JP7062555B2 - Coated particles - Google Patents

Coated particles Download PDF

Info

Publication number
JP7062555B2
JP7062555B2 JP2018158671A JP2018158671A JP7062555B2 JP 7062555 B2 JP7062555 B2 JP 7062555B2 JP 2018158671 A JP2018158671 A JP 2018158671A JP 2018158671 A JP2018158671 A JP 2018158671A JP 7062555 B2 JP7062555 B2 JP 7062555B2
Authority
JP
Japan
Prior art keywords
particles
fine particles
insulating fine
coated
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018158671A
Other languages
Japanese (ja)
Other versions
JP2020035544A (en
Inventor
智真 成橋
裕之 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2018158671A priority Critical patent/JP7062555B2/en
Publication of JP2020035544A publication Critical patent/JP2020035544A/en
Application granted granted Critical
Publication of JP7062555B2 publication Critical patent/JP7062555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)

Description

本発明は、導電性粒子が絶縁層に被覆された被覆粒子に関する。 The present invention relates to coated particles in which conductive particles are coated on an insulating layer.

樹脂粒子の表面にニッケルや金などの金属を形成させた導電性粒子は、導電性接着剤、異方性導電膜、異方性導電接着剤等の導電性材料として使用されている。
近年、電子機器類の一層の小型化に伴い、電子回路の回路幅やピッチはますます小さくなっている。それに伴い、上述の導電性接着剤、異方性導電膜、異方性導電接着剤等に用いられる導電性粒子として、その粒径が小さいものが求められている。このような小さい粒径の導電性粒子を使用した場合、その接続性を高めるためには導電性粒子の配合量を増加させなければならない。しかしながら、導電性粒子の配合量を増加させると、意図しない方向への導通、すなわち対向電極間とは異なる方向への導通により短絡が生じてしまい、該方向における絶縁性が得難いことが問題となっている。この問題を解決するために、導電性粒子の表面を絶縁性の物質で被覆して、導電性粒子の金属層同士の接触を防止した絶縁層被覆導電性粒子が使用されている。このような構成の被覆粒子は、通常、該被覆粒子を電極間で圧着することで絶縁性微粒子が溶融、変形又は剥離して金属被覆粒子の金属表面が露出し、これにより電極間での導通が可能となり接続性が得られる。
The conductive particles in which a metal such as nickel or gold is formed on the surface of the resin particles are used as a conductive material such as a conductive adhesive, an anisotropic conductive film, and an anisotropic conductive adhesive.
In recent years, with the further miniaturization of electronic devices, the circuit width and pitch of electronic circuits have become smaller and smaller. Along with this, as the conductive particles used in the above-mentioned conductive adhesives, anisotropic conductive films, anisotropic conductive adhesives and the like, those having a small particle size are required. When conductive particles having such a small particle size are used, the blending amount of the conductive particles must be increased in order to improve the connectivity. However, if the blending amount of the conductive particles is increased, a short circuit occurs due to conduction in an unintended direction, that is, conduction in a direction different from that between the counter electrodes, and it is difficult to obtain insulation in that direction. ing. In order to solve this problem, insulating layer-coated conductive particles are used in which the surface of the conductive particles is coated with an insulating substance to prevent the metal layers of the conductive particles from coming into contact with each other. In the coated particles having such a structure, the insulating fine particles are usually melted, deformed or peeled off by crimping the coated particles between the electrodes to expose the metal surface of the metal-coated particles, thereby conducting conduction between the electrodes. Is possible and connectivity is obtained.

例えば、非特許文献1には、トリエチルホスホニウム基を有する絶縁性微粒子により導電性粒子表面を被覆した被覆粒子が記載されている。 For example, Non-Patent Document 1 describes coated particles in which the surface of conductive particles is coated with insulating fine particles having a triethylphosphonium group.

第66回高分子討論会 予稿集 Vol.66, No.2, P 60Proceedings of the 66th Polymer Conference Vol.66, No.2, P 60

非特許文献1に記載のようなホスホニウム基を有する絶縁性微粒子は、従来本技術分野で用いられてきたアンモニウム基等の正電荷を有する絶縁性微粒子に比して導電性粒子への密着性が高い。
一方、ニッケルなどの金属皮膜を有する導電性粒子は、金属皮膜の酸化が十分防止されることが求められる。金属皮膜が酸化してしまうと経時的に導電性が低下する場合がある。
また、絶縁性微粒子で被覆された導電性粒子からなる被覆粒子では、金属被覆粒子表面を絶縁性微粒子で密に被覆しやすいことも求められる。絶縁性微粒子による金属被覆粒子表面の被覆が十分密でない場合、導電性粒子表面の一部が被覆されておらず、異方性導電膜の内部で導電性粒子同士が近接した場合には、膜の平面方向で電気的に接触してしまう可能性がある。また導電性材料の製造時やデバイス製造の熱圧着時などに絶縁性微粒子が金属被覆粒子表面から少し剥がれただけで絶縁性が確保できない状態となる可能性がある。
しかしながら、非特許文献1に記載の従来の絶縁性微粒子に被覆された被覆粒子では、金属皮膜の酸化防止、及び金属被覆粒子表面における絶縁性微粒子の密な被覆性を両立する点で十分なものではなかった。
Insulating fine particles having a phosphonium group as described in Non-Patent Document 1 have better adhesion to conductive particles than insulating fine particles having a positive charge such as an ammonium group conventionally used in the present technical field. expensive.
On the other hand, conductive particles having a metal film such as nickel are required to sufficiently prevent oxidation of the metal film. If the metal film is oxidized, the conductivity may decrease over time.
Further, in the case of coated particles made of conductive particles coated with insulating fine particles, it is also required that the surface of the metal-coated particles can be easily densely coated with the insulating fine particles. If the surface of the metal-coated particles is not sufficiently densely coated with the insulating fine particles, a part of the surface of the conductive particles is not covered, and if the conductive particles are close to each other inside the anisotropic conductive film, the film is formed. There is a possibility of electrical contact in the plane direction of. In addition, there is a possibility that the insulating properties cannot be ensured even if the insulating fine particles are slightly peeled off from the surface of the metal-coated particles during the manufacturing of the conductive material or the thermocompression bonding of the device manufacturing.
However, the conventional coated particles coated with the insulating fine particles described in Non-Patent Document 1 are sufficient in that they both prevent oxidation of the metal film and have a dense covering property of the insulating fine particles on the surface of the metal-coated particles. It wasn't.

そこで本発明の目的は、従来の被覆粒子が有する課題を解決しうる絶縁層被覆導電性粒子を提供することにある。 Therefore, an object of the present invention is to provide insulating layer-coated conductive particles that can solve the problems of conventional coated particles.

本発明者らは、前記の課題を解決するために鋭意研究を行った結果、絶縁性の物質として特定炭素数のアルキル鎖を有するホスホニウム基を含む絶縁性微粒子を用いた場合、導電性粒子に対し、トリエチルホスホニウム基を含む従来の絶縁性微粒子と同等の密着性を得ながら、金属皮膜の酸化を効果的に防止できることを見出し、本発明を完成した。 As a result of diligent research to solve the above-mentioned problems, the present inventors have made conductive particles when using insulating fine particles containing a phosphonium group having an alkyl chain having a specific carbon number as an insulating substance. On the other hand, they have found that they can effectively prevent the oxidation of the metal film while obtaining the same adhesion as the conventional insulating fine particles containing a triethylphosphonium group, and completed the present invention.

すなわち本発明は、芯材の表面に金属皮膜が形成された導電性の金属被覆粒子と、該金属被覆粒子を被覆するポリマーからなる絶縁層とを有し、該絶縁層が下記式(1)で表されるホスホニウム基を有する、被覆粒子を提供するものである。

Figure 0007062555000001
(式中、Rはそれぞれ独立に、炭素数4以上10以下のアルキル基である)。 That is, the present invention has a conductive metal-coated particles having a metal film formed on the surface of the core material and an insulating layer made of a polymer that coats the metal-coated particles, and the insulating layer has the following formula (1). It provides coated particles having a phosphonium group represented by.
Figure 0007062555000001
(In the formula, R is an alkyl group having 4 or more and 10 or less carbon atoms independently).

本発明の被覆粒子は金属皮膜の酸化が防止され、経時的な導電性の低下が抑制されたものである。また、絶縁層が絶縁性微粒子又はそれを溶融若しくは溶解させた連続皮膜である場合に、導電性の金属被覆粒子表面を絶縁層で密に被覆しやすく、安定した絶縁性を有する。
このような本発明の被覆粒子は、高い接続信頼性を有する。
The coated particles of the present invention are those in which oxidation of the metal film is prevented and deterioration of conductivity with time is suppressed. Further, when the insulating layer is an insulating fine particle or a continuous film obtained by melting or dissolving the insulating fine particles, it is easy to densely cover the surface of the conductive metal-coated particles with the insulating layer, and the insulating layer has stable insulating properties.
Such coated particles of the present invention have high connection reliability.

図1は、実施例4で得られた被覆粒子をSEMで観察した写真である。FIG. 1 is a photograph of the coated particles obtained in Example 4 observed by SEM. 図2は、実施例7で得られた被覆粒子をSEMで観察した写真である。FIG. 2 is a photograph of the coated particles obtained in Example 7 observed by SEM. 図3は、実施例8で得られた被覆粒子をSEMで観察した写真である。FIG. 3 is a photograph of the coated particles obtained in Example 8 observed by SEM.

以下、本発明を好ましい実施形態に基づき説明する。
本実施形態の被覆粒子は、芯材の表面に金属皮膜が形成された導電性の金属被覆粒子と、該金属被覆粒子を被覆するポリマーからなる絶縁層とを有し、該絶縁層が式(1)で表されるホスホニウム基を有する。
Hereinafter, the present invention will be described based on a preferred embodiment.
The coated particles of the present embodiment have a conductive metal-coated particles having a metal film formed on the surface of the core material and an insulating layer made of a polymer that coats the metal-coated particles, and the insulating layer is of the formula ( It has a phosphonium group represented by 1).

導電性の金属被覆粒子(以下「導電性粒子」ともいう。)としては、導電性接着剤、異方性導電膜、異方性導電接着剤に従来用いている公知のものを用いることができる。
導電性粒子における芯材としては、粒子状であり、無機物であっても有機物であっても特に制限なく用いることができる。無機物の芯材粒子としては、金、銀、銅、ニッケル、パラジウム、ハンダ等の金属粒子、合金、ガラス、セラミック、シリカ、金属又は非金属の酸化物(含水物も含む)、アルミノ珪酸塩を含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物及び炭素等が挙げられる。一方、有機物の芯材粒子としては、例えば、天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリルニトリル、ポリアセタール、アイオノマー、ポリエステル等の熱可塑性樹脂、アルキッド樹脂、フェノール樹脂、尿素樹脂、ベンゾグアナミン樹脂、メラミン樹脂、キシレン樹脂、シリコーン樹脂、エポキシ樹脂、ジアリルフタレート樹脂等が挙げられる。これらは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも、金属からなる芯材粒子に比べて比重が小さくて沈降し難く、分散安定性に優れ、樹脂の弾性により電気接続を維持し易いという点で、樹脂材料からなる芯材粒子が好ましい。
As the conductive metal-coated particles (hereinafter, also referred to as “conductive particles”), known ones conventionally used for conductive adhesives, anisotropic conductive films, and anisotropic conductive adhesives can be used. ..
The core material of the conductive particles is in the form of particles, and can be used without particular limitation whether it is an inorganic substance or an organic substance. Examples of the inorganic core particles include metal particles such as gold, silver, copper, nickel, palladium, and solder, alloys, glass, ceramics, silica, metal or non-metal oxides (including hydrous), and aluminosilicates. Examples thereof include metal silicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal acid salts, metal halides and carbons. On the other hand, examples of the organic core particles include thermoplastics such as natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic acid ester, polyacrylic nitrile, polyacetal, ionomer, and polyester. Examples thereof include resins, alkyd resins, phenol resins, urea resins, benzoguanamine resins, melamine resins, xylene resins, silicone resins, epoxy resins, diallyl phthalate resins and the like. These may be used alone or in combination of two or more. Among these, the core material particles made of a resin material are preferable in that the specific gravity is smaller than that of the core material particles made of metal, the sedimentation is difficult, the dispersion stability is excellent, and the electrical connection is easily maintained due to the elasticity of the resin. ..

芯材粒子として有機物を用いる場合、ガラス転移温度を有しないか、或いは、そのガラス転移温度は100℃超であることが、異方導電接続工程において芯材粒子の形状が維持されやすいことや金属皮膜を形成する工程において芯材粒子の形状を維持しやすい点から好ましい。また芯材粒子がガラス転移温度を有する場合、ガラス転移温度は、200℃以下であることが、異方導電接続において導電性粒子が軟化しやすく接触面積が大きくなることで導通が取りやすくなる点から好ましい。この観点から、芯材粒子がガラス転移温度を有する場合、ガラス転移温度は、100℃超180℃以下であることがより好ましく、100℃超160℃以下であることが特に好ましい。ガラス転移温度は、後述する実施例に記載の方法で測定できる。 When an organic substance is used as the core material particles, the fact that the core material particles do not have a glass transition temperature or the glass transition temperature is more than 100 ° C. makes it easy to maintain the shape of the core material particles in the anisotropic conductive connection step and the metal. It is preferable because it is easy to maintain the shape of the core material particles in the step of forming the film. Further, when the core material particles have a glass transition temperature, the glass transition temperature is 200 ° C. or less, which means that the conductive particles tend to soften in the anisotropic conductive connection and the contact area becomes large, so that conduction can be easily obtained. It is preferable from. From this viewpoint, when the core material particles have a glass transition temperature, the glass transition temperature is more preferably more than 100 ° C. and 180 ° C. or lower, and particularly preferably more than 100 ° C. and 160 ° C. or lower. The glass transition temperature can be measured by the method described in Examples described later.

芯材粒子として有機物を用いる場合において、その有機物が高度に架橋した樹脂であるときは、ガラス転移温度は下記実施例に記載の方法にて200℃まで測定を試みても、ほとんど観測されない。本明細書中ではこのような粒子を、ガラス転移点を有しない粒子ともいい、本発明においては、このような芯材粒子を用いてもよい。前記のこのようなガラス転移温度を有しない芯材粒子材料は、前記で例示した有機物を構成する単量体に架橋性の単量体を併用して共重合させて得ることができる。架橋性の単量体としては、テトラメチレンジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキシドジ(メタ)アクリレート、テトラエチレンオキシド(メタ)アクリレート、1,6-ヘキサンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメテロールプロパントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリジ(メタ)アクリレート等の多官能(メタ)アクリレート、ジビニルベンゼン、ジビニルトルエン等の多官能ビニル系単量体、ビニルトリメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等のシラン含有系単量体、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル等の単量体が挙げられる。特にCOG(Chip on Glass)分野では上記多官能(メタ)アクリレート、上記多官能ビニル系単量体、上記シラン含有系単量体、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルアクリルアミド又はジアリルエーテルに架橋された硬質な有機材料による芯材粒子が多く使用される。 When an organic substance is used as the core material particles and the organic substance is a highly crosslinked resin, the glass transition temperature is hardly observed even if the measurement is attempted to 200 ° C. by the method described in the following Examples. In the present specification, such particles are also referred to as particles having no glass transition point, and in the present invention, such core material particles may be used. The core particle material having no such glass transition temperature can be obtained by copolymerizing the monomer constituting the organic substance exemplified above with a crosslinkable monomer in combination. Examples of the crosslinkable monomer include tetramethylene di (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethylene oxide di (meth) acrylate, and tetraethylene oxide. (Meta) acrylate, 1,6-hexanedi (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, trimeterol propantri (meth) acrylate, tetramethylol methanedi ( Meta) acrylate, tetramethylol methanetri (meth) acrylate, tetramethylol methanetetra (meth) acrylate, tetramethylol propanetetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol di (meth) acrylate, glycerol tridi (meth) Polyfunctional (meth) acrylates such as meth) acrylates, polyfunctional vinyl monomers such as divinylbenzene and divinyltoluene, vinyltrimethoxysilane, trimethoxysilylstyrene, γ- (meth) acryloxypropyltrimethoxysilane, etc. Examples thereof include monomers such as silane-containing monomers, triallyl isocyanurate, diallyl phthalate, diallyl acrylamide, and diallyl ether. Especially in the field of COG (Chip on Glass), it is crosslinked with the polyfunctional (meth) acrylate, the polyfunctional vinyl monomer, the silane-containing monomer, triallyl isocyanurate, diallyl phthalate, diallyl acrylamide or diallyl ether. A lot of core material particles made of hard organic material are used.

芯材粒子の形状に特に制限はない。一般に、芯材粒子は球状である。しかし、芯材粒子は球状以外の形状、例えば、繊維状、中空状、板状又は針状であってもよく、その表面に多数の突起を有するもの又は不定形のものであってもよい。本発明においては、充填性に優れる、金属を被覆しやすいといった点で、球状の芯材粒子が好ましい。
導電性粒子の形状は、芯材粒子の形状にもよるが、特に制限はない。例えば、繊維状、中空状、板状又は針状であってもよく、その表面に突起を有するもの又は不定形のものであってもよい。本発明においては、充填性、接続性に優れるという点で、球状又は表面に突起を有する形状であることが好ましい。
導電性粒子が表面に突起を有する形状である場合、表面に複数の突起を有することが好ましく、球状の表面に複数の突起を有することが更に好ましい。導電性粒子が複数の突起を有する形状である場合、芯材粒子が複数の突起を有するものであってもよいし、芯材粒子が突起を有さず、金属皮膜が複数の突起を有するものであってもよい。好ましくは芯材粒子が突起を有さず、金属皮膜が複数の突起を有するものである。導電性粒子表面に突起を有することで、実装時に電極によって導電性粒子が圧縮されたときに、該突起により絶縁層を効果的に押し退けることができる。導電性粒子の突起の高さHは、絶縁層の厚さをLとしたときに、H/Lが0.1以上であることが、実装時に絶縁層を排除して電気的な導通を確実なものとする観点から好ましい。またH/Lが10以下であることが、充填性や対向電極とは異なる方向での絶縁性を得る観点から好ましい。これらの点から、H/Lは0.2以上5以下であることが更に一層好ましい。これらの好ましい範囲において、厚さLは、絶縁層が絶縁性微粒子である場合に絶縁性微粒子の平均粒子径を指す。
There is no particular limitation on the shape of the core material particles. Generally, the core material particles are spherical. However, the core material particles may have a shape other than a spherical shape, for example, a fibrous shape, a hollow shape, a plate shape, or a needle shape, and may have a large number of protrusions on the surface thereof or an amorphous shape. In the present invention, spherical core material particles are preferable in terms of excellent filling property and easy coating with metal.
The shape of the conductive particles depends on the shape of the core material particles, but is not particularly limited. For example, it may be fibrous, hollow, plate-shaped or needle-shaped, and may have protrusions on its surface or may be amorphous. In the present invention, a spherical shape or a shape having protrusions on the surface is preferable in terms of excellent filling property and connectivity.
When the conductive particles have a shape having protrusions on the surface, it is preferable to have a plurality of protrusions on the surface, and it is more preferable to have a plurality of protrusions on a spherical surface. When the conductive particles have a shape having a plurality of protrusions, the core material particles may have a plurality of protrusions, or the core material particles do not have the protrusions and the metal film has a plurality of protrusions. It may be. Preferably, the core material particles do not have protrusions and the metal film has a plurality of protrusions. By having the protrusions on the surface of the conductive particles, when the conductive particles are compressed by the electrodes at the time of mounting, the protrusions can effectively push away the insulating layer. The height H of the protrusions of the conductive particles is such that H / L is 0.1 or more when the thickness of the insulating layer is L, so that the insulating layer is eliminated at the time of mounting to ensure electrical conduction. It is preferable from the viewpoint of making it simple. Further, it is preferable that the H / L is 10 or less from the viewpoint of obtaining the filling property and the insulating property in a direction different from that of the counter electrode. From these points, it is even more preferable that the H / L is 0.2 or more and 5 or less. In these preferable ranges, the thickness L refers to the average particle diameter of the insulating fine particles when the insulating layer is the insulating fine particles.

突起の高さHは、平均して20nm以上、特に50nm以上であることが好ましい。突起の数は、導電性粒子の粒径にもよるが、1つの粒子当たり、1~20000個、特に5~5000個であることが、導電性粒子の導電性の一層の向上の点から好ましい。また、突起のアスペクト比は、好ましくは0.3以上、より好ましくは0.5以上である。突起のアスペクト比が大きいと、電極表面に形成されている酸化皮膜を容易に突き破ることができるので有利である。アスペクト比とは、突起の高さHと突起の基部の長さDとの比、すなわちH/Dで定義される値である。突起の高さH、突起の基部の長さDは、電子顕微鏡により観察された20個の異なる粒子について測定した平均値であり、突起のアスペクト比は、電子顕微鏡により観察された20個の異なる粒子のアスペクト比を算出し、その平均値を求めたものである。基部の長さDとは電子顕微鏡像における、突起の基部の、導電性粒子の表面に沿う長さをいう。 The height H of the protrusions is preferably 20 nm or more on average, particularly preferably 50 nm or more. The number of protrusions depends on the particle size of the conductive particles, but it is preferable that the number of protrusions is 1 to 20000, particularly 5 to 5000, per particle from the viewpoint of further improving the conductivity of the conductive particles. .. The aspect ratio of the protrusions is preferably 0.3 or more, more preferably 0.5 or more. A large aspect ratio of the protrusions is advantageous because it can easily break through the oxide film formed on the electrode surface. The aspect ratio is a ratio between the height H of the protrusion and the length D of the base of the protrusion, that is, a value defined by H / D. The height H of the protrusion and the length D of the base of the protrusion are average values measured for 20 different particles observed by an electron microscope, and the aspect ratio of the protrusion is 20 different values observed by an electron microscope. The aspect ratio of the particles was calculated and the average value was calculated. The length D of the base is the length of the base of the protrusion along the surface of the conductive particles in the electron microscope image.

導電性粒子の表面に形成されている突起のアスペクト比は上述のとおりであるところ、突起の基部の長さD自体は5~500nm、特に10~400nmであることが好ましく、突起の高さHについては20~500nm、特に50~400nmであることが好ましい。 The aspect ratio of the protrusions formed on the surface of the conductive particles is as described above, but the length D of the base of the protrusions itself is preferably 5 to 500 nm, particularly preferably 10 to 400 nm, and the height H of the protrusions. It is preferably 20 to 500 nm, particularly preferably 50 to 400 nm.

導電性粒子における金属皮膜は、導電性を有するものであり、その構成金属としては、例えば、金、白金、銀、銅、鉄、亜鉛、ニッケル、スズ、鉛、アンチモン、ビスマス、コバルト、インジウム、チタン、アンチモン、ビスマス、ゲルマニウム、アルミニウム、クロム、パラジウム、タングステン、モリブデン等の金属又はこれらの合金のほか、ITO、ハンダ等の金属化合物等が挙げられる。中でも金、銀、銅、ニッケル、パラジウム又はハンダが抵抗が少ないため好ましく、とりわけ、ニッケル、金、ニッケル合金又は金合金が、絶縁性微粒子におけるホスホニウム基との結合性が高いために好適に用いられる。また、ニッケル、ニッケル合金、鉄、亜鉛、スズ、鉛、コバルト、チタン、アルミニウムは、本発明による酸化防止効果が得られやすい点で好ましい。これらの点からニッケル又はニッケル合金が最も好ましい。導電性粒子における金属は1種又は2種以上を組み合わせて用いることができる。 The metal film in the conductive particles has conductivity, and the constituent metals include, for example, gold, platinum, silver, copper, iron, zinc, nickel, tin, lead, antimony, bismuth, cobalt, indium, and the like. Examples thereof include metals such as titanium, antimony, bismuth, germanium, aluminum, chromium, palladium, tungsten and molybdenum, alloys thereof, and metal compounds such as ITO and solder. Of these, gold, silver, copper, nickel, palladium or solder are preferable because they have low resistance, and nickel, gold, nickel alloys or gold alloys are particularly preferably used because they have high bonding properties with phosphonium groups in insulating fine particles. .. Further, nickel, nickel alloy, iron, zinc, tin, lead, cobalt, titanium and aluminum are preferable because the antioxidant effect according to the present invention can be easily obtained. From these points, nickel or nickel alloy is most preferable. The metal in the conductive particles may be used alone or in combination of two or more.

金属皮膜は、単層構造であっても、複数層からなる積層構造であってもよい。複数層からなる積層構造である場合には、最表層が、ニッケル、金、ニッケル合金又は金合金からなることが、絶縁性微粒子におけるホスホニウム基との結合性が高いために好ましく、ニッケル、ニッケル合金、鉄、亜鉛、スズ、鉛、コバルト、チタン、アルミニウムからなることが本発明による酸化防止効果が得られやすい点で好ましい。これらの点からニッケル又はニッケル合金が最も好ましい。 The metal film may have a single-layer structure or a laminated structure composed of a plurality of layers. In the case of a laminated structure consisting of a plurality of layers, it is preferable that the outermost layer is made of nickel, gold, a nickel alloy or a gold alloy because of the high bondability with the phosphonium group in the insulating fine particles, and nickel and nickel alloys. , Iron, zinc, tin, lead, cobalt, titanium, and aluminum are preferable because the antioxidant effect according to the present invention can be easily obtained. From these points, nickel or nickel alloy is most preferable.

金属皮膜の外表面は、金属皮膜の腐食や酸化を防止するため表面処理されていてもよい。この表面処理は、公知の表面処理剤を用いることで行うことができる。表面処理剤としては、リン酸系化合物、クロム酸系化合物、トリアゾール系化合物、イミダゾール系化合物、チアゾール系化合物等が挙げられる。 The outer surface of the metal film may be surface-treated to prevent corrosion and oxidation of the metal film. This surface treatment can be performed by using a known surface treatment agent. Examples of the surface treatment agent include phosphoric acid-based compounds, chromic acid-based compounds, triazole-based compounds, imidazole-based compounds, and thiazole-based compounds.

また金属皮膜は、芯材粒子の表面全体を被覆していてもよく、或いはその一部のみを被覆していてもよい。芯材粒子の表面の一部のみを被覆している場合は、被覆部位が連続していてもよく、例えばアイランド状に不連続に被覆していてもよい。金属皮膜の厚さは0.001μm以上2μm以下が好ましい。 Further, the metal film may cover the entire surface of the core material particles, or may cover only a part thereof. When only a part of the surface of the core material particles is covered, the coated portions may be continuous, for example, may be discontinuously covered in an island shape. The thickness of the metal film is preferably 0.001 μm or more and 2 μm or less.

芯材粒子の表面に金属皮膜を形成する方法としては、蒸着法、スパッタ法、メカノケミカル法、ハイブリダイゼーション法等を利用する乾式法、電解めっき法、無電解めっき法等を利用する湿式法が挙げられる。また、これらの方法を組み合わせて芯材粒子の表面に金属皮膜を形成してもよい。 As a method for forming a metal film on the surface of the core material particles, a dry method using a vapor deposition method, a sputtering method, a mechanochemical method, a hybridization method, etc., an electrolytic plating method, a wet method using an electroless plating method, etc. are used. Can be mentioned. Further, a metal film may be formed on the surface of the core material particles by combining these methods.

導電性粒子の平均粒子径は、好ましくは0.1μm以上50μm以下、より好ましくは1μm以上30μm以下である。導電性粒子の平均粒子径が上記範囲内であることで、得られる被覆粒子が対向電極間とは異なる方向での短絡を発生させることなく、対向電極間での導通を確保しやすい。なお、本発明において、導電性粒子の平均粒子径は、走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて測定した粒子径の平均値である。なお走査型電子顕微鏡画像において導電性粒子が球状である場合は、SEMを用いて測定する粒子径とは、円形の導電性粒子像の径である。導電性粒子が球状でない場合、SEMを用いて測定する粒子径は、導電性粒子の像を横断する線分のうち最も大きい長さ(最大長さ)をいう。このことは、後述する絶縁性微粒子の平均粒子径についても同様である。ただし、導電性粒子が突起を有する場合は、突起以外の部分についての上記の最大長さを平均粒子径とする。
具体的には、導電性粒子の平均粒子径は実施例に記載の方法にて測定される。
The average particle size of the conductive particles is preferably 0.1 μm or more and 50 μm or less, and more preferably 1 μm or more and 30 μm or less. When the average particle diameter of the conductive particles is within the above range, the obtained coated particles do not cause a short circuit in a direction different from that between the counter electrodes, and it is easy to secure conduction between the counter electrodes. In the present invention, the average particle size of the conductive particles is an average value of the particle size measured by using a scanning electron microscope (SEM). When the conductive particles are spherical in the scanning electron microscope image, the particle diameter measured by using SEM is the diameter of the circular conductive particle image. When the conductive particles are not spherical, the particle diameter measured by SEM means the largest length (maximum length) of the line segments traversing the image of the conductive particles. This also applies to the average particle size of the insulating fine particles described later. However, when the conductive particles have protrusions, the above-mentioned maximum length of the portion other than the protrusions is taken as the average particle diameter.
Specifically, the average particle size of the conductive particles is measured by the method described in Examples.

導電性粒子を被覆する絶縁層は式(1)で表されるように、炭素数4~10のアルキル基からなるトリアルキルホスホニウム基を有する。炭素数4~10のアルキル基からなるトリアルキルホスホニウム基はトリエチルホスホニウム基よりも疎水性が高い。本発明者はこのことが、絶縁層がトリエチルホスホニウム基を有する従来の被覆粒子に比して本発明では導電性粒子の金属皮膜が酸化しにくい理由の一つではないかと推測している。 As represented by the formula (1), the insulating layer covering the conductive particles has a trialkylphosphonium group composed of an alkyl group having 4 to 10 carbon atoms. A trialkylphosphonium group consisting of an alkyl group having 4 to 10 carbon atoms is more hydrophobic than a triethylphosphonium group. The present inventor speculates that this is one of the reasons why the metal film of the conductive particles is less likely to be oxidized in the present invention as compared with the conventional coated particles in which the insulating layer has a triethylphosphonium group.

本発明における絶縁層としては、ホスホニウム基を有する化合物を含む複数の絶縁性微粒子が層状に配置されたものからなるか、或いは、ホスホニウム基を有する化合物を含む絶縁性の連続皮膜が挙げられる。
まず、絶縁層が絶縁性微粒子からなり、該微粒子がホスホニウム基を有する化合物を含む場合について説明する。この場合、被覆粒子を電極間で熱圧着することで絶縁性微粒子が溶融、変形、剥離又は導電性粒子表面を移動することにより熱圧着された部分における導電性粒子の金属表面が露出し、これにより電極間での導通を可能として接続性が得られる。一方、被覆粒子における熱圧着方向以外の方向を向く表面部分は、絶縁性微粒子による導電性粒子表面の被覆状態が概ね維持されているため、熱圧着方向以外の方向における導通が防止される。
Examples of the insulating layer in the present invention include those in which a plurality of insulating fine particles containing a compound having a phosphonium group are arranged in a layer, or an insulating continuous film containing a compound having a phosphonium group.
First, a case where the insulating layer is composed of insulating fine particles and the fine particles contain a compound having a phosphonium group will be described. In this case, the insulating fine particles are melted, deformed, peeled off, or moved on the surface of the conductive particles by thermocompression bonding the coated particles between the electrodes, so that the metal surface of the conductive particles in the thermocompression bonded portion is exposed. This enables continuity between the electrodes and provides connectivity. On the other hand, since the surface portion of the coated particles facing a direction other than the thermocompression bonding direction is generally maintained in a state of being coated on the surface of the conductive particles by the insulating fine particles, conduction in a direction other than the thermocompression bonding direction is prevented.

絶縁性微粒子は式(1)で表されるホスホニウム基をその表面に有することが好ましい。本明細書中、絶縁性微粒子が式(1)で表されるホスホニウム基を有し、且つ走査型電子顕微鏡観察により絶縁性微粒子が導電性粒子表面に付着していることが確認できれば、「絶縁性微粒子が式(1)で表されるホスホニウム基を表面に有する」ことに該当するとする。 The insulating fine particles preferably have a phosphonium group represented by the formula (1) on the surface thereof. In the present specification, if the insulating fine particles have a phosphonium group represented by the formula (1) and it can be confirmed by observation with a scanning electron microscope that the insulating fine particles are attached to the surface of the conductive particles, "insulation". It corresponds to "the sex fine particles have a phosphonium group represented by the formula (1) on the surface".

絶縁性微粒子の形状は、特に制限はなく、球状であってもよく、或いは球状以外の形状であってもよい。球状以外の形状としては例えば、繊維状、中空状、板状又は針状が挙げられる。また絶縁性微粒子はその表面に多数の突起を有するもの又は不定形のものであってもよい。導電性粒子への付着性の点や合成の容易性の点で球状の絶縁性微粒子が好ましい。 The shape of the insulating fine particles is not particularly limited and may be spherical or non-spherical. Examples of the shape other than the spherical shape include a fibrous shape, a hollow shape, a plate shape, and a needle shape. Further, the insulating fine particles may have a large number of protrusions on the surface thereof or may have an amorphous shape. Spherical insulating fine particles are preferable in terms of adhesion to conductive particles and ease of synthesis.

絶縁性微粒子において式(1)で表されるホスホニウム基は、絶縁性微粒子を構成する物質の一部として、該物質の化学構造の一部をなしていることが好ましい。絶縁性微粒子においてホスホニウム基は、絶縁性微粒子を構成するポリマーの構成単位の少なくとも1種の構造中に含有されていることが好ましい。式(1)で表されるホスホニウム基は、絶縁性微粒子を構成するポリマーに化学結合していることが好ましく、より好ましくはポリマーの側鎖に結合している。 It is preferable that the phosphonium group represented by the formula (1) in the insulating fine particles forms a part of the chemical structure of the substance as a part of the substance constituting the insulating fine particles. In the insulating fine particles, the phosphonium group is preferably contained in at least one structure of the structural unit of the polymer constituting the insulating fine particles. The phosphonium group represented by the formula (1) is preferably chemically bonded to the polymer constituting the insulating fine particles, and more preferably bonded to the side chain of the polymer.

Rで表されるアルキル基としては、直鎖状、分岐鎖状及び環状のものが挙げられる。直鎖状のものとしては、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基が挙げられる。 Examples of the alkyl group represented by R include linear, branched and cyclic groups. Examples of the linear group include n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group and n-decyl group.

Rで表される分岐鎖状のアルキル基としては、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、3-ペンチル基、s-ペンチル基、t-ペンチル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、エチルヘキシル基等が挙げられる。 The branched alkyl group represented by R includes an isobutyl group, an s-butyl group, a t-butyl group, an isopentyl group, a neopentyl group, a 3-pentyl group, an s-pentyl group, a t-pentyl group, and an isohexyl group. , S-hexyl group, t-hexyl group, ethylhexyl group and the like.

Rで表される環状のアルキル基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロオクタデシル基といったシクロアルキル基等が挙げられる。 Examples of the cyclic alkyl group represented by R include cycloalkyl groups such as cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and cyclooctadecyl group.

絶縁性微粒子が導電性粒子に近接し密着することが容易になる点から、Rは直鎖状アルキル基であることが好ましい。
また導電性粒子の絶縁性微粒子への密な充填性、及び、絶縁性微粒子の疎水性を適度なものとする点から、Rで表されるアルキル基の炭素数は4以上10以下であり、炭素数4以上8以下であることがより好ましい。
R is preferably a linear alkyl group from the viewpoint that the insulating fine particles are close to and easily adhere to the conductive particles.
Further, the number of carbon atoms of the alkyl group represented by R is 4 or more and 10 or less in order to make the dense filling property of the conductive particles into the insulating fine particles and the hydrophobicity of the insulating fine particles appropriate. It is more preferable that the number of carbon atoms is 4 or more and 8 or less.

絶縁性微粒子を構成するポリマーは、エチレン性不飽和結合を有する複数種の重合性化合物の重合体であることが好ましく、該ポリマーを構成するためのエチレン性不飽和結合を有する重合性化合物の少なくとも1種が式(1)で表されるホスホニウム基を有することが好ましい。 The polymer constituting the insulating fine particles is preferably a polymer of a plurality of types of polymerizable compounds having an ethylenically unsaturated bond, and at least one of the polymerizable compounds having an ethylenically unsaturated bond for forming the polymer. It is preferable that one type has a phosphonium group represented by the formula (1).

式(1)で表されるホスホニウム基を有するエチレン性不飽和結合を有する重合性化合物としては、スチレン類、オレフィン類、エステル類、α,β不飽和カルボン酸類、アミド類、ニトリル類などが挙げられる。スチレン類としては、スチレン、o,m,p-メチルスチレン、ジメチルスチレン、エチルスチレン、クロロスチレン等の核置換スチレンやα-メチルスチレン、α-クロロスチレン、β-クロロスチレンなどのスチレン誘導体等が挙げられる。オレフィン類としては、エチレン、プロピレン等が挙げられる。エステル類としては、酢酸ビニル、プロピオン酸ビニル、ビニルベンゾエート等のビニルエステル、及び、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸フェニル等の(メタ)アクリル酸のエステル等が挙げられる。α,β不飽和カルボン酸類としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸等が挙げられる。これらα,β不飽和カルボン酸の塩もα,β不飽和カルボン酸類に含まれる。アミド類としては、アクリルアミド、メタクリルアミド等が挙げられる。ニトリル類としては、アクリロニトリル等が挙げられる。これらは更に置換されていてもよく、置換基としては、ホスホニウム基、アミノ基、第4級アンモニウム基、アミド基、スルホニウム基、スルホン酸基、チオール基、カルボキシル基、リン酸基、シアノ基、アルデヒド基、エステル基、カルボニル基等が挙げられる。これらのモノマーは、1種又は2種以上組み合わせて用いることができる。 Examples of the polymerizable compound having an ethylenically unsaturated bond having a phosphonium group represented by the formula (1) include styrenes, olefins, esters, α and β unsaturated carboxylic acids, amides and nitriles. Be done. Examples of styrenes include nuclear-substituted styrenes such as styrene, o, m, p-methylstyrene, dimethylstyrene, ethylstyrene and chlorostyrene, and styrene derivatives such as α-methylstyrene, α-chlorostyrene and β-chlorostyrene. Can be mentioned. Examples of olefins include ethylene and propylene. Examples of the esters include vinyl esters such as vinyl acetate, vinyl propionate and vinyl benzoate, and methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, phenyl (meth) acrylate and the like. Examples include esters of (meth) acrylic acid. Examples of α and β unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid and the like. Salts of these α and β unsaturated carboxylic acids are also included in the α and β unsaturated carboxylic acids. Examples of amides include acrylamide, methacrylamide and the like. Examples of nitriles include acrylonitrile. These may be further substituted, and the substituents include a phosphonium group, an amino group, a quaternary ammonium group, an amide group, a sulfonium group, a sulfonic acid group, a thiol group, a carboxyl group, a phosphoric acid group and a cyano group. Examples thereof include an aldehyde group, an ester group and a carbonyl group. These monomers can be used alone or in combination of two or more.

式(1)で表されるホスホニウム基を有するエチレン性不飽和結合を有する重合性化合物としては、とりわけ、スチレン類又はエステル類が好ましい。
絶縁性微粒子を構成するポリマーは、上記式(1)で表されるホスホニウム基として、下記式(2)又は式(3)で表される構成単位を有することがモノマーの入手容易性やポリマー合成の容易性の点から好ましい。式(2)及び式(3)中のRの例としては、式(1)中のRの例として上記で説明した通りである。ホスホニウム基は、式(2)のベンゼン環のCH基に対しパラ位、オルト位、メタ位の何れに結合していてもよく、パラ位に結合することが好ましい。式(2)及び式(3)中、一価のAnとしてはハロゲン化物イオンが好適に挙げられる。ハロゲン化物イオンの例としては、Cl、F、Br、Iが挙げられる。
As the polymerizable compound having an ethylenically unsaturated bond having a phosphonium group represented by the formula (1), styrenes or esters are particularly preferable.
The polymer constituting the insulating fine particles should have a structural unit represented by the following formula (2) or formula (3) as the phosphonium group represented by the above formula (1), that is, the availability of the monomer and the polymer synthesis. It is preferable from the viewpoint of ease of use. Examples of R in the formulas (2) and (3) are as described above as examples of R in the formula (1). The phosphonium group may be bonded to any of the para-position, the ortho-position, and the meta-position with respect to the CH group of the benzene ring of the formula (2), and is preferably bonded to the para-position. In the formula (2) and the formula (3), a halide ion is preferably mentioned as the monovalent An . Examples of halide ions include Cl , F , Br , and I .

Figure 0007062555000002
(式中、Rはそれぞれ独立に炭素数4~10のアルキル基を示す。Anは一価のアニオンを示す。mは0~5の整数を示す。)
Figure 0007062555000002
(In the formula, R independently represents an alkyl group having 4 to 10 carbon atoms. An represents a monovalent anion. M represents an integer of 0 to 5.)

Figure 0007062555000003
(式中、Rはそれぞれ独立に炭素数4~10のアルキル基を示す。Anは一価のアニオンを示す。nは1~5の数である。Rは水素原子又はメチルである。)
Figure 0007062555000003
(In the formula, R independently represents an alkyl group having 4 to 10 carbon atoms. An represents a monovalent anion. n is a number of 1 to 5. R 5 is a hydrogen atom or methyl. )

上記式(2)において、mは0~2が好ましく、0又は1がより好ましく、1が特に好ましい。上記式(3)においてnは1~3が好ましく、1~2がより好ましく、2が最も好ましい。 In the above formula (2), m is preferably 0 to 2, more preferably 0 or 1, and particularly preferably 1. In the above formula (3), n is preferably 1 to 3, more preferably 1 to 2, and most preferably 2.

上記の式(2)で表される化合物を与えるエチレン性不飽和結合を有する重合性化合物としては、
4-(ビニルベンジル)トリブチルホスホニウムクロライド、
4-(ビニルベンジル)トリペンチルホスホニウムクロライド、
4-(ビニルベンジル)トリヘキシルホスホニウムクロライド、
4-(ビニルベンジル)トリヘプチルホスホニウムクロライド、
4-(ビニルベンジル)トリオクチルホスホニウムクロライド、
4-(ビニルベンジル)トリノニルホスホニウムクロライド、
4-(ビニルベンジル)トリデシルホスホニウムクロライド、が挙げられる。
As a polymerizable compound having an ethylenically unsaturated bond that gives the compound represented by the above formula (2),
4- (Vinylbenzyl) tributylphosphonium chloride,
4- (Vinylbenzyl) Tripentyl Phosphonium Chloride,
4- (Vinylbenzyl) Trihexyl Phosphonium Chloride,
4- (Vinylbenzyl) triheptylphosphonium chloride,
4- (Vinylbenzyl) trioctylphosphonium chloride,
4- (Vinylbenzyl) Trinonyl Phosphonium Chloride,
4- (Vinylbenzyl) tridecylphosphonium chloride, is mentioned.

上記の式(3)で表される化合物を与えるエチレン性不飽和結合を有する重合性化合物としては、
2-(メタクリロイルオキシエチル)トリブチルホスホニウムクロライド、
2-(メタクリロイルオキシエチル)トリペンチルホスホニウムクロライド、
2-(メタクリロイルオキシエチル)トリヘキシルホスホニウムクロライド、
2-(メタクリロイルオキシエチル)トリヘプチルホスホニウムクロライド、
2-(メタクリロイルオキシエチル)トリオクチルホスホニウムクロライド、
2-(メタクリロイルオキシエチル)トリノニルホスホニウムクロライド、
2-(メタクリロイルオキシエチル)トリデシルホスホニウムクロライド、
等が挙げられる。
As a polymerizable compound having an ethylenically unsaturated bond that gives the compound represented by the above formula (3),
2- (Methylloyloxyethyl) Tributyl Phosphonium Chloride,
2- (Methylloyloxyethyl) Tripentyl Phosphonium Chloride,
2- (Methylloyloxyethyl) Trihexyl Phosphonium Chloride,
2- (Methylloyloxyethyl) triheptylphosphonium chloride,
2- (Methylloyloxyethyl) Trioctyl Phosphonium Chloride,
2- (methacryloyloxyethyl) trinonylphosphonium chloride,
2- (Methylloyloxyethyl) tridecylphosphonium chloride,
And so on.

絶縁性微粒子を構成するポリマーにおいて、全構成単位中、式(1)で表されるホスホニウム基が結合した構成単位の割合は、0.01モル%以上5.0モル%以下であることが好ましく、0.02モル%以上2.0モル%以下であることがより好ましい。ここで、ポリマー中の構成単位の数は、1つのモノマーに由来する構造を1の構成単位としてカウントする。 In the polymer constituting the insulating fine particles, the ratio of the structural unit to which the phosphonium group represented by the formula (1) is bonded is preferably 0.01 mol% or more and 5.0 mol% or less in all the structural units. , 0.02 mol% or more and 2.0 mol% or less is more preferable. Here, as for the number of structural units in the polymer, the structure derived from one monomer is counted as one structural unit.

上述した通り、絶縁性微粒子を構成するポリマーは、エチレン性不飽和結合を有する重合性化合物を複数種組み合わせた重合体であることが好ましい。絶縁性微粒子を構成するためのエチレン性不飽和結合を有する重合性化合物のうち、式(1)で表されるホスホニウム基を有さない重合性化合物としては、上述した、スチレン類、オレフィン類、エステル類、α,β不飽和カルボン酸類、アミド類、ニトリル類が挙げられる。スチレン類、オレフィン類、エステル類、α,β不飽和カルボン酸類、アミド類、ニトリル類それぞれの例としては上述したものが挙げられる。絶縁性微粒子を構成するポリマーとしては、とりわけ、スチレン類、エステル類及びニトリル類から選ばれる少なくとも1種の重合体であることが、重合率が高い点、容易に絶縁性微粒子を球状にできる点で好ましい。絶縁性微粒子を構成するポリマーが、複数種の構成単位を有する場合、ポリマーにおけるそれらの構成単位の存在態様はランダムであっても交互であってもブロックであってもよい。 As described above, the polymer constituting the insulating fine particles is preferably a polymer in which a plurality of types of polymerizable compounds having an ethylenically unsaturated bond are combined. Among the polymerizable compounds having an ethylenically unsaturated bond for constituting the insulating fine particles, the polymerizable compounds having no phosphonium group represented by the formula (1) include the above-mentioned styrenes and olefins. Examples thereof include esters, α and β unsaturated carboxylic acids, amides and nitriles. Examples of styrenes, olefins, esters, α, β unsaturated carboxylic acids, amides, and nitriles include those described above. As the polymer constituting the insulating fine particles, in particular, at least one polymer selected from styrenes, esters and nitriles has a high polymerization rate and can easily make the insulating fine particles spherical. Is preferable. When the polymer constituting the insulating fine particles has a plurality of types of structural units, the mode of existence of these structural units in the polymer may be random, alternate, or block.

絶縁性微粒子を構成するポリマーは架橋されていてもよく、非架橋であってもよいが、架橋されていることが、絶縁性微粒子の粒子分布を広げて導電性粒子への密な充填性を得やすい点で好ましい。
絶縁性微粒子を構成するポリマーを架橋させる場合は、絶縁性微粒子を構成するポリマーを得るためのエチレン性不飽和結合を有する重合性化合物の組成物に、2つ以上のエチレン性不飽和結合性基を有する架橋剤を加えればよい。架橋剤としては、例えば、ジビニルベンゼン、ジビニルナフタレン等の芳香族ジビニル化合物;メタクリル酸アリル、トリアクリルホルマール、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、グリセリンジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ネオペンチルグリコールアクリル酸安息香酸エステル、トリメチロールプロパンアクリル酸安息香酸エステル、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ジトリメチロールプロパンテトラアクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジアクリレート等のジ(メタ)アクリレート化合物を挙げることができる。
The polymer constituting the insulating fine particles may be cross-linked or non-cross-linked, but the cross-linking widens the particle distribution of the insulating fine particles and provides a dense filling property into the conductive particles. It is preferable because it is easy to obtain.
When cross-linking the polymer constituting the insulating fine particles, two or more ethylenically unsaturated bonding groups are added to the composition of the polymerizable compound having an ethylenically unsaturated bond to obtain the polymer constituting the insulating fine particles. A cross-linking agent having the above may be added. Examples of the cross-linking agent include aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene; allyl methacrylate, triacrylicformal, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and triethylene glycol di. (Meta) acrylate, 1,4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, neo Pentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylol propantrimethacrylate, glycerin dimethacrylate, dimethylol-tricyclodecanediacrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetraacrylate , Dipentaerythritol hexaacrylate, neopentyl glycol acrylic acid benzoic acid ester, trimethylolpropane acrylic acid benzoic acid ester, 2-hydroxy-3-acryloyloxypropyl methacrylate, hydroxypivalate neopentylglycol diacrylate, ditrimethylol propanetetra Examples thereof include di (meth) acrylate compounds such as acrylate and 2-butyl-2-ethyl-1,3-propanediol diacrylate.

絶縁性微粒子を構成するポリマーにおいて、全構成単位中、架橋剤に由来する構成単位の割合は、1モル%以上15モル%以下であることが好ましく、2モル%以上13モル%以下であることがより好ましい。ここで、ポリマー中の構成単位の数は、1つのモノマーに由来する構造を1の構成単位としてカウントする。 In the polymer constituting the insulating fine particles, the ratio of the structural unit derived from the cross-linking agent to all the structural units is preferably 1 mol% or more and 15 mol% or less, and 2 mol% or more and 13 mol% or less. Is more preferable. Here, as for the number of structural units in the polymer, the structure derived from one monomer is counted as one structural unit.

絶縁性微粒子を構成するポリマーは、2種以上の構成単位を有するコポリマーであり、該構成単位の少なくとも1種が構造中にエステル結合を有することが好ましい。これにより、ポリマーのガラス転移温度を好適に低いものとしやすく、絶縁性微粒子における導電性粒子と接触する面積の割合を高めて絶縁性微粒子と導電性粒子との密着性を高めることができるほか、絶縁性微粒子同士の結合度を高めることができ、被覆粒子間での絶縁性をより高いものとすることができる。 The polymer constituting the insulating fine particles is a copolymer having two or more kinds of structural units, and it is preferable that at least one kind of the structural units has an ester bond in the structure. As a result, the glass transition temperature of the polymer can be easily lowered to a suitable level, the ratio of the area of the insulating fine particles in contact with the conductive particles can be increased, and the adhesion between the insulating fine particles and the conductive particles can be improved. The degree of bonding between the insulating fine particles can be increased, and the insulating property between the coated particles can be made higher.

構造中にエステル結合を有する構成単位としては、構造中にエチレン性不飽和結合及びエステル結合を併せ持つ重合性化合物に由来するものが挙げられる。そのような重合性化合物としては前記で挙げたエステル類、具体的には、プロピオン酸ビニル、ビニルベンゾエート等のビニルエステルや(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸フェニル等の(メタ)アクリル酸のエステル等が挙げられる。とりわけ構造中にエチレン性不飽和結合及びエステル結合を併せ持つ重合性化合物としては、その構造中に、-COOR又は-OCOR(R及びRはアルキル基)で表される基を有するものが好ましく、とりわけ、これらの基がHC=CH*、又はHC=C(CH)*(*は、上記の-COOR又は-OCORで表される基における結合手の結合先である)に結合した化合物が好ましい。R及びRとしては、直鎖状又は分岐鎖状のアルキル基が好ましく、炭素原子数が1以上12以下であることが好ましく、2以上10以下であることがより好ましい。これらは1種又は2種以上を組み合わせて用いることができる。 Examples of the structural unit having an ester bond in the structure include those derived from a polymerizable compound having both an ethylenically unsaturated bond and an ester bond in the structure. Examples of such polymerizable compounds include the esters listed above, specifically, vinyl esters such as vinyl propionate and vinyl benzoate, methyl (meth) acrylate, ethyl (meth) acrylate, and (meth) acrylic acid. Examples thereof include esters of (meth) acrylic acid such as propyl, butyl (meth) acrylate, hexyl (meth) acrylate, and phenyl (meth) acrylate. In particular, as a polymerizable compound having both an ethylenically unsaturated bond and an ester bond in its structure, a compound having a group represented by -COOR 1 or -OCOR 2 (R 1 and R 2 are alkyl groups) in its structure. In particular, these groups are H 2 C = CH * or H 2 C = C (CH 3 ) * (* is the bond of the bond in the group represented by -COOR 1 or -OCOR 2 above. The compound bonded to the above) is preferable. As R 1 and R 2 , a linear or branched alkyl group is preferable, the number of carbon atoms is preferably 1 or more and 12 or less, and more preferably 2 or more and 10 or less. These can be used alone or in combination of two or more.

絶縁性微粒子を構成するポリマーにおいて、全構成単位中、構造中にエステル結合を有する構成単位の割合は、絶縁性微粒子のガラス転移温度を好適な範囲とする観点や、重合反応進行時に生成した絶縁性微粒子が、熱によって溶融し反応容器の壁面に付着することなく取り出せる観点から0.1モル%以上30モル%以下であることが好ましく、1モル%以上25モル%以下であることがより好ましい。ここでいう構造中にエステル結合を有する構成単位の好ましい例は、例えば以下の一般式(4)で表される。 In the polymer constituting the insulating fine particles, the ratio of the structural units having an ester bond in the structure to the total structural units is from the viewpoint that the glass transition temperature of the insulating fine particles is in a suitable range, and the insulation generated during the progress of the polymerization reaction. From the viewpoint that the sex fine particles can be taken out without being melted by heat and adhering to the wall surface of the reaction vessel, it is preferably 0.1 mol% or more and 30 mol% or less, and more preferably 1 mol% or more and 25 mol% or less. .. A preferable example of the structural unit having an ester bond in the structure referred to here is represented by, for example, the following general formula (4).

Figure 0007062555000004
(式中、Rは水素原子又はメチル基を表す。Rは-COOR又は-OCORで表される基である。)
Figure 0007062555000004
(In the formula, R 3 represents a hydrogen atom or a methyl group. R 4 is a group represented by -COOR 1 or -OCOR 2. )

絶縁性微粒子のガラス転移温度は、導電性粒子の芯材のガラス転移温度よりも低いことが好ましい。このように構成することで、絶縁性微粒子における導電性粒子と接触する面積の割合、及び絶縁性微粒子同士の付着性を容易に高めることができる。
特に本実施形態では絶縁性微粒子として表面にホスホニウム基を有するものを用いることにより、上述した通り、絶縁性微粒子の導電性粒子への単層での密着が可能であるところ、絶縁性微粒子としてガラス転移温度の低いものを用いることで更に容易に絶縁性微粒子の導電性粒子への密着性、及び、絶縁性微粒子同士の付着性を高めることができる。従って本実施形態では被覆粒子間の絶縁性が効果的に向上できる。
The glass transition temperature of the insulating fine particles is preferably lower than the glass transition temperature of the core material of the conductive particles. With such a configuration, the ratio of the area of the insulating fine particles in contact with the conductive particles and the adhesion between the insulating fine particles can be easily increased.
In particular, in the present embodiment, by using the insulating fine particles having a phosphonium group on the surface, as described above, the insulating fine particles can be adhered to the conductive particles in a single layer, and the insulating fine particles are glass. By using a material having a low transition temperature, it is possible to more easily improve the adhesion of the insulating fine particles to the conductive particles and the adhesion between the insulating fine particles. Therefore, in the present embodiment, the insulating property between the coated particles can be effectively improved.

より具体的には、絶縁性微粒子のガラス転移温度は、100℃以下であることが好ましく、95℃以下であることがより好ましく、90℃以下であることが特に好ましい。
また絶縁性微粒子のガラス転移温度は、40℃以上であることが、被覆粒子の保存時等の形状安定性や絶縁性微粒子の合成の容易性の点から好ましく、45℃以上であることがより好ましく、50℃以上であることが特に好ましい。ガラス転移温度は、後述する実施例に記載の方法で測定できる。
More specifically, the glass transition temperature of the insulating fine particles is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and particularly preferably 90 ° C. or lower.
Further, the glass transition temperature of the insulating fine particles is preferably 40 ° C. or higher, preferably 45 ° C. or higher from the viewpoint of shape stability during storage of the coated particles and the ease of synthesizing the insulating fine particles. It is preferably 50 ° C. or higher, and particularly preferably 50 ° C. or higher. The glass transition temperature can be measured by the method described in Examples described later.

前記と同様の点から芯材がガラス転移温度を有する場合、絶縁性微粒子のガラス転移温度と導電性粒子の芯材のガラス転移温度との差は、160℃以下であることが好ましく、120℃以下であることがより好ましく、100℃以下であることが特に好ましい。絶縁性微粒子のガラス転移温度と導電性粒子の芯材のガラス転移温度との差は、5℃以上であることが好ましく、10℃以上であることがより好ましい。 From the same point as above, when the core material has a glass transition temperature, the difference between the glass transition temperature of the insulating fine particles and the glass transition temperature of the core material of the conductive particles is preferably 160 ° C. or less, preferably 120 ° C. The temperature is more preferably 100 ° C. or lower, and particularly preferably 100 ° C. or lower. The difference between the glass transition temperature of the insulating fine particles and the glass transition temperature of the core material of the conductive particles is preferably 5 ° C. or higher, and more preferably 10 ° C. or higher.

ガラス転移温度の測定方法は、例えば以下の方法が挙げられる。
示差走査熱量計「STAR SYSTEM」(METTLER TOLEDO社製)を用いて、試料0.04~0.06gを、200℃まで昇温し、その温度から降温速度5℃/minで25℃まで冷却した。次いで試料を昇温速度5℃/minで昇温し、熱量を測定した。ピークが観測されるときはそのピークの温度を、ピークが観測されずに段差が観測されるときは該段差部分の曲線の最大傾斜を示す接線と該段差の高温側のベースラインの延長線との交点の温度をガラス転移温度とした。
Examples of the method for measuring the glass transition temperature include the following methods.
Using a differential scanning calorimeter "STAR SYSTEM" (manufactured by METTLER TOLEDO), 0.04 to 0.06 g of the sample was heated to 200 ° C. and cooled from that temperature to 25 ° C. at a temperature lowering rate of 5 ° C./min. .. Next, the temperature of the sample was raised at a heating rate of 5 ° C./min, and the amount of heat was measured. When a peak is observed, the temperature of the peak is observed, and when a step is observed without a peak, a tangent line indicating the maximum slope of the curve of the step portion and an extension of the baseline on the high temperature side of the step are used. The temperature at the intersection of the above was defined as the glass transition temperature.

絶縁性微粒子の平均粒子径(D)は、好ましくは10nm以上3,000nm以下、より好ましくは15nm以上2,000nm以下である。絶縁性微粒子の平均粒子径が上記範囲内であることで、得られる被覆粒子が対向電極間とは異なる方向での短絡を発生させることなく、対向電極間での導通を確保しやすい。本発明において、絶縁性微粒子の平均粒子径は、走査型電子顕微鏡を用いた観察において測定した値であり、具体的には後述する実施例に記載の方法にて測定できる。 The average particle diameter (D) of the insulating fine particles is preferably 10 nm or more and 3,000 nm or less, and more preferably 15 nm or more and 2,000 nm or less. When the average particle diameter of the insulating fine particles is within the above range, it is easy to secure conduction between the counter electrodes without causing a short circuit in the obtained coated particles in a direction different from that between the counter electrodes. In the present invention, the average particle size of the insulating fine particles is a value measured by observation using a scanning electron microscope, and can be specifically measured by the method described in Examples described later.

前述の方法によって測定された絶縁性微粒子の粒度分布には幅がある。一般に、粉体の粒度分布の幅は、下記計算式(1)で示される変動係数(Coefficient of Variation、以下「C.V.」とも記載する)により表わされる。
C.V.(%)=(標準偏差/平均粒子径)×100・・・(1)
このC.V.が大きいということは粒度分布に幅があることを示し、一方、C.V.が小さいということは粒度分布がシャープであることを示す。本実施形態の被覆粒子は、絶縁性微粒子のC.V.が5%以上であることが好ましく、7%以上であることがより好ましく、10%超であることが最も好ましい。C.V.を上記下限以上とすることで絶縁性微粒子による導電性粒子表面の被覆をより密にしやすい。またC.V.値は、絶縁性微粒子による被覆層の厚みを均一にする観点から20%以下であることが好ましく、15%以下であることがより好ましい。
The particle size distribution of the insulating fine particles measured by the above method varies. Generally, the width of the particle size distribution of the powder is represented by the coefficient of variation (hereinafter, also referred to as “CV”) represented by the following formula (1).
C. V. (%) = (Standard deviation / average particle size) x 100 ... (1)
This C.I. V. A large size indicates a wide range of particle size distributions, while C.I. V. A small value indicates that the particle size distribution is sharp. The coated particles of this embodiment are C.I. V. Is preferably 5% or more, more preferably 7% or more, and most preferably more than 10%. C. V. By setting the above lower limit or more, it becomes easier to cover the surface of the conductive particles with the insulating fine particles. Also, C.I. V. The value is preferably 20% or less, and more preferably 15% or less, from the viewpoint of making the thickness of the coating layer made of the insulating fine particles uniform.

絶縁層としては、前記の絶縁性微粒子からなるものに替えて、ポリマーからなりホスホニウム基を有する化合物を含む連続皮膜であってもよい。連続皮膜の「連続」とは、絶縁性微粒子に比して、より連続的に導電性粒子を被覆することを指すものであり、必ずしも一つの導電性粒子を一つの連続皮膜だけで覆う形態を指すものではなく、一つの導電性粒子を断続的に複数の皮膜により覆っていてもよい。絶縁層が、ホスホニウム基を有する化合物を含む連続皮膜である場合、該被覆粒子を電極間で熱圧着することで該連続皮膜が溶融、変形又は剥離することにより導電性粒子の金属表面が露出し、これにより電極間での導通を可能とし接続性が得られる。特に、被覆粒子を電極間で熱圧着することで連続皮膜が破けることにより金属表面が露出する場合が多い。一方、被覆粒子における熱圧着方向とは異なる方向を向く表面部分では、連続皮膜による導電性粒子の被覆状態が概ね維持されているため、熱圧着方向以外の方向における導通が防止される。絶縁性皮膜もホスホニウム基を表面に有することが好ましい。 The insulating layer may be a continuous film composed of a polymer and containing a compound having a phosphonium group, instead of the above-mentioned insulating fine particles. "Continuous" of a continuous film refers to coating conductive particles more continuously than insulating fine particles, and does not necessarily cover one conductive particle with only one continuous film. It does not mean that one conductive particle may be intermittently covered with a plurality of films. When the insulating layer is a continuous film containing a compound having a phosphonium group, the metal surface of the conductive particles is exposed by thermocompression bonding the coated particles between the electrodes to melt, deform or peel the continuous film. This enables continuity between the electrodes and provides connectivity. In particular, the metal surface is often exposed by tearing the continuous film by thermocompression bonding the coated particles between the electrodes. On the other hand, in the surface portion of the coated particles facing a direction different from the thermocompression bonding direction, the coating state of the conductive particles by the continuous coating is generally maintained, so that conduction in a direction other than the thermocompression bonding direction is prevented. The insulating film also preferably has a phosphonium group on the surface.

絶縁層が連続皮膜からなる場合であっても式(1)で表されるホスホニウム基を有することにより、金属皮膜の酸化を防止しやすい。連続皮膜が、導電性粒子を被覆した絶縁性微粒子を加熱してなるものであるか、或いは導電性粒子を被覆した絶縁性微粒子を有機溶剤で溶解させたものである場合、絶縁層の前駆体となる絶縁性微粒子を密に被覆できるため、絶縁性微粒子の溶融又は溶解によって得られる連続皮膜が緻密に導電性粒子表面を被覆し、安定した絶縁性を得ることができる。
絶縁層がホスホニウム基を有する化合物を含む連続皮膜である場合、該皮膜は導電性粒子の表面全体を被覆するものであってもよく、表面の一部を被覆するものであってもよい。また連続皮膜の表面は平坦であってもよく、絶縁性微粒子を溶融又は溶解してなることに由来する凹凸を表面の一部又は全部に有していてもよい。また絶縁層は、連続皮膜と絶縁性微粒子とが混在した状態であってもよい。
Even when the insulating layer is made of a continuous film, it is easy to prevent oxidation of the metal film by having the phosphonium group represented by the formula (1). When the continuous film is formed by heating the insulating fine particles coated with the conductive particles, or by dissolving the insulating fine particles coated with the conductive particles with an organic solvent, it is a precursor of the insulating layer. Since the insulating fine particles can be densely coated, the continuous film obtained by melting or dissolving the insulating fine particles can densely cover the surface of the conductive particles, and stable insulating properties can be obtained.
When the insulating layer is a continuous film containing a compound having a phosphonium group, the film may cover the entire surface of the conductive particles, or may cover a part of the surface. Further, the surface of the continuous film may be flat, and may have irregularities on a part or all of the surface resulting from melting or dissolving the insulating fine particles. Further, the insulating layer may be in a state in which a continuous film and insulating fine particles are mixed.

連続皮膜の厚さとしては、10nm以上であることが、対向電極間と異なる方向における絶縁性の向上の点から好ましく、3,000nm以下であることが、対向電極間での導通しやすさの点で好ましい。この点から、連続皮膜の厚さは、10nm以上3,000nm以下であることが好ましく、15nm以上2,000nm以下であることがより好ましい。 The thickness of the continuous film is preferably 10 nm or more from the viewpoint of improving the insulating property in a direction different from that between the counter electrodes, and 3,000 nm or less is preferable for the ease of conduction between the counter electrodes. It is preferable in terms of points. From this point of view, the thickness of the continuous film is preferably 10 nm or more and 3,000 nm or less, and more preferably 15 nm or more and 2,000 nm or less.

絶縁性微粒子と同様、連続皮膜において式(1)で表されるホスホニウム基は、連続皮膜を構成する物質の一部として、該物質の化学構造の一部をなしていることが好ましい。連続皮膜において式(1)で表されるホスホニウム基は、連続皮膜を構成するポリマーの構成単位の少なくとも1種の構造中に含有されていることが好ましい。式(1)で表されるホスホニウム基は、連続皮膜を構成するポリマーに化学結合していることが好ましく、より好ましくはポリマーの側鎖に結合している。
連続皮膜が有する式(1)で表されるホスホニウム基としては上記絶縁性微粒子が有する式(1)で表されるホスホニウム基と同様のものが挙げられる。
また連続皮膜を構成するポリマーの構成単位及びその組成の例としては上述した絶縁性微粒子を構成するポリマーの構成単位及びその組成の例として上記で挙げたものと同様のものが挙げられ、上記の構成単位の好ましい比率範囲は、全て連続皮膜についても当てはまる。連続皮膜のガラス転移温度としては、上述した絶縁性微粒子のガラス転移温度と同様のものが挙げられる。連続皮膜のガラス転移温度と芯材粒子のガラス転移温度との関係としては、上述した絶縁性微粒子のガラス転移温度と芯材粒子のガラス転移温度との関係と、同様の関係が挙げられる。
Like the insulating fine particles, the phosphonium group represented by the formula (1) in the continuous film preferably forms a part of the chemical structure of the substance as a part of the substance constituting the continuous film. The phosphonium group represented by the formula (1) in the continuous film is preferably contained in at least one structure of the structural unit of the polymer constituting the continuous film. The phosphonium group represented by the formula (1) is preferably chemically bonded to the polymer constituting the continuous film, and more preferably bonded to the side chain of the polymer.
Examples of the phosphonium group represented by the formula (1) of the continuous film include the same phosphonium groups represented by the formula (1) of the insulating fine particles.
Further, as an example of the structural unit of the polymer constituting the continuous film and its composition, examples of the structural unit of the polymer constituting the insulating fine particles and the composition thereof are the same as those mentioned above, and the above-mentioned ones are mentioned. The preferred range of ratios for the building blocks also applies to all continuous films. Examples of the glass transition temperature of the continuous film include those similar to the glass transition temperature of the insulating fine particles described above. As the relationship between the glass transition temperature of the continuous film and the glass transition temperature of the core material particles, the same relationship as the relationship between the glass transition temperature of the insulating fine particles and the glass transition temperature of the core material particles can be mentioned.

次いで本実施形態の被覆粒子の好適な製造方法について説明する。
本製造方法は、式(1)で表されるホスホニウム基を有する重合性化合物を含む重合性組成物を重合させて、表面にホスホニウム基を有する絶縁性微粒子を得る第1工程、
絶縁性微粒子と、導電性粒子とを混合して、導電性粒子表面に絶縁性微粒子を付着させる第2工程、とを有する。
Next, a suitable method for producing the coated particles of the present embodiment will be described.
The present production method is a first step of polymerizing a polymerizable composition containing a polymerizable compound having a phosphonium group represented by the formula (1) to obtain insulating fine particles having a phosphonium group on the surface.
It has a second step of mixing the insulating fine particles and the conductive particles to attach the insulating fine particles to the surface of the conductive particles.

(第1工程)
上記重合性組成物は、2種以上の重合性化合物からなるものであり、少なくとも1種がホスホニウム基を有するものが挙げられる。重合性化合物としては、上述した絶縁性微粒子を構成するポリマーの構成単位となるエチレン性不飽和結合を有する重合性化合物が挙げられる。また、好ましい重合性化合物やその構成比としては、上述した、絶縁性微粒子を構成するポリマーの好ましい構成単位やその好ましい量比を与えるものが挙げられる。
(First step)
The above-mentioned polymerizable composition is composed of two or more kinds of polymerizable compounds, and examples thereof include those in which at least one kind has a phosphonium group. Examples of the polymerizable compound include a polymerizable compound having an ethylenically unsaturated bond, which is a constituent unit of the polymer constituting the above-mentioned insulating fine particles. In addition, examples of the preferable polymerizable compound and its constituent ratio include those that give a preferable constituent unit of the polymer constituting the insulating fine particles and a preferable amount ratio thereof.

重合方法としては、乳化重合、ソープフリー乳化重合、分散重合、懸濁重合等が挙げられ、何れであってもよいが、ソープフリー乳化重合であると、単分散な微粒子を界面活性剤を使用せずに製造できる利点があることから好ましい。ソープフリー乳化重合の場合、重合開始剤としては、水溶性開始剤が用いられる。重合は窒素やアルゴン等の不活性雰囲気下で行うことが好ましい。
以上により、表面に式(1)で表されるホスホニウム基を有する絶縁性微粒子が得られる。
Examples of the polymerization method include emulsion polymerization, soap-free emulsion polymerization, dispersion polymerization, suspension polymerization and the like. However, in the case of soap-free emulsion polymerization, monodisperse fine particles are used as a surfactant. It is preferable because it has the advantage that it can be manufactured without the need for. In the case of soap-free emulsion polymerization, a water-soluble initiator is used as the polymerization initiator. The polymerization is preferably carried out in an inert atmosphere such as nitrogen or argon.
As a result, insulating fine particles having a phosphonium group represented by the formula (1) on the surface can be obtained.

(第2工程)
次いで、絶縁性微粒子と、導電性粒子とを混合して、導電性粒子表面に絶縁性微粒子を付着させる。絶縁性微粒子と導電性粒子との混合は、液媒中で行うことが好ましい。液媒としては、水及び有機溶媒並びにその混合物が挙げられ、水が好ましい。有機溶媒としては後述するように絶縁性微粒子を溶解させないものとしては、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール類等を用いることができる。
導電性粒子としてその外表面に表面処理剤を有するものを用いる場合は、例えば、絶縁性微粒子と混合する前に、導電性粒子を表面処理剤の溶液中に分散させるなどの表面処理を行えばよい。
(Second step)
Next, the insulating fine particles and the conductive particles are mixed to attach the insulating fine particles to the surface of the conductive particles. The mixing of the insulating fine particles and the conductive particles is preferably performed in a liquid medium. Examples of the liquid medium include water, an organic solvent and a mixture thereof, and water is preferable. As the organic solvent, as described later, alcohols such as methanol, ethanol, 1-propanol and 2-propanol can be used as those which do not dissolve the insulating fine particles.
When using a conductive particle having a surface treatment agent on its outer surface, for example, surface treatment such as dispersing the conductive particle in a solution of the surface treatment agent may be performed before mixing with the insulating fine particles. good.

絶縁性微粒子と導電性粒子とを液媒中で混合させる際、これらの粒子と液媒からなる分散液は無機塩、有機塩又は有機酸を含有することが、被覆率が一定以上の被覆粒子を得やすい点から好ましい。無機塩、有機塩又は有機酸としては、陰イオンを解離するものが好適に用いられ、この陰イオンとしては、Cl、F、Br、I、SO 2-、CO 2-、NO 、COO、RCOO(Rは有機基)等が好適である。無機塩としては、例えばNaCl、KCl、LiCl、MgCl、BaCl、NaF、KF、LiF、MgF、BaF、NaBr、KBr、LiBr、MgBr、BaBr、NaI、KI、LiI、MgI、BaI、NaSO、KSO、LiSO、MgSO、NaCO、NaHCO、KCO、KHCO、LiCO、LiHCO、MgCO、NaNO、KNO、LiNO、MgNO、BaNO等を用いることができる。また有機塩としては、コハク酸Na、シュウ酸Na、酢酸Na、クエン酸Na、マロン酸Na、酒石酸Na、フマル酸Na、マレイン酸Na、等を用いることができる。有機酸としてはグリシン等のアミノ酸や、コハク酸、シュウ酸、酢酸、クエン酸、酒石酸、マロン酸、フマル酸、マレイン酸等を用いることができる。 When the insulating fine particles and the conductive particles are mixed in a liquid medium, the dispersion liquid consisting of these particles and the liquid medium may contain an inorganic salt, an organic salt or an organic acid, so that the covering particles have a coverage rate of a certain level or higher. It is preferable because it is easy to obtain. As the inorganic salt, organic salt or organic acid, those that dissociate anions are preferably used, and the anions include Cl- , F- , Br- , I- , SO 4-2 , and CO 3 2- . , NO 3- , COO- , RCOO- (R is an organic group) and the like are suitable. Examples of the inorganic salt include NaCl, KCl, LiCl, MgCl 2 , BaCl 2 , NaF, KF, LiF, MgF 2 , BaF 2 , NaBr, KBr, LiBr, MgBr 2 , BaBr 2 , NaI, KI, LiI, MgI 2 . , BaI 2 , Na 2 SO 4 , K 2 SO 4 , Li 2 SO 4 , ו 4 , Na 2 CO 3 , NaHCO 3 , K 2 CO 3 , KHCO 3 , Li 2 CO 3 , LiHCO 3 , MgCO 3 , NaNO 3 , KNO 3 , LiNO 3 , MgNO 3 , BaNO 3 , and the like can be used. As the organic salt, Na succinate, Na oxalate, Na acetate, Na citrate, Na malonic acid, Na tartrate, Na fumarate, Na maleate and the like can be used. As the organic acid, amino acids such as glycine, succinic acid, oxalic acid, acetic acid, citric acid, tartaric acid, malonic acid, fumaric acid, maleic acid and the like can be used.

好ましい無機塩、有機塩及び有機酸の濃度は、導電性粒子表面積において絶縁性微粒子が占める被覆面積としてどの程度とするかにより異なるが、絶縁性微粒子及び導電性粒子を含む分散液中において、例えば、1mmol/L以上100mmol/L以下となる濃度であると、好適な被覆率を有し、また絶縁性微粒子が単層である被覆粒子を得やすいために好ましい。この観点から、当該分散液中の無機塩、有機塩及び有機酸の濃度は2mmol/L以上90mmol/L以下であることがより好ましく、3mmol/L以上80mmol/L以下であることが特に好ましい。 The preferred concentrations of the inorganic salt, the organic salt and the organic acid vary depending on how much the insulating fine particles occupy the covering area in the surface area of the conductive particles, but in a dispersion liquid containing the insulating fine particles and the conductive particles, for example. A concentration of 1 mmol / L or more and 100 mmol / L or less is preferable because it has a suitable coverage and it is easy to obtain coated particles in which the insulating fine particles are a single layer. From this viewpoint, the concentrations of the inorganic salt, the organic salt and the organic acid in the dispersion are more preferably 2 mmol / L or more and 90 mmol / L or less, and particularly preferably 3 mmol / L or more and 80 mmol / L or less.

絶縁性微粒子及び導電性粒子を液媒中で混合させるにあたっては、絶縁性微粒子を含む分散液と導電性粒子とを混合してもよく、導電性粒子を含む分散液と絶縁性微粒子とを混合してもよく、或いは、液媒に絶縁性微粒子及び導電性粒子をそれぞれ投入してもよく、絶縁性微粒子を含む分散媒と導電性粒子を含む分散媒とを混合してもよい。導電性粒子と絶縁性微粒子とを含む分散液中に、導電性粒子は質量基準で100ppm以上100,000ppm以下含有されていることが好ましく、500ppm以上80,000ppm以下含有されていることがより好ましい。
導電性粒子と絶縁性微粒子とを含む分散液中に、絶縁性微粒子は質量基準で10ppm以上50,000ppm以下含有されていることが好ましく、250ppm以上30,000ppm以下含有されていることがより好ましい。
When mixing the insulating fine particles and the conductive particles in the liquid medium, the dispersion liquid containing the insulating fine particles and the conductive particles may be mixed, or the dispersion liquid containing the conductive particles and the insulating fine particles are mixed. Alternatively, the insulating fine particles and the conductive particles may be charged into the liquid medium, respectively, or the dispersion medium containing the insulating fine particles and the dispersion medium containing the conductive particles may be mixed. The dispersion liquid containing the conductive particles and the insulating fine particles preferably contains 100 ppm or more and 100,000 ppm or less of the conductive particles on a mass basis, and more preferably 500 ppm or more and 80,000 ppm or less. ..
The insulating fine particles are preferably contained in a dispersion liquid containing conductive particles and insulating fine particles at a mass content of 10 ppm or more and 50,000 ppm or less, and more preferably 250 ppm or more and 30,000 ppm or less. ..

導電性粒子と絶縁性微粒子とを含む分散液の温度は、一般に、15℃以上100℃以下とすることが、品質が一定な被覆粒子が得やすい点から好ましく、20℃以上90℃以下であることが特に好ましい。特に絶縁性微粒子のガラス転移温度をTg℃としたときに、分散液の温度は、Tg-60℃以上Tg+30℃以下であることが好ましく、Tg-50℃以上Tg+15℃以下であることがより好ましい。この範囲であると、絶縁性微粒子がその形状を維持しながら導電性粒子に密着し、絶縁性微粒子と導電性粒子との間に好適な接触面積を得やすいため好ましい。尤も、本発明の式(1)で表されるホスホニウム基を有する絶縁性微粒子は、導電性粒子との親和性が高いため、上記温度の範囲内であれば十分に被覆することが可能である。 The temperature of the dispersion liquid containing the conductive particles and the insulating fine particles is generally preferably 15 ° C. or higher and 100 ° C. or lower, from the viewpoint that coated particles having constant quality can be easily obtained, and is 20 ° C. or higher and 90 ° C. or lower. Is particularly preferred. In particular, when the glass transition temperature of the insulating fine particles is Tg ° C., the temperature of the dispersion is preferably Tg-60 ° C. or higher and Tg + 30 ° C. or lower, and more preferably Tg-50 ° C. or higher and Tg + 15 ° C. or lower. .. Within this range, the insulating fine particles adhere to the conductive particles while maintaining their shape, and it is easy to obtain a suitable contact area between the insulating fine particles and the conductive particles, which is preferable. However, since the insulating fine particles having a phosphonium group represented by the formula (1) of the present invention have a high affinity with the conductive particles, they can be sufficiently coated as long as they are within the above temperature range. ..

導電性粒子混合後の分散液において、絶縁性微粒子の導電性粒子への付着に供する時間は、好ましくは0.1時間以上24時間以下である。この間、分散液を撹拌することが好ましい。次いで、分散液の固形分を必要に応じ、洗浄、乾燥し、ホスホニウム基を有する絶縁性微粒子が導電性粒子表面に付着した被覆粒子が得られる。 In the dispersion liquid after mixing the conductive particles, the time for adhering the insulating fine particles to the conductive particles is preferably 0.1 hour or more and 24 hours or less. During this time, it is preferable to stir the dispersion. Then, the solid content of the dispersion liquid is washed and dried as necessary to obtain coated particles in which insulating fine particles having a phosphonium group are attached to the surface of the conductive particles.

上述したように、絶縁性微粒子が導電性粒子表面に付着した被覆粒子を加熱することにより、絶縁性微粒子を溶融状態として、導電性粒子表面を膜状に被覆することができる。絶縁性微粒子を膜状にすることにより、絶縁性がより強固なものとなる。加熱する方法としては、絶縁性微粒子を導電性粒子表面に付着させた後の分散液を加温する方法、被覆粒子を水などの溶媒中で加温する方法、被覆粒子を不活性ガスなどの気相中で加温する方法等が挙げられる。加熱温度としては、絶縁性微粒子が脱落することなく均一な膜状を形成しやすい点から、絶縁性微粒子を構成するポリマーのガラス転移温度をTgとしたときにTg+1℃以上Tg+60℃以下が好ましく、Tg+5℃以上Tg+50℃以下がより好ましく、Tg+10℃超であることが最も好ましい。また、被覆粒子を気相中で加温する場合、その圧力条件は大気圧下、減圧下又は加圧下で行うことができる。 As described above, by heating the coated particles in which the insulating fine particles adhere to the surface of the conductive particles, the surface of the conductive particles can be coated in a film shape with the insulating fine particles in a molten state. By forming the insulating fine particles into a film, the insulating property becomes stronger. As a heating method, a method of heating the dispersion liquid after adhering the insulating fine particles to the surface of the conductive particles, a method of heating the coated particles in a solvent such as water, a method of heating the coated particles in an inert gas, etc. Examples include a method of heating in the gas phase. The heating temperature is Tg + 1 ° C or higher and Tg + 60 ° C when the glass transition temperature of the polymer constituting the insulating fine particles is Tg because it is easy to form a uniform film without the insulating fine particles falling off. The following is preferable, Tg + 5 ° C. or higher and Tg + 50 ° C. or lower are more preferable, and Tg + 10 ° C. or higher is most preferable. Further, when the coated particles are heated in the gas phase, the pressure condition can be under atmospheric pressure, reduced pressure or pressurized.

また、絶縁性微粒子が導電性粒子表面に付着した被覆粒子は、その分散液に有機溶剤を添加することによっても、絶縁性微粒子を流動状態にすることができるため、導電性粒子表面を膜状に被覆することができる。絶縁性微粒子を溶解させる場合、この有機溶剤としてはテトラヒドロフラン、トルエン、メチルエチルケトン、N-メチル-2-ピロリドン及びN,N-ジメチルホルムアミド等を用いることができる。有機溶剤の添加量としては、絶縁性微粒子が脱落することなく均一な膜状を形成しやすい点から、分散液中の被覆粒子1質量部に対して1質量部以上100質量部以下であることが好ましく、5質量部以上50質量部以下であることがより好ましい。添加温度としては、絶縁性微粒子が脱落することなく均一な膜状を形成しやすい点から、10℃以上100℃以下が好ましく、20℃以上80℃以下がより好ましい。 Further, the coated particles in which the insulating fine particles adhere to the surface of the conductive particles can be made into a fluid state by adding an organic solvent to the dispersion liquid, so that the surface of the conductive particles is in the form of a film. Can be covered with. When the insulating fine particles are dissolved, tetrahydrofuran, toluene, methyl ethyl ketone, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used as the organic solvent. The amount of the organic solvent added should be 1 part by mass or more and 100 parts by mass or less with respect to 1 part by mass of the coated particles in the dispersion liquid because it is easy to form a uniform film without the insulating fine particles falling off. It is preferable, and it is more preferable that it is 5 parts by mass or more and 50 parts by mass or less. The addition temperature is preferably 10 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 80 ° C. or lower, from the viewpoint that a uniform film shape is easily formed without the insulating fine particles falling off.

導電性粒子表面を膜状に被覆した被覆粒子は、連続皮膜をより安定化させるために、アニーリング処理を行ってもよい。アニーリング処理の方法としては、被覆粒子を不活性ガスなどの気相中で加温する方法等が挙げられる。加熱温度としては、絶縁性微粒子を構成するポリマーのガラス転移温度をTgとしたときにTg+1℃以上Tg+60℃以下が好ましく、Tg+5℃以上Tg+50℃以下がより好ましい。加熱雰囲気としては特に制限されず、窒素、アルゴン等の不活性ガス雰囲気又は空気等の酸化性雰囲気において、大気圧下、減圧下又は加圧下の何れの条件で行うこともできる。 The coated particles having the surface of the conductive particles coated in the form of a film may be subjected to an annealing treatment in order to further stabilize the continuous film. Examples of the annealing treatment method include a method of heating the coated particles in a gas phase such as an inert gas. The heating temperature is preferably Tg + 1 ° C. or higher and Tg + 60 ° C. or lower, and more preferably Tg + 5 ° C. or higher and Tg + 50 ° C. or lower, when the glass transition temperature of the polymer constituting the insulating fine particles is Tg. The heating atmosphere is not particularly limited, and the heating can be performed under any conditions of atmospheric pressure, reduced pressure, or pressurization in an inert gas atmosphere such as nitrogen or argon or an oxidizing atmosphere such as air.

以上、好ましい製造方法を説明したが、本発明の被覆粒子は他の製造方法によっても製造することができる。例えば、ホスホニウム基を有しない絶縁性微粒子を予め重合反応により製造し、得られた絶縁性微粒子をホスホニウム基を有する化合物と反応させる等して、絶縁性微粒子表面にホスホニウム基を導入してもよい。 Although the preferred production method has been described above, the coated particles of the present invention can also be produced by other production methods. For example, an insulating fine particle having no phosphonium group may be produced in advance by a polymerization reaction, and the obtained insulating fine particle may be reacted with a compound having a phosphonium group to introduce a phosphonium group on the surface of the insulating fine particle. ..

以上のようにして得られた被覆粒子は導電性粒子と、ホスホニウム基を有する絶縁性微粒子や連続皮膜とを組みあわせた利点による被覆粒子間の絶縁性及び対向電極間での接続性を活かして、導電性接着剤、異方性導電膜、異方性導電接着剤等の導電性材料として好適に使用される。 The coated particles obtained as described above utilize the insulating properties between the coated particles and the connectivity between the counter electrodes due to the advantage of combining the conductive particles with the insulating fine particles having a phosphonium group or the continuous coating. , It is suitably used as a conductive material such as a conductive adhesive, an anisotropic conductive film, and an anisotropic conductive adhesive.

以下、本発明を実施例により説明する。しかしながら本発明の範囲はこれらの実施例に限定されるものではない。例中の特性は下記の方法により測定した。 Hereinafter, the present invention will be described with reference to examples. However, the scope of the present invention is not limited to these examples. The characteristics in the example were measured by the following method.

(1)平均粒子径
測定対象の走査型電子顕微鏡(SEM)写真(倍率100,000倍)から、任意に200個の粒子を抽出して、それらの粒子径を測定し、その平均値を平均粒子径とした。平均粒子径の定義は上述した通りである。
(1) Average particle size 200 particles are arbitrarily extracted from a scanning electron microscope (SEM) photograph (magnification: 100,000 times) to be measured, their particle size is measured, and the average value is averaged. The particle size was used. The definition of the average particle size is as described above.

(2)C.V.(変動係数)
前記平均粒子径の測定から、下記式により求めた。
C.V.(%)=(標準偏差/平均粒子径)×100
(2) C.I. V. (Coefficient of variation)
From the measurement of the average particle size, it was calculated by the following formula.
C. V. (%) = (Standard deviation / average particle size) x 100

(3)ガラス転移温度
示差走査熱量測定装置(METTLER TOLEDO社製、STAR SYSTEM)にて昇降温速度5℃/min、窒素雰囲気下、測定温度25℃から200℃までの熱量変化を上記の手順で測定した。
(3) Glass transition temperature With a differential scanning calorimetry device (METTTLER TOLEDO, STAR SYSTEM), the calorific value changes from 25 ° C to 200 ° C at a temperature rise / fall rate of 5 ° C / min and a nitrogen atmosphere using the above procedure. It was measured.

(実施例1)
[トリブチルホスホニウム系絶縁性微粒子の製造]
長さ60mmの撹拌羽根を取り付けた200mLの4つ口フラスコに、純水を100mL投入した。その後、スチレンモノマー(関東化学(株)社製)30.00mmol、n-ブチルアクリレート(関東化学(株)社製)5.3mmol、4-(ビニルベンジル)トリブチルホスホニウムクロライド(日本化学工業(株)社製)0.30mmol、架橋剤としてジビニルベンゼン(新日鉄住金化学社製)を1.50mmol及び重合開始剤として2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロライド(和光純薬工業社製、V-50)0.50mmolを投入した。窒素を15分間通気し、溶存酸素を追い出した後、60℃に昇温し、6時間保持して重合反応を進行させた。重合後の微粒子の分散液を目開き150μmのSUS篩にかけ、凝集物を除去した。凝集物を除去した分散液を、遠心分離機(日立工機(株)社製、CR-21N)にて20,000rpm、20分間の条件にて遠心分離して微粒子を沈降させ、上澄み液を除去した。得られた固形物に純水を加えて洗浄して、架橋樹脂からなるトリブチルホスホニウム系絶縁性微粒子の球状の微粒子を得た。得られた微粒子の平均粒子径は139nmであり、C.V.が8.6%であった。またガラス転移温度は約81℃であった。
(Example 1)
[Manufacturing of tributylphosphonium-based insulating fine particles]
100 mL of pure water was put into a 200 mL four-necked flask equipped with a stirring blade having a length of 60 mm. After that, styrene monomer (manufactured by Kanto Chemical Industries, Ltd.) 30.00 mmol, n-butyl acrylate (manufactured by Kanto Chemical Industries, Ltd.) 5.3 mmol, 4- (vinylbenzyl) tributylphosphonium chloride (Nippon Kagaku Kogyo Co., Ltd.) 0.30 mmol, divinylbenzene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) as a cross-linking agent, 1.50 mmol, and 2,2'-azobis (2-methylpropionamidine) dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd.) as a polymerization initiator. , V-50) 0.50 mmol was added. After aerating nitrogen for 15 minutes and expelling dissolved oxygen, the temperature was raised to 60 ° C. and held for 6 hours to proceed with the polymerization reaction. The dispersion liquid of the fine particles after the polymerization was subjected to a SUS sieve having an opening of 150 μm to remove aggregates. The dispersion liquid from which the agglomerates have been removed is centrifuged with a centrifuge (CR-21N, manufactured by Hitachi Koki Co., Ltd.) at 20,000 rpm for 20 minutes to settle the fine particles, and the supernatant liquid is prepared. Removed. Pure water was added to the obtained solid material and washed to obtain spherical fine particles of tributylphosphonium-based insulating fine particles made of a crosslinked resin. The average particle size of the obtained fine particles was 139 nm, and C.I. V. Was 8.6%. The glass transition temperature was about 81 ° C.

[絶縁性微粒子被覆導電性粒子の製造]
球状の樹脂粒子の表面に厚さが0.125μmのニッケル皮膜を有する、平均粒子径が3μmのNiめっき粒子(日本化学工業株式会社製)を用意した。樹脂粒子は架橋性のアクリル樹脂からなり、ガラス転移温度が120℃であった。前記のNiめっき粒子5.0gに純水100mLを投入、撹拌してNiめっき粒子の分散液を得た。この分散液に、上記で得られた絶縁性微粒子と、NaSOを投入し、40℃で30分間撹拌した。絶縁性微粒子及びNaSOの投入後、分散液中、絶縁性微粒子の固形分濃度は質量基準で10,000ppmであり、NaSOの濃度は5mmol/Lであった。上澄み液を除去後、純水により洗浄した後、50℃で真空乾燥して絶縁性微粒子被覆導電性粒子を得た。得られた被覆粒子における絶縁性微粒子の被覆率を下記方法にて求めた。結果を表1に示す。
[Manufacturing of insulating particles coated with insulating fine particles]
Ni-plated particles (manufactured by Nippon Chemical Industrial Co., Ltd.) having a nickel film with a thickness of 0.125 μm and an average particle diameter of 3 μm were prepared on the surface of the spherical resin particles. The resin particles were made of a crosslinkable acrylic resin and had a glass transition temperature of 120 ° C. 100 mL of pure water was added to 5.0 g of the Ni-plated particles and stirred to obtain a dispersion of Ni-plated particles. The insulating fine particles obtained above and Na 2 SO 4 were added to this dispersion, and the mixture was stirred at 40 ° C. for 30 minutes. After the addition of the insulating fine particles and Na 2 SO 4 , the solid content concentration of the insulating fine particles in the dispersion was 10,000 ppm on a mass basis, and the concentration of Na 2 SO 4 was 5 mmol / L. After removing the supernatant, it was washed with pure water and then vacuum dried at 50 ° C. to obtain insulating fine particle-coated conductive particles. The coverage of the insulating fine particles in the obtained coated particles was determined by the following method. The results are shown in Table 1.

(実施例2)
[トリブチルホスホニウム系絶縁性微粒子の製造]
実施例1と同じ方法で絶縁性微粒子を得た。
[絶縁性微粒子被覆導電性粒子の製造]
球状の樹脂粒子の表面に厚さが0.125μmのニッケル皮膜を有する、平均粒子径が3μmのNiめっき粒子(日本化学工業株式会社製)を用意した。樹脂粒子は架橋性のアクリル樹脂からなり、ガラス転移温度が120℃であった。前記のNiめっき粒子5.0gに純水100mLを投入、撹拌してNiめっき粒子の分散液を得た。この分散液に、上記で得られた絶縁性微粒子と、NaClを投入し、40℃で30分間撹拌した。絶縁性微粒子及びNaClの投入後、分散液中、絶縁性微粒子の固形分濃度は質量基準で10,000ppmであり、NaClの濃度は10mmol/Lであった。上澄み液を除去後、純水により洗浄した後、50℃で真空乾燥して絶縁性微粒子被覆導電性粒子を得た。得られた被覆粒子における絶縁性微粒子の被覆率を下記方法にて求めた。結果を表1に示す。
(Example 2)
[Manufacturing of tributylphosphonium-based insulating fine particles]
Insulating fine particles were obtained by the same method as in Example 1.
[Manufacturing of insulating particles coated with insulating fine particles]
Ni-plated particles (manufactured by Nippon Chemical Industrial Co., Ltd.) having a nickel film with a thickness of 0.125 μm and an average particle diameter of 3 μm were prepared on the surface of the spherical resin particles. The resin particles were made of a crosslinkable acrylic resin and had a glass transition temperature of 120 ° C. 100 mL of pure water was added to 5.0 g of the Ni-plated particles and stirred to obtain a dispersion of Ni-plated particles. The insulating fine particles obtained above and NaCl were added to this dispersion, and the mixture was stirred at 40 ° C. for 30 minutes. After the addition of the insulating fine particles and NaCl, the solid content concentration of the insulating fine particles in the dispersion was 10,000 ppm on a mass basis, and the concentration of NaCl was 10 mmol / L. After removing the supernatant, it was washed with pure water and then vacuum dried at 50 ° C. to obtain insulating fine particle-coated conductive particles. The coverage of the insulating fine particles in the obtained coated particles was determined by the following method. The results are shown in Table 1.

(実施例3)
[トリブチルホスホニウム系絶縁性微粒子の製造]
実施例1と同じ方法で絶縁性微粒子を得た。
[絶縁性微粒子被覆導電性粒子の製造]
球状の樹脂粒子の表面に厚さが0.125μmのニッケル皮膜を有する、平均粒子径が3μmのNiめっき粒子(日本化学工業株式会社製)を用意した。樹脂粒子は架橋性のアクリル樹脂からなり、ガラス転移温度が120℃であった。前記のNiめっき粒子5.0gに純水100mLを投入、撹拌してNiめっき粒子の分散液を得た。この分散液に、上記で得られた絶縁性微粒子と、コハク酸を投入し、40℃で30分間撹拌した。絶縁性微粒子及びコハク酸の投入後、分散液中、絶縁性微粒子の固形分濃度は質量基準で10,000ppmであり、コハク酸の濃度は10mmol/Lであった。上澄み液を除去後、純水により洗浄した後、50℃で真空乾燥して絶縁性微粒子被覆導電性粒子を得た。得られた被覆粒子における絶縁性微粒子の被覆率を下記方法にて求めた。結果を表1に示す。
(Example 3)
[Manufacturing of tributylphosphonium-based insulating fine particles]
Insulating fine particles were obtained by the same method as in Example 1.
[Manufacturing of insulating particles coated with insulating fine particles]
Ni-plated particles (manufactured by Nippon Chemical Industrial Co., Ltd.) having a nickel film with a thickness of 0.125 μm and an average particle diameter of 3 μm were prepared on the surface of the spherical resin particles. The resin particles were made of a crosslinkable acrylic resin and had a glass transition temperature of 120 ° C. 100 mL of pure water was added to 5.0 g of the Ni-plated particles and stirred to obtain a dispersion of Ni-plated particles. The insulating fine particles obtained above and succinic acid were added to this dispersion, and the mixture was stirred at 40 ° C. for 30 minutes. After the addition of the insulating fine particles and succinic acid, the solid content concentration of the insulating fine particles in the dispersion was 10,000 ppm on a mass basis, and the concentration of succinic acid was 10 mmol / L. After removing the supernatant, it was washed with pure water and then vacuum dried at 50 ° C. to obtain insulating fine particle-coated conductive particles. The coverage of the insulating fine particles in the obtained coated particles was determined by the following method. The results are shown in Table 1.

(実施例4)
[トリブチルホスホニウム系絶縁性微粒子の製造]
実施例1と同じ方法で絶縁性微粒子を得た。
[絶縁性微粒子被覆導電性粒子の製造]
球状の樹脂粒子の表面に厚さが0.125μmのニッケル皮膜を有する、平均粒子径が3μmのNiめっき粒子(日本化学工業株式会社製)を用意した。樹脂粒子は架橋性のアクリル樹脂からなり、ガラス転移温度が120℃であった。前記のNiめっき粒子5.0gに純水100mLを投入、撹拌してNiめっき粒子の分散液を得た。1質量%のベンゾトリアゾールの水溶液10mLをこの分散液に投入して5分間撹拌し表面処理を行った。その後、目開きが2.0μmのメンブレンフィルターでろ過し、ベンゾトリアゾールの層を表面に有するNiめっき粒子を回収した。回収したNiめっき粒子を純水で洗浄後、純水100mLを投入してベンゾトリアゾールの層を表面に有するNiめっき粒子の分散液を得た。この分散液に、上記で得られた絶縁性微粒子と、NaSOを投入し、40℃で30分間撹拌した。絶縁性微粒子及びNaSOの投入後、分散液中、絶縁性微粒子の固形分濃度は質量基準で10,000ppmであり、NaSOの濃度は5mmol/Lであった。上澄み液を除去後、純水により洗浄した後、50℃で真空乾燥して絶縁性微粒子被覆導電性粒子を得た。得られた被覆粒子における絶縁性微粒子の被覆率を下記方法にて求めた。結果を表1に示す。得られた被覆粒子のSEM写真を図1に示す。
(Example 4)
[Manufacturing of tributylphosphonium-based insulating fine particles]
Insulating fine particles were obtained by the same method as in Example 1.
[Manufacturing of insulating particles coated with insulating fine particles]
Ni-plated particles (manufactured by Nippon Chemical Industrial Co., Ltd.) having a nickel film with a thickness of 0.125 μm and an average particle diameter of 3 μm were prepared on the surface of the spherical resin particles. The resin particles were made of a crosslinkable acrylic resin and had a glass transition temperature of 120 ° C. 100 mL of pure water was added to 5.0 g of the Ni-plated particles and stirred to obtain a dispersion of Ni-plated particles. 10 mL of a 1% by mass aqueous solution of benzotriazole was added to this dispersion and stirred for 5 minutes for surface treatment. Then, the Ni-plated particles having a layer of benzotriazole on the surface were collected by filtering with a membrane filter having an opening of 2.0 μm. After washing the recovered Ni-plated particles with pure water, 100 mL of pure water was added to obtain a dispersion liquid of Ni-plated particles having a benzotriazole layer on the surface. The insulating fine particles obtained above and Na 2 SO 4 were added to this dispersion, and the mixture was stirred at 40 ° C. for 30 minutes. After the addition of the insulating fine particles and Na 2 SO 4 , the solid content concentration of the insulating fine particles in the dispersion was 10,000 ppm on a mass basis, and the concentration of Na 2 SO 4 was 5 mmol / L. After removing the supernatant, it was washed with pure water and then vacuum dried at 50 ° C. to obtain insulating fine particle-coated conductive particles. The coverage of the insulating fine particles in the obtained coated particles was determined by the following method. The results are shown in Table 1. An SEM photograph of the obtained coated particles is shown in FIG.

(実施例5)
[トリブチルホスホニウム系絶縁性微粒子の製造]
実施例1と同じ方法で絶縁性微粒子を得た。
[絶縁性微粒子被覆導電性粒子の製造]
球状の樹脂粒子の表面に、平均高さが0.1μm、平均の基部の長さが0.197μm、アスペクト比0.5である、1,030個の突起を有し且つ厚さが0.125μmのニッケル皮膜を有する、平均粒子径が3μmのNiめっき粒子(日本化学工業株式会社製)を用意した。樹脂粒子は架橋性のアクリル樹脂からなり、ガラス転移温度が120℃であった。また前記のNiめっき粒子5.0gに純水100mLを投入、撹拌してNiめっき粒子の分散液を得た。1質量%のベンゾトリアゾールの水溶液10mLをこの分散液に投入して5分間撹拌し表面処理を行った。その後、目開きが2.0μmのメンブレンフィルターでろ過し、ベンゾトリアゾールの層を表面に有するNiめっき粒子を回収した。回収したNiめっき粒子を純水で洗浄後、純水100mLを投入してベンゾトリアゾールの層を表面に有するNiめっき粒子の分散液を得た。この分散液に、上記で得られた絶縁性微粒子と、NaSOを投入し、これを40℃で30分間撹拌した。絶縁性微粒子及びNaSOの投入後、分散液中、絶縁性微粒子の固形分濃度は質量基準で10,000ppmであり、NaSOの濃度は5mmol/Lであった。上澄み液を除去後、純水により洗浄した後、50℃で真空乾燥して絶縁性微粒子被覆導電性粒子を得た。得られた被覆粒子における絶縁性微粒子の被覆率を下記方法にて求めた。結果を表1に示す。
(Example 5)
[Manufacturing of tributylphosphonium-based insulating fine particles]
Insulating fine particles were obtained by the same method as in Example 1.
[Manufacturing of insulating particles coated with insulating fine particles]
The surface of the spherical resin particles has 1,030 protrusions having an average height of 0.1 μm, an average base length of 0.197 μm, and an aspect ratio of 0.5, and has a thickness of 0. Ni-plated particles (manufactured by Nippon Kagaku Kogyo Co., Ltd.) having a nickel film of 125 μm and having an average particle diameter of 3 μm were prepared. The resin particles were made of a crosslinkable acrylic resin and had a glass transition temperature of 120 ° C. Further, 100 mL of pure water was added to 5.0 g of the Ni-plated particles and stirred to obtain a dispersion of Ni-plated particles. 10 mL of a 1% by mass aqueous solution of benzotriazole was added to this dispersion and stirred for 5 minutes for surface treatment. Then, the Ni-plated particles having a layer of benzotriazole on the surface were collected by filtering with a membrane filter having an opening of 2.0 μm. After washing the recovered Ni-plated particles with pure water, 100 mL of pure water was added to obtain a dispersion liquid of Ni-plated particles having a benzotriazole layer on the surface. The insulating fine particles obtained above and Na 2 SO 4 were added to this dispersion, and the mixture was stirred at 40 ° C. for 30 minutes. After the addition of the insulating fine particles and Na 2 SO 4 , the solid content concentration of the insulating fine particles in the dispersion was 10,000 ppm on a mass basis, and the concentration of Na 2 SO 4 was 5 mmol / L. After removing the supernatant, it was washed with pure water and then vacuum dried at 50 ° C. to obtain insulating fine particle-coated conductive particles. The coverage of the insulating fine particles in the obtained coated particles was determined by the following method. The results are shown in Table 1.

(実施例6)
[トリオクチルホスホニウム系絶縁性微粒子の製造]
長さ60mmの撹拌羽根を取り付けた200mLの4つ口フラスコに、純水を100mL投入した。その後、スチレンモノマー(関東化学(株)社製)30.00mmol、n-ブチルアクリレート(関東化学(株)社製)5.3mmol、4-(ビニルベンジル)トリオクチルホスホニウムクロライド(日本化学工業(株)社製)0.30mmol、架橋剤としてジビニルベンゼン(新日鉄住金化学社製)を1.5mmol及び重合開始剤として2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロライド(和光純薬工業社製、V-50)0.50mmolを投入した。窒素を15分間通気し、溶存酸素を追い出した後、60℃に昇温し、6時間保持して重合反応を進行させた。重合後の微粒子の分散液を目開き150μmのSUS篩にかけ、凝集物を除去した。凝集物を除去した分散液を、遠心分離機(日立工機(株)社製、CR-21N)にて20,000rpm、20分間の条件にて遠心分離して微粒子を沈降させ、上澄み液を除去した。得られた固形物に純水を加えて洗浄して、架橋樹脂からなるトリオクチルホスホニウム系絶縁性微粒子の球状の微粒子を得た。得られた微粒子の平均粒子径は152nmであり、C.V.が10.6%であった。またガラス転移温度は約82℃であった。
[絶縁性微粒子被覆導電性粒子の製造]
上記で得た絶縁性微粒子を用いたこと以外は、実施例1と同じ方法で絶縁性微粒子被覆導電性粒子を得た。詳細には、球状の樹脂粒子の表面に厚さが0.125μmのニッケル皮膜を有する、平均粒子径が3μmのNiめっき粒子(日本化学工業株式会社製)を用意した。樹脂粒子は架橋性のアクリル樹脂からなり、ガラス転移温度が120℃であった。前記のNiめっき粒子5.0gに純水100mLを投入、撹拌してNiめっき粒子の分散液を得た。この分散液に、上記で得られた絶縁性微粒子と、NaSOを投入し、40℃で30分間撹拌した。絶縁性微粒子及びNaSOの投入後、分散液中、絶縁性微粒子の固形分濃度は質量基準で10,000ppmであり、NaSOの濃度は5mmol/Lであった。上澄み液を除去後、純水により洗浄した後、50℃で真空乾燥して絶縁性微粒子被覆導電性粒子を得た。得られた被覆粒子における絶縁性微粒子の被覆率を下記方法にて求めた。結果を表1に示す。
(Example 6)
[Manufacturing of trioctylphosphonium-based insulating fine particles]
100 mL of pure water was put into a 200 mL four-necked flask equipped with a stirring blade having a length of 60 mm. After that, styrene monomer (manufactured by Kanto Chemical Industries, Ltd.) 30.00 mmol, n-butyl acrylate (manufactured by Kanto Chemical Industries, Ltd.) 5.3 mmol, 4- (vinylbenzyl) trioctylphosphonium chloride (Nippon Kagaku Kogyo Co., Ltd.) ) 0.30 mmol, divinylbenzene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) as a cross-linking agent, 1.5 mmol, and 2,2'-azobis (2-methylpropionamidine) dihydrochloride (Wako Pure Chemical Industries, Ltd.) as a polymerization initiator , V-50) 0.50 mmol was added. After aerating nitrogen for 15 minutes and expelling dissolved oxygen, the temperature was raised to 60 ° C. and held for 6 hours to proceed with the polymerization reaction. The dispersion liquid of the fine particles after the polymerization was subjected to a SUS sieve having an opening of 150 μm to remove aggregates. The dispersion liquid from which the agglomerates have been removed is centrifuged with a centrifuge (CR-21N, manufactured by Hitachi Koki Co., Ltd.) at 20,000 rpm for 20 minutes to settle the fine particles, and the supernatant liquid is prepared. Removed. Pure water was added to the obtained solid material and washed to obtain spherical fine particles of trioctylphosphonium-based insulating fine particles made of a crosslinked resin. The average particle size of the obtained fine particles was 152 nm, and C.I. V. Was 10.6%. The glass transition temperature was about 82 ° C.
[Manufacturing of insulating particles coated with insulating fine particles]
Insulating fine particle-coated conductive particles were obtained by the same method as in Example 1 except that the insulating fine particles obtained above were used. Specifically, Ni-plated particles (manufactured by Nippon Chemical Industrial Co., Ltd.) having a nickel film having a thickness of 0.125 μm on the surface of spherical resin particles and having an average particle diameter of 3 μm were prepared. The resin particles were made of a crosslinkable acrylic resin and had a glass transition temperature of 120 ° C. 100 mL of pure water was added to 5.0 g of the Ni-plated particles and stirred to obtain a dispersion of Ni-plated particles. The insulating fine particles obtained above and Na 2 SO 4 were added to this dispersion, and the mixture was stirred at 40 ° C. for 30 minutes. After the addition of the insulating fine particles and Na 2 SO 4 , the solid content concentration of the insulating fine particles in the dispersion was 10,000 ppm on a mass basis, and the concentration of Na 2 SO 4 was 5 mmol / L. After removing the supernatant, it was washed with pure water and then vacuum dried at 50 ° C. to obtain insulating fine particle-coated conductive particles. The coverage of the insulating fine particles in the obtained coated particles was determined by the following method. The results are shown in Table 1.

(実施例7)
実施例1で得られた絶縁性微粒子被覆導電性粒子1.0gを、純水20mL中に投入し、95℃で6時間撹拌した。撹拌終了後、目開きが2μmのメンブレンフィルターにより固形物を分離後、乾燥して、導電性粒子の表面全体が厚さ125nmの皮膜に被覆された絶縁性連続皮膜被覆導電性粒子を得た。得られた被覆粒子のSEM写真を図2に示す。
(Example 7)
1.0 g of the insulating fine particle-coated conductive particles obtained in Example 1 was put into 20 mL of pure water, and the mixture was stirred at 95 ° C. for 6 hours. After the stirring was completed, the solid matter was separated by a membrane filter having an opening of 2 μm and then dried to obtain an insulating continuous film-coated conductive particle in which the entire surface of the conductive particle was coated with a film having a thickness of 125 nm. The SEM photograph of the obtained coated particles is shown in FIG.

(実施例8)
実施例1で得られた絶縁性微粒子被覆導電性粒子1.0gを、純水20mL中に投入して分散液を得た。この分散液にテトラヒドロフラン10mLを加え、室温で6時間撹拌した。撹拌終了後、目開きが2μmのメンブレンフィルターにより固形物を分離して水洗後、乾燥して、導電性粒子の表面全体が厚さ100nmの連続皮膜に被覆された連続皮膜被覆導電性粒子を得た。得られた被覆粒子のSEM写真を図3に示す。
(Example 8)
1.0 g of the insulating fine particle-coated conductive particles obtained in Example 1 was put into 20 mL of pure water to obtain a dispersion liquid. Tetrahydrofuran (10 mL) was added to this dispersion, and the mixture was stirred at room temperature for 6 hours. After the stirring is completed, the solid matter is separated by a membrane filter having an opening of 2 μm, washed with water, and then dried to obtain continuous film-coated conductive particles in which the entire surface of the conductive particles is coated with a continuous film having a thickness of 100 nm. rice field. The SEM photograph of the obtained coated particles is shown in FIG.

(比較例1)
[トリエチルホスホニウム系絶縁性微粒子の製造]
長さ60mmの撹拌羽根を取り付けた200mLの4つ口フラスコに、純水を100mL投入した。その後、スチレンモノマー(関東化学(株)社製)30.00mmol、n-ブチルアクリレート(関東化学(株)社製)5.3mmol、4-(ビニルベンジル)トリエチルホスホニウムクロライド(日本化学工業(株)社製)0.30mmol、架橋剤としてジビニルベンゼン(新日鉄住金化学社製)を1.5mmol及び重合開始剤として2,2‘-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロライド(和光純薬工業社製、V-50)0.50mmolを投入した。窒素を15分間通気し、溶存酸素を追い出した後、60℃に昇温し、6時間保持して重合反応を進行させた。重合後の微粒子の分散液を目開き150μmのSUS篩にかけ、凝集物を除去した。凝集物を除去した分散液を、遠心分離機(日立工機(株)社製、CR-21N)にて20,000rpm、20分間の条件にて遠心分離して微粒子を沈降させ、上澄み液を除去した。得られた固形物に純水を加えて洗浄して、架橋樹脂からなるトリエチルホスホニウム系絶縁性微粒子の球状の微粒子を得た。得られた微粒子の平均粒子径は143nmであり、C.V.が10.7%であった。またガラス転移温度は約80℃であった。
[絶縁性微粒子被覆導電性粒子の製造]
上記で得た絶縁性微粒子を用いたこと以外は、実施例1と同じ方法で絶縁性微粒子被覆導電性粒子を得た。詳細には、球状の樹脂粒子の表面に厚さが0.125μmのニッケル皮膜を有する、平均粒子径が3μmのNiめっき粒子(日本化学工業株式会社製)を用意した。樹脂粒子は架橋性のアクリル樹脂からなり、ガラス転移温度が120℃であった。前記のNiめっき粒子5.0gに純水100mLを投入、撹拌してNiめっき粒子の分散液を得た。この分散液に、上記で得られた絶縁性微粒子と、NaSOを投入し、40℃で30分間撹拌した。絶縁性微粒子及びNaSOの投入後、分散液中、絶縁性微粒子の固形分濃度は質量基準で10,000ppmであり、NaSOの濃度は5mmol/Lであった。上澄み液を除去後、純水により洗浄した後、50℃で真空乾燥して絶縁性微粒子被覆導電性粒子を得た。得られた被覆粒子における絶縁性微粒子の被覆率を下記方法にて求めた。結果を表1に示す。
(Comparative Example 1)
[Manufacturing of triethylphosphonium-based insulating fine particles]
100 mL of pure water was put into a 200 mL four-necked flask equipped with a stirring blade having a length of 60 mm. After that, styrene monomer (manufactured by Kanto Chemical Industries, Ltd.) 30.00 mmol, n-butyl acrylate (manufactured by Kanto Chemical Industries, Ltd.) 5.3 mmol, 4- (vinylbenzyl) triethylphosphonium chloride (Nippon Kagaku Kogyo Co., Ltd.) 0.30 mmol, divinylbenzene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) as a cross-linking agent, 1.5 mmol, and 2,2'-azobis (2-methylpropionamidine) dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd.) as a polymerization initiator , V-50) 0.50 mmol was added. After aerating nitrogen for 15 minutes and expelling dissolved oxygen, the temperature was raised to 60 ° C. and held for 6 hours to proceed with the polymerization reaction. The dispersion liquid of the fine particles after the polymerization was subjected to a SUS sieve having an opening of 150 μm to remove aggregates. The dispersion liquid from which the agglomerates have been removed is centrifuged with a centrifuge (CR-21N, manufactured by Hitachi Koki Co., Ltd.) at 20,000 rpm for 20 minutes to settle the fine particles, and the supernatant liquid is prepared. Removed. Pure water was added to the obtained solid material and washed to obtain spherical fine particles of triethylphosphonium-based insulating fine particles made of a crosslinked resin. The average particle size of the obtained fine particles was 143 nm, and C.I. V. Was 10.7%. The glass transition temperature was about 80 ° C.
[Manufacturing of insulating particles coated with insulating fine particles]
Insulating fine particle-coated conductive particles were obtained by the same method as in Example 1 except that the insulating fine particles obtained above were used. Specifically, Ni-plated particles (manufactured by Nippon Chemical Industrial Co., Ltd.) having a nickel film having a thickness of 0.125 μm on the surface of spherical resin particles and having an average particle diameter of 3 μm were prepared. The resin particles were made of a crosslinkable acrylic resin and had a glass transition temperature of 120 ° C. 100 mL of pure water was added to 5.0 g of the Ni-plated particles and stirred to obtain a dispersion of Ni-plated particles. The insulating fine particles obtained above and Na 2 SO 4 were added to this dispersion, and the mixture was stirred at 40 ° C. for 30 minutes. After the addition of the insulating fine particles and Na 2 SO 4 , the solid content concentration of the insulating fine particles in the dispersion was 10,000 ppm on a mass basis, and the concentration of Na 2 SO 4 was 5 mmol / L. After removing the supernatant, it was washed with pure water and then vacuum dried at 50 ° C. to obtain insulating fine particle-coated conductive particles. The coverage of the insulating fine particles in the obtained coated particles was determined by the following method. The results are shown in Table 1.

(比較例2)
[トリエチルホスホニウム系絶縁性微粒子の製造]
比較例1と同じ方法で絶縁性微粒子を得た。
[絶縁性微粒子被覆導電性粒子の製造]
上記で得た絶縁性微粒子を用いたこと以外は、実施例2と同じ方法で絶縁性微粒子被覆導電性粒子を得た。詳細には、球状の樹脂粒子の表面に厚さが0.125μmのニッケル皮膜を有する、平均粒子径が3μmのNiめっき粒子(日本化学工業株式会社製)を用意した。樹脂粒子は架橋性のアクリル樹脂からなり、ガラス転移温度が120℃であった。前記のNiめっき粒子5.0gに純水100mLを投入、撹拌してNiめっき粒子の分散液を得た。この分散液に、上記で得られた絶縁性微粒子と、NaClを投入し、40℃で30分間撹拌した。絶縁性微粒子及びNaClの投入後、分散液中、絶縁性微粒子の固形分濃度は質量基準で10,000ppmであり、NaClの濃度は10mmol/Lであった。上澄み液を除去後、純水により洗浄した後、50℃で真空乾燥して絶縁性微粒子被覆導電性粒子を得た。得られた被覆粒子における絶縁性微粒子の被覆率を下記方法にて求めた。結果を表1に示す。
(Comparative Example 2)
[Manufacturing of triethylphosphonium-based insulating fine particles]
Insulating fine particles were obtained by the same method as in Comparative Example 1.
[Manufacturing of insulating particles coated with insulating fine particles]
Insulating fine particle-coated conductive particles were obtained by the same method as in Example 2 except that the insulating fine particles obtained above were used. Specifically, Ni-plated particles (manufactured by Nippon Chemical Industrial Co., Ltd.) having a nickel film having a thickness of 0.125 μm on the surface of spherical resin particles and having an average particle diameter of 3 μm were prepared. The resin particles were made of a crosslinkable acrylic resin and had a glass transition temperature of 120 ° C. 100 mL of pure water was added to 5.0 g of the Ni-plated particles and stirred to obtain a dispersion of Ni-plated particles. The insulating fine particles obtained above and NaCl were added to this dispersion, and the mixture was stirred at 40 ° C. for 30 minutes. After the addition of the insulating fine particles and NaCl, the solid content concentration of the insulating fine particles in the dispersion was 10,000 ppm on a mass basis, and the concentration of NaCl was 10 mmol / L. After removing the supernatant, it was washed with pure water and then vacuum dried at 50 ° C. to obtain insulating fine particle-coated conductive particles. The coverage of the insulating fine particles in the obtained coated particles was determined by the following method. The results are shown in Table 1.

(比較例3)
[トリエチルホスホニウム系絶縁性微粒子の製造]
比較例1と同じ方法で絶縁性微粒子を得た。
[絶縁性微粒子被覆導電性粒子の製造]
上記で得た絶縁性微粒子を用いたこと以外は、実施例3と同じ方法で絶縁性微粒子被覆導電性粒子を得た。詳細には、球状の樹脂粒子の表面に厚さが0.125μmのニッケル皮膜を有する、平均粒子径が3μmのNiめっき粒子(日本化学工業株式会社製)を用意した。樹脂粒子は架橋性のアクリル樹脂からなり、ガラス転移温度が120℃であった。前記のNiめっき粒子5.0gに純水100mLを投入、撹拌してNiめっき粒子の分散液を得た。この分散液に、上記で得られた絶縁性微粒子と、コハク酸を投入し、40℃で30分間撹拌した。絶縁性微粒子及びコハク酸の投入後、分散液中、絶縁性微粒子の固形分濃度は質量基準で10,000ppmであり、コハク酸の濃度は10mmol/Lであった。上澄み液を除去後、純水により洗浄した後、50℃で真空乾燥して絶縁性微粒子被覆導電性粒子を得た。得られた被覆粒子における絶縁性微粒子の被覆率を下記方法にて求めた。結果を表1に示す。
(Comparative Example 3)
[Manufacturing of triethylphosphonium-based insulating fine particles]
Insulating fine particles were obtained by the same method as in Comparative Example 1.
[Manufacturing of insulating particles coated with insulating fine particles]
Insulating fine particle-coated conductive particles were obtained by the same method as in Example 3 except that the insulating fine particles obtained above were used. Specifically, Ni-plated particles (manufactured by Nippon Chemical Industrial Co., Ltd.) having a nickel film having a thickness of 0.125 μm on the surface of spherical resin particles and having an average particle diameter of 3 μm were prepared. The resin particles were made of a crosslinkable acrylic resin and had a glass transition temperature of 120 ° C. 100 mL of pure water was added to 5.0 g of the Ni-plated particles and stirred to obtain a dispersion of Ni-plated particles. The insulating fine particles obtained above and succinic acid were added to this dispersion, and the mixture was stirred at 40 ° C. for 30 minutes. After the addition of the insulating fine particles and succinic acid, the solid content concentration of the insulating fine particles in the dispersion was 10,000 ppm on a mass basis, and the concentration of succinic acid was 10 mmol / L. After removing the supernatant, it was washed with pure water and then vacuum dried at 50 ° C. to obtain insulating fine particle-coated conductive particles. The coverage of the insulating fine particles in the obtained coated particles was determined by the following method. The results are shown in Table 1.

(比較例4)
[トリドデシルホスホニウム系絶縁性微粒子の製造]
長さ60mmの撹拌羽根を取り付けた200mLの4つ口フラスコに、純水を100mL投入した。その後、スチレンモノマー(関東化学(株)社製)30.00mmol、n-ブチルアクリレート(関東化学(株)社製)5.3mmol、4-(ビニルベンジル)トリドデシルホスホニウムクロライド(日本化学工業(株)社製)0.30mmol、架橋剤としてジビニルベンゼン(新日鉄住金化学社製)を1.5mmol及び重合開始剤として2,2‘-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロライド(和光純薬工業社製、V-50)0.50mmolを投入した。窒素を15分間通気し、溶存酸素を追い出した後、60℃に昇温し、6時間保持して重合反応を進行させた。重合後の微粒子の分散液を目開き150μmのSUS篩にかけ、凝集物を除去した。凝集物を除去した分散液を、遠心分離機(日立工機(株)社製、CR-21N)にて20,000rpm、20分間の条件にて遠心分離して微粒子を沈降させ、上澄み液を除去した。得られた固形物に純水を加えて洗浄して、架橋樹脂からなるトリドデシルホスホニウム系絶縁性微粒子の球状の微粒子を得た。得られた微粒子の平均粒子径は149nmであり、C.V.が11.7%であった。またガラス転移温度は約78℃であった。
[絶縁性微粒子被覆導電性粒子の製造]
上記で得た絶縁性微粒子を用いたこと以外は、実施例1と同じ方法で絶縁性微粒子被覆導電性粒子を得た。詳細には、球状の樹脂粒子の表面に厚さが0.125μmのニッケル皮膜を有する、平均粒子径が3μmのNiめっき粒子(日本化学工業株式会社製)を用意した。樹脂粒子は架橋性のアクリル樹脂からなり、ガラス転移温度が120℃であった。前記のNiめっき粒子5.0gに純水100mLを投入、撹拌してNiめっき粒子の分散液を得た。この分散液に、上記で得られた絶縁性微粒子と、NaSOを投入し、40℃で30分間撹拌した。絶縁性微粒子及びNaSOの投入後、分散液中、絶縁性微粒子の固形分濃度は質量基準で10,000ppmであり、NaSOの濃度は5mmol/Lであった。上澄み液を除去後、純水により洗浄した後、50℃で真空乾燥して絶縁性微粒子被覆導電性粒子を得た。得られた被覆粒子における絶縁性微粒子の被覆率を下記方法にて求めた。結果を表1に示す。
(Comparative Example 4)
[Manufacturing of tridodecylphosphonium-based insulating fine particles]
100 mL of pure water was put into a 200 mL four-necked flask equipped with a stirring blade having a length of 60 mm. After that, styrene monomer (manufactured by Kanto Chemical Industries, Ltd.) 30.00 mmol, n-butyl acrylate (manufactured by Kanto Chemical Industries, Ltd.) 5.3 mmol, 4- (vinylbenzyl) tridodecylphosphonium chloride (Nippon Kagaku Kogyo Co., Ltd.) ) 0.30 mmol, divinylbenzene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) as a cross-linking agent, 1.5 mmol, and 2,2'-azobis (2-methylpropionamidine) dihydrochloride (Wako Pure Chemical Industries, Ltd.) as a polymerization initiator , V-50) 0.50 mmol was added. After aerating nitrogen for 15 minutes and expelling dissolved oxygen, the temperature was raised to 60 ° C. and held for 6 hours to proceed with the polymerization reaction. The dispersion liquid of the fine particles after the polymerization was subjected to a SUS sieve having an opening of 150 μm to remove aggregates. The dispersion liquid from which the agglomerates have been removed is centrifuged with a centrifuge (CR-21N, manufactured by Hitachi Koki Co., Ltd.) at 20,000 rpm for 20 minutes to settle the fine particles, and the supernatant liquid is prepared. Removed. Pure water was added to the obtained solid material and washed to obtain spherical fine particles of tridodecylphosphonium-based insulating fine particles made of a crosslinked resin. The average particle size of the obtained fine particles was 149 nm, and C.I. V. Was 11.7%. The glass transition temperature was about 78 ° C.
[Manufacturing of insulating particles coated with insulating fine particles]
Insulating fine particle-coated conductive particles were obtained by the same method as in Example 1 except that the insulating fine particles obtained above were used. Specifically, Ni-plated particles (manufactured by Nippon Chemical Industrial Co., Ltd.) having a nickel film having a thickness of 0.125 μm on the surface of spherical resin particles and having an average particle diameter of 3 μm were prepared. The resin particles were made of a crosslinkable acrylic resin and had a glass transition temperature of 120 ° C. 100 mL of pure water was added to 5.0 g of the Ni-plated particles and stirred to obtain a dispersion of Ni-plated particles. The insulating fine particles obtained above and Na 2 SO 4 were added to this dispersion, and the mixture was stirred at 40 ° C. for 30 minutes. After the addition of the insulating fine particles and Na 2 SO 4 , the solid content concentration of the insulating fine particles in the dispersion was 10,000 ppm on a mass basis, and the concentration of Na 2 SO 4 was 5 mmol / L. After removing the supernatant, it was washed with pure water and then vacuum dried at 50 ° C. to obtain insulating fine particle-coated conductive particles. The coverage of the insulating fine particles in the obtained coated particles was determined by the following method. The results are shown in Table 1.

(被覆率の評価)
実施例1~6及び比較例1~4で得られた被覆粒子の被覆率を下記方法にて求めた。
Niめっき粒子の表面に、絶縁性微粒子が最密充填で配列したときの絶縁性微粒子の個数Nを以下の計算式で算出した。
N=4π(R+r)/2√3r
(R:Niめっき粒子の半径(nm)、r:絶縁性微粒子の半径(nm))
SEMにてNiめっき粒子に付着した絶縁性微粒子の個数nを数え、以下の式から被覆率を算出した。
被覆率(%)=(n/N)×100
評価に用いた被覆率は、Niめっき粒子20個の平均値とした。
(Evaluation of coverage)
The coverage of the coated particles obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was determined by the following method.
The number N of the insulating fine particles when the insulating fine particles were closely packed on the surface of the Ni-plated particles was calculated by the following formula.
N = 4π (R + r) 2 / 2√3r 2
(R: radius of Ni-plated particles (nm), r: radius of insulating fine particles (nm))
The number n of the insulating fine particles adhering to the Ni-plated particles was counted by SEM, and the coverage was calculated from the following formula.
Coverage (%) = (n / N) x 100
The coverage used for the evaluation was the average value of 20 Ni-plated particles.

(ニッケル皮膜の評価)
被覆粒子を85℃、85%RHで24時間保持した後、約1.0gをガラス製シャーレにはかり取り、赤外線水分計FD-610(株式会社ケツト化学研究所製)により、120℃、30分の条件で含水率を測定した。含水率が低いほどニッケル皮膜の酸化が防止されやすい。

(Evaluation of nickel film)
After holding the coated particles at 85 ° C. and 85% RH for 24 hours, weigh about 1.0 g into a glass petri dish and use an infrared moisture meter FD-610 (manufactured by Ketsuto Chemical Laboratory Co., Ltd.) at 120 ° C. for 30 minutes. The water content was measured under the conditions of. The lower the water content, the easier it is to prevent oxidation of the nickel film.

Figure 0007062555000005
Figure 0007062555000005

Claims (7)

芯材の表面に金属皮膜が形成された導電性の金属被覆粒子と、該金属被覆粒子を被覆するポリマーからなる絶縁層とを有し、該絶縁層が下記式(1)で表されるホスホニウム基を有する、被覆粒子。
Figure 0007062555000006
(式中、Rはそれぞれ独立に、炭素数4以上10以下のアルキル基である)。
It has a conductive metal-coated particles having a metal film formed on the surface of the core material and an insulating layer made of a polymer that coats the metal-coated particles, and the insulating layer is represented by the following formula (1). Coated particles having a group.
Figure 0007062555000006
(In the formula, R is an alkyl group having 4 or more and 10 or less carbon atoms independently).
前記絶縁層が、複数の絶縁性微粒子からなるか、又は連続皮膜である、請求項1に記載の被覆粒子。 The coated particle according to claim 1, wherein the insulating layer is composed of a plurality of insulating fine particles or is a continuous film. 前記絶縁層が、複数の絶縁性微粒子からなるか、又は絶縁性微粒子を溶融又は溶解させた連続皮膜である、請求項2に記載の被覆粒子。 The coated particles according to claim 2, wherein the insulating layer is composed of a plurality of insulating fine particles or is a continuous film obtained by melting or dissolving the insulating fine particles. 前記ポリマーが架橋されている、請求項1~3の何れか1項に記載の被覆粒子。 The coated particle according to any one of claims 1 to 3, wherein the polymer is crosslinked. 前記絶縁性微粒子のC.V.が5%以上である、請求項2又は3に記載の被覆粒子。 C.I. of the insulating fine particles. V. The coated particles according to claim 2 or 3, wherein the amount is 5% or more. 前記絶縁層が、スチレン類、エステル類及びニトリル類から選ばれる少なくとも1種の重合体からなる、請求項1~5の何れか1項に記載の被覆粒子。 The coated particle according to any one of claims 1 to 5, wherein the insulating layer is made of at least one polymer selected from styrenes, esters and nitriles. 前記金属皮膜がニッケル又はニッケル合金の皮膜である、請求項1~6の何れか1項に記載の被覆粒子。
The coated particle according to any one of claims 1 to 6, wherein the metal film is a nickel or nickel alloy film.
JP2018158671A 2018-08-27 2018-08-27 Coated particles Active JP7062555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018158671A JP7062555B2 (en) 2018-08-27 2018-08-27 Coated particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018158671A JP7062555B2 (en) 2018-08-27 2018-08-27 Coated particles

Publications (2)

Publication Number Publication Date
JP2020035544A JP2020035544A (en) 2020-03-05
JP7062555B2 true JP7062555B2 (en) 2022-05-06

Family

ID=69668379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018158671A Active JP7062555B2 (en) 2018-08-27 2018-08-27 Coated particles

Country Status (1)

Country Link
JP (1) JP7062555B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166672A (en) 2000-12-01 2002-06-11 Fuji Photo Film Co Ltd Original plate for lithographic printing plate
WO2012014925A1 (en) 2010-07-28 2012-02-02 積水化学工業株式会社 Insulating-particle-adhered electrically conductive particle, process for producing insulating-particle-adhered electrically conductive particle, anisotropic conductive material, and connected structure
JP2013030479A (en) 2011-06-22 2013-02-07 Sekisui Chem Co Ltd Conductive particle with insulative particle, anisotropic conductive material, and connection structure
JP2016153513A (en) 2015-11-13 2016-08-25 味の素株式会社 Coated particle
WO2018066368A1 (en) 2016-10-06 2018-04-12 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166672A (en) 2000-12-01 2002-06-11 Fuji Photo Film Co Ltd Original plate for lithographic printing plate
WO2012014925A1 (en) 2010-07-28 2012-02-02 積水化学工業株式会社 Insulating-particle-adhered electrically conductive particle, process for producing insulating-particle-adhered electrically conductive particle, anisotropic conductive material, and connected structure
JP2013030479A (en) 2011-06-22 2013-02-07 Sekisui Chem Co Ltd Conductive particle with insulative particle, anisotropic conductive material, and connection structure
JP2016153513A (en) 2015-11-13 2016-08-25 味の素株式会社 Coated particle
WO2018066368A1 (en) 2016-10-06 2018-04-12 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure

Also Published As

Publication number Publication date
JP2020035544A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6458204B1 (en) Coated particle and method for producing the same
JP6772401B2 (en) Coating particles
JP7062555B2 (en) Coated particles
JP6825170B2 (en) Coating particles, conductive materials containing them, and methods for producing coating particles
JP7160801B2 (en) Coated particles and method for producing the same
JP7358065B2 (en) coated particles
WO2022044913A1 (en) Coated particles and method for manufacturing same
JP7404099B2 (en) Coated particles, their manufacturing method, and conductive materials containing them
JP2022126363A (en) Method for producing coated particles
JP2022126362A (en) Method for producing coated particles
JP7191652B2 (en) Method for producing coated particles
JP2024016497A (en) Insulating fine particles and coated particles
JP2021064591A (en) Coated particles, conductive material containing the same, and method for producing coated particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220420

R150 Certificate of patent or registration of utility model

Ref document number: 7062555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150