層付加層をこの順に重ね合わせ、耐液防護性を評価した。 The liquid shielding layer and the outer layer additional layer were superposed in this order, and the liquid protection was evaluated.

<比較例1>
液遮蔽層として、実施例6と同じスパンレース不織布を使用し、実施例1と同様に含浸加工、脱水、乾燥、およびキュアリングを施し、撥水撥油剤固形分で3.0wt%添着させた。このようにして得られた液遮蔽層の撥水度および撥油度を測定した。次いで、実施例8に記載の外層付加層を重ね合わせ、耐液防護性を評価した。
<Comparative Example 1>
As the liquid shielding layer, the same spunlace non-woven fabric as in Example 6 was used, impregnated, dehydrated, dried, and cured in the same manner as in Example 1, and was impregnated with a water-repellent oil-repellent agent solid content of 3.0 wt%. .. The water repellency and oil repellency of the liquid shielding layer thus obtained were measured. Next, the outer layer additional layer described in Example 8 was superposed, and the liquid protection property was evaluated.

<比較例2>
液遮蔽層として、実施例1に記載の外層付加層を用いた。次いで、比較例1に記載の外層付加層を重ね合わせ、耐液防護性を評価した。
<Comparative Example 2>
As the liquid shielding layer, the outer layer additional layer described in Example 1 was used. Next, the outer layer additional layer described in Comparative Example 1 was superposed, and the liquid protection property was evaluated.

<比較例3>
液遮蔽層として、実施例1と同じメルトブローン不織布を使用し、0.5wt%のフッ素系撥水撥油剤を含む加工浴を用いたこと以外は実施例1と同様に含浸加工、脱水、乾燥、およびキュアリングを施し、撥水撥油剤固形分で0.3wt%添着させた。このようにして得られた液遮蔽層の撥水度および撥油度を測定した。次いで、比較例1に記載の外層付加層を重ね合わせ、耐液防護性を評価した。
<Comparative Example 3>
As the liquid shielding layer, the same melt blown non-woven fabric as in Example 1 was used, and the same as in Example 1 was impregnated, dehydrated, dried, except that a processing bath containing 0.5 wt% fluorine-based water repellent and oil repellent was used. And curing was applied, and 0.3 wt% of water-repellent and oil-repellent solid content was impregnated. The water repellency and oil repellency of the liquid shielding layer thus obtained were measured. Next, the outer layer additional layer described in Comparative Example 1 was superposed, and the liquid protection property was evaluated.

<比較例4>
液遮蔽層として、実施例4と同じメルトブローン不織布を使用し、0.5wt%のフッ素系撥水撥油剤を含む加工浴を用いたこと以外は実施例1と同様に含浸加工、脱水、乾燥、およびキュアリングを施し、撥水撥油剤固形分で0.3wt%添着させた。このようにして得られた液遮蔽層の撥水度および撥油度を測定した。次いで、比較例1に記載の外層付加層を重ね合わせ、耐液防護性を評価した。
<Comparative Example 4>
As the liquid shielding layer, the same melt blown non-woven fabric as in Example 4 was used, and the same as in Example 1 was impregnated, dehydrated, dried, except that a processing bath containing 0.5 wt% fluorine-based water repellent and oil repellent was used. And curing was applied, and 0.3 wt% of water-repellent and oil-repellent solid content was impregnated. The water repellency and oil repellency of the liquid shielding layer thus obtained were measured. Next, the outer layer additional layer described in Comparative Example 1 was superposed, and the liquid protection property was evaluated.

<比較例5>
液遮蔽層として、ポリプロピレン樹脂からなるメルトブローン不織布(融点165℃、目付15g/m2、平均単繊維直径1.76μm、最大細孔径11.7μm、厚さ180μm、通気度26cm3/cm2・sec)を使用して、実施例1と同様に含浸加工、脱水した後、100℃で2分間乾燥後、120℃で2分間キュアリングを施し、撥水撥油剤固形分で2.5wt%添着させた。このようにして得られた液遮蔽層の撥水度および撥油度を測定した。次いで、比較例1に記載の外層付加層を重ね合わせ、耐液防護性を評価した。
<Comparative Example 5>
As a liquid shielding layer, a meltblown non-woven fabric made of polypropylene resin (melting point 165 ° C., grain size 15 g / m 2 , average single fiber diameter 1.76 μm, maximum pore diameter 11.7 μm, thickness 180 μm, air permeability 26 cm 3 / cm 2 · sec ) Is impregnated and dehydrated in the same manner as in Example 1, dried at 100 ° C. for 2 minutes, cured at 120 ° C. for 2 minutes, and impregnated with a water-repellent oil-repellent agent solid content of 2.5 wt%. rice field. The water repellency and oil repellency of the liquid shielding layer thus obtained were measured. Next, the outer layer additional layer described in Comparative Example 1 was superposed, and the liquid protection property was evaluated.

<比較例6>
実施例1に記載の液遮蔽層単層について、耐液防護性を評価した。
<Comparative Example 6>
The liquid shielding resistance of the single layer of the liquid shielding layer described in Example 1 was evaluated.

<比較例7>
液遮蔽層として、比較例1に記載の液遮蔽層を用いた。次いで、実施例1に記載の外層付加層を重ねて実施例1と同様の積層方法により得られた積層体の耐液防護性を評価した。
<Comparative Example 7>
As the liquid shielding layer, the liquid shielding layer described in Comparative Example 1 was used. Next, the liquid-resistant protection of the laminated body obtained by stacking the outer layer additional layers described in Example 1 by the same laminating method as in Example 1 was evaluated.

<比較例8>
液遮蔽層および外層付加層として比較例1に記載の液遮蔽層を2枚重ね、実施例1と同様の積層方法により得られた積層体の耐液防護性を評価した。
<Comparative Example 8>
Two liquid-shielding layers described in Comparative Example 1 were laminated as a liquid-shielding layer and an outer layer additional layer, and the liquid-resistant protection of the laminated body obtained by the same laminating method as in Example 1 was evaluated.

以上の結果を表2、3に示す。 The above results are shown in Tables 2 and 3.

Figure 0007066966000002
Figure 0007066966000002

Figure 0007066966000003
Figure 0007066966000003

表2に示すように、本発明で規定する要件を全て満足する実施例1~10は、耐液防護性に優れていた。 As shown in Table 2, Examples 1 to 10 satisfying all the requirements specified in the present invention were excellent in liquid protection.

これに対して、表3の比較例1~8は本発明で規定するいずれかの要件を満足しない例であり、耐液防護性が低下していた。 On the other hand, Comparative Examples 1 to 8 in Table 3 are examples that do not satisfy any of the requirements specified in the present invention, and the liquid protection resistance is lowered.

詳細には、比較例1、2、7、8は、液遮蔽層を構成する熱可塑性樹脂の繊維の平均単繊維直径および最大細孔径が大きいため耐液防護性が低下した。 Specifically, in Comparative Examples 1, 2, 7, and 8, the liquid shielding resistance was lowered because the average single fiber diameter and the maximum pore diameter of the fibers of the thermoplastic resin constituting the liquid shielding layer were large.

比較例3、4は、撥水撥油剤の添着量が少ないため、液遮蔽層の撥油度が低くなり耐液防護性が低下した。 In Comparative Examples 3 and 4, since the amount of the water-repellent oil-repellent agent attached was small, the oil-repellent degree of the liquid-shielding layer was low and the liquid-repellent protection was lowered.

比較例5は、融点が低いためキュアリングの温度を低くした結果、液遮蔽層の撥油度が低くなり耐液防護性が低下した。 In Comparative Example 5, since the melting point was low, the curing temperature was lowered, and as a result, the oil repellency of the liquid shielding layer was lowered and the liquid protection was lowered.

比較例6は、外層付加層がないため、液遮蔽層への加圧負荷が大きくなり耐液防護性が低下した。 In Comparative Example 6, since there is no outer layer additional layer, the pressure load on the liquid shielding layer is large and the liquid protection is deteriorated.

なお、上記実施例においては、融点、目付、平均単繊維直径、最大細孔径、通気度は撥水撥油加工前の不織布について測定したが、撥水撥油加工後もほぼ同じ値を示すことを確認している。 In the above embodiment, the melting point, grain size, average single fiber diameter, maximum pore diameter, and air permeability were measured for the non-woven fabric before the water-repellent oil-repellent treatment, but the values are almost the same even after the water-repellent oil-repellent treatment. Is confirmed.

1 おもり
2 試験液
3 外層付加層
4 液遮蔽層
5 ろ紙
6 スライドガラス
1 Weight 2 Test solution 3 Outer layer Additional layer 4 Liquid shielding layer 5 Filter paper 6 Slide glass

Claims (13)

外層付加層と液遮蔽層とをそれぞれ少なくとも1層以上有する防護材料であって、
前記外層付加層は、繊維から構成され、最大細孔径が90.6~1000μmの細孔を有しており、通気度が5~800cm3/cm2・secであり、厚さ0.1μm以上であり、
前記液遮蔽層は、平均単繊維直径が0.5~10μmの繊維から構成され、且つ、AATCC試験法118-2002による撥油度が5.5級以上、最大細孔径が1.0~100μmであり、
前記外層付加層の最大細孔径は、前記液遮蔽層の最大細孔径よりも大きいことを特徴とする耐液防護材料。
A protective material having at least one outer layer additional layer and at least one liquid shielding layer, respectively.
The outer layer additional layer is composed of fibers, has pores with a maximum pore diameter of 90.6 to 1000 μm, has an air permeability of 5 to 800 cm 3 / cm 2 · sec, and has a thickness of 0.1 μm or more. And
The liquid shielding layer is composed of fibers having an average single fiber diameter of 0.5 to 10 μm, an oil repellency of 5.5 grade or higher according to the AATCC test method 118-2002, and a maximum pore diameter of 1.0 to 100 μm. And
A liquid-resistant protective material characterized in that the maximum pore diameter of the outer layer additional layer is larger than the maximum pore diameter of the liquid shielding layer.
前記液遮蔽層は、目付が5~50g/m2である請求項1に記載の耐液防護材料。 The liquid-resistant protective material according to claim 1, wherein the liquid-shielding layer has a basis weight of 5 to 50 g / m 2 . 前記液遮蔽層は、通気度が5~35cm3/cm2・secである請求項1または2に記載の耐液防護材料。 The liquid-resistant protective material according to claim 1 or 2, wherein the liquid-shielding layer has an air permeability of 5 to 35 cm 3 / cm 2 · sec. 前記液遮蔽層は、JIS L1092(2009)7.2に記載の撥水度試験による撥水度が2級以上である請求項1~3のいずれか1項に記載の耐液防護材料。 The liquid-resistant protective material according to any one of claims 1 to 3, wherein the liquid shielding layer has a water repellency of grade 2 or higher according to the water repellency test described in JIS L1092 (2009) 7.2. 前記液遮蔽層にガス吸着層が積層されている請求項1~4のいずれか1項に記載の耐液防護材料。 The liquid-resistant protective material according to any one of claims 1 to 4, wherein a gas adsorption layer is laminated on the liquid shielding layer. 前記外層付加層は、平均単繊維直径が0.5~600μmの繊維から構成されている請求項1~5のいずれか1項に記載の耐液防護材料。 The liquid-resistant protective material according to any one of claims 1 to 5, wherein the outer layer additional layer is composed of fibers having an average single fiber diameter of 0.5 to 600 μm. 前記外層付加層は、目付が10~75g/m2である請求項6に記載の耐液防護材料。 The liquid-resistant protective material according to claim 6, wherein the outer layer additional layer has a basis weight of 10 to 75 g / m 2 . 前記液遮蔽層は、不織布である請求項1~7のいずれか1項に記載の耐液防護材料。 The liquid-resistant protective material according to any one of claims 1 to 7, wherein the liquid-shielding layer is a non-woven fabric. 前記液遮蔽層は、メルトブローン不織布である請求項1~8のいずれか1項に記載の耐液防護材料。 The liquid-resistant protective material according to any one of claims 1 to 8, wherein the liquid-shielding layer is a melt-blown non-woven fabric. 前記外層付加層は、不織布である請求項1~9のいずれか1項に記載の耐液防護材料。 The liquid-resistant protective material according to any one of claims 1 to 9, wherein the outer layer additional layer is a non-woven fabric. 前記外層付加層は、スパンポンド不織布またはスパンレース不織布である請求項1~10のいずれか1項に記載の耐液防護材料。 The liquid-resistant protective material according to any one of claims 1 to 10, wherein the outer layer additional layer is a spun-pound non-woven fabric or a spun lace non-woven fabric. 請求項1~11のいずれか1項に記載の耐液防護材料を用いて得られる防護衣。 A protective garment obtained by using the liquid-resistant protective material according to any one of claims 1 to 11. 使用済みの請求項12に記載の防護衣を、分解せずに撥水撥油剤に浸して、撥水撥油加工を施す工程を含む再生防護衣の製造方法。 A method for manufacturing a recycled protective garment, which comprises a step of immersing the used protective garment according to claim 12 in a water-repellent oil-repellent agent without disassembling it to apply a water-repellent oil-repellent finish.
JP2016161278A 2016-08-19 2016-08-19 Manufacturing methods for protective materials, protective clothing, and recycled protective clothing Active JP7066966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016161278A JP7066966B2 (en) 2016-08-19 2016-08-19 Manufacturing methods for protective materials, protective clothing, and recycled protective clothing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016161278A JP7066966B2 (en) 2016-08-19 2016-08-19 Manufacturing methods for protective materials, protective clothing, and recycled protective clothing

Publications (2)

Publication Number Publication Date
JP2018028163A JP2018028163A (en) 2018-02-22
JP7066966B2 true JP7066966B2 (en) 2022-05-16

Family

ID=61248066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016161278A Active JP7066966B2 (en) 2016-08-19 2016-08-19 Manufacturing methods for protective materials, protective clothing, and recycled protective clothing

Country Status (1)

Country Link
JP (1) JP7066966B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336155A (en) 2002-05-20 2003-11-28 Kuraray Co Ltd Composite nonwoven fabric for protective clothing and method for producing the same
JP2014024238A (en) 2012-07-26 2014-02-06 Toyobo Co Ltd Protective sheet
JP2014141770A (en) 2012-12-27 2014-08-07 Toyobo Co Ltd Protective clothing
JP2015094030A (en) 2013-11-08 2015-05-18 東洋紡株式会社 Protective material and protective clothing
JP5784812B1 (en) 2014-09-29 2015-09-24 ダイキン工業株式会社 Protective clothing material and protective clothing using the same
JP2016078242A (en) 2014-10-10 2016-05-16 東洋紡株式会社 Protective sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336155A (en) 2002-05-20 2003-11-28 Kuraray Co Ltd Composite nonwoven fabric for protective clothing and method for producing the same
JP2014024238A (en) 2012-07-26 2014-02-06 Toyobo Co Ltd Protective sheet
JP2014141770A (en) 2012-12-27 2014-08-07 Toyobo Co Ltd Protective clothing
JP2015094030A (en) 2013-11-08 2015-05-18 東洋紡株式会社 Protective material and protective clothing
JP5784812B1 (en) 2014-09-29 2015-09-24 ダイキン工業株式会社 Protective clothing material and protective clothing using the same
JP2016078242A (en) 2014-10-10 2016-05-16 東洋紡株式会社 Protective sheet

Also Published As

Publication number Publication date
JP2018028163A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
US20020124953A1 (en) Non-woven elastic microporous membranes
CN104884132A (en) Filtering face-piece respirator having a face seal comprising a water-vapor-breathable layer
JP2015094030A (en) Protective material and protective clothing
WO2014100178A1 (en) Method for fabricating water repellent thermal insulation nonwoven material and water repellent thermal insulation nonwoven material
JP2008188925A (en) Protective material and protective clothes
JP6047978B2 (en) Protective sheet
JP6322910B2 (en) Protective clothing
JP5784812B1 (en) Protective clothing material and protective clothing using the same
JP6011738B1 (en) Protective material, protective clothing, and method of manufacturing regenerative protective clothing
JP2016078242A (en) Protective sheet
JP6776721B2 (en) Manufacturing methods for protective materials, protective clothing, and recycled protective clothing
JP5920644B1 (en) Protective clothing material
JP7066966B2 (en) Manufacturing methods for protective materials, protective clothing, and recycled protective clothing
JP6790397B2 (en) Manufacturing methods for protective materials, protective clothing, and recycled protective clothing
JP2016129992A (en) Protective material
JP6119420B2 (en) Protective material
JP6047977B2 (en) Protective sheet
JP6047976B2 (en) Protective material
JP6496012B2 (en) Waterproof and water vapor permeable laminate
CN208558476U (en) Multiple field composite material
JP5611190B2 (en) Composite material
JP2008214768A (en) Protective glove
US20210227906A1 (en) Moisture wicking aluminized safety gear
JP2017196762A (en) Protective sheet, and protective material, protective garment, and protective article comprising the protective sheet
JP2016129991A (en) Protective material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7066966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350