JP7062887B2 - Fiber composition test method for paper products or pulp - Google Patents

Fiber composition test method for paper products or pulp Download PDF

Info

Publication number
JP7062887B2
JP7062887B2 JP2017113257A JP2017113257A JP7062887B2 JP 7062887 B2 JP7062887 B2 JP 7062887B2 JP 2017113257 A JP2017113257 A JP 2017113257A JP 2017113257 A JP2017113257 A JP 2017113257A JP 7062887 B2 JP7062887 B2 JP 7062887B2
Authority
JP
Japan
Prior art keywords
pulp
paper
fiber
ratio
fiber length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017113257A
Other languages
Japanese (ja)
Other versions
JP2018204156A (en
Inventor
俊達 武井
光隆 近藤
敬士 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2017113257A priority Critical patent/JP7062887B2/en
Publication of JP2018204156A publication Critical patent/JP2018204156A/en
Priority to JP2022069814A priority patent/JP2022109265A/en
Application granted granted Critical
Publication of JP7062887B2 publication Critical patent/JP7062887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、紙製品またはパルプの繊維組成試験方法に関する。 The present invention relates to a fiber composition test method for a paper product or pulp.

紙に配合する針葉樹さらしクラフトパル(NBKP)、広葉樹さらしクラフトパルプ(LBKP)及びその樹種構成は紙の引張強さ、耐折強色破裂強さ、引裂き強さ等の紙の強度特性だけでなく、細孔径分布、透気度などの特性に大きく影響を与えるため、紙の品質設計において、繊維の長さ及びその分布を知ることは非常に重要なことである。従って、紙を製造する際は、複数の種類のパルプを使用することが多く、紙の設計においてパルプ繊維配合比は重要なポイントの一つである。 The composition of softwood bleached kraft pal (NBKP), hardwood bleached kraft pulp (LBKP) and their tree species to be blended with paper is not only the strength characteristics of paper such as tensile strength, fold-resistant color burst strength, and tear strength. It is very important to know the fiber length and its distribution in the quality design of paper because it greatly affects the characteristics such as pore size distribution and air permeability. Therefore, when producing paper, a plurality of types of pulp are often used, and the pulp fiber blending ratio is one of the important points in the design of paper.

紙製品またはパルプの繊維配合比は、JIS P8120:1998に規定されたC染色液に染色された繊維を光学顕微鏡下で観察する測定法によって分析することが一般的である。しかし、この方法で求められた値には,個人差が生じることが避けられないため,客観的に判断できる方法の開発が望まれているのが現状である。 The fiber content of paper products or pulp is generally analyzed by a measuring method in which fibers stained with the C stain specified in JIS P8120: 1998 are observed under an optical microscope. However, since it is inevitable that individual differences will occur in the values obtained by this method, it is currently desired to develop a method that can be objectively judged.

繊維長、繊維幅をはじめとした繊維分析を自動的に測定できる光学的自動分析法による繊維測定方法が知られている。この繊維測定法には偏光法及び非偏光法の2種類がある。しかし、光学的自動分析法による繊維測定方法は、必ずしも精度よく繊維配合比を求めることができない。 A fiber measurement method by an optical automatic analysis method that can automatically measure fiber analysis such as fiber length and fiber width is known. There are two types of this fiber measurement method, a polarizing method and a non-polarizing method. However, the fiber measuring method by the optical automatic analysis method cannot always obtain the fiber compounding ratio with high accuracy.

JIS P8120:1998、紙、板紙及びパルプ繊維組成試験方法(1998)JIS P8120: 1998, Paper, Paperboard and Pulp Fiber Composition Test Method (1998) JIS P8226:2006、パルプ一光学的自動分析法による繊維長測定方法 第1部:偏光法(2006)JIS P8226: 2006, Fiber length measurement method by pulp mono-optical automatic analysis method Part 1: Polarization method (2006) JIS P8226-2:2011、パルプ-光学的自動分析法による繊維長測定方法 第2部:非偏光法(2011)JIS P8226-2: 2011, Pulp-Fiber length measurement method by optical automated analysis Part 2: Non-polarization method (2011)

本発明は、紙製品またはパルプにおけるパルプ繊維の配合比を客観的に測定できる、繊維組成試験方法を提供することを目的とする。 An object of the present invention is to provide a fiber composition test method capable of objectively measuring the compounding ratio of pulp fibers in a paper product or pulp.

本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、被験対象の紙製品またはパルプと樹種及び叩解度が一致する針葉樹パルプ及び広葉樹パルプを対照として、被験対象中の針葉樹パルプと広葉樹パルプとの比率を算出することで、パルプ繊維の配合比を充分な精度で客観的に測定できることを見出した。 As a result of diligent research to achieve the above object, the present inventors have used softwood pulp and hardwood pulp whose tree species and beating degree are the same as those of the paper product or pulp to be tested, as a control, and the softwood pulp in the test subject. By calculating the ratio with hardwood pulp, it was found that the compounding ratio of pulp fiber can be objectively measured with sufficient accuracy.

本発明者らは、これらの知見に基づきさらに研究を重ね、本発明を完成するに至った。 The present inventors have further studied based on these findings and have completed the present invention.

即ち、本発明は態様を包含する。 That is, the present invention includes aspects.

[1]被験対象の紙製品またはパルプと樹種及び叩解度が一致する針葉樹パルプ及び広葉樹パルプを対照として、被験対象中の針葉樹パルプと広葉樹パルプとの比率を算出する、紙製品またはパルプの繊維組成試験方法。 [1] The fiber composition of the paper product or pulp for calculating the ratio of the softwood pulp and the broadleaf pulp in the test subject, using the softwood pulp and the broadleaf pulp having the same tree species and beating degree as the paper product or pulp of the test subject as a control. Test method.

[2]製造工程中の叩解工程直後の針葉樹材パルプ及び広葉樹材パルプを対照として、被験対象の紙、板紙、またはパルプ中の針葉樹パルプと広葉樹パルプとの比率を算出する、紙製品またはパルプの繊維組成試験方法。 [2] A paper product or pulp for which the ratio of softwood pulp to broadwood pulp in the paper, paperboard, or pulp to be tested is calculated using the softwood pulp and broadwood pulp immediately after the beating step during the manufacturing process as controls. Fiber composition test method.

[3]光学的自動分析法による繊維長測定方法に基づき、被験対象中の針葉樹パルプと広葉樹パルプとの比率を算出する、[1]または[2]に記載の方法。 [3] The method according to [1] or [2], wherein the ratio of the softwood pulp to the hardwood pulp in the test subject is calculated based on the fiber length measuring method by the optical automatic analysis method.

[4]非偏光法による繊維長測定方法に基づき被験対象中の針葉樹パルプと広葉樹パルプとの比率を算出する、[1]から[3]のいずれか1項に記載の方法。 [4] The method according to any one of [1] to [3], wherein the ratio of the softwood pulp to the hardwood pulp in the test subject is calculated based on the fiber length measuring method by the non-polarization method.

[5]変動係数が3%以下である、[1]から[4]のいずれか1項に記載の方法。 [5] The method according to any one of [1] to [4], wherein the coefficient of variation is 3% or less.

[6][1]から[5]のいずれか1項に記載の方法により被験対象中の針葉樹パルプと広葉樹パルプとの比率を算出する工程を含む、紙の製造工程における品質管理方法。 [6] A quality control method in a paper manufacturing process, which comprises a step of calculating the ratio of softwood pulp to hardwood pulp in a test subject by the method according to any one of [1] to [5].

[7][6]に記載の品質管理方法による品質管理を行う工程を含む、紙製品の製造方法。 [7] A method for manufacturing a paper product, which comprises a step of performing quality control by the quality control method according to [6].

本発明により、紙製品またはパルプにおけるパルプ繊維の配合比を客観的に測定できる、繊維組成試験方法を提供される。本発明の方法は簡便でありながら、従来行ってきた光学顕微鏡法よりも精度が高く繊維配合比を求めることができる。 INDUSTRIAL APPLICABILITY The present invention provides a fiber composition test method capable of objectively measuring the compounding ratio of pulp fibers in a paper product or pulp. Although the method of the present invention is simple, the fiber compounding ratio can be obtained with higher accuracy than the conventional optical microscopy.

本発明は、紙製品またはパルプの繊維組成試験方法を提供する。 The present invention provides a method for testing a fiber composition of a paper product or pulp.

本発明の繊維組成試験方法により、被験対象の紙製品またはパルプの原料パルプの配合比率が求められる。具体的には、針葉樹パルプ(針葉樹さらしクラフトパルプ、NBKP)と広葉樹パルプ(広葉樹さらしクラフトパルプ、LBKP)との配合比率が、従来法であるJIS P8120:1998と同等またはそれ以上の精度で求められる。なお、配合比率は、針葉樹パルプと広葉樹パルプとの乾燥質量の比率である。 According to the fiber composition test method of the present invention, the blending ratio of the raw material pulp of the paper product or pulp to be tested is determined. Specifically, the blending ratio of softwood pulp (softwood bleached kraft pulp, NBKP) and hardwood pulp (hardwood bleached kraft pulp, LBKP) is obtained with an accuracy equal to or higher than that of the conventional method JIS P8120: 1998. .. The blending ratio is the ratio of the dry mass of the softwood pulp and the hardwood pulp.

本発明の方法が被験対象とする紙製品は、セルロースパルプを主原料とするあらゆる等級及び種類の紙製品を含む。例えば、書籍用紙、新聞用紙、グラビア用紙、アート紙、コート紙、キャスト紙、微塗工紙等の印刷用紙;ノート用紙等の筆記用紙;包装用紙;感圧記録原紙、感熱記録紙、静電記録紙、インクジェット記録紙の情報用紙;タック紙等の特殊紙などが例示されるが、これに限定されない。 The paper products subject to the method of the present invention include all grades and types of paper products made from cellulose pulp as a main raw material. For example, printing paper such as book paper, newspaper paper, gravure paper, art paper, coated paper, cast paper, and finely coated paper; writing paper such as notebook paper; wrapping paper; pressure-sensitive recording base paper, heat-sensitive recording paper, electrostatic Information paper such as recording paper and inkjet recording paper; special paper such as tack paper is exemplified, but the present invention is not limited thereto.

本発明の方法はまた、紙製品の原材料となるセルロースパルプをも被験対象とすることができる。パルプは、乾燥状態のパルプまたはスラリー状(スラッシュ状)のパルプのいずれであってもよい。 The method of the present invention can also be tested on cellulose pulp, which is a raw material for paper products. The pulp may be either dry pulp or slurry (slush) pulp.

本発明の好ましい態様において、紙製品またはパルプは、針葉樹パルプと広葉樹パルプとの配合比(N/L比)が、質量基準で、10/90~90/10程度、または、20/80~80/20程度、または、30/70~70/30程度、または、40/60~60~40程度である。このような範囲において、従来方法と比べて特に精度良くN/L比を求めることができる。 In a preferred embodiment of the present invention, the blending ratio (N / L ratio) of the softwood pulp and the hardwood pulp of the paper product or pulp is about 10/90 to 90/10 or 20/80 to 80 on a mass basis. It is about / 20, or about 30/70 to 70/30, or about 40/60 to 60 to 40. In such a range, the N / L ratio can be obtained with particularly high accuracy as compared with the conventional method.

本発明の繊維組成試験方法において、被験対象の紙製品またはパルプと樹種及び叩解度が一致する針葉樹パルプ及び広葉樹パルプを対照とする。 In the fiber composition test method of the present invention, softwood pulp and hardwood pulp having the same tree species and beating degree as the paper product or pulp to be tested are used as controls.

「樹種が一致する」とは、針葉樹パルプまたは広葉樹パルプが由来する樹木の被子植物の分類体系における、種までが一致していることをいう。例えば、ユーカリ(Eucalyptus)属(被子植物門 真正双子葉類 フトモモ目 フトモモ科 ユーカリ属)に属するユーカリ・グロブラス(E. globulus)、ユーカリ・カマルドレンシス(E. camaldulensis)、ユーカリ・ブラシアーナ(E. brassiana)、ユーカリ・テレティコルニス(E. tereticornis、ユーカリ・グランディス(E. grandis)、ユーカリ・サリグナ(E. saligna)、ユーカリ・デグルプタ(E. deglputa)、ユーカリ・ペリータ(E. pellita)、ユーカリ・ユーロフィラ(E. urophylla)はいずれも種が異なり、樹種が一致しない。 "Matching tree species" means that even the species in the angiosperm classification system of the tree from which coniferous pulp or hardwood pulp is derived are matched. For example, Eucalyptus genus (E. globulus), Eucalyptus camaldulensis (E. camaldulensis), Eucalyptus brushana (E. . brassiana), Eucalyptus tereticornis (E. tereticornis, E. grandis), Eucalyptus saligna (E. saligna), Eucalyptus deglputa (E. deglputa), Eucalyptus perita (E. pellita), Eucalyptus Eucalyptus (E. urophylla) is a different species, and the tree species do not match.

叩解度は、JIS P8121-2:2012に規定するカナダ標準ろ水度法(フリーネス)により表すことができる。「叩解度が一致する」とは、対照のパルプと、被験対象の紙製品またはパルプの現在量のパルプとの差が所定の閾値以下である場合を意味する。前記閾値としては、カナダ標準ろ水度法(フリーネス)に基づき、測定値の平均からの差が2%未満とすることができる。 The degree of beating can be expressed by the Canadian standard freeness method specified in JIS P8121-2: 2012. "Matching beats" means that the difference between the control pulp and the current amount of pulp of the paper product or pulp under test is less than or equal to a predetermined threshold. As the threshold value, the difference from the average of the measured values can be less than 2% based on the Canadian standard freeness method.

本発明のある態様においては、製造工程中の叩解工程直後の針葉樹材パルプ及び広葉樹材パルプを対照として使用することができる。 In one aspect of the present invention, softwood pulp and broadleaf wood pulp immediately after the beating step during the manufacturing process can be used as controls.

通常の紙製品の製造工程において、適宜漂白及び洗浄した原料の針葉樹パルプ及び広葉樹パルプを、叩解工程において所望の叩解度となるまで叩解する。例えば塗工紙においては、叩解を行わない、あるいは軽度の叩解しか行わないと、パルプ繊維間の結合強度が低下し、塗工紙強度が低下する可能性があり、一方、叩解を進めすぎると、塗工紙強度は上昇するもののフォーマー部あるいはプレス部における搾水効率が大きく低下する傾向がる。 In a normal paper product manufacturing process, raw material softwood pulp and hardwood pulp that have been appropriately bleached and washed are beaten to a desired degree of beating in the beating step. For example, in coated paper, if no beating or only light beating is performed, the bond strength between pulp fibers may decrease and the strength of the coated paper may decrease, while if the beating is advanced too much. Although the strength of the coated paper increases, the water extraction efficiency in the former section or the press section tends to decrease significantly.

パルプは叩解工程を経た後、針葉樹パルプと広葉樹パルプとが所望の配合比率で混合され、スラリー状のパルプ水分散液である紙料として抄紙機に送られる。この紙料に対して、填料や抄紙用内添助剤を、必要に応じて添加する場合もある。 After the pulp has undergone a beating step, softwood pulp and hardwood pulp are mixed in a desired blending ratio and sent to a paper machine as a paper material which is a slurry-like pulp water dispersion. A filler or an internal aid for papermaking may be added to this paper charge as needed.

「製造工程中の叩解工程直後の針葉樹材パルプ及び広葉樹材パルプ」とは、叩解工程直後かつ混合される直前の針葉樹パルプ及び広葉樹パルプを意味する。 "Coniferous wood pulp and broadleaf wood pulp immediately after the beating process during the manufacturing process" means softwood pulp and broadleaf tree pulp immediately after the beating process and immediately before being mixed.

本発明において、被験対象の紙製品またはパルプは、離解されて試験に供される。紙製品またはパルプを離解する方法は公知である。例えば、JIS P8120:1998に準じて行うことができる。 In the present invention, the paper product or pulp to be tested is dissociated and subjected to the test. Methods of dissociating paper products or pulp are known. For example, it can be performed according to JIS P8120: 1998.

被験対象の原料パルプの配合比率は、上記対照を用いて、公知の手法により算出することができる。本発明の好ましい態様においては、光学的自動分析法による繊維長測定方法の結果に基づき原料パルプの配合比率を求めることができる。光学的自動分析法による繊維測定方法により測定される物性値は、例えば、繊維長(繊維長分布)、繊維幅(繊維幅の分布)等である。光学的自動分析法による繊維測定方法には偏光法及び非偏光法の2種類がある。偏光法はJIS P8226:2006、非偏光法はJIS P8226-2:2011に規定されており、それぞれ公知である。光学的自動分析法による繊維測定方法は、好ましくは非偏光法による繊維長測定方法である。 The blending ratio of the raw material pulp to be tested can be calculated by a known method using the above control. In a preferred embodiment of the present invention, the blending ratio of the raw material pulp can be determined based on the result of the fiber length measuring method by the optical automatic analysis method. The physical property values measured by the fiber measuring method by the optical automatic analysis method are, for example, fiber length (fiber length distribution), fiber width (fiber width distribution) and the like. There are two types of fiber measurement methods by the optical automatic analysis method, the polarization method and the non-polarization method. The polarization method is specified in JIS P8226: 2006, and the non-polarization method is specified in JIS P8226-2: 2011, both of which are known. The fiber measuring method by the optical automatic analysis method is preferably a fiber length measuring method by a non-polarizing method.

繊維長測定方法の結果に基づく原料パルプの配合比率の算出は、例えば、以下の手法により行うことができるが、これに限定されるものではない。まず、対照の針葉樹パルプ(N材100%)及び広葉樹パルプ(L材100%)、さらには必要に応じてN材とL材の配合比率が明らかとなっている試料について、光学的自動分析法による繊維測定方法により繊維長(繊維長分布)、繊維幅(繊維幅分布)をそれぞれ求めて、対照データとする。次に、被験対象の繊維長(繊維長分布)、繊維幅(繊維幅分布)を測定し、対照データと比較して、予め設定した統計手段により、被験対象の原料パルプの配合比率を算出することができる。 The calculation of the blending ratio of the raw material pulp based on the result of the fiber length measuring method can be performed by, for example, the following method, but is not limited thereto. First, an optical automatic analysis method is used for control softwood pulp (100% N material) and hardwood pulp (100% L material), and further, for a sample for which the mixing ratio of N material and L material is clarified as needed. The fiber length (fiber length distribution) and fiber width (fiber width distribution) are obtained by the fiber measurement method according to the above, and are used as control data. Next, the fiber length (fiber length distribution) and fiber width (fiber width distribution) of the test target are measured, compared with the control data, and the blending ratio of the raw material pulp of the test target is calculated by a preset statistical means. be able to.

繊維長(繊維長分布)の測定は、投影法(Lp)、中心線法(Lc)等に基づいて行うことができ、好ましくは中心線法に基づいて行う。 The fiber length (fiber length distribution) can be measured based on the projection method (Lp), the center line method (Lc), or the like, and is preferably performed based on the center line method.

測定される繊維長は、例えば、以下に定義される繊維長とすることができる:
(1)測定したすべての繊維の合計長さを測定した繊維の本数で除した値である、数平均繊維長(L、mean length)、
(2)長さで加重して長繊維の影響を反映させた繊維長の平均値である、長さ平均繊維長(LI、length-weighted mean length)
(3)長さで加重して、それにさらに長さを乗じて加重させ、長繊維の影響をより強く反映させた繊維長の平均値である、重さ平均繊維長(Lw、mass-weighted mean length)。
The measured fiber length can be, for example, the fiber length as defined below:
(1) Number average fiber length (L, mean length), which is a value obtained by dividing the total length of all measured fibers by the number of measured fibers.
(2) Length-weighted mean length (LI), which is an average value of fiber lengths weighted by length to reflect the influence of long fibers.
(3) Weighted average fiber length (Lw, mass-weighted mean), which is the average value of fiber lengths that are weighted by length and then multiplied by the length to more strongly reflect the influence of long fibers. length).

光学的自動分析法による繊維測定方法は、キャピラリー方式でもフローセル方式であってもよい。 The fiber measuring method by the optical automatic analysis method may be a capillary method or a flow cell method.

光学的自動分析法による繊維長測定方法は、市販の機器を用いて行うことができる。偏光法は、例えば、Metso Automation社製のKajaani FS200を用いて実施することができる。非偏光法は、Metso Automation社製のKajaani Fiber Lab 、Techpap社製のMorFi Compact、OPTEST社製FQA-360、Lorenzen&Wettre社製Fiber Plus、VALMET社製FS5を用いて実施することができる。 The fiber length measurement method by the optical automatic analysis method can be performed using a commercially available device. The polarization method can be carried out using, for example, Kajaani FS200 manufactured by Metso Automation. The non-polarization method can be carried out using Kajaani Fiber Lab manufactured by Metso Automation, MorFi Compact manufactured by Techpap, FQA-360 manufactured by OPTEST, Fiber Plus manufactured by Lorenzen & Wettre, and FS5 manufactured by VALMET.

かくして被験対象の原料パルプの配合比率が算出される。本発明により、精度よく原料パルプの配合比率を算出することができる。本発明の好ましい態様において、変動計数は3%以下、より好ましくは1%以下である。なお、変動係数は、JIS P8226またはJIS P8226-2に基づいて算出することができる。 Thus, the blending ratio of the raw material pulp to be tested is calculated. According to the present invention, the blending ratio of the raw material pulp can be calculated with high accuracy. In a preferred embodiment of the invention, the variation count is 3% or less, more preferably 1% or less. The coefficient of variation can be calculated based on JIS P8226 or JIS P8226-2.

本発明の方法は簡便かつ精度よく被験対象の原料パルプの配合比率を算出することができる。例えば、紙の製造工程における品質管理方法として有用である。このような品質管理方法による品質管理を行う工程を含む紙製品の製造方法により、品質が十分に管理された紙製品を製造することができる。 The method of the present invention can easily and accurately calculate the blending ratio of the raw material pulp to be tested. For example, it is useful as a quality control method in the paper manufacturing process. By a method for manufacturing a paper product including a step of performing quality control by such a quality control method, it is possible to manufacture a paper product whose quality is sufficiently controlled.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples.

検量線の作成[1]
(1)検量線用データNIの作成
Pinus sylvestris材のチップから製造した晒クラフトパルプ(NBKP)を固形分濃度4.0質量%に調整したスラリーを、リファイナを用いてろ水度540mlC.S.F.に調整し、試料N1を作成した。
Creating a calibration curve [1]
(1) Creation of data NI for calibration curve
A slurry prepared by adjusting the bleached kraft pulp (NBKP) produced from chips of Pinus sylvestris material to a solid content concentration of 4.0% by mass was adjusted to a freeness of 540 ml CSF using a refiner to prepare sample N1.

試料N1の繊維組成をJIS P8120:1998により測定し、N材比率が100%であることを確認した。 The fiber composition of sample N1 was measured by JIS P8120: 1998, and it was confirmed that the N material ratio was 100%.

水を加えて固形分濃度を0.003質量%とした試料N1を、非偏光式繊維長測定装置MorFi Compact (Techpap社製)を用いて繊維長、繊維幅を測定し、検量線用データNIを得た。測定方法はフローセル方式を用い、平均繊維長は0~10mm、平均繊維幅は3~75μm、測定本数は2~3万本、測定時間は3分という装置条件で測定した。 Sample N1 with water added to make the solid content concentration 0.003% by mass was measured for fiber length and fiber width using a non-polarized fiber length measuring device MorFi Compact (manufactured by Techpap), and data NI for calibration curve was obtained. rice field. The flow cell method was used as the measuring method, and the measurement was performed under the device conditions that the average fiber length was 0 to 10 mm, the average fiber width was 3 to 75 μm, the number of measured fibers was 20,000 to 30,000, and the measurement time was 3 minutes.

(2)検量線用データNIIの作成
Pinus sylvestris材のチップから製造した晒クラフトパルプに代えて、Larix kaempferi材のチップから製造した晒クラフトパルプを用い、ろ水度600mlC.S.F.に調整した他は試料N2と同様にして試料N2を作成した。
(2) Preparation of calibration curve data NII
Instead of bleached kraft pulp made from Pinus sylvestris chips, bleached kraft pulp made from Lalix kaempferi chips was used, and the sample was adjusted to a freeness of 600 ml CSF in the same manner as sample N2. N2 was created.

試料N2の繊維組成をJIS P8120:1998により測定し、N材比率が100%であることを確認した。 The fiber composition of sample N2 was measured by JIS P8120: 1998, and it was confirmed that the N material ratio was 100%.

試料N2を非偏光式繊維長測定装置MorFi Compact (Techpap社製)を用いて測定し、検量線用データNIIを得た。 Sample N2 was measured using a non-polarized fiber length measuring device MorFi Compact (manufactured by Techpap) to obtain data NII for a calibration curve.

(3)検量線用データLIの作成
Eucalyptus globulus材のチップから製造した晒クラフトパルプ(LBKP)を固形分濃度4.5質量%に調整したスラリーを、リファイナを用いてろ水度440mlC.S.F.に調整し、試料L1を作成した。
(3) Creation of data LI for calibration curve
A slurry prepared by adjusting the bleached kraft pulp (LBKP) produced from Eucalyptus globulus chips to a solid content concentration of 4.5% by mass was adjusted to a freeness of 440 ml CSF using a refiner to prepare sample L1.

試料L1の繊維組成をJIS P8120:1998により測定し、L材比率が100%であることを確認した。 The fiber composition of sample L1 was measured by JIS P8120: 1998, and it was confirmed that the L material ratio was 100%.

試料L1を用いて検量線データNIと同様に測定し、検量線用データLIを得た。 The sample L1 was used for measurement in the same manner as the calibration curve data NI, and the calibration curve data LI was obtained.

(4)検量線用データLIIの作成
Eucalyptus globulus材のチップから製造した晒クラフトパルプに代えて、Eucalyptus pellita材のチップから製造した晒クラフトパルプを用いた他は試料L1と同様にして試料L2を作成した。
(4) Preparation of calibration curve data LII
A sample L2 was prepared in the same manner as the sample L1 except that the bleached kraft pulp produced from the Eucalyptus pellita chip was used instead of the bleached kraft pulp produced from the Eucalyptus globulus chip.

試料L2の繊維組成をJIS P8120:1998により測定し、L材比率が100%であることを確認した。 The fiber composition of sample L2 was measured by JIS P8120: 1998, and it was confirmed that the L material ratio was 100%.

試料L2を非偏光式繊維長測定装置MorFi Compact (Techpap社製)を用いて測定し、検量線用データLIIを得た。 Sample L2 was measured using a non-polarized fiber length measuring device MorFi Compact (manufactured by Techpap), and data LII for a calibration curve was obtained.

(5)検量線NI-LIの作成
非偏光式繊維長測定装置MorFi Compact (Techpap社製)による検量線用データNI及び検量線用データLIを用いて、N/L比が100/0と0/100とを結ぶ検量線NI-LIを作成した。
(5) Preparation of calibration curve NI-LI The N / L ratio is 100/0 and 0 using the calibration curve data NI and the calibration curve data LI by the non-polarized fiber length measuring device MorFi Compact (manufactured by Techpap). A calibration curve NI-LI connecting with / 100 was created.

(6)検量線NI-LIIの作成
非偏光式繊維長測定装置MorFi Compact (Techpap社製)による検量線用データNI及び検量線用データLIIを用いて、N/L比が100/0と0/100とを結ぶ検量線NI-LIIを作成した。
(6) Preparation of calibration curve NI-LII The N / L ratio is 100/0 and 0 using the calibration curve data NI and the calibration curve data LII by the non-polarized fiber length measuring device MorFi Compact (manufactured by Techpap). A calibration curve NI-LII connecting with / 100 was prepared.

(7)検量線NII-LIの作成
非偏光式繊維長測定装置MorFi Compact (Techpap社製)による検量線用データNII及び検量線用データLIを用いて、N/L比が100/0と0/100とを結ぶ検量線NII-LIを作成した。
(7) Preparation of calibration curve NII-LI The N / L ratio is 100/0 and 0 using the calibration curve data NII and the calibration curve data LI by the non-polarized fiber length measuring device MorFi Compact (manufactured by Techpap). A calibration curve NII-LI connecting with / 100 was prepared.

以上の検量線の作成条件を表1に示す。 Table 1 shows the conditions for creating the above calibration curve.

Figure 0007062887000001
Figure 0007062887000001

試験例1(製紙原料のパルプ組成の試験)
Pinus sylvestris(NBKP)と、Eucalyptus globulus(LBKP)を原料とし、NBKP/LBKPの質量比として50/50で用いて製造したパルプスラリー(リファイナ後のろ水度は夫々、NBKP540mlC.S.F.、LBKP440mlC.S.F.)に、填料、紙力増強剤、内添サイズ剤が添加、混合された製紙原料Aを採取した。
Test Example 1 (Test of pulp composition of papermaking raw material)
Pulp slurry produced using Pinus sylvestris (NBKP) and Eucalyptus globulus (LBKP) at a mass ratio of NBKP / LBKP of 50/50 (the filter water content after refiner is NBKP 540 ml CSF, respectively. A papermaking raw material A in which a filler, a paper strength enhancer, and an internal sizing agent were added and mixed with LBKP 440 mlCSF) was collected.

製紙原料Aについて、煮沸時間を120分とした以外はJIS P8120:1998 7.により離解した製紙原料Aについて、非偏光式繊維長測定装置MorFi Compact (Techpap社製)を用いて、検量線NI-LIにより、繊維種比率(N/L比)を算出した。 JIS P8120: 1998 7. For papermaking raw material A, except that the boiling time was 120 minutes. The fiber type ratio (N / L ratio) was calculated from the calibration curve NI-LI using a non-polarized fiber length measuring device MorFi Compact (manufactured by Techpap) for the papermaking raw material A dissociated in the above manner.

製紙原料Aの繊維組成をJIS P8120:1998により確認し、上記で測定した繊維種比率と比較して標準偏差と変動計数を求めた(実施例1)。 The fiber composition of the papermaking raw material A was confirmed by JIS P8120: 1998, and the standard deviation and the fluctuation count were obtained by comparing with the fiber type ratio measured above (Example 1).

表2及び3に記載の製紙原料B~Mについても、それぞれ表に記載の検量線を用いて、同時に測定をした(実施例2~9、比較例1~)。
The papermaking raw materials B to M shown in Tables 2 and 3 were also measured at the same time using the calibration curves shown in the table (Examples 2 to 9 and Comparative Examples 1 to 3 ).

結果を表2及び3に示す。 The results are shown in Tables 2 and 3.

Figure 0007062887000002
Figure 0007062887000002

Figure 0007062887000003
Figure 0007062887000003

試験例2(紙のパルプ組成の試験)
上記、製紙原料Aを用いて、長網式抄紙機で、坪量77.0g/m2、紙厚100μm、灰分8.0%の上質紙Aを製造した。
Test Example 2 (Test of paper pulp composition)
Using the above-mentioned papermaking raw material A, a high-quality paper A having a basis weight of 77.0 g / m2, a paper thickness of 100 μm, and an ash content of 8.0% was produced by a long net paper machine.

上質紙Aを、煮沸時間を120分とした以外はJIS P8120:1998 7.により離解した試料Aについて、非偏光式繊維長測定装置MorFi Compact (Techpap社製)を用いて、検量線NI-LIにより、繊維種比率(N/L比)を算出した(実施例13)。 JIS P8120: 1998 7. Except for the fact that the wood-free paper A has a boiling time of 120 minutes. The fiber type ratio (N / L ratio) was calculated from the sample A dissociated in accordance with the calibration curve NI-LI using a non-polarized fiber length measuring device MorFi Compact (manufactured by Techpap) (Example 13).

製紙原料Bを用いて同様に上質紙Bを製造し、検量線NI-LIIにより、繊維種比率(N/L比)を算出した(実施例14)。 High-quality paper B was similarly produced using the papermaking raw material B, and the fiber type ratio (N / L ratio) was calculated by the calibration curve NI-LII (Example 14).

結果を表4に示す。 The results are shown in Table 4.

Figure 0007062887000004
Figure 0007062887000004

検量線の作成[2]
非偏光式繊維長測定装置Kajaani Fiber Lab(Metso Automation社製)を用いる以外は上記「検量線の作成[1]」と同様にして、検量線を作成した。測定方法はキャピラリー方式を用い、平均繊維長は0.2~7.0mm、平均繊維幅は10~75μm、測定本数は:1~2万本、測定時間は8~10分という装置条件で測定した。
Creating a calibration curve [2]
A calibration curve was prepared in the same manner as in the above-mentioned "Preparation of calibration curve [1]" except that the non-polarized fiber length measuring device Kajaani Fiber Lab (manufactured by Metso Automation) was used. The measurement method was a capillary method, and the average fiber length was 0.2 to 7.0 mm, the average fiber width was 10 to 75 μm, the number of measurements was 10,000 to 20,000, and the measurement time was 8 to 10 minutes.

試験例3(製紙原料のパルプ組成の試験)
偏光式繊維長測定装置Kajaani Fiber Lab(Metso Automation社製)を用いる以外は試験例1と同様にして、表5に記載の製紙原料N~Qについて、繊維種比率(N/L比)を算出した。各製紙原料の繊維組成をJIS P8120:1998により確認し、上記で測定した繊維種比率と比較して標準偏差と変動計数を求めた(実施例10~11及び比較例)。
Test Example 3 (Test of pulp composition of papermaking raw material)
The fiber type ratio (N / L ratio) was determined for the papermaking raw materials N to Q shown in Table 5 in the same manner as in Test Example 1 except that the non- polarized fiber length measuring device Kajaani Fiber Lab (manufactured by Metso Automation) was used. Calculated. The fiber composition of each papermaking raw material was confirmed by JIS P8120: 1998, and the standard deviation and the variation count were obtained by comparing with the fiber type ratio measured above (Examples 10 to 11 and Comparative Examples 4 to 5 ).

結果を表5に示す。 The results are shown in Table 5.

Figure 0007062887000005
Figure 0007062887000005

Claims (6)

被験対象の紙製品またはパルプと樹種及び叩解度が一致する針葉樹パルプ及び広葉樹パルプを対照として、光学的自動分析法による繊維長測定方法に基づき、前記針葉樹パルプ100%及び前記広葉樹パルプ100%の2点のデータから検量線を作成し、被験対象中の針葉樹パルプと広葉樹パルプとの比率を算出する、紙製品またはパルプの繊維組成試験方法。 Using 100% coniferous pulp and 100% perforated pulp based on the fiber length measurement method by an optical automatic analysis method, using coniferous pulp and broadleaf pulp that match the tree species and beating degree with the paper product or pulp to be tested , 2 A method for testing the fiber composition of a paper product or pulp, in which a calibration line is created from the point data and the ratio of the coniferous pulp to the broadleaf pulp in the test subject is calculated. 被験対象の紙、板紙、またはパルプの製造工程中の叩解工程直後の針葉樹材パルプ及び広葉樹材パルプを対照として、光学的自動分析法による繊維長測定方法に基づき、前記針葉樹パルプ100%及び前記広葉樹パルプ100%の2点のデータから検量線を作成し、被験対象の紙、板紙、またはパルプ中の針葉樹パルプと広葉樹パルプとの比率を算出する、紙製品またはパルプの繊維組成試験方法。 Based on the fiber length measurement method by an optical automatic analysis method using the coniferous wood pulp and broadleaf wood pulp immediately after the beating step during the manufacturing process of the paper, paperboard, or pulp to be tested as a control, the coniferous tree pulp 100% and the broadleaf tree. A fiber composition test method for paper products or pulp, in which a calibration line is created from two points of 100% pulp and the ratio of coniferous pulp to broadleaf pulp in the paper, paperboard, or pulp to be tested is calculated. 非偏光法による繊維長測定方法に基づき被験対象中の針葉樹パルプと広葉樹パルプとの比率を算出する、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the ratio of the softwood pulp to the hardwood pulp in the test subject is calculated based on the fiber length measuring method by the non-polarization method. 変動係数が3%以下である、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the coefficient of variation is 3% or less. 請求項1~4のいずれか1項に記載の方法により被験対象中の針葉樹パルプと広葉樹パルプとの比率を算出する工程を含む、紙の製造工程における品質管理方法。 A quality control method in a paper manufacturing process, which comprises a step of calculating the ratio of softwood pulp to hardwood pulp in a test subject by the method according to any one of claims 1 to 4. 請求項5に記載の品質管理方法による品質管理を行う工程を含む、紙製品の製造方法。 A method for manufacturing a paper product, which comprises a step of performing quality control by the quality control method according to claim 5.
JP2017113257A 2017-06-08 2017-06-08 Fiber composition test method for paper products or pulp Active JP7062887B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017113257A JP7062887B2 (en) 2017-06-08 2017-06-08 Fiber composition test method for paper products or pulp
JP2022069814A JP2022109265A (en) 2017-06-08 2022-04-21 Testing method of fiber composition in paper products or pulps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017113257A JP7062887B2 (en) 2017-06-08 2017-06-08 Fiber composition test method for paper products or pulp

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022069814A Division JP2022109265A (en) 2017-06-08 2022-04-21 Testing method of fiber composition in paper products or pulps

Publications (2)

Publication Number Publication Date
JP2018204156A JP2018204156A (en) 2018-12-27
JP7062887B2 true JP7062887B2 (en) 2022-05-09

Family

ID=64955299

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017113257A Active JP7062887B2 (en) 2017-06-08 2017-06-08 Fiber composition test method for paper products or pulp
JP2022069814A Pending JP2022109265A (en) 2017-06-08 2022-04-21 Testing method of fiber composition in paper products or pulps

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022069814A Pending JP2022109265A (en) 2017-06-08 2022-04-21 Testing method of fiber composition in paper products or pulps

Country Status (1)

Country Link
JP (2) JP7062887B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI77535C (en) * 1987-03-09 1989-03-10 Kajaani Electronics Method for measuring the relative amounts of the pulp components in paper pulp.
JPH0765992B2 (en) * 1991-12-06 1995-07-19 日本製紙株式会社 Method for measuring the weight content of pulp constituting the stock by type

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
パルプ-光学的自動分析法による繊維長測定法- 第2部:非偏光法,JISハンドブック 紙・パルプ,日本,日本規格協会,2011年11月,https://kikakurui.com/p/P8226-2-2011-01.html

Also Published As

Publication number Publication date
JP2022109265A (en) 2022-07-27
JP2018204156A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
KR101684715B1 (en) Use of hydrophobic dyes to monitor hydrophobic contaminants in a papermaking process
US20130284388A1 (en) Process for making a stiffened paper
Fišerová et al. Relationship between fibre characteristics and tensile strength of hardwood and softwood kraft pulps
JP6316279B2 (en) Automatic measurement method of adhesives in recycled fiber process
KR100489984B1 (en) Roll printing paper suitable for cold set printing and its manufacturing method
US11473245B2 (en) Surface enhanced pulp fibers at a substrate surface
US8496784B2 (en) Process for making a stiffened paper
KR19990036956A (en) Coated web printing paper suitable for cold-set printing
JP7062887B2 (en) Fiber composition test method for paper products or pulp
US4292122A (en) Bonding properties of mechanical pulps
DE102012107193A1 (en) Grass paper, which ensures good printing, comprises grass- or meadow section in pulp
CN106457860A (en) Lightweight digital printing medium
CN114660272B (en) Kraft paper pulp quality evaluation method
Sood et al. Effect of base paper characteristics on coated paper quality
US11692312B2 (en) Pulp quality monitoring
CN103759832A (en) Method for testing and controlling tobacco pulp color shading in process of producing reconstituted tobacco with paper-making method
JP6415965B2 (en) Method for producing decorative base paper for inkjet printing
Sundblad Predictions of pulp and paper properties based on fiber morphology
JP4394341B2 (en) Paper making method
JP4549796B2 (en) Fine coated wrapping paper
Gigac et al. Effect of velocity gradient on papermaking properties
Fahmy et al. Response of pulps of different origins to the upgrading effect of bulk added green denatured soy protein, in correlation to morphological structure & chemical composition of cellulose fibers
CN106018086B (en) A kind of evaluation method of papermaking-method reconstituted tobaccos fibre quality index
CN104271835B (en) Uncoated recording medium
Amri et al. Characteristic of Pulp and Paper made from Middle section of Betong Bamboo (Dedrocalamus Asper) by soda pulping method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R150 Certificate of patent or registration of utility model

Ref document number: 7062887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150