JP7065823B2 - Liquefied gas supply device and liquefied gas supply method - Google Patents

Liquefied gas supply device and liquefied gas supply method Download PDF

Info

Publication number
JP7065823B2
JP7065823B2 JP2019230532A JP2019230532A JP7065823B2 JP 7065823 B2 JP7065823 B2 JP 7065823B2 JP 2019230532 A JP2019230532 A JP 2019230532A JP 2019230532 A JP2019230532 A JP 2019230532A JP 7065823 B2 JP7065823 B2 JP 7065823B2
Authority
JP
Japan
Prior art keywords
liquefied gas
gas supply
concentration
valve
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019230532A
Other languages
Japanese (ja)
Other versions
JP2021100034A (en
Inventor
遼 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2019230532A priority Critical patent/JP7065823B2/en
Publication of JP2021100034A publication Critical patent/JP2021100034A/en
Application granted granted Critical
Publication of JP7065823B2 publication Critical patent/JP7065823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、液化ガス供給装置及び液化ガス供給方法に関する。 The present invention relates to a liquefied gas supply device and a liquefied gas supply method.

半導体工業の分野において、液化ガスであるトリクロロシランは、反応性が高く、入手が容易であることから、高純度ケイ素や有機ケイ素化合物の原料として有用である。 In the field of the semiconductor industry, trichlorosilane, which is a liquefied gas, is useful as a raw material for high-purity silicon and organosilicon compounds because of its high reactivity and easy availability.

特許文献1及び特許文献2には、トリクロロシランガスが貯留された容器(貯留容器)の液相を水素ガスでバブリングし、容器の気相からトリクロロシランと水素との混合ガスとして供給するトリクロロシランガスの供給方法及び供給装置が記載されている。 In Patent Document 1 and Patent Document 2, the liquid phase of a container (storage container) in which trichlorosilane gas is stored is bubbled with hydrogen gas, and the trichlorosilane gas supplied as a mixed gas of trichlorosilane and hydrogen from the gas phase of the container. The supply method and the supply device are described.

特開2014-078632号公報Japanese Unexamined Patent Publication No. 2014-078632 特開2005-039034号公報Japanese Unexamined Patent Publication No. 2005-039034

特許文献1及び特許文献2に開示された供給装置では、固定式(定置式)の貯留容器内の液相が少なくなった場合、トリクロロシランが貯留された、交換可能な元容器(「マザータンク」ともいう)からトリクロロシランを補充する必要がある。 In the supply device disclosed in Patent Document 1 and Patent Document 2, when the liquid phase in the fixed (stationary) storage container becomes low, a replaceable original container (“mother tank”) in which trichlorosilane is stored is stored. It is necessary to supplement with trichlorosilane.

ここで、図3は、従来の液化ガス供給装置の構成を示す系統図である。図3に示すように、従来のトリクロロシランガスの供給装置101では、交換可能なマザータンク102内に例えば水素ガス等の加圧用ガスを吹き込むことで、当該マザータンク102内に貯留されたトリクロロシランの液相を、移送経路L101を介して貯留容器103内に補充する。 Here, FIG. 3 is a system diagram showing the configuration of a conventional liquefied gas supply device. As shown in FIG. 3, in the conventional trichlorosilane gas supply device 101, by blowing a pressurizing gas such as hydrogen gas into the replaceable mother tank 102, the trichlorosilane stored in the mother tank 102 is blown. The liquid phase is replenished into the storage container 103 via the transfer path L101.

ところで、トリクロロシランは自然発火性物質及び禁水性物質であり、消防法で窒素やアルゴン等の不活性ガスを封入して貯蔵するように定められているため、マザータンク102内は窒素ガスで封止されている。しかしながら、窒素ガスは窒素源となることから、従来のトリクロロシランガスの供給装置では、マザータンク102内の気相が貯留容器103内に混入することを防ぐ必要がある。 By the way, trichlorosilane is a pyrophoric substance and a water-reactive material, and since the Fire Service Law stipulates that an inert gas such as nitrogen or argon be enclosed and stored, the inside of the mother tank 102 is sealed with nitrogen gas. It has been stopped. However, since nitrogen gas serves as a nitrogen source, it is necessary to prevent the gas phase in the mother tank 102 from being mixed in the storage container 103 in the conventional trichlorosilane gas supply device.

また、図3に示すように、従来のトリクロロシランガスの供給装置101では、マザータンク102を交換する際、マザータンク102と貯留容器103とを結ぶ移送経路L101において、真空排気、パージガス導入を繰り返してパージする必要がある。しかしながら、パージガスとして窒素ガスを使用できないため、マザータンク102の交換の度に、ArガスやHeガスといった高価なパージガスを使用する必要がある。 Further, as shown in FIG. 3, in the conventional trichlorosilane gas supply device 101, when the mother tank 102 is replaced, vacuum exhaust and purge gas introduction are repeated in the transfer path L101 connecting the mother tank 102 and the storage container 103. Need to be purged. However, since nitrogen gas cannot be used as the purge gas, it is necessary to use an expensive purge gas such as Ar gas or He gas every time the mother tank 102 is replaced.

本発明は、上記事情に鑑みてなされたものであって、簡易な構成により、ArガスやHeガスといった高価なパージガスを使用することなく、高純度の液化ガスの供給が可能な液化ガス供給装置、及び液化ガス供給方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and is a liquefied gas supply device capable of supplying high-purity liquefied gas without using expensive purge gas such as Ar gas or He gas due to a simple configuration. , And to provide a method for supplying liquefied gas.

上記課題を解決するため、本発明は以下の構成を備える。
[1] 交換可能な液化ガス貯留容器と、
一端が前記液化ガス貯留容器の気相部分と連通する液化ガス供給経路と、
前記液化ガス供給経路から分岐する排気経路と、
前記排気経路内の液化ガス濃度を管理する、濃度管理機構と、
前記排気経路に位置する第1開閉弁と、
前記排気経路との分岐点より二次側の前記液化ガス供給経路に位置する第2開閉弁と、を備える液化ガス供給装置。
[2] 前記排気経路に位置する、液化ガスの流量制御機構をさらに備える、前項[1]に記載の液化ガス供給装置。
[3] 前記液化ガス貯留容器を加温する温度制御機構をさらに備える、前項[1]又は[2]に記載の液化ガス供給装置。
[4] 交換可能な液化ガス貯留容器から液化ガスの消費設備に高濃度の液化ガスを供給する方法であって、
交換可能な液化ガス貯留容器を設置し、前記液化ガス貯留容器の気相部分を抜き出して液化ガスの濃度が所要の閾値に到達するまで廃棄し、前記濃度が前記閾値に到達した後、前記液化ガス貯留容器の気相部分を前記消費設備に供給する、液化ガス供給方法。
In order to solve the above problems, the present invention has the following configurations.
[1] Replaceable liquefied gas storage container,
A liquefied gas supply path in which one end communicates with the gas phase portion of the liquefied gas storage container.
The exhaust path branching from the liquefied gas supply path and
A concentration control mechanism that controls the concentration of liquefied gas in the exhaust path,
The first on-off valve located in the exhaust path and
A liquefied gas supply device including a second on-off valve located in the liquefied gas supply path on the secondary side of the branch point with the exhaust path.
[2] The liquefied gas supply device according to the preceding item [1], further comprising a flow rate control mechanism for liquefied gas, which is located in the exhaust path.
[3] The liquefied gas supply device according to the preceding item [1] or [2], further comprising a temperature control mechanism for heating the liquefied gas storage container.
[4] A method of supplying high-concentration liquefied gas from a replaceable liquefied gas storage container to a liquefied gas consuming facility.
A replaceable liquefied gas storage container is installed, the gas phase portion of the liquefied gas storage container is extracted and discarded until the concentration of the liquefied gas reaches the required threshold, and after the concentration reaches the threshold, the liquefaction is performed. A liquefied gas supply method for supplying a gas phase portion of a gas storage container to the consumption facility.

本発明の液化ガス供給装置、及び液化ガス供給方法は、簡易な構成により、ArガスやHeガスといった高価なパージガスを使用することなく、高純度の液化ガスを供給できる。 The liquefied gas supply device and the liquefied gas supply method of the present invention can supply high-purity liquefied gas without using expensive purge gas such as Ar gas and He gas by a simple configuration.

本発明の一実施形態である液化ガス供給装置の構成を示す系統図である。It is a system diagram which shows the structure of the liquefied gas supply device which is one Embodiment of this invention. 本発明の液化ガス供給装置を構成する排気経路における、排気時間と液化ガス濃度との関係図である。It is a relationship diagram of the exhaust time and the liquefied gas concentration in the exhaust path constituting the liquefied gas supply device of this invention. 従来の液化ガス供給装置の構成を示す系統図である。It is a system diagram which shows the structure of the conventional liquefied gas supply device.

以下、本発明を適用した一実施形態である液化ガス供給装置の構成について、その液化ガス供給装置を用いる液化ガス供給方法と併せて、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, the configuration of the liquefied gas supply device according to the embodiment to which the present invention is applied will be described in detail with reference to the drawings together with the liquefied gas supply method using the liquefied gas supply device. In addition, in the drawings used in the following explanation, in order to make the features easy to understand, the featured parts may be enlarged for convenience, and the dimensional ratios of each component may not be the same as the actual ones. not.

<液化ガス供給装置>
先ず、本発明の一実施形態として、例えば図1に示す液化ガス供給装置1について説明する。
なお、図1は、液化ガス供給装置1の構成を示す系統図である。
<Liquefied gas supply device>
First, as an embodiment of the present invention, for example, the liquefied gas supply device 1 shown in FIG. 1 will be described.
Note that FIG. 1 is a system diagram showing the configuration of the liquefied gas supply device 1.

本実施形態の液化ガス供給装置1は、図1に示すように、交換可能なマザータンク(液化ガス貯留容器)2と、液化ガス供給経路L1と、排気経路L2と、濃度管理機構3と、第1開閉弁V1と、第2開閉弁V2と、を備える。液化ガス供給装置1は、マザータンク2内の液化ガスを、据え置き型の貯留容器に移送することなく、供給先(消費先)となる半導体製造装置等の消費設備に直接供給するものである。 As shown in FIG. 1, the liquefied gas supply device 1 of the present embodiment includes a replaceable mother tank (liquefied gas storage container) 2, a liquefied gas supply path L1, an exhaust path L2, a concentration control mechanism 3, and a concentration control mechanism 3. A first on-off valve V1 and a second on-off valve V2 are provided. The liquefied gas supply device 1 directly supplies the liquefied gas in the mother tank 2 to a consumption facility such as a semiconductor manufacturing device as a supply destination (consumption destination) without transferring it to a stationary storage container.

液化ガス供給装置1に適用可能な液化ガスとしては、特に限定されるものではなく、塩素(Cl)、アンモニア(NH)、トリクロロシラン(SiHCl)や四塩化ケイ素(SiCl)などの塩素化ケイ素化合物等の一般的な液化ガス全般が挙げられる。これらの液化ガスの中でも、トリクロロシランなどの、窒素やアルゴン等の不活性ガスを封入して貯蔵するように定められており、供給先において封入したガスの混入が好ましくない用途に用いる場合等に適用することが好ましい。 The liquefied gas applicable to the liquefied gas supply device 1 is not particularly limited, and is not particularly limited, such as chlorine (Cl 2 ), ammonia (NH 3 ), trichlorosilane (SiHCl 3 ), silicon tetrachloride (SiCl 4 ), and the like. General liquefied gas such as silicon chlorinated compound can be mentioned in general. Among these liquefied gases, it is stipulated that an inert gas such as nitrogen or argon such as trichlorosilane is enclosed and stored, and when it is used in an application where mixing of the enclosed gas at the supply destination is not preferable. It is preferable to apply.

マザータンク2は、交換可能な液化ガスの貯留容器である。本明細書において、マザータンク2が「交換可能」とは、液化ガス供給装置1からマザータンク2を取り外すことが可能であり、液化ガスの製造(供給)元と液化ガス供給装置1との間で移送可能であることをいう。なお、従来の液化ガス供給装置における、据え置き型(固定式)の貯留容器は、マザータンク2に該当しない。 The mother tank 2 is a replaceable storage container for liquefied gas. In the present specification, "replaceable" means that the mother tank 2 can be removed from the liquefied gas supply device 1 and is between the liquefied gas manufacturing (supply) source and the liquefied gas supply device 1. It means that it can be transferred with. The stationary (fixed) storage container in the conventional liquefied gas supply device does not correspond to the mother tank 2.

マザータンク2の形状は、交換可能なものであれば、特に限定されない。マザータンク2の形状としては、通常のボンベ形状やキャニスター形状等が挙げられる。
また、マザータンク2の容量は、製作が可能な容量であれば、特に限定されない。マザータンク2の容量としては、例えば、1L、30L、50L等が挙げられる。
The shape of the mother tank 2 is not particularly limited as long as it is replaceable. Examples of the shape of the mother tank 2 include a normal cylinder shape and a canister shape.
Further, the capacity of the mother tank 2 is not particularly limited as long as it can be manufactured. Examples of the capacity of the mother tank 2 include 1L, 30L, 50L and the like.

液化ガス供給経路L1は、マザータンク2と消費設備(図示略)との間に位置する配管等の設備である。液化ガス供給経路L1は、一端がマザータンク2の気相2A部分と連通し、他端が消費設備と接続される。これにより、液化ガス供給経路L1は、マザータンク2内の気相2A部分を液化ガスとして消費設備に供給できる。 The liquefied gas supply path L1 is equipment such as piping located between the mother tank 2 and the consumption equipment (not shown). One end of the liquefied gas supply path L1 communicates with the gas phase 2A portion of the mother tank 2, and the other end is connected to the consumption equipment. As a result, the liquefied gas supply path L1 can supply the gas phase 2A portion in the mother tank 2 to the consumption facility as liquefied gas.

液化ガス供給経路L1には、マザータンク2の気相2A部分と連通する一端側から、容器弁V3、開閉弁V4、及び第2開閉弁V2の順番に配置されている。 In the liquefied gas supply path L1, the container valve V3, the on-off valve V4, and the second on-off valve V2 are arranged in this order from one end side communicating with the gas phase 2A portion of the mother tank 2.

容器弁V3及び開閉弁V4は、手動あるいは自動で液化ガス供給経路L1の流路を閉止又は開放する開閉弁である。容器弁V3及び開閉弁V4は、液化ガス供給経路L1において、排気経路L2との分岐点Pよりも一次側に位置する。容器弁V3及び開閉弁V4をともに閉止状態とすることで、液化ガス供給経路L1において開閉弁V4の二次側への液化ガスの供給を遮断できる。一方、容器弁V3及び開閉弁V4をともに開放状態とすることで、液化ガス供給経路L1において開閉弁V4の二次側に液化ガスを供給できる。容器弁V3及び開閉弁V4としては、特に限定されず、一般的に使用される開閉弁を適用できる。なお、容器弁V3及び開閉弁V4は、液化ガス供給経路L1の流路を全閉(開度0%)から全開(開度100%)まで、連続的あるいは多段的に調整する機構を有するものであってもよい。 The container valve V3 and the on-off valve V4 are on-off valves that manually or automatically close or open the flow path of the liquefied gas supply path L1. The container valve V3 and the on-off valve V4 are located on the primary side of the branch point P with the exhaust path L2 in the liquefied gas supply path L1. By closing both the container valve V3 and the on-off valve V4, the supply of the liquefied gas to the secondary side of the on-off valve V4 can be cut off in the liquefied gas supply path L1. On the other hand, by opening both the container valve V3 and the on-off valve V4, the liquefied gas can be supplied to the secondary side of the on-off valve V4 in the liquefied gas supply path L1. The container valve V3 and the on-off valve V4 are not particularly limited, and generally used on-off valves can be applied. The container valve V3 and the on-off valve V4 have a mechanism for continuously or multi-stage adjusting the flow path of the liquefied gas supply path L1 from fully closed (opening 0%) to fully open (opening 100%). May be.

第2開閉弁V2は、手動あるいは自動で液化ガス供給経路L1の流路を閉止又は開放する開閉弁である。第2開閉弁V2は、液化ガス供給経路L1において、排気経路L2との分岐点Pよりも二次側に位置する。第2開閉弁V2を閉止状態とすることで、液化ガス供給経路L1において第2開閉弁V2の二次側への液化ガスの供給を遮断できる。一方、第2開閉弁V2を開放状態とすることで、液化ガス供給経路L1において第2開閉弁V2の二次側に液化ガスを供給できる。第2開閉弁V2としては、特に限定されず、一般的に使用される開閉弁を適用できる。なお、第2開閉弁V2は、液化ガス供給経路L1の流路を全閉(開度0%)から全開(開度100%)まで、連続的あるいは多段的に調整する機構を有するものであってもよい。 The second on-off valve V2 is an on-off valve that manually or automatically closes or opens the flow path of the liquefied gas supply path L1. The second on-off valve V2 is located on the secondary side of the branch point P with the exhaust path L2 in the liquefied gas supply path L1. By closing the second on-off valve V2, the supply of the liquefied gas to the secondary side of the second on-off valve V2 can be cut off in the liquefied gas supply path L1. On the other hand, by opening the second on-off valve V2, the liquefied gas can be supplied to the secondary side of the second on-off valve V2 in the liquefied gas supply path L1. The second on-off valve V2 is not particularly limited, and a generally used on-off valve can be applied. The second on-off valve V2 has a mechanism for continuously or multi-stage adjusting the flow path of the liquefied gas supply path L1 from fully closed (opening 0%) to fully open (opening 100%). You may.

排気経路L2は、分岐点Pにおいて液化ガス供給経路L1から分岐し、液化ガス供給経路L1と除害設備(図示略)との間に位置する配管等の設備である。排気経路L2は、一端が分岐点Pにおいて液化ガス供給経路L1と連通し、他端が除害設備と接続される。これにより、排気経路L2は、液化ガス供給経路L1を介してマザータンク2内の気相2A部分を排ガスとして除害設備に供給できる。 The exhaust path L2 is equipment such as a pipe that branches from the liquefied gas supply path L1 at the branch point P and is located between the liquefied gas supply path L1 and the abatement facility (not shown). One end of the exhaust path L2 communicates with the liquefied gas supply path L1 at the branch point P, and the other end is connected to the abatement equipment. As a result, the exhaust path L2 can supply the gas phase 2A portion in the mother tank 2 to the abatement facility as exhaust gas via the liquefied gas supply path L1.

排気経路L2には、液化ガス供給経路L1との分岐点P側から、第1開閉弁V1、濃度管理機構3、真空ポンプ等の排気機構(図示略)の順番に配置されている。 In the exhaust path L2, the first on-off valve V1, the concentration control mechanism 3, and the exhaust mechanism (not shown) such as the vacuum pump are arranged in this order from the branch point P side with the liquefied gas supply path L1.

第1開閉弁V1は、手動あるいは自動で排気経路L2の流路を閉止又は開放する開閉弁である。第1開閉弁V1は、排気経路L2に位置する。第1開閉弁V1を閉止状態とすることで、排気経路L2において第1開閉弁V1の二次側への液化ガスの供給を遮断できる。一方、第1開閉弁V1を開放状態とすることで、排気経路L2において第1開閉弁V1の二次側に液化ガスを供給できる。第1開閉弁V1としては、特に限定されず、一般的に使用される開閉弁を適用できる。なお、第1開閉弁V1は、排気経路L2の流路を全閉(開度0%)から全開(開度100%)まで、連続的あるいは多段的に調整する機構を有するものであってもよい。 The first on-off valve V1 is an on-off valve that manually or automatically closes or opens the flow path of the exhaust path L2. The first on-off valve V1 is located in the exhaust path L2. By closing the first on-off valve V1, the supply of liquefied gas to the secondary side of the first on-off valve V1 can be cut off in the exhaust path L2. On the other hand, by opening the first on-off valve V1, the liquefied gas can be supplied to the secondary side of the first on-off valve V1 in the exhaust path L2. The first on-off valve V1 is not particularly limited, and a generally used on-off valve can be applied. Even if the first on-off valve V1 has a mechanism for continuously or multi-stage adjusting the flow path of the exhaust path L2 from fully closed (opening 0%) to fully open (opening 100%). good.

本実施形態の液化ガス供給装置1は、液化ガス供給経路L1の分岐点Pにおいて分岐する二つの流路(液化ガス供給経路L1及び排気経路L2)にそれぞれ第1開閉弁V1と第2開閉弁V2とが位置する。第1開閉弁V1及び第2開閉弁V2のうち、いずれか一方を開放状態とし、他方を閉止状態とすることで、分岐点P以降の流路を選択できる。このように、流路を適宜選択することにより、マザータンク2の気相2A部分の液化ガスを製品ガスとして消費設備に供給するか、排ガスとして除害設備に供給するかを選択できる。換言すると、第1開閉弁V1及び第2開閉弁V2は、2つの流路(液化ガス供給経路L1及び排気経路L2)の切り替えるための流路切替(選択)機構を構成する。 The liquefied gas supply device 1 of the present embodiment has a first on-off valve V1 and a second on-off valve in two flow paths (liquefied gas supply path L1 and exhaust path L2) that branch at the branch point P of the liquefied gas supply path L1, respectively. V2 is located. By setting either one of the first on-off valve V1 and the second on-off valve V2 in the open state and the other in the closed state, the flow path after the branch point P can be selected. In this way, by appropriately selecting the flow path, it is possible to select whether to supply the liquefied gas of the gas phase 2A portion of the mother tank 2 to the consumption equipment as a product gas or to the abatement equipment as an exhaust gas. In other words, the first on-off valve V1 and the second on-off valve V2 constitute a flow path switching (selection) mechanism for switching between the two flow paths (liquefied gas supply path L1 and exhaust path L2).

濃度管理機構3は、排気経路L2内の液化ガス濃度を管理するものである。本明細書において、濃度管理機構3が「液化ガス濃度を管理する」とは、排気経路L2が選択されている場合(すなわち、第2開閉弁V2が閉止状態であり、第1開閉弁V1が開放状態である場合)に、排気経路L2内を流れる液化ガス中の液化ガス濃度を直接的あるいは間接的に把握することをいう。換言すると、濃度管理機構3は、排気経路L2内に流れる液化ガス濃度を把握するための仕組みである。 The concentration control mechanism 3 manages the concentration of the liquefied gas in the exhaust path L2. In the present specification, the concentration control mechanism 3 "controls the liquefied gas concentration" means that the exhaust path L2 is selected (that is, the second on-off valve V2 is in the closed state and the first on-off valve V1 is closed. In the open state), it means to directly or indirectly grasp the concentration of the liquefied gas in the liquefied gas flowing in the exhaust path L2. In other words, the concentration control mechanism 3 is a mechanism for grasping the concentration of the liquefied gas flowing in the exhaust path L2.

本実施形態の液化ガス供給装置1は、液化ガス中の液化ガス濃度(液化ガスの純度)に閾値を設定し、濃度管理機構3によってマザータンク2の気相2A部分から供給される液化ガス濃度を把握する。具体的には、マザータンク2の交換直後、先ず第1開閉弁V1及び第2開閉弁V2を操作して排気経路L2を選択し、図示略の排気機構を運転する。これにより、マザータンク2の気相2A部分から供給される、液化ガス濃度が閾値未満の液化ガスは、排ガスとして排気経路L2から除害設備(図示略)に排出される。そして、濃度管理機構3により、液化ガス濃度が閾値に到達したとき、第1開閉弁V1を閉止状態とする。 The liquefied gas supply device 1 of the present embodiment sets a threshold value for the liquefied gas concentration (purity of the liquefied gas) in the liquefied gas, and the liquefied gas concentration supplied from the gas phase 2A portion of the mother tank 2 by the concentration control mechanism 3. To grasp. Specifically, immediately after the replacement of the mother tank 2, the first on-off valve V1 and the second on-off valve V2 are first operated to select the exhaust path L2, and the exhaust mechanism (not shown) is operated. As a result, the liquefied gas whose liquefied gas concentration is less than the threshold value, which is supplied from the gas phase 2A portion of the mother tank 2, is discharged as exhaust gas from the exhaust path L2 to the abatement facility (not shown). Then, when the liquefied gas concentration reaches the threshold value by the concentration control mechanism 3, the first on-off valve V1 is closed.

図2は、液化ガス供給装置1においてマザータンク2を交換した直後の、排気経路L2における排気時間と液化ガス濃度との関係図である。図2中、X軸は、排気開始時t=0(sec)からの時間t(sec)を示し、Y軸は、液化ガス中の液化ガス濃度C(体積%)を示す。図2に示すように、排気開始時t=0(sec)における液化ガス中の液化ガス濃度の初期値(C=C)であり、排気開始からの時間t=T(sec)を経過後、液化ガス中の液化ガス濃度Cが閾値V(体積%)に到達する。 FIG. 2 is a diagram showing the relationship between the exhaust time and the liquefied gas concentration in the exhaust path L2 immediately after the mother tank 2 is replaced in the liquefied gas supply device 1. In FIG. 2, the X-axis shows the time t (sec) from t = 0 (sec) at the start of exhaust gas, and the Y-axis shows the liquefied gas concentration C (volume%) in the liquefied gas. As shown in FIG. 2, it is an initial value (C = C 0 ) of the liquefied gas concentration in the liquefied gas at t = 0 (sec) at the start of exhaust gas, and after the time t = T (sec) from the start of exhaust gas has elapsed. , The liquefied gas concentration C in the liquefied gas reaches the threshold value V (volume%).

液化ガス中の液化ガス濃度Cの閾値V(体積%)は、特に限定されるものではなく、必要に応じて適宜選択できる。ここで、閾値V(体積%)としてやや低めの値を選択することで、排気時間が短くなり、液化ガスの廃棄量を低減できる。一方、閾値V(体積%)として高めの値を選択することで、排気時間が長くなり、液化ガスの廃棄量が増加するが、以降、高濃度の液化ガスを供給できる。閾値Vとしては、例えば、95体積%以上に設定してもよく、98体積%以上に設定することが好ましく、99体積%以上に設定することがより好ましい。 The threshold value V (volume%) of the liquefied gas concentration C in the liquefied gas is not particularly limited and can be appropriately selected as needed. Here, by selecting a slightly lower value as the threshold value V (volume%), the exhaust time can be shortened and the amount of liquefied gas discarded can be reduced. On the other hand, by selecting a higher value as the threshold value V (volume%), the exhaust time becomes longer and the amount of liquefied gas discarded increases, but thereafter, a high concentration of liquefied gas can be supplied. The threshold value V may be set to, for example, 95% by volume or more, preferably 98% by volume or more, and more preferably 99% by volume or more.

濃度管理機構3としては、図1に示すように、濃度計等の濃度測定装置が挙げられる。この場合、濃度管理機構3は、排気経路L2において、第1開閉弁V1の二次側であり、図示略の排気機構の一次側に位置する。濃度管理機構3として排気経路L2に濃度測定装置を設けることにより、排気経路L2内の液化ガス濃度を管理できる。具体的には、排気経路L2内を流れる液化ガス中の液化ガス濃度を連続的あるいは間欠的に測定することで、液化ガス中の液化ガス濃度をリアルタイムに把握する。 As the concentration control mechanism 3, as shown in FIG. 1, a concentration measuring device such as a densitometer can be mentioned. In this case, the concentration control mechanism 3 is located on the secondary side of the first on-off valve V1 in the exhaust path L2, and is located on the primary side of the exhaust mechanism (not shown). By providing a concentration measuring device in the exhaust path L2 as the concentration control mechanism 3, the concentration of the liquefied gas in the exhaust path L2 can be controlled. Specifically, the concentration of the liquefied gas in the liquefied gas is grasped in real time by continuously or intermittently measuring the concentration of the liquefied gas in the liquefied gas flowing in the exhaust path L2.

なお、濃度測定装置としては、液化ガス中の液化ガス濃度を測定するものに限定されない。マザータンク2内の気相2A部分に封入されているガス濃度を測定するものであってもよい。例えば、液化ガスがトリクロロシランであり、マザータンク内に窒素ガスが封入されている場合、濃度測定装置は、トリクロロシランを検出するものであってもよいし、窒素ガスを検出するものであってもよい。 The concentration measuring device is not limited to measuring the concentration of liquefied gas in the liquefied gas. The gas concentration enclosed in the gas phase 2A portion in the mother tank 2 may be measured. For example, when the liquefied gas is trichlorosilane and nitrogen gas is sealed in the mother tank, the concentration measuring device may detect trichlorosilane or may detect nitrogen gas. May be good.

濃度管理機構3は、排気経路L2に液化ガスを供給し続けるか否かを判断する図示略の制御部を有していてもよい。濃度管理機構3が制御部を有することにより、排気経路L2内を流れる液化ガス中の液化ガス濃度が閾値V(体積%)を超えた際、制御部が排気経路L2への液化ガスの供給を停止する判断をすることができる。また、濃度管理機構3の制御部は、第1開閉弁V1に電気信号を送信して自動的に閉止状態とする構成としてもよい。 The concentration control mechanism 3 may have a control unit (not shown) for determining whether or not to continue supplying the liquefied gas to the exhaust path L2. Since the concentration control mechanism 3 has a control unit, when the concentration of the liquefied gas in the liquefied gas flowing in the exhaust path L2 exceeds the threshold value V (volume%), the control unit supplies the liquefied gas to the exhaust path L2. You can make a decision to stop. Further, the control unit of the concentration control mechanism 3 may be configured to transmit an electric signal to the first on-off valve V1 to automatically close the control unit.

<液化ガス供給装置>
次に、本発明の一実施形態である液化ガス供給方法について説明する。
本実施形態の液化ガス供給方法は、交換可能な液化ガス貯留容器から液化ガスの消費設備に高濃度の液化ガスを供給する方法である。具体的には、液化ガス供給装置1にマザータンク2を設置し、マザータンク2の気相2A部分を抜き出して液化ガスの濃度が所要の閾値に到達するまで廃棄し、濃度が閾値に到達した後、マザータンク2の気相2A部分を図示略の消費設備に供給する。
<Liquefied gas supply device>
Next, a liquefied gas supply method according to an embodiment of the present invention will be described.
The liquefied gas supply method of the present embodiment is a method of supplying a high-concentration liquefied gas from a replaceable liquefied gas storage container to a liquefied gas consuming facility. Specifically, the mother tank 2 is installed in the liquefied gas supply device 1, the gas phase 2A portion of the mother tank 2 is extracted and discarded until the concentration of the liquefied gas reaches a required threshold value, and the concentration reaches the threshold value. After that, the gas phase 2A portion of the mother tank 2 is supplied to the consumption equipment (not shown).

以下、液化ガスとしてトリクロロシランを用い、図1に示す液化ガス供給装置1を用いた場合を一例として説明する。 Hereinafter, a case where trichlorosilane is used as the liquefied gas and the liquefied gas supply device 1 shown in FIG. 1 is used will be described as an example.

先ず、液化ガス供給装置1において、使用済みのマザータンク2を取り外した後、次に使用する新しいマザータンク2を設置し、液化ガス供給経路L1がマザータンク2の気相2A部分と連通するように接続する。このとき、新しいマザータンク2内には、液体のトリクロロシラン(液相部分)、気体のトリクロロシラン及び気体の窒素が存在する。すなわち、マザータンク2内の気相2A部分は、トリクロロシランと窒素との混合ガスである。 First, in the liquefied gas supply device 1, after removing the used mother tank 2, a new mother tank 2 to be used next is installed so that the liquefied gas supply path L1 communicates with the gas phase 2A portion of the mother tank 2. Connect to. At this time, liquid trichlorosilane (liquid phase portion), gaseous trichlorosilane, and gaseous nitrogen are present in the new mother tank 2. That is, the gas phase 2A portion in the mother tank 2 is a mixed gas of trichlorosilane and nitrogen.

次に、第1開閉弁V1、第2開閉弁V2、容器弁V3及び開閉弁V4がいずれも閉止状態であることを確認した後、排気経路L2の排気機構(図示略)の運転を開始し、第2開閉弁V2を開放状態とする。次いで、液化ガス供給経路L1に位置する開閉弁V4、容器弁V3を開放状態とする。これにより、マザータンク2内の気相2A部分に含まれるトリクロロシランと窒素との混合ガスを排気経路L2から連続で排出する。 Next, after confirming that the first on-off valve V1, the second on-off valve V2, the container valve V3, and the on-off valve V4 are all in the closed state, the operation of the exhaust mechanism (not shown) of the exhaust path L2 is started. , The second on-off valve V2 is opened. Next, the on-off valve V4 and the container valve V3 located in the liquefied gas supply path L1 are opened. As a result, the mixed gas of trichlorosilane and nitrogen contained in the gas phase 2A portion in the mother tank 2 is continuously discharged from the exhaust path L2.

ここで、マザータンク2内では、気相2A部分が排出されると容器内の圧力が低下し、液相(液体)のトリクロロシランが気化する。これにより、マザータンク2内の気相2A部分は、窒素に対するトリクロロシランの濃度が上昇する。そして、マザータンク2内の気相2A部分の排出を連続で行うことにより、容器内の窒素を除去し、トリクロロシラン濃度を高めることができる(図2を参照)。なお、排気経路L2から連続で排気する間、濃度測定装置(濃度管理機構3)により、排気経路L2に流れる排ガス中のトリクロロシラン濃度を測定して監視する。 Here, in the mother tank 2, when the gas phase 2A portion is discharged, the pressure in the container decreases, and the liquid phase (liquid) trichlorosilane is vaporized. As a result, the concentration of trichlorosilane with respect to nitrogen increases in the gas phase 2A portion in the mother tank 2. Then, by continuously discharging the gas phase 2A portion in the mother tank 2, nitrogen in the container can be removed and the trichlorosilane concentration can be increased (see FIG. 2). While continuously exhausting from the exhaust path L2, the concentration measuring device (concentration control mechanism 3) measures and monitors the concentration of trichlorosilane in the exhaust gas flowing through the exhaust path L2.

次に、濃度測定装置により、排気経路L2内を流れるガス中のトリクロロシラン濃度が閾値V(体積%)を超えたことを検知した後、第1開閉弁V1を閉止状態として排気経路L2への液化ガスの供給を停止する。なお、濃度管理機構3である濃度測定装置が制御部を有する場合、制御部から第1開閉弁V1に電気信号を送信し、第1開閉弁V1を自動的に閉止してもよい。以上の操作により、トリクロロシランの供給準備を完了する。 Next, after detecting that the concentration of trichlorosilane in the gas flowing in the exhaust path L2 exceeds the threshold value V (volume%) by the concentration measuring device, the first on-off valve V1 is closed and the exhaust path L2 is entered. Stop the supply of liquefied gas. When the concentration measuring device, which is the concentration control mechanism 3, has a control unit, the control unit may transmit an electric signal to the first on-off valve V1 to automatically close the first on-off valve V1. By the above operation, preparation for supply of trichlorosilane is completed.

次に、半導体製造装置等の消費設備からの求めに応じ、上述した供給準備が完了したマザータンク2から、高純度(基準濃度以上)のトリクロロシランガスを消費設備に直接供給する。具体的には、第1開閉弁V1が閉止状態であり、第2開閉弁V2が開放状態であることを確認した上、開閉弁V4及び容器弁V3を開放状態とする。これにより、マザータンク2から消費設備へ、高純度のトリクロロシランガスの供給を開始する。 Next, in response to a request from a consumption facility such as a semiconductor manufacturing apparatus, a high-purity (reference concentration or higher) trichlorosilane gas is directly supplied to the consumption facility from the mother tank 2 for which the above-mentioned supply preparation has been completed. Specifically, after confirming that the first on-off valve V1 is in the closed state and the second on-off valve V2 is in the open state, the on-off valve V4 and the container valve V3 are opened. As a result, the supply of high-purity trichlorosilane gas from the mother tank 2 to the consumption equipment is started.

以上のように、本実施形態の液化ガス供給装置1は、交換可能なマザータンク2と、マザータンク2の気相2A部分と連通する液化ガス供給経路L1と、液化ガス供給経路L1から分岐する排気経路L2と、排気経路L2内の液化ガス濃度を計測する、濃度測定装置(濃度管理機構3)と、排気経路L2に位置する第1開閉弁V1と、液化ガス供給経路L1に位置する第2開閉弁V2とを備えるため、第1開閉弁V1及び第2開閉弁V2の開閉を切り替えて、液化ガスの流路を選択できる。そして、液化ガス供給装置1に設置直後のマザータンク2内の気相2A部分の液化ガス濃度を濃度測定装置で監視しながら所要の閾値に到達するまで排気経路L2から排気ガスとして排出し、液化ガス濃度が所要の閾値に到達後、液化ガス供給経路L1から高純度の液化ガスを消費設備に供給する。したがって、本実施形態の液化ガス供給装置1によれば、簡易な構成により、高純度の液化ガスを消費設備に供給できる。 As described above, the liquefied gas supply device 1 of the present embodiment branches from the replaceable mother tank 2, the liquefied gas supply path L1 communicating with the gas phase 2A portion of the mother tank 2, and the liquefied gas supply path L1. The exhaust path L2, the concentration measuring device (concentration control mechanism 3) for measuring the liquefied gas concentration in the exhaust path L2, the first on-off valve V1 located in the exhaust path L2, and the first on-off valve V1 located in the liquefied gas supply path L1. Since the two on-off valves V2 are provided, the flow path of the liquefied gas can be selected by switching the opening and closing of the first on-off valve V1 and the second on-off valve V2. Then, while monitoring the liquefied gas concentration of the gas phase 2A portion in the mother tank 2 immediately after installation in the liquefied gas supply device 1 with the concentration measuring device, the gas is discharged as exhaust gas from the exhaust path L2 until a required threshold value is reached, and the gas is liquefied. After the gas concentration reaches a required threshold, high-purity liquefied gas is supplied to the consumption facility from the liquefied gas supply path L1. Therefore, according to the liquefied gas supply device 1 of the present embodiment, high-purity liquefied gas can be supplied to the consumption equipment with a simple configuration.

また、本実施形態の液化ガス供給装置1は、交換可能なマザータンク2から据え置き型の液化ガス貯留容器へ液相を移送する供給経路を有さないため、マザータンク2の交換のたびに上記供給経路内をパージする必要がない。したがって、本実施形態の液化ガス供給装置1によれば、ArガスやHeガスといった高価なパージガスを使用することなく、高純度の液化ガスを消費設備に供給できる。 Further, since the liquefied gas supply device 1 of the present embodiment does not have a supply path for transferring the liquid phase from the replaceable mother tank 2 to the stationary liquefied gas storage container, the above is described every time the mother tank 2 is replaced. There is no need to purge in the supply path. Therefore, according to the liquefied gas supply device 1 of the present embodiment, high-purity liquefied gas can be supplied to the consumption equipment without using expensive purge gas such as Ar gas and He gas.

また、本実施形態の液化ガス供給装置1は、交換可能なマザータンク2以外の、据え置き型の液化ガス貯留容器を有さないため、装置全体の設置面積が小さく、小型化が可能である。 Further, since the liquefied gas supply device 1 of the present embodiment does not have a stationary liquefied gas storage container other than the replaceable mother tank 2, the installation area of the entire device is small and the size can be reduced.

本実施形態の液化ガス供給方法によれば、液化ガス供給装置1にマザータンク2を設置し、マザータンク2の気相2A部分を抜き出して液化ガスの濃度が所要の閾値に到達するまで廃棄するため、マザータンク2内の気相2A部分の液化ガス濃度を高めることができる。また、本実施形態の液化ガス供給方法によれば、液化ガス供給装置1にマザータンク2を設置後、液化ガス濃度が閾値に到達するまでの一回のみ、排気経路L2を用いて供給準備をすればよい。したがって、液化ガスの供給準備の完了以降、マザータンク2から消費設備に高純度の液化ガスを直接供給できる。 According to the liquefied gas supply method of the present embodiment, the mother tank 2 is installed in the liquefied gas supply device 1, the gas phase 2A portion of the mother tank 2 is extracted and discarded until the concentration of the liquefied gas reaches a required threshold value. Therefore, the concentration of the liquefied gas in the gas phase 2A portion in the mother tank 2 can be increased. Further, according to the liquefied gas supply method of the present embodiment, after the mother tank 2 is installed in the liquefied gas supply device 1, supply preparation is performed using the exhaust path L2 only once until the liquefied gas concentration reaches the threshold value. do it. Therefore, after the preparation for supplying the liquefied gas is completed, the high-purity liquefied gas can be directly supplied from the mother tank 2 to the consumption equipment.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態の液化ガス供給装置1及び液化ガス供給方法では、濃度管理機構3として濃度測定装置を用い、排気経路L2に流れるガス中の液化ガス濃度を監視する構成を一例として説明したが、これに限定されない。図2に示すように、排気開始からの時間tと液化ガス中の液化ガス濃度Cとの関係より、液化ガス濃度が閾値Vに到達するまでの時間t=Tが得られる場合、濃度管理機構3としてタイマー(計時器)を用いる構成であってもよい。このように、濃度管理機構3としてタイマーを用い、排気開始からの時間tを計測し、液化ガス濃度が閾値Vに到達するまでの時間t=Tとなったときに、排気経路L2の第1開閉弁V1を閉止状態とする場合であっても、上記実施形態の液化ガス供給装置1及び液化ガス供給方法と同様の効果が得られる。
The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the liquefied gas supply device 1 and the liquefied gas supply method of the above embodiment, a configuration in which a concentration measuring device is used as the concentration control mechanism 3 and the concentration of the liquefied gas in the gas flowing in the exhaust path L2 is monitored has been described as an example. , Not limited to this. As shown in FIG. 2, when the time t = T until the liquefied gas concentration reaches the threshold value V can be obtained from the relationship between the time t from the start of exhaust and the liquefied gas concentration C in the liquefied gas, the concentration control mechanism A timer (timer) may be used as 3. In this way, a timer is used as the concentration control mechanism 3, the time t from the start of exhaust gas is measured, and when the time t = T until the liquefied gas concentration reaches the threshold value V, the first exhaust gas path L2 Even when the on-off valve V1 is closed, the same effects as those of the liquefied gas supply device 1 and the liquefied gas supply method of the above embodiment can be obtained.

濃度管理機構3としてタイマーを用いる場合、タイマーは排気経路L2に位置していなくてもよい。また、タイマーは制御部を有していてもよい。さらに、タイマーの制御部は、排気開始からの時間がt=Tとなったときに、第1開閉弁V1を閉止する信号を第1開閉弁V1に送信する構成であってもよい。 When a timer is used as the concentration control mechanism 3, the timer does not have to be located in the exhaust path L2. Further, the timer may have a control unit. Further, the timer control unit may be configured to transmit a signal for closing the first on-off valve V1 to the first on-off valve V1 when the time from the start of exhaust becomes t = T.

また、上記実施形態の液化ガス供給装置1では、濃度管理機構3が図示略の制御部を内蔵する構成を一例として説明したが、これに限定されない。本発明の液化ガス供給装置は、濃度管理機構3から独立した制御部を有する構成であってもよい。独立した制御部は、濃度管理機構3からの信号を受信し、第1開閉弁V1に対して制御信号を送信する構成であってもよい。 Further, in the liquefied gas supply device 1 of the above embodiment, the configuration in which the concentration control mechanism 3 includes a control unit (not shown) is described as an example, but the present invention is not limited to this. The liquefied gas supply device of the present invention may have a configuration having a control unit independent of the concentration control mechanism 3. The independent control unit may be configured to receive a signal from the concentration control mechanism 3 and transmit a control signal to the first on-off valve V1.

また、上記実施形態の液化ガス供給装置1は、排気経路L2内を流れる液化ガスの排出流量を制限する、液化ガスの流量制御機構を備える構成であってもよい。流量制御機構は、排気経路L2において第1の二次側に位置する。排気経路L2に流量制御機構を有することにより、マザータンク2内の気相を排出する際、気相を排出する速度が大きくなって容器内の圧力が急激に下がり、液化ガスの液相部分が突沸することを抑制できる。流量制御機構としては、ニードルバルブ、ガスケットオリフィス等を用いることができる。 Further, the liquefied gas supply device 1 of the above embodiment may be configured to include a liquefied gas flow rate control mechanism that limits the discharge flow rate of the liquefied gas flowing in the exhaust path L2. The flow rate control mechanism is located on the first secondary side in the exhaust path L2. By having a flow rate control mechanism in the exhaust path L2, when the gas phase in the mother tank 2 is discharged, the speed at which the gas phase is discharged increases, the pressure in the container drops sharply, and the liquid phase portion of the liquefied gas becomes. It is possible to suppress sudden boiling. As the flow rate control mechanism, a needle valve, a gasket orifice, or the like can be used.

また、上記実施形態の液化ガス供給装置1は、マザータンク(液化ガス貯留容器)2を加温する、温度制御機構を備える構成であってもよい。液化ガスの供給準備をする場合、マザータンク2内の気相2A部分を排気経路L2から連続で排出するため、容器内の圧力が低下し、液相(液体)の液化ガスが気化する。この際、温度制御機構によってマザータンク2を加熱することにより、液化ガスの気化効率を向上できる。また、消費設備に液化ガスを供給する場合も同様に、温度制御機構によってマザータンク2を加熱することにより、液相(液体)の液化ガスを効率よく気化するため、高純度の液化ガスの供給量を増やすことができる。 Further, the liquefied gas supply device 1 of the above embodiment may be configured to include a temperature control mechanism for heating the mother tank (liquefied gas storage container) 2. When preparing to supply the liquefied gas, the gas phase 2A portion in the mother tank 2 is continuously discharged from the exhaust path L2, so that the pressure in the container is lowered and the liquefied gas in the liquid phase (liquid) is vaporized. At this time, the vaporization efficiency of the liquefied gas can be improved by heating the mother tank 2 by the temperature control mechanism. Similarly, when supplying the liquefied gas to the consumption equipment, the mother tank 2 is heated by the temperature control mechanism to efficiently vaporize the liquefied gas in the liquid phase (liquid), so that a high-purity liquefied gas is supplied. You can increase the amount.

1・・・液化ガス供給装置
2・・・マザータンク(交換可能な液化ガス貯留容器)
2A・・・気相
3・・・濃度管理機構
L1・・・液化ガス供給経路
L2・・・排気経路
P・・・分岐点
V1・・・第1開閉弁
V2・・・第2開閉弁
V3・・・容器弁
V4・・・開閉弁
1 ... Liquefied gas supply device 2 ... Mother tank (replaceable liquefied gas storage container)
2A ... Gas phase 3 ... Condensation control mechanism L1 ... Liquefied gas supply path L2 ... Exhaust path P ... Branch point V1 ... First on-off valve V2 ... Second on-off valve V3・ ・ ・ Container valve V4 ・ ・ ・ Open / close valve

Claims (4)

交換可能な液化ガス貯留容器と、
一端が前記液化ガス貯留容器の気相部分と連通し、他端が液化ガスの消費設備と接続される液化ガス供給経路と、
前記液化ガス供給経路から分岐する排気経路と、
前記排気経路内の液化ガス濃度を管理する、濃度管理機構と、
前記排気経路に位置する第1開閉弁と、
前記排気経路との分岐点より二次側の前記液化ガス供給経路に位置する第2開閉弁と、を備え、
前記液化ガス貯留容器には、前記液化ガス供給経路のみが接続される、液化ガス供給装置。
With a replaceable liquefied gas storage container,
A liquefied gas supply path in which one end communicates with the gas phase portion of the liquefied gas storage container and the other end is connected to the liquefied gas consuming equipment .
The exhaust path branching from the liquefied gas supply path and
A concentration control mechanism that controls the concentration of liquefied gas in the exhaust path,
The first on-off valve located in the exhaust path and
A second on-off valve located in the liquefied gas supply path on the secondary side of the branch point with the exhaust path is provided.
A liquefied gas supply device to which only the liquefied gas supply path is connected to the liquefied gas storage container .
前記排気経路に位置する、液化ガスの流量制御機構をさらに備える、請求項1に記載の液化ガス供給装置。 The liquefied gas supply device according to claim 1, further comprising a flow rate control mechanism for liquefied gas located in the exhaust path. 前記液化ガス貯留容器を加温する温度制御機構をさらに備える、請求項1又は2に記載の液化ガス供給装置。 The liquefied gas supply device according to claim 1 or 2, further comprising a temperature control mechanism for heating the liquefied gas storage container. 交換可能な液化ガス貯留容器から液化ガスの消費設備に高濃度の液化ガスを供給する方法であって、
交換可能な液化ガス貯留容器を設置し、前記液化ガス貯留容器の気相部分を抜き出して液化ガスの濃度が所要の閾値に到達するまで廃棄し、前記濃度が前記閾値に到達した後、前記液化ガス貯留容器の気相部分を前記消費設備に供給する、液化ガス供給方法。
A method of supplying high-concentration liquefied gas from a replaceable liquefied gas storage container to a liquefied gas consuming facility.
A replaceable liquefied gas storage container is installed, the gas phase portion of the liquefied gas storage container is extracted and discarded until the concentration of the liquefied gas reaches the required threshold, and after the concentration reaches the threshold, the liquefaction is performed. A liquefied gas supply method for supplying a gas phase portion of a gas storage container to the consumption facility.
JP2019230532A 2019-12-20 2019-12-20 Liquefied gas supply device and liquefied gas supply method Active JP7065823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019230532A JP7065823B2 (en) 2019-12-20 2019-12-20 Liquefied gas supply device and liquefied gas supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019230532A JP7065823B2 (en) 2019-12-20 2019-12-20 Liquefied gas supply device and liquefied gas supply method

Publications (2)

Publication Number Publication Date
JP2021100034A JP2021100034A (en) 2021-07-01
JP7065823B2 true JP7065823B2 (en) 2022-05-12

Family

ID=76541921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019230532A Active JP7065823B2 (en) 2019-12-20 2019-12-20 Liquefied gas supply device and liquefied gas supply method

Country Status (1)

Country Link
JP (1) JP7065823B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091917A (en) 2002-07-10 2004-03-25 Tokyo Electron Ltd Film deposition apparatus and source supplying apparatus therefor and gas concentration measuring method
JP2014078632A (en) 2012-10-11 2014-05-01 Toyoko Kagaku Co Ltd Mixed gas supply device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091917A (en) 2002-07-10 2004-03-25 Tokyo Electron Ltd Film deposition apparatus and source supplying apparatus therefor and gas concentration measuring method
JP2014078632A (en) 2012-10-11 2014-05-01 Toyoko Kagaku Co Ltd Mixed gas supply device

Also Published As

Publication number Publication date
JP2021100034A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US5964254A (en) Delivery system and manifold
US7813627B2 (en) Low vapor pressure high purity gas delivery system
US9447497B2 (en) Processing chamber gas delivery system with hot-swappable ampoule
TW201704918A (en) Fluid supply package
US5900532A (en) Method of removing siloxanes from silicon compound gases and apparatus therefor
JP2005090747A (en) Fluid controlling/gas delivering assembly
CN107771353A (en) Gas holder
TW200405149A (en) Pressure-based gas delivery system and method for reducing risks associated with storage and delivery of high pressure gases
JP5106979B2 (en) Gas supply system
EP0908664A2 (en) Methods and systems for delivering an ultra-pure gas to a point of use
JP7065823B2 (en) Liquefied gas supply device and liquefied gas supply method
TW201523764A (en) Remote delivery of chemical reagents
JP5065115B2 (en) Gas supply system
CN108486549B (en) Material recovery device
JP4933414B2 (en) Compound thin film semiconductor manufacturing apparatus and ammonia gas supply apparatus and method
US20180081377A1 (en) Method and system for optimizing acetylene delivery
US20090263257A1 (en) System and method for delivery of precursor material
JPH1057798A (en) Liquid material supply device and material supply method
JP2000306839A (en) Feeding system for semiconductor process gas
CN116983704B (en) Condensing device and method
JP2015166599A (en) Container valve with pressure adjustment function and method for filling or supplying fluid under application of container valve
JPH05177126A (en) Harmful liquid supply apparatus
JP7214848B2 (en) SiC epitaxial growth equipment
US20070163273A1 (en) Liquid Purge for a Vaporizer
KR20010084011A (en) Gas supply system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220426

R150 Certificate of patent or registration of utility model

Ref document number: 7065823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150