JP7064704B2 - Vehicle power storage device - Google Patents

Vehicle power storage device Download PDF

Info

Publication number
JP7064704B2
JP7064704B2 JP2018141486A JP2018141486A JP7064704B2 JP 7064704 B2 JP7064704 B2 JP 7064704B2 JP 2018141486 A JP2018141486 A JP 2018141486A JP 2018141486 A JP2018141486 A JP 2018141486A JP 7064704 B2 JP7064704 B2 JP 7064704B2
Authority
JP
Japan
Prior art keywords
power storage
heat
storage device
heater
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018141486A
Other languages
Japanese (ja)
Other versions
JP2020017487A (en
Inventor
輝彦 花岡
渉 増田
敏貴 ▲高▼橋
潔 大路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2018141486A priority Critical patent/JP7064704B2/en
Publication of JP2020017487A publication Critical patent/JP2020017487A/en
Application granted granted Critical
Publication of JP7064704B2 publication Critical patent/JP7064704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、車両に搭載する車両用蓄電装置に関する。 The present invention relates to a vehicle power storage device mounted on a vehicle.

従来から、エンジンと電動モータによって駆動輪を駆動して走行するハイブリッド車両が広く利用されている。ハイブリッド車両は、エンジンと電動モータを車両の限られたスペースに搭載し、主としてエンジンで走行する。それ故、電動モータを駆動する場面は限られており、電動モータを駆動して走行するための電力を蓄える蓄電装置は小型で蓄電容量が小さいものが採用されている。 Conventionally, a hybrid vehicle in which a drive wheel is driven by an engine and an electric motor to travel has been widely used. A hybrid vehicle has an engine and an electric motor mounted in the limited space of the vehicle and runs mainly on the engine. Therefore, the scene of driving the electric motor is limited, and a small storage device having a small storage capacity is adopted as a power storage device for driving and traveling the electric motor.

一方、走行中には二酸化炭素等を排出しない電気自動車(Electric Vehicle:EV)についても関心が高まっている。EVは、電動モータと、電動モータを駆動して走行するための電力を蓄える蓄電装置を搭載しており、1回の充電で走行可能な距離を長くするためにハイブリッド車両よりも大きい蓄電容量ものが採用されている。また、蓄電装置は、制動装置や操舵装置、前照灯やエアコン等の電装品を作動させる電力も供給する。 On the other hand, there is increasing interest in electric vehicles (EVs) that do not emit carbon dioxide or the like while driving. The EV is equipped with an electric motor and a power storage device that stores the power to drive and run the electric motor, and has a storage capacity larger than that of a hybrid vehicle in order to extend the travelable distance with one charge. Has been adopted. The power storage device also supplies electric power for operating electrical components such as braking devices, steering devices, headlights, and air conditioners.

ハイブリッド車両やEVの蓄電装置は、複数の蓄電池によって構成されている。蓄電池には、例えばアルミ合金製の直方体形状のケース内に正負の電極箔と電解液を密閉状に収容して構成された角型のリチウムイオン二次電池が使用されている。そして、直列に接続された複数の角型のリチウムイオン二次電池によって、電動モータを駆動するための高い出力電圧を有する蓄電装置が構成されている。EVの蓄電装置では、複数のリチウムイオン二次電池を並列に接続すると共に直列に接続して、大きい蓄電容量且つ高い出力電圧を実現している。 A power storage device for a hybrid vehicle or an EV is composed of a plurality of storage batteries. As the storage battery, for example, a square lithium-ion secondary battery is used in which a positive and negative electrode foil and an electrolytic solution are hermetically housed in a rectangular case made of an aluminum alloy. A plurality of square lithium-ion secondary batteries connected in series constitute a power storage device having a high output voltage for driving an electric motor. In the EV power storage device, a plurality of lithium ion secondary batteries are connected in parallel and in series to realize a large storage capacity and a high output voltage.

蓄電装置を構成するリチウムイオン二次電池には、その優れた性能を発揮できる使用温度域があり、この使用温度域外での充放電は性能を発揮できないばかりでなく劣化を進行させる虞がある。そのため、蓄電池は、外気温度が低い場合にその影響を受け難くする必要があり、冷間時には使用温度域の下限温度よりも低温にならないように加温が必要である。また、蓄電池は、充放電時に発熱するので使用温度域の上限温度を超えないように冷却する必要がある。 The lithium-ion secondary battery constituting the power storage device has an operating temperature range in which the excellent performance can be exhibited, and charging / discharging outside the operating temperature range may not only not exhibit the performance but also promote deterioration. Therefore, it is necessary to make the storage battery less susceptible to the influence when the outside air temperature is low, and it is necessary to heat the storage battery so that the temperature does not become lower than the lower limit temperature in the operating temperature range when it is cold. Further, since the storage battery generates heat during charging and discharging, it is necessary to cool the storage battery so as not to exceed the upper limit temperature in the operating temperature range.

蓄電装置を温める技術として、例えば特許文献1のように、角型の蓄電池の集合体底部側に配設されたヒータによって温める技術が知られている。また、特許文献2のように、セパレータ介して正極箔と負極箔を交互に重ねて絶縁フィルムで密封したラミネート型の蓄電池の間に、シート状のヒータを配設する技術が知られている。一方、蓄電装置の冷却技術として、送風ファン等によって冷却風を蓄電池の周囲に流通させることにより蓄電池の表面からの放熱を促進させる技術が知られている。 As a technique for heating a power storage device, for example, as in Patent Document 1, a technique for heating by a heater arranged on the bottom side of an aggregate of square storage batteries is known. Further, as in Patent Document 2, there is known a technique of arranging a sheet-shaped heater between laminated storage batteries in which positive electrode foils and negative electrode foils are alternately stacked and sealed with an insulating film via a separator. On the other hand, as a cooling technique for a power storage device, a technique is known in which cooling air is circulated around the storage battery by a blower fan or the like to promote heat dissipation from the surface of the storage battery.

角型の蓄電池で構成された蓄電装置を温める場合、特許文献1のように、ヒータをケースに近接又は当接するように配設し、通電により発生するヒータのジュール熱をケースに伝えて蓄電池を温めるので、特許文献2のように電極箔の加温を効率的に行うことが困難である。具体的には、電極箔以外にケース等の熱容量があるため、ヒータの熱が正負の電極箔の加温以外にも使われる。 When heating a power storage device composed of a square storage battery, as in Patent Document 1, the heater is arranged so as to be close to or in contact with the case, and the Joule heat of the heater generated by energization is transmitted to the case to transfer the storage battery. Since it is heated, it is difficult to efficiently heat the electrode foil as in Patent Document 2. Specifically, since there is a heat capacity of a case or the like other than the electrode foil, the heat of the heater is used for other than heating the positive and negative electrode foils.

また、ヒータの熱を逃がさないために、及び外気温度の影響を小さくするために、ヒータと共に蓄電池を断熱部材で覆うことが考えられるが、ヒータはケースの所定の面から温めるので、電極箔を均一に温めることが困難である。一方、蓄電池の冷却は、冷却風によって蓄電池のケースの表面からの放熱を促進するので、ヒータと共に蓄電池を断熱部材で覆うと放熱が妨げられて冷却できない。 Further, in order to prevent the heat of the heater from escaping and to reduce the influence of the outside air temperature, it is conceivable to cover the storage battery with a heat insulating member together with the heater. It is difficult to heat evenly. On the other hand, cooling of the storage battery promotes heat dissipation from the surface of the storage battery case by the cooling air, so if the storage battery is covered with a heat insulating member together with the heater, heat dissipation is hindered and cooling cannot be performed.

そのため、ケース内に、電力を蓄えるための蓄電体と、蓄電体の外周を覆う断熱部材と、蓄電体を温めるためのシート状のヒータと、蓄電体の熱をケースに移動させるためのシート状のヒートパイプを備えた角型の蓄電池を有する車両用蓄電装置を、本出願人は既に提案している(特願2018-81169号等)。 Therefore, in the case, a power storage body for storing electric power, a heat insulating member covering the outer periphery of the power storage body, a sheet-shaped heater for heating the power storage body, and a sheet-like sheet for transferring the heat of the storage body to the case. The present applicant has already proposed a vehicle power storage device having a square storage battery equipped with the heat pipe of the above (Japanese Patent Application No. 2018-81169, etc.).

特開2008-103207号公報Japanese Unexamined Patent Publication No. 2008-103207 特許第5609799号公報Japanese Patent No. 56099799

上記のように、EVの蓄電装置には高い出力電圧と大きい蓄電容量が要求される。ハイブリッド車両の蓄電装置は、EVの蓄電装置と同程度の高い出力電圧が要求されるが、EVの蓄電装置よりも小さい蓄電容量である。現状、蓄電池の製造コストは安価ではないので、EVの蓄電装置に使用する蓄電池とハイブリッド車両の蓄電装置に使用する蓄電池をある程度共通化して製造コストの低減を図っている。 As described above, the EV storage device is required to have a high output voltage and a large storage capacity. The power storage device of a hybrid vehicle is required to have a high output voltage similar to that of an EV power storage device, but has a smaller storage capacity than that of an EV power storage device. At present, the manufacturing cost of a storage battery is not low, so the storage battery used for the power storage device of an EV and the storage battery used for the power storage device of a hybrid vehicle are shared to some extent to reduce the manufacturing cost.

例えば、セパレータを介して正極箔と負極箔を巻回した巻回体を形成し、角型の蓄電池の蓄電体を複数の巻回体で構成してケースに収容し、これら複数の巻回体の接続態様によってEV用の蓄電池とハイブリッド車両用の蓄電池とに作り分ける。複数の巻回体を並列接続すれば、蓄電容量が大きいEV用の蓄電池を形成できる。また、複数の巻回体を直列接続すれば、高い出力電圧のハイブリッド車両用の蓄電池を形成できる。 For example, a winding body is formed by winding a positive electrode foil and a negative electrode foil via a separator, and a storage body of a square storage battery is composed of a plurality of winding bodies and housed in a case. Depending on the connection mode, the storage battery for EV and the storage battery for hybrid vehicles are made separately. By connecting a plurality of winding bodies in parallel, it is possible to form a storage battery for an EV having a large storage capacity. Further, by connecting a plurality of winding bodies in series, a storage battery for a hybrid vehicle having a high output voltage can be formed.

このような複数の巻回体で構成された蓄電体を有する角型の蓄電池においても、蓄電体を加温及び冷却により適切な温度に調整する必要がある。しかし、近接する巻回体との間に絶縁のための部材が配設されるので巻回体間で伝熱し難く、蓄電体の全ての巻回体を均一に加温、冷却することができなかった。 Even in a square storage battery having a storage body composed of such a plurality of winding bodies, it is necessary to adjust the storage body to an appropriate temperature by heating and cooling. However, since a member for insulation is arranged between the winding bodies in the vicinity, it is difficult to transfer heat between the winding bodies, and all the winding bodies of the power storage body can be uniformly heated and cooled. I didn't.

本発明の目的は、複数の巻回体で構成された蓄電体の加温と冷却を均一に行うことができる蓄電池を備えた車両用蓄電装置を提供することである。 An object of the present invention is to provide a vehicle power storage device including a storage battery capable of uniformly heating and cooling a power storage body composed of a plurality of winding bodies.

請求項1の発明は、直方体形状のケース内に、電力を蓄える蓄電体と、前記蓄電体の外周を覆う断熱部材と、前記蓄電体を温めるためのシート状のヒータと、前記蓄電体の熱を前記ケースに移動させるためのシート状のヒートパイプを備えた複数の蓄電池を有する車両用蓄電装置において、前記蓄電池の前記蓄電体は、複数の扁平状の巻回体の平面部同士を対向状に近接させて構成され、前記巻回体は、正極箔と負極箔がセパレータを介して水平軸心周りに扁平状に巻回されて外周を絶縁部材に覆われ、且つ1対の前記平面部には前記巻回体を平面部側から見て一致しない位置で当接するように前記ヒータが配設され、前記ヒートパイプは、前記ヒータに当接しない位置で前記対向状に近接させた平面部に当接する吸熱部と、前記吸熱部から前記断熱部材の外側に延びて前記ケースの内壁に当接する放熱部を備えたことを特徴としている。 The invention according to claim 1 is an electric storage body that stores electric power in a rectangular case, a heat insulating member that covers the outer periphery of the electric storage body, a sheet-shaped heater for heating the electric storage body, and heat of the electric storage body. In a vehicle power storage device having a plurality of storage batteries provided with a sheet-shaped heat pipe for moving the storage battery, the storage body of the storage battery faces the flat surfaces of the plurality of flat wound bodies. In the winding body, the positive electrode foil and the negative electrode foil are wound flat around the horizontal axis via a separator, the outer periphery is covered with an insulating member, and a pair of the flat surface portions thereof. The heater is arranged so as to abut the wound body at a position that does not match when viewed from the flat surface portion side, and the heat pipe is a flat surface portion that is brought close to the surface portion at a position that does not abut on the heater. It is characterized by having a heat absorbing portion that abuts on the heat absorbing portion and a heat radiating portion that extends from the heat absorbing portion to the outside of the heat insulating member and abuts on the inner wall of the case.

上記構成によれば、蓄電池はケース内に蓄電体を構成する複数の扁平状の巻回体を有し、蓄電体の外周を覆う断熱部材によって外側の温度の影響が低減される。巻回体の1対の平面部には、平面部側から見て一致しない位置でヒータが夫々当接するように配設され、巻回体を1対の平面部から温める。また、巻回体が対向状に近接する平面部にはヒータに当接しないように配設されたヒートパイプの吸熱部が当接し、近接する2つの巻回体の熱を吸熱部が吸熱して断熱部材の外側でケースの内壁に当接する放熱部に移動させてケースに伝熱させる。従って、蓄電体の各巻回体は1対の平面部から温められ、近接する巻回体と対向する平面部から吸熱されるので、車両用蓄電装置を構成する蓄電池の蓄電体の加温と冷却を均一に行うことができる。 According to the above configuration, the storage battery has a plurality of flat wound bodies constituting the storage body in the case, and the influence of the outside temperature is reduced by the heat insulating member covering the outer periphery of the storage body. Heaters are arranged on the pair of flat surfaces of the winding body so as to be in contact with each other at positions that do not match when viewed from the flat surface portion side, and the winding body is heated from the pair of flat surface portions. Further, the heat absorbing portion of the heat pipe arranged so as not to abut on the heater abuts on the flat portion where the winding bodies are close to each other in a facing manner, and the heat absorbing portion absorbs the heat of the two adjacent winding bodies. The heat is transferred to the case by moving it to the heat radiating part that abuts on the inner wall of the case on the outside of the heat insulating member. Therefore, each winding body of the power storage body is heated from a pair of flat surface portions and is endothermic from the flat surface portions facing the adjacent winding bodies, so that the storage body of the storage battery constituting the vehicle power storage device is heated and cooled. Can be performed uniformly.

請求項2の発明は、請求項1の発明において、前記蓄電体を構成する全ての前記巻回体の1対の前記平面部に、前記吸熱部が夫々当接することを特徴としている。
上記構成によれば、蓄電体を構成する全ての巻回体は、その1対の平面部にヒートパイプの吸熱部が夫々当接し、1対の平面部から吸熱されるので、車両用蓄電装置を構成する蓄電池の蓄電体の一層均一な冷却を行うことができる。
The invention of claim 2 is characterized in that, in the invention of claim 1, the endothermic portion abuts on the pair of the flat surface portions of all the winding bodies constituting the storage body.
According to the above configuration, in all the winding bodies constituting the power storage body, the heat absorbing portions of the heat pipes are in contact with the pair of flat surfaces, and heat is absorbed from the pair of flat surfaces. It is possible to perform more uniform cooling of the storage body of the storage battery constituting the above.

請求項3の発明は、請求項1又は2の発明において、複数の前記蓄電池を所定の間隔を空けて整列させて前記蓄電池同士の間に形成された冷却風通路を有することを特徴としている。
上記構成によれば、ヒートパイプがケースに移動させた蓄電体の熱の外部への放熱を、冷却風通路に面したケースの側面部から冷却風通路を流通する冷却風によって促進させることができるので、車両用蓄電装置の放熱を促進させて冷却することができる。
The invention of claim 3 is characterized in that, in the invention of claim 1 or 2, a plurality of the storage batteries are arranged at a predetermined interval to have a cooling air passage formed between the storage batteries.
According to the above configuration, the heat of the storage body moved to the case by the heat pipe can be dissipated to the outside by the cooling air flowing through the cooling air passage from the side surface of the case facing the cooling air passage. Therefore, it is possible to promote heat dissipation of the vehicle power storage device and cool it.

本発明の車両用蓄電装置によれば、車両用蓄電装置を構成する蓄電池の蓄電体の加温と冷却を均一に行うことができる。 According to the vehicle power storage device of the present invention, it is possible to uniformly heat and cool the power storage body of the storage battery constituting the vehicle power storage device.

本発明の実施例に係る車両の構成を説明するブロック図である。It is a block diagram explaining the structure of the vehicle which concerns on embodiment of this invention. 本発明の実施例に係る蓄電装置の要部斜視図である。It is a main part perspective view of the power storage device which concerns on embodiment of this invention. 本発明の実施例に係る蓄電モジュールの要部分解斜視図である。It is an exploded perspective view of the main part of the power storage module which concerns on embodiment of this invention. 図3のIV-IV線断面図である。FIG. 3 is a sectional view taken along line IV-IV of FIG. 本発明の実施例に係る蓄電池の要部分解斜視図である。It is an exploded perspective view of the main part of the storage battery which concerns on embodiment of this invention. 図5の蓄電体を水平軸心方向から見た側面図である。FIG. 5 is a side view of the power storage body of FIG. 5 as viewed from the horizontal axis direction. 巻回体を水平軸心方向から見た側面図である。It is a side view which looked at the winding body from the horizontal axis direction. 図5の蓄電体を上方から見た平面図である。FIG. 5 is a plan view of the power storage body of FIG. 5 as viewed from above. ヒートパイプの1例を示す斜視図である。It is a perspective view which shows an example of a heat pipe. ヒートパイプの他の例を示す斜視図である。It is a perspective view which shows the other example of a heat pipe.

以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to examples.

EVの駆動用の電力を供給する大容量の車両用蓄電装置の例について説明する。
EVは、図1に示すように、車両側負荷1として車両駆動用の電動モータ2、制動装置3、車速センサ4、温度センサ5等を含む各種センサ、冷却ファン6、これらに供給する直流電力の電圧を調整するDCDCコンバータ7等を備えている。そして、車両側負荷1に供給する車両駆動用の電力を蓄える蓄電装置10(車両用蓄電装置)と、車両側負荷1及び蓄電装置10を制御する制御部(ECU8)を備えている。
An example of a large-capacity vehicle power storage device that supplies electric power for driving an EV will be described.
As shown in FIG. 1, the EV is a vehicle-side load 1, an electric motor 2 for driving a vehicle, a braking device 3, various sensors including a vehicle speed sensor 4, a temperature sensor 5, a cooling fan 6, and DC power supplied to these. It is equipped with a DCDC converter 7 or the like that adjusts the voltage of the above. It also includes a power storage device 10 (vehicle power storage device) that stores electric power for driving a vehicle to be supplied to the vehicle side load 1, and a control unit (ECU 8) that controls the vehicle side load 1 and the power storage device 10.

温度センサ5は、蓄電装置10の温度を検知する。冷却ファン6は、蓄電装置10を冷却するための冷却風を送風する。ECU8は、CPUと各種プログラムを記憶するメモリと入出力装置等を備えたコンピュータにより構成されている。このECU8は、各種センサから周期的に出力される信号を処理して、蓄電装置10、電動モータ2、制動装置3、冷却ファン6等に対して適切に作動させるための制御信号を出力する。ECU8は蓄電装置10の充電状態(SOC)を管理し、運転者に現在のSOCや走行可能距離等を報知する。蓄電装置10は、駐車時に外部電源からの供給電力により充電され、回生ブレーキによって車輪の回転力で電動モータ2を回転させて発電した電力によっても充電される。 The temperature sensor 5 detects the temperature of the power storage device 10. The cooling fan 6 blows cooling air for cooling the power storage device 10. The ECU 8 is composed of a computer including a CPU, a memory for storing various programs, an input / output device, and the like. The ECU 8 processes signals periodically output from various sensors, and outputs control signals for appropriately operating the power storage device 10, the electric motor 2, the braking device 3, the cooling fan 6, and the like. The ECU 8 manages the charging state (SOC) of the power storage device 10 and notifies the driver of the current SOC, the mileage, and the like. The power storage device 10 is charged by the electric power supplied from the external power source when parked, and is also charged by the electric power generated by rotating the electric motor 2 by the rotational force of the wheels by the regenerative brake.

次に、蓄電装置10について説明する。
蓄電装置10は、図2に示すようにEVの車室フロアパネルの下方空間に配設するための耐振性(剛性)と耐水性(防水性)を確保するために、支持パネル部材12とカバー部材13からなる蓄電装置ケース内に収容されている。図中の矢印Uは上方を示し、矢印Fは車両前方を示し、矢印Lは車両左方を示す。蓄電装置10から発生する熱は、図示外の冷却ファン6を作動させて蓄電装置ケース内に前側から支持パネル部材12に沿って流通するように導入されて後方に排出される冷却風によって、蓄電装置ケース外に排出される。温度センサ5は、蓄電装置10の温度を検知して温度データをECU8に出力し、ECU8は蓄電装置10の過度の温度上昇を防ぐために冷却ファン6の送風量を調整する。
Next, the power storage device 10 will be described.
As shown in FIG. 2, the power storage device 10 includes a support panel member 12 and a cover in order to secure vibration resistance (rigidity) and water resistance (waterproofness) for disposing in the space below the vehicle interior floor panel of the EV. It is housed in a power storage device case made of the member 13. In the figure, the arrow U indicates upward, the arrow F indicates the front of the vehicle, and the arrow L indicates the left side of the vehicle. The heat generated from the power storage device 10 is stored by the cooling air introduced into the power storage device case from the front side along the support panel member 12 by operating a cooling fan 6 (not shown) and discharged to the rear. It is discharged to the outside of the device case. The temperature sensor 5 detects the temperature of the power storage device 10 and outputs temperature data to the ECU 8, and the ECU 8 adjusts the amount of air blown by the cooling fan 6 in order to prevent an excessive temperature rise of the power storage device 10.

蓄電装置10は、複数(例えば16個)の蓄電モジュール11を複数のバスバー14によって直列に接続してEVの車両駆動用の電力を供給するように構成されている。尚、蓄電装置10を構成する蓄電モジュール11の数は、その蓄電装置10が搭載されるEVの仕様等に応じて適宜設定される。 The power storage device 10 is configured to connect a plurality of (for example, 16) power storage modules 11 in series by a plurality of bus bars 14 to supply electric power for driving an EV vehicle. The number of power storage modules 11 constituting the power storage device 10 is appropriately set according to the specifications of the EV on which the power storage device 10 is mounted.

次に蓄電モジュール11について説明する。
図3に示すように、蓄電モジュール11は、複数(例えば6個)の蓄電池20を備えている。この複数の蓄電池20を所定の間隔(例えば10mmの間隔)を空けて水平方向に1列に整列させた状態を維持するように、1対の支持部材15と1対のエンドプレート16を連結して固定している。尚、蓄電モジュール11は必要な出力電圧等に応じた数の蓄電池20で構成することができる。
Next, the power storage module 11 will be described.
As shown in FIG. 3, the power storage module 11 includes a plurality of (for example, 6) storage batteries 20. A pair of support members 15 and a pair of end plates 16 are connected so as to maintain a state in which the plurality of storage batteries 20 are aligned horizontally in a row at predetermined intervals (for example, at intervals of 10 mm). It is fixed. The power storage module 11 can be composed of a number of storage batteries 20 according to a required output voltage or the like.

1対の支持部材15には、蓄電池20同士の間に所定の間隔を維持して冷却風通路17を確保するための複数のスペーサ部材15aが装備されている。また、エンドプレート16と蓄電池20の間にも冷却風通路17が設けられている。複数の蓄電池20は複数のバスバー18によって直列に接続され、その両端部に蓄電モジュール11の正極端子11aと負極端子11bを備えている。図4に示すように、蓄電モジュール11の蓄電池20と支持パネル部材12の間には、各冷却風通路17に冷却風を供給するための通路19を備えている。 The pair of support members 15 are equipped with a plurality of spacer members 15a for maintaining a predetermined distance between the storage batteries 20 to secure a cooling air passage 17. Further, a cooling air passage 17 is also provided between the end plate 16 and the storage battery 20. The plurality of storage batteries 20 are connected in series by a plurality of bus bars 18, and are provided with positive electrode terminals 11a and negative electrode terminals 11b of the power storage module 11 at both ends thereof. As shown in FIG. 4, between the storage battery 20 of the power storage module 11 and the support panel member 12, a passage 19 for supplying cooling air to each cooling air passage 17 is provided.

次に、図5~図8に基づいて蓄電池20について説明する。
蓄電池20は、直方体形状のケース22を有し、蓋部材である上面部22aに蓄電池20の正極端子23と負極端子24が配設されている。ケース22は、冷却風通路17に面する互いに平行な第1側面部22b及び第2側面部22cと、これら第1,第2側面部22b,22cに直交し且つ互いに平行な第3側面部22d及び第4側面部22eと、上面部22aに対向する底面部22fを有し、それらの内壁は絶縁処理されている。
Next, the storage battery 20 will be described with reference to FIGS. 5 to 8.
The storage battery 20 has a rectangular parallelepiped case 22, and a positive electrode terminal 23 and a negative electrode terminal 24 of the storage battery 20 are arranged on an upper surface portion 22a which is a lid member. The case 22 has a first side surface portion 22b and a second side surface portion 22c facing the cooling air passage 17, and a third side surface portion 22d orthogonal to and parallel to the first and second side surface portions 22b and 22c. It also has a fourth side surface portion 22e and a bottom surface portion 22f facing the upper surface portion 22a, and the inner walls thereof are insulated.

ケース22内には、蓄電体25と、蓄電体25の外周部を覆う断熱部材26と、シート状のヒートパイプ27と、シート状のヒータ28と、電解液(図示略)が収容され、蓋部材で密閉されている。蓄電体25は、複数の巻回体30を有し、以下では3つの巻回体30を有する蓄電体25について説明するが、3つ以上の巻回体30を有していてもよい。 The case 22 contains a power storage body 25, a heat insulating member 26 that covers the outer peripheral portion of the power storage body 25, a sheet-shaped heat pipe 27, a sheet-shaped heater 28, and an electrolytic solution (not shown), and a lid. It is sealed with a member. The power storage body 25 has a plurality of winding bodies 30, and although the storage body 25 having three winding bodies 30 will be described below, it may have three or more winding bodies 30.

巻回体30は、多孔性のシート状のセパレータ(図示略)を介して正極箔30aと負極箔30bが水平軸心周りに扁平状に巻回され、その外周を絶縁部材31で覆われて構成され、1対の平面部30dを備えている。絶縁部材31は、合成樹脂材料(例えばポリプロピレンやポリエチレン)により可撓性を備えたシート状に形成され、巻回体30の平面部30dに当接するヒータ28を収容するための袋状の収容部(図示略)を備えている。 In the winding body 30, the positive electrode foil 30a and the negative electrode foil 30b are wound flat around the horizontal axis via a porous sheet-shaped separator (not shown), and the outer periphery thereof is covered with an insulating member 31. It is configured and includes a pair of flat surfaces 30d. The insulating member 31 is formed in a flexible sheet shape by a synthetic resin material (for example, polypropylene or polyethylene), and is a bag-shaped accommodating portion for accommodating the heater 28 that abuts on the flat surface portion 30d of the winding body 30. (Not shown).

蓄電体25は、3つの扁平状の巻回体30の平面部30d同士を対向状に近接させて、巻回体30を水平方向に1列に整列させて構成されている。各巻回体30の1対の平面部30dには、巻回体30を平面部30d側から見たときに、一部重なってもよいが一致しない位置でヒータ28が夫々当接する。ヒータ28の面積は平面部30dよりも小さく、平面部30dの半分程度である。近接した2つの巻回体30の間のヒータ28は、この2つの巻回体30が共用してヒータ28の数を少なくしている。蓄電体25を例えば上方から見たときに、交互にずらした位置でヒータ28が各巻回体30の1対の平面部30dに当接している。 The power storage body 25 is configured such that the flat surface portions 30d of the three flat winding bodies 30 are brought close to each other so as to face each other, and the winding bodies 30 are arranged in a row in the horizontal direction. When the winding body 30 is viewed from the flat surface portion 30d side, the heater 28 abuts on the pair of flat surface portions 30d of each winding body 30 at positions where they may partially overlap but do not match. The area of the heater 28 is smaller than that of the flat surface portion 30d, and is about half of that of the flat surface portion 30d. The heater 28 between the two adjacent winding bodies 30 is shared by the two winding bodies 30 to reduce the number of heaters 28. When the power storage body 25 is viewed from above, for example, the heater 28 is in contact with a pair of flat surface portions 30d of each winding body 30 at positions shifted alternately.

蓄電体25の3つの巻回体30の正極箔30aに連なる正極集電タブ33が第3側面部22d側に配設されて蓄電池20の正極端子23に接続され、3つの巻回体30の負極箔30bに連なる負極集電タブ34が第4側面部22e側に配設されて蓄電池20の負極端子24に接続されている。即ち、ケース22内に3つの巻回体30が並列接続された蓄電体25が収容され、EV用の大きい蓄電容量の蓄電池20が形成されている。尚、蓄電体25を構成する巻回体30が直列接続され、その直列接続の正極側端部の正極箔30aに正極集電タブ33を接続し、負極側端部の負極箔30bに負極集電タブ34を接続することにより、例えばハイブリッド車両用の高い出力電圧の蓄電池20を形成することができる。 The positive electrode current collecting tab 33 connected to the positive electrode foil 30a of the three winding bodies 30 of the storage body 25 is arranged on the third side surface portion 22d side and connected to the positive electrode terminal 23 of the storage battery 20, and the three winding bodies 30 A negative electrode current collecting tab 34 connected to the negative electrode foil 30b is arranged on the fourth side surface portion 22e side and is connected to the negative electrode terminal 24 of the storage battery 20. That is, a storage body 25 in which three winding bodies 30 are connected in parallel is housed in the case 22, and a storage battery 20 having a large storage capacity for EV is formed. The winding body 30 constituting the power storage body 25 is connected in series, the positive electrode current collecting tab 33 is connected to the positive electrode foil 30a at the positive electrode side end of the series connection, and the negative electrode collection is connected to the negative electrode foil 30b at the negative electrode side end. By connecting the electric tab 34, for example, a storage battery 20 having a high output voltage for a hybrid vehicle can be formed.

蓄電体25は、少なくともその外周部の過半領域をシート状の断熱部材26によって覆われている。断熱部材26は、例えばシリカエアロゲル系の中空構造体をその中空構造が外部に対して閉じるように且つ屈曲可能なシート状に形成したものである。この断熱部材26は、絶縁部材31よりも巻回体30とケース22の間の熱伝導を抑える効果が高く、電解液が浸潤せず絶縁性を有している。 At least the majority region of the outer peripheral portion of the power storage body 25 is covered with a sheet-shaped heat insulating member 26. The heat insulating member 26 is formed, for example, by forming a silica airgel-based hollow structure into a flexible sheet shape so that the hollow structure is closed to the outside. The heat insulating member 26 has a higher effect of suppressing heat conduction between the winding body 30 and the case 22 than the insulating member 31, and has insulating properties without infiltration of the electrolytic solution.

ヒートパイプ27は、蓄電体25の熱をケース22に移動させる。蓄電体25の近接した2つの巻回体30が対向する平面部30dには、ヒータ28に当接しないようにヒートパイプ27の吸熱部27aが当接する。この近接した2つの巻回体30の間の吸熱部27aは、2つの巻回体30から吸熱する。 The heat pipe 27 transfers the heat of the storage body 25 to the case 22. The endothermic portion 27a of the heat pipe 27 abuts on the flat surface portion 30d where the two adjacent winding bodies 30 of the storage body 25 face each other so as not to abut on the heater 28. The endothermic portion 27a between the two adjacent winding bodies 30 absorbs heat from the two winding bodies 30.

ヒートパイプ27は、蓄電体25を覆う断熱部材26の内側で平面部30dに当接する吸熱部27aから断熱部材26の外側に延びて、ケース22の内壁(第1側面部22bの内壁、第2側面部22cの内壁)に当接する放熱部27bを有する。ヒートパイプ27は容易に曲げることができ、図示を省略するがその内部には、作動液及び作動液の毛細管現象を生じさせるウィックが封入され、気化した作動液の通路が形成されている。ヒートパイプ27の表面は、電解液から保護するための絶縁性の保護膜で覆われている。 The heat pipe 27 extends from the heat absorbing portion 27a that abuts on the flat surface portion 30d inside the heat insulating member 26 that covers the power storage body 25 to the outside of the heat insulating member 26, and extends to the outer side of the heat insulating member 26, and the inner wall of the case 22 (the inner wall of the first side surface portion 22b, the second). It has a heat radiating portion 27b that abuts on the inner wall of the side surface portion 22c). The heat pipe 27 can be easily bent, and although not shown, a wick that causes a capillary phenomenon of the hydraulic fluid and the hydraulic fluid is sealed inside the heat pipe 27, and a passage for the vaporized hydraulic fluid is formed. The surface of the heat pipe 27 is covered with an insulating protective film for protection from the electrolytic solution.

吸熱部27aにおいて巻回体30から吸熱して気化した作動液は、吸熱部27aよりも気圧が低い放熱部27bに移動する。放熱部27bにおいて放熱して凝縮し液化した作動液は、毛細管現象によってウィックを伝って吸熱部27aに戻る。この作動液の循環により巻回体30の熱を断熱部材26の外側に移動させて、蓄電体25が冷却される。 The hydraulic fluid absorbed and vaporized from the winding body 30 in the endothermic unit 27a moves to the heat radiating unit 27b whose air pressure is lower than that of the endothermic unit 27a. The hydraulic fluid that radiates heat, condenses, and liquefies in the heat radiating unit 27b travels through the wick and returns to the endothermic unit 27a due to the capillary phenomenon. The circulation of the hydraulic fluid transfers the heat of the winding body 30 to the outside of the heat insulating member 26, and the storage body 25 is cooled.

ヒートパイプ27を機能させるために、吸熱部27aの面積に対して十分大きい放熱面積を確保している。放熱部27bの面積は吸熱部27aの面積の10倍以上にすることが好ましい。放熱部27bをケース22の底面部22fにも当接させて放熱面積を一層大きくし、底面部22fの下側近傍を通る冷却風も利用して放熱を促進させてもよい。 In order for the heat pipe 27 to function, a sufficiently large heat dissipation area is secured with respect to the area of the endothermic portion 27a. The area of the heat radiating portion 27b is preferably 10 times or more the area of the endothermic portion 27a. The heat radiating portion 27b may be brought into contact with the bottom surface portion 22f of the case 22 to further increase the heat radiating area, and the cooling air passing near the lower side of the bottom surface portion 22f may also be used to promote heat radiating.

ヒートパイプ27は、上記の吸熱部27aと放熱部27bの面積比率を有するように様々な形態で構成可能である。例えば図6~図9に示すように、ヒートパイプ27は、3つの巻回体30の間の対向状に近接する平面部30dに夫々当接する2つの吸熱部27aから上方及び下方の断熱部材26の外側に延び、断熱部材26の外側の2つの放熱部27bに連なるように一体的に形成されている。 The heat pipe 27 can be configured in various forms so as to have the area ratio of the heat absorbing portion 27a and the heat radiating portion 27b. For example, as shown in FIGS. 6 to 9, the heat pipe 27 is a heat insulating member 26 above and below the two endothermic portions 27a, which each abut against the opposed flat surface portions 30d between the three winding bodies 30. It extends to the outside of the heat insulating member 26 and is integrally formed so as to be connected to the two heat radiating portions 27b on the outside of the heat insulating member 26.

また、図10に示すように、2つの巻回体30の間の対向状に近接する平面部30dと、巻回体30と断熱部材26の間の平面部30dに当接する2つの吸熱部37aから断熱部材26の外側に水平方向に延び、断熱部材26の外側の放熱部37bに連なるように形成されたヒートパイプ37を2つ配設することもできる。各巻回体30が1対の平面部30dから吸熱されるので、一層均一に冷却することができる。尚、この2つのヒートパイプ37を一体的に形成してもよい。また、説明を省略するが、巻回体30の数に応じて適宜ヒートパイプを形成して蓄電体25の冷却を行うこともできる。 Further, as shown in FIG. 10, two heat absorbing portions 37a abutting on a flat surface portion 30d between the two winding bodies 30 and adjacent to each other and a flat surface portion 30d between the winding body 30 and the heat insulating member 26. It is also possible to dispose two heat pipes 37 formed so as to extend horizontally from the heat insulating member 26 to the outside of the heat insulating member 26 and to be connected to the heat radiating portion 37b on the outside of the heat insulating member 26. Since each winding body 30 is endothermic from a pair of flat surface portions 30d, it can be cooled more uniformly. The two heat pipes 37 may be integrally formed. Further, although the description is omitted, it is also possible to appropriately form a heat pipe according to the number of winding bodies 30 to cool the storage body 25.

蓄電体25がケース22に収容されてその側面部(第1側面部22b,第2側面部22c)を押圧する力及びその側面部からの反力の作用により、吸熱部27a(37a)は巻回体30の平面部30dに密着し、放熱部27b(37b)はケース22の第1側面部22b又は第2側面部22cの内壁に密着する。それ故、巻回体30の熱は、吸熱部27a(37a)が密着した平面部30dからスムーズに吸熱され、放熱部27b(37b)が密着した第1側面部22b、第2側面部22cにスムーズに放熱(伝熱)される。吸熱部27a(37a)は各巻回体30に密着するので、各巻回体30から均一に吸熱される。 The endothermic portion 27a (37a) is wound by the action of the force of the storage body 25 housed in the case 22 and pressing the side surface portions (first side surface portion 22b, second side surface portion 22c) and the reaction force from the side surface portion. The heat radiating portion 27b (37b) is in close contact with the flat surface portion 30d of the rotating body 30 and is in close contact with the inner wall of the first side surface portion 22b or the second side surface portion 22c of the case 22. Therefore, the heat of the winding body 30 is smoothly absorbed from the flat surface portion 30d to which the heat absorbing portion 27a (37a) is in close contact, and to the first side surface portion 22b and the second side surface portion 22c to which the heat radiating portion 27b (37b) is in close contact. Smooth heat dissipation (heat transfer). Since the heat absorbing portion 27a (37a) is in close contact with each winding body 30, heat is uniformly absorbed from each winding body 30.

同様に、ヒータ28も平面部30dに密着するので、ヒータ28の熱は当接した巻回体30にスムーズに伝わる。ヒータ28は通電によりジュール熱が発生するように構成されている。そして所定の温度未満で蓄電池20の電力を使って加温するように、例えば図5に示すように、各ヒータ28の電源線28aが所定の温度未満で通電するように切替わる温度スイッチ29を介して正極端子23に接続され、電源線28bが負極端子24に接続されている。尚、図示を省略するが、合成樹脂製の絶縁フィルムで挟んで密封したヒータ28を、対向状に近接する巻回体30の平面部30d同士で挟持させる、又は平面部30dと断熱部材26で挟持させることもできる。 Similarly, since the heater 28 is also in close contact with the flat surface portion 30d, the heat of the heater 28 is smoothly transferred to the wound body 30 in contact with the heater 28. The heater 28 is configured to generate Joule heat when energized. Then, a temperature switch 29 is switched so that the power line 28a of each heater 28 is energized at a temperature lower than the predetermined temperature so as to heat the battery 20 using the electric power of the storage battery 20 at a temperature lower than the predetermined temperature, for example, as shown in FIG. It is connected to the positive electrode terminal 23 via the power line 28b, and is connected to the negative electrode terminal 24. Although not shown, the heater 28, which is sandwiched and sealed by an insulating film made of synthetic resin, is sandwiched between the flat surface portions 30d of the winding bodies 30 which are close to each other in a facing manner, or is sandwiched between the flat surface portions 30d and the heat insulating member 26. It can also be pinched.

温度スイッチ29は、蓄電池20の温度として上面部22aの温度又はケース22内の温度を検知し、検知した温度が所定の温度未満の場合に通電する。これにより蓄電池20は、蓄電体25に蓄えられた電力によりヒータ28を作動させて所定の温度を維持する。所定の温度は例えば-20℃であり、蓄電池20の仕様(使用温度域の下限値)によって適宜設定される。 The temperature switch 29 detects the temperature of the upper surface portion 22a or the temperature inside the case 22 as the temperature of the storage battery 20, and energizes when the detected temperature is less than a predetermined temperature. As a result, the storage battery 20 operates the heater 28 by the electric power stored in the storage body 25 to maintain a predetermined temperature. The predetermined temperature is, for example, −20 ° C., and is appropriately set according to the specifications of the storage battery 20 (lower limit value in the operating temperature range).

ヒータ28の抵抗値は、ジュール熱及びヒータ28作動時の電力を供給する蓄電池20の自己発熱により、断熱部材26で覆われた蓄電体25が所定の温度を維持可能なように設定されている。蓄電池20の仕様によって放熱量等が異なるので、この抵抗値は蓄電池20の仕様等に応じて適宜設定する。これによりヒータ28の電力消費を最小限にしてSOCの低下を緩やかにしている。 The resistance value of the heater 28 is set so that the storage body 25 covered with the heat insulating member 26 can maintain a predetermined temperature by the self-heating of the storage battery 20 that supplies the Joule heat and the electric power when the heater 28 is operated. .. Since the amount of heat radiation and the like differ depending on the specifications of the storage battery 20, this resistance value is appropriately set according to the specifications and the like of the storage battery 20. As a result, the power consumption of the heater 28 is minimized and the decrease in SOC is moderated.

ECU8は、温度センサ5の温度データに基づいて、蓄電装置10がその所定の使用温度域内で性能を発揮できるように冷却ファン6による冷却を制御する。例えば温度センサ5が、使用温度域の上限温度(例えば60℃)以上の温度を検知又は検知温度の上昇度合いからその上限温度を超えることが予測される場合に、ECU8がその使用温度域の上限温度より低い温度を維持するように冷却ファン6の送風量を調整する。これにより各蓄電池20のケース22に移動させた熱を冷却風によって外部に排出して、使用温度域の上限温度を超えないように蓄電装置10を冷却する。 Based on the temperature data of the temperature sensor 5, the ECU 8 controls cooling by the cooling fan 6 so that the power storage device 10 can exhibit its performance within a predetermined operating temperature range. For example, when the temperature sensor 5 detects a temperature equal to or higher than the upper limit temperature of the operating temperature range (for example, 60 ° C.) or is predicted to exceed the upper limit temperature from the degree of increase in the detected temperature, the ECU 8 detects the upper limit of the operating temperature range. The air volume of the cooling fan 6 is adjusted so as to maintain a temperature lower than the temperature. As a result, the heat transferred to the case 22 of each storage battery 20 is discharged to the outside by the cooling air, and the power storage device 10 is cooled so as not to exceed the upper limit temperature of the operating temperature range.

次に、本発明の作用、効果について説明する。
蓄電池20はケース22内に蓄電体25を構成する複数(例えば3つ)の扁平状の巻回体30を有し、蓄電体25の外周を覆う断熱部材26によって外側の温度の影響が低減される。巻回体30の1対の平面部30dには、平面部30d側から見て一致しない位置にヒータ28が夫々当接するように配設され、巻回体を1対の平面部30dから温める。また、2つの巻回体30が対向状に近接する平面部30dにはヒータ28に当接しないように配設されたヒートパイプ27の吸熱部27aが当接し、近接する2つの巻回体30の熱を吸熱部27aが吸熱して断熱部材26の外側でケース22の第1、第2側面部22b,22cの内壁に当接した放熱部27bに移動させてケース22に伝熱させる。
Next, the operation and effect of the present invention will be described.
The storage battery 20 has a plurality of (for example, three) flat winding bodies 30 constituting the storage body 25 in the case 22, and the influence of the outside temperature is reduced by the heat insulating member 26 covering the outer periphery of the storage body 25. To. Heaters 28 are arranged on the pair of flat surface portions 30d of the winding body 30 so as to be in contact with each other at positions that do not match when viewed from the flat surface portion 30d side, and warm the winding body from the pair of flat surface portions 30d. Further, the endothermic portion 27a of the heat pipe 27 arranged so as not to abut on the heater 28 abuts on the flat surface portion 30d in which the two winding bodies 30 are close to each other in a facing manner, and the two winding bodies 30 are close to each other. The heat of the heat absorbing portion 27a is absorbed by the heat absorbing portion 27a and transferred to the heat radiating portion 27b in contact with the inner walls of the first and second side surface portions 22b and 22c of the case 22 on the outside of the heat insulating member 26 to transfer the heat to the case 22.

従って、蓄電体25の各巻回体30は1対の平面部30dから温められ、近接する巻回体30と対向する平面部30dから吸熱されるので、蓄電装置10を構成する蓄電池20の蓄電体25の加温と冷却を均一に行うことができる。 Therefore, each winding body 30 of the power storage body 25 is heated from the pair of flat surface portions 30d and is endothermic from the flat surface portions 30d facing the adjacent winding bodies 30, so that the storage body of the storage battery 20 constituting the power storage device 10 The heating and cooling of 25 can be performed uniformly.

また、蓄電体25を構成する全ての巻回体30について、その1対の平面部30dにヒータ28とヒートパイプ27の吸熱部27aが当接させて、蓄電装置10を構成する蓄電池20の蓄電体25を一層均一に冷却することができる。 Further, with respect to all the winding bodies 30 constituting the storage body 25, the heater 28 and the heat absorbing portion 27a of the heat pipe 27 are brought into contact with the pair of flat surface portions 30d to store electricity in the storage battery 20 constituting the power storage device 10. The body 25 can be cooled more uniformly.

その上、複数の蓄電池20を所定の間隔を空けて整列させて蓄電池20同士の間に形成された冷却風通路17を有している。従って、ヒートパイプ27がケース22に移動させた蓄電体25の熱を、冷却風通路17に面したケース22の側面部(第1,第2側面部22b,22c)から冷却風通路17を流通する冷却風によって外部に放熱させることができるので、蓄電装置10の放熱を促進させて冷却することができる。 Further, it has a cooling air passage 17 formed between the storage batteries 20 by arranging a plurality of storage batteries 20 at predetermined intervals. Therefore, the heat of the power storage body 25 transferred to the case 22 by the heat pipe 27 is circulated through the cooling air passage 17 from the side surface portions (first and second side surface portions 22b, 22c) of the case 22 facing the cooling air passage 17. Since the heat can be dissipated to the outside by the cooling air, the heat dissipation of the power storage device 10 can be promoted and cooled.

蓄電体25は、巻回体30を上下方向に1列に整列させて構成されていてもよい。その他、当業者であれば、本発明の趣旨を逸脱することなく上記実施形態に種々の変更を付加した形態で実施可能であり、本発明はその種の変更形態をも包含するものである。 The power storage body 25 may be configured by arranging the winding bodies 30 in a row in the vertical direction. In addition, a person skilled in the art can carry out the embodiment in which various modifications are added to the above embodiment without departing from the spirit of the present invention, and the present invention also includes such modifications.

2 :電動モータ
5 :温度センサ
6 :冷却ファン
8 :ECU
10 :蓄電装置
11 :蓄電モジュール
12 :支持パネル部材
15 :支持部材
16 :エンドプレート
17 :冷却風通路
20 :蓄電池
22 :ケース
22b :第1側面部
22c :第2側面部
23 :正極端子
24 :負極端子
25 :蓄電体
26 :断熱部材
27、37 :ヒートパイプ
27a,37a :吸熱部
27b、37b :放熱部
28 :ヒータ
30 :巻回体
30d :平面部
2: Electric motor 5: Temperature sensor 6: Cooling fan 8: ECU
10: Power storage device 11: Power storage module 12: Support panel member 15: Support member 16: End plate 17: Cooling air passage 20: Storage battery 22: Case 22b: First side surface portion 22c: Second side surface portion 23: Positive electrode terminal 24: Negative electrode terminal 25: Power storage body 26: Insulation member 27, 37: Heat pipe 27a, 37a: Endothermic part 27b, 37b: Heat dissipation part 28: Heater 30: Winding body 30d: Flat part

Claims (3)

直方体形状のケース内に、電力を蓄える蓄電体と、前記蓄電体の外周を覆う断熱部材と、前記蓄電体を温めるためのシート状のヒータと、前記蓄電体の熱を前記ケースに移動させるためのシート状のヒートパイプを備えた複数の蓄電池を有する車両用蓄電装置において、
前記蓄電池の前記蓄電体は、複数の扁平状の巻回体の平面部同士を対向状に近接させて構成され、
前記巻回体は、正極箔と負極箔がセパレータを介して水平軸心周りに扁平状に巻回されて外周を絶縁部材に覆われ、且つ1対の前記平面部には前記巻回体を平面部側から見て一致しない位置で当接するように前記ヒータが配設され、
前記ヒートパイプは、前記ヒータに当接しない位置で前記対向状に近接させた平面部に当接する吸熱部と、前記吸熱部から前記断熱部材の外側に延びて前記ケースの内壁に当接する放熱部を備えたことを特徴とする車両用蓄電装置。
A storage body that stores power in a rectangular case, a heat insulating member that covers the outer periphery of the power storage body, a sheet-shaped heater for heating the power storage body, and a sheet-shaped heater for transferring the heat of the power storage body to the case. In a vehicle power storage device having a plurality of storage batteries equipped with a sheet-shaped heat pipe of
The storage body of the storage battery is configured such that the flat surfaces of a plurality of flat wound bodies are close to each other in a facing manner.
In the winding body, the positive electrode foil and the negative electrode foil are wound flat around the horizontal axis via the separator, the outer circumference is covered with an insulating member, and the winding body is placed on the pair of flat surfaces. The heater is arranged so as to abut at positions that do not match when viewed from the flat surface side.
The heat pipe has a heat absorbing portion that abuts on a flat surface portion that is close to the heater at a position that does not abut on the heater, and a heat absorbing portion that extends from the heat absorbing portion to the outside of the heat insulating member and abuts on the inner wall of the case. A vehicle power storage device characterized by being equipped with.
前記蓄電体を構成する全ての前記巻回体の1対の前記平面部に、前記吸熱部が夫々当接することを特徴とする請求項1に記載の車両用蓄電装置。 The vehicle power storage device according to claim 1, wherein the endothermic parts are in contact with the pair of flat surfaces of all the winding bodies constituting the power storage body. 複数の前記蓄電池を所定の間隔を空けて整列させて前記蓄電池の間に形成された冷却風通路を有することを特徴とする請求項1又は2に記載の車両用蓄電装置。 The vehicle power storage device according to claim 1 or 2, wherein a plurality of the storage batteries are arranged at predetermined intervals and have a cooling air passage formed between the storage batteries.
JP2018141486A 2018-07-27 2018-07-27 Vehicle power storage device Active JP7064704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018141486A JP7064704B2 (en) 2018-07-27 2018-07-27 Vehicle power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141486A JP7064704B2 (en) 2018-07-27 2018-07-27 Vehicle power storage device

Publications (2)

Publication Number Publication Date
JP2020017487A JP2020017487A (en) 2020-01-30
JP7064704B2 true JP7064704B2 (en) 2022-05-11

Family

ID=69581535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141486A Active JP7064704B2 (en) 2018-07-27 2018-07-27 Vehicle power storage device

Country Status (1)

Country Link
JP (1) JP7064704B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117954740B (en) * 2024-03-26 2024-07-09 电子科技大学 Thermal management device, preparation method thereof and lithium ion battery assembly method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020614A1 (en) 2010-08-12 2012-02-16 古河電気工業株式会社 Battery temperature regulation system and battery temperature regulation unit
JP2013101773A (en) 2011-11-07 2013-05-23 Toyota Industries Corp Secondary battery, temperature adjustment structure of secondary battery, and vehicle equipped with secondary battery
JP2019192380A (en) 2018-04-20 2019-10-31 マツダ株式会社 Power storage device for vehicle
JP2019192381A (en) 2018-04-20 2019-10-31 マツダ株式会社 Power storage device for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2134698B (en) * 1983-01-26 1986-06-04 South African Inventions Power storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020614A1 (en) 2010-08-12 2012-02-16 古河電気工業株式会社 Battery temperature regulation system and battery temperature regulation unit
JP2013101773A (en) 2011-11-07 2013-05-23 Toyota Industries Corp Secondary battery, temperature adjustment structure of secondary battery, and vehicle equipped with secondary battery
JP2019192380A (en) 2018-04-20 2019-10-31 マツダ株式会社 Power storage device for vehicle
JP2019192381A (en) 2018-04-20 2019-10-31 マツダ株式会社 Power storage device for vehicle

Also Published As

Publication number Publication date
JP2020017487A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP7004168B2 (en) Vehicle power storage device
JP4325721B2 (en) Temperature control mechanism
JP3824928B2 (en) Power storage device and vehicle drive device
US9048483B2 (en) Power supply device, power-supply-device separator, and power supply-device-equipped vehicle and electric power storage
JP5659554B2 (en) Battery pack
WO2015050226A1 (en) Battery temperature adjustment device
WO2012133707A1 (en) Power source device and vehicle provided with power source device
JP3170131U (en) A battery cooling device, a battery having a cooling device, and an automobile having a battery.
KR20110136794A (en) Temperature-controlled battery system ii
US10886581B2 (en) Battery pack
JP2009259785A (en) Battery device
JP6297496B2 (en) In-vehicle battery system
KR101522164B1 (en) Battery Pack Containing Peltier Element for Controlling Temperature
JP7064703B2 (en) Vehicle power storage device
JP2014121213A (en) Electrical power system
JP7004167B2 (en) Vehicle power storage device
JP7064704B2 (en) Vehicle power storage device
JP4263052B2 (en) Temperature control device for electric double layer capacitor
JP2009289610A (en) Temperature adjusting mechanism
JP2010277948A (en) Battery pack device
ES2567182T3 (en) Body structure of electric or hybrid motor vehicle, this vehicle and control procedure / modification of the temperature of your cabin
JP7306849B2 (en) Automotive battery temperature controller
JP7155032B2 (en) Automotive battery temperature raising device
JP7014030B2 (en) Vehicle power storage device
JP2020181632A (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220406

R150 Certificate of patent or registration of utility model

Ref document number: 7064704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150