JP7062444B2 - 医用画像生成装置及び医用画像生成方法 - Google Patents

医用画像生成装置及び医用画像生成方法 Download PDF

Info

Publication number
JP7062444B2
JP7062444B2 JP2018004521A JP2018004521A JP7062444B2 JP 7062444 B2 JP7062444 B2 JP 7062444B2 JP 2018004521 A JP2018004521 A JP 2018004521A JP 2018004521 A JP2018004521 A JP 2018004521A JP 7062444 B2 JP7062444 B2 JP 7062444B2
Authority
JP
Japan
Prior art keywords
subsets
gradient information
image
reconstruction
subset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018004521A
Other languages
English (en)
Other versions
JP2018110867A (ja
Inventor
ジョウ ジエン
ユウ ジョウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Publication of JP2018110867A publication Critical patent/JP2018110867A/ja
Application granted granted Critical
Publication of JP7062444B2 publication Critical patent/JP7062444B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/424Iterative

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)

Description

本実施形態は、医用画像生成装置及び医用画像生成方法に関する。
コンピュータ断層撮影(CT)システムおよび方法は、特に医用撮像および医用診断の為に、幅広く使用されている。CTシステムは、一般的に被検体の身体に関する一枚または複数の断面的なスライスの画像を作成する。X線源などの放射源は、一側面から身体にX線を照射する。身体と反対側にある少なくとも一つの検出器は、身体を通過した放射線を受け取る。身体を通過してきた放射線の減衰は、検出器から受け取った電気信号を処理することで測定される。
CTサイノグラムは、検出器アレイに沿った位置の関数として、またX線源からX線検出器までの投影角の関数として、身体を通過した減衰を示す。サイノグラムにおいて、空間的次元は、X線検出器のアレイに沿った位置を参照する。時間/角度次元は、CTスキャンの間の時間の関数として変化するX線の投影角を参照する。画像化された被検体の部位から生じる減衰は、投影角に一致して縦軸に沿って正弦波を描くだろう。回転軸から更に遠い画像化された被検体の部位は、より大きな振幅での正弦波に対応し、当該正弦波の位相は、回転軸周辺の角度位置に一致する。逆ラドン変換―また任意のその他の画像再構成法―の実行は、サイノグラムにおいて表された投影データから画像を再構成することである。
断層撮影法における統計的逐次再構成(IR)アルゴリズムは、フィルタ補正逆投影(FBP)法の様により従来的な再構成法と比べて、線量レベルを抑えて改善された画質を提供することが可能である。しかし、特定の実施形態において、統計的アプローチは相当な計算時間を必要とするので遅い。標準的且つ統計的な再構成アプローチの計算的に集約された(computationally intensive)演算の遅さを改善するためには、より少ない回数逐次で、より素早く収束する統計的な再構成のための逐次アルゴリズムを使用する改善された方法が、注目を集めている。
加速器法は、オーダードサブセット(OS:順序部分集合)、ネステロフの加速法を含む、IR法と様々な組み合わせが出来る。OS法は、画像再構成アルゴリズムの逐次毎の測定のサブセットのみを使用することで、計算的コストを効果的に減らす。ネステロフの加速法も、IR法の計算効率とパフォーマンスを向上するために使用することが出来る。
米国特許出願公開第2013/0343673A1号明細書
しかしながら、特定の実施形態について以下に説明するように、OS加速されたアルゴリズムは収束しない可能性がある。例えば、ネステロフの加速法と組み合わせられた場合に、OS加速されたアルゴリズムは発散という課題に悩まされることがある。
本実施形態は、上記課題に鑑み、OS加速されたアルゴリズムを用いる逐次再構成(IR)法において、分散を縮小することで、収束率を改善することができる医用画像生成装置及び医用画像生成方法を提供することである。
本実施形態に係る医用画像生成装置は、取得部、再構成部を具備する。取得部は、X線発生装置から照射され被検体を透過した透過X線を用いて検出された、前記被検体に関する検出データを取得する。再構成部は、前記検出データを複数のサブセットに分けて、前記複数のサブセットのうち2以上のサブセットに基づいたオブジェクト関数における第一の勾配情報を取得し、前記サブセットそれぞれに基づいたオブジェクト関数における第二の勾配情報を前記第一の勾配情報に基づき補正し、当該補正後の第二の勾配情報に基づいたオブジェクト関数を用いて前記サブセット毎に逐次近似再構成処理を行い、再構成画像を取得する。
一実施形態に係る、小数のオーダードサブセット(OS)と、多数のOSと、更にOSおよびネステロフの加速法の組み合わせとを使用する、逐次再構成(IR)方についての収束率のプロットを図示する。 一実施形態に係る、IRの様々な実施形態の収束率についてのシミュレーション結果のプロットを図示する。 一実施形態に係る、分散が縮小されたOS IR法のフローチャートを図示する。 一実施形態に係る、分散が縮小されたOS IR法の疑似コードでのフローチャートを図示する。 一実施形態に係る、ネステロフの加速法を伴う分散が縮小されたOS IR法の疑似コードでのフローチャートを図示する。 腹部断面の参照再構成画像を図示する。 図5に示された参照再構成画像に対応する、オーダードサブセットと分離可能二次サロゲート(OS-SQS)との組み合わせを使用しサブセット24個とを使用して、六回の逐次後の再構成画像を図示する。 図5の参照画像と図6Aの再構成画像との間の差分である差分画像を図示する。 図5に示された参照再構成画像に対応する、オーダードサブセットと分離可能二次サロゲートとの組み合わせとネステロフの加速法(OS-SQS-mom)を使用しサブセット24個とを使用して、六回の逐次後の再構成画像を図示する。 図5の参照画像と図7Aの再構成画像との間の差分である差分画像を図示する。 図5に示された参照再構成画像に対応する、オーダードサブセットおよび分離可能二次サロゲートに加えて分散縮小の組み合わせとネステロフの加速法(OS-SQS-mom-VR)とを使用しサブセット24個とを使用して、六回の逐次後の再構成画像を図示する。 図5の参照画像と図8Aの再構成画像との間の差分である差分画像を図示する。 頭部断面の参照再構成画像を図示する。 図9Aに示された参照再構成画像に対応する、オーダードサブセットと分離可能二次サロゲートとの組み合わせとネステロフの加速法(OS-SQS-mom)を使用しサブセット12個とを使用して、十回の逐次後の再構成画像を図示する。 図9Aに示された参照再構成画像に対応する、オーダードサブセットおよび分離可能二次サロゲートに加えて分散縮小の組み合わせとネステロフの加速法(OS-SQS-mom-VR)とを使用しサブセット24個とを使用して、四回の逐次後の再構成画像を図示する。 一実施形態に係る、1フルセットの勾配と異なる数のサブセットとをアップデートするための異なる期間におけるOS-SQS-mom-VR IR法の様々な実行を使用する際の、エラー収束率についてのシミュレーション結果のプロットを図示する。 実施形態に係るCTスキャナの実行の概要図を示している。
逐次再構成(IR)法は、従来的なフィルタ補正逆投影(FBP)再構成法を上回る優れた画質のために、X線CT撮像においてかなりの注目を得つつある。しかし、IRは、具体的には複雑なシステムの順モデル(complicated system forward models)および逐次での処理手順(iterated processing procedures)を使用するため、より多くの計算的リソースとFBPのための時間とを必要とする。素早い収束率でのアルゴリズムは、この様にして、画質に悪影響を与えることなく、逐次時間を減らすのに極めて有益である。
様々な逐次アルゴリズムは、CT画像を逐次的に再構成するために使用することが出来る。これらの様々な方法は、勾配に基づく方法、逐次座標降下法、そして最適化遷移(optimization transfer)に基づく方法などを含むことが可能である。追加での方法は、バーグマンの分割スキーム(Bergman’s splittin scheme)と同様に、増大されたラグランジュ乗数フレームワークに基づくものでも良い。
これらのアルゴリズムの大半は、その断層撮影再構成問題の不良設定性質(ill-posed nature)の為に、やはり収束が遅く、そのため加速法は収束率を上げるのに有益である。勾配に基づく方法において、素早い収束アルゴリズムは、例えばいくつか所定の前提条件で共役勾配法を使用して、ニュートンタイプのアップデートを実現するために、使用することが出来る。加えて、オーダードサブセット(OS)法が別の加速法である。OS加速の一つの利点としては、OS加速が追加のアルゴリズムの複雑性を加えず、故に大半の存在するアルゴリズムと容易に組み合わせられるという点である。また、特定の場合において、ネステロフのモメンタム法は、存在する逐次アルゴリズムの中の多くに適用された場合も、二次収束率を提供出来る。二つ以上の加速法の組み合わせは、もし本実施形態で説明される方法の様に適切に行われれば、どちらか片方の手法だけの場合と比較して、一層の収束の加速という結果になることがある。例えば、ネステロフのモメンタム法をOSに基づく分離可能二次サロゲート(SQS)法と組み合わせる、本実施形態で説明される方法を使用して、再構成において相当な時間短縮が達成出来る。
時間短縮を制限する可能性がある一つの潜在的な課題として、OS型アルゴリズムは、リミットサイクル問題によく悩まされることが挙げられる。OS型アルゴリズムがモメンタム法と組み合わせられた場合に、当該アルゴリズムの収束率はより複雑になる。実際に、後ほど説明される通り、特定の組み合わせにおいて、OS型アルゴリズムは、発散的な解という結果になる可能性がある。この問題への解決策としては、確率的勾配最適化法の理論に基づく分析から提案されるが、この解決策の意味するところは、逐次と最終的な解との間の画像エラーは二次的な割合(quadratic rate)で低減することが出来るものの、実際には確率的なノイズが原因の当該エラーは逐次数の線形関数として増える、ということである。この確率的なノイズは、勾配近似エラーと呼ぶことが出来る、つまり、オリジナルのオブジェクト関数(目的関数)の勾配と単一のサブセットのみを使用して定義された勾配との間のミスマッチである。この様にして、より大きな分散におけるより多数のサブセット結果は蓄積されており、逐次数と共に発散率の上昇を引き起こしている。
この問題を取り巻く一つの解決方法は、逐次数が増えるにつれてステップサイズが減るという弛緩したモメンタム法を使用することである。当該弛緩したモメンタム法は、減少するステップサイズを処理する追加のパラメータを取り込むが、この追加のパラメータは困難且つしばしばデータに依存することがある。更に、減少するステップサイズは、収束スピードが長引くことに繋がり、減少するステップサイズの制御には、再構成ワークフローを複雑化させる追加のパラメータ調整が必要となる。
収束問題を解消するその他の方法は、ステップサイズのやり直しスキーム、従来的な勾配に基づくアルゴリズム、そしてその他の全体的な収束法を含む。ステップサイズのやり直しスキームは、ネステロフの加速法を使用する際に、発散問題を制御するために使用することが出来るが、リミットサイクル問題は回避出来ない。OS型アルゴリズムは、前提条件が調整された共役勾配法など従来的な勾配に基づくアルゴリズムを使用することで、完全に回避が可能である。しかし、効果的な前提条件を計画する事は、特に広いコーン角画像再構成について、とりわけ困難なことが判明する可能性がある。インクリメンタルな最適化遷移アルゴリズムなど、その他の全体的な収束法を適用することが出来る。
上述の方法よりも更に良いアプローチが、本実施形態に説明される分散縮小法である。この優れたアプローチは、リミットサイクルや分散問題を解消するために、OS型アルゴリズムとネステロフ加速法との組み合わせで分散縮小法を使用する。更に、本実施形態に説明される方法は、最適な収束率を有利に維持しつつ、逐次再構成手順の間に確率的ノイズを効果的に低減する。その上、本実施形態に説明される方法は、余分な追加パラメータを必要としない。
要約すると、高速逐次アルゴリズムは、画質を低下させることなく、全体的な再構成時間を減らす手助けが出来る。本実施形態に説明される方法において、オーダードサブセット(OS)とネステロフのモメンタム法とによって加速された高速逐次再構成を改善するための、分散縮小方法が提案される。本実施形態で説明される方法の改善無しでは、OS加速されたアルゴリズムが、収束を長引かせながら、リミットサイクルの制約を受ける可能性がある。ネステロフ法と更に組み合わせられた場合に、アルゴリズムはノイズ蓄積が原因で頻繁に発散する。本実施形態に説明される方法は、このノイズを低減し、本実施形態に説明される結果によって実証されているように、結果として速い率での収束を可能にしている。
参照画像が数枚の図にわたって同一または対応する部分を指し示す、図面を次に参照する。図1Aは、逐次数の関数として再構成エラーのプロット図を示す。逐次数は、横軸(X軸)に沿って描かれている。再構成エラーは、縦軸(Y軸)に沿って描かれており、所定の逐次数での再構成画像と参照画像との間の差を表す。プロットは、ネステロフの加速法無しのOSを使用する収束を図示する。更に、これらのプロットは、多数のOSを使用すると、IRは初めこそ素早く収束するものの、リミットサイクルが多数のOSに対し大きなエラー制約を強いる、ということを実証している。OS法単独の使用よりも更に悪いことに、所定数の逐次の後、OSとネステロフ加速法との組み合わせることにより、再構成画像が参照画像からの発散を現にもたらしていることである。
そのため、大抵のIRアルゴリズムはゆっくりと収束することを観察することが出来る。OSを使用するアルゴリズムは、収束スピードを上げるために適用出来るが、OSで加速されたアルゴリズムは、リミットサイクル問題のために収束しないかもしれず、図1Aに示されているような発散現象という結果になる。基本的に、多数のOSは大きなリミットサイクルを作り出す、つまり多数のOSは比較的少数且つ早期の逐次で早く収束するが、この収束は分散によって生み出された比較的大きなエラーにより最終的に制限され、逐次の間に投影データの全体ではなくサブセットを使用することに起因する。ネステロフ加速法が、OSを使用するIR法に追加される場合に、OS-ACCアルゴリズムと呼ばれ、勾配不整合によるエラーは、逐次処理の間に蓄積される可能性がある。更に、仕様するサブセット数が大きくなるほど、OS-SQSアルゴリズムがより素早く発散する様に、不整合エラーが益々大きくなる。
図1Bは、実際のデータを使用して、図1Aの説明において上で特徴付けられた制限された収束および発散現象を例示して、生成されたシミュレーション結果である。図1Bにおける結果の詳細説明は、「OS-SQS」、「OS-SQS-mom」、「OS-SQS-mom―VR」アルゴリズムについて説明された後に、以下で提供される。
特定の実行において、IR法は、正則化され重み付けられた最小二乗再構成に対するオブジェクト関数を最小化することで、例えば、以下の式(1)を(ただし、第2式はΦ(x)の定義式)、L(x)を定義する式(2)で解くことにより、画像を生成するために公式化することが出来る。
Figure 0007062444000001
Figure 0007062444000002
ここでyは投影データ、xは再構成されている画像、Pは順投影作用素を表す。マトリクスWは、対角に沿う値が統計的重みである対角マトリクスを取ることが出来る。正則化関数U(・)は、正則化項の強さを調節する正則化パラメータβによって増加される。最後に、符号Tはマトリクスまたはベクトルの転置を意味する。
OS法が適用された場合に、投影データは、N(N>0)重複しないサブセットへと区切られる。各サブセットに対し、部分的なオブジェクト関数は、式(3)の様な定義が出来る。
Figure 0007062444000003
なお、Ln(x)は、式(4)によって定義される。
Figure 0007062444000004
ここでAはAのn番目のサブセットである。多くの場合、Φ(x)は、以下の式(5)を満たす。
Figure 0007062444000005
合計オブジェクト関数Φ(x)は、構成要素サブセットオブジェクト関数Φ(x)の平均であり、つまり、式(6)のように表すことができる。
Figure 0007062444000006
OSに基づく逐次は、xk+1を獲得するために、まずΦ(x)を最小化することで、実施される(xk+1は、必ずしも厳密な最小化するもの(minimizer)でなくて良いかもしれない)。その場合に、xk+1は、サブセットn+1について定義された次の関数Φ(x)を解くための初期画像として、使用が出来る。この処理は、繰り返され、最後のサブセットの最小化は、各サブセットにわたる逐次の新たな一ラウンドを開始するのに第一のサブセットへと供給することが出来る。
OSスキームは、要素Nの時間短縮をもたらす可能性がある。しかし、OSを使用して加速されたアルゴリズムは、リミットサイクル効果により課されたエラーリミットに近づくにつれて、収束しなくなる可能性がある。統計的な勾配法の理論からの一解釈としては、次の式(7)で示されるエラー(または分散)Eが大きくなる。
Figure 0007062444000007
従って収束を阻止するものであり、ここでサブセット数nはランダム変数として扱われており、E(・)はnについての期待値作用素である。サブセット数が増加した場合は、変数E(・)も増加し、より緩やかな収束に変化するようになっていく(大きなリミットサイクルと同様)。
この問題を解消するために、分散が縮小された方法が使用される。分散が縮小された方法は、ξによって示され、∇Φ(x)に対するサロゲートを使用し、アルゴリズムが逐次するにつれて、次の式(8)で示されるエラー(又は分散)は、式(7)のエラーよりもずっと小さくなることが出来る具合である。
Figure 0007062444000008
例えば、特定の実施形態において、n番目のサブセットに対するサロゲート関数は、以下の式(9)のように表すことが出来る。
Figure 0007062444000009
ここで、μ=∇Φ(x)およびxは、中間画像とすることが出来る(ここで、左記表記では、はxの上に載っているのもとする)。
このサロゲートは、式(10)、式(11)という事実により観察された様に、上の公式化と整合する。
Figure 0007062444000010
Figure 0007062444000011
ここで二番目の等式は、以下の式(12)の事実による。
Figure 0007062444000012
この事実が暗示するのは、サロゲート関数が不偏であり、従ってオリジナルオブジェクト関数を変更するようなものではない、ということである。
ξ、∇Φ (x)の選択は(左記表記では、はΦの上に載っているものとする)、分散を大きく縮小させることが出来る。直観的に、これは、μ→0のようにxが推定x(左記表記では、はxの上に載っているのもとする)へと収束する場合を考えることで、理解されよう。これは、更に次の式(13)、式(14)という結果になる。
Figure 0007062444000013
Figure 0007062444000014
もxへと収束する場合、次の式(15)の様になり、勾配近似によるエラーが縮小することを意味する。
Figure 0007062444000015
図2は、縮小された分散を伴うOSを使用してIRを実行する方法200のフロー概要図を図示する。なお、図2に示す縮小された分散を伴うOSを使用するIR法は、医用ワークステーション等に代表される医用画像生成装置、或いは専用プログラムをインストールしたコンピュータによって実現される。分散が縮小された方法200は、リミットサイクルによって生じたノイズを低減する。この低減は、中間画像に基づいた1フルセットの勾配(「第一の勾配情報」とも言う。全てのビューに基づいた勾配情報が典型であるが、少なくとも2以上のサブセットに基づいた勾配情報であってもよい。)を計算することで、達成される。当該1フルセットの勾配は、その後サブセット勾配(サブセットに基づいた勾配情報であり、「第二の勾配情報」とも言う。)と1フルセットの勾配との間の差を取ることで、補正項を構成するために使用される。画像アップデートは、各サブセットに対する補正された勾配を使用して、実行される。都合の良いことに、分散が縮小された方法200は、一般的に任意のOS型再構成アルゴリズムへの適用が可能である。更に、方法200は、オリジナルOS型アルゴリズムの収束率を維持することが可能で、追加のパラメータを必要としない。
なお、1フルセットの勾配(第一の勾配情報)が全てのビューに基づいた勾配情報でなく、少なくとも2以上のサブセットに基づいた勾配情報である場合には、当該第一の勾配情報の取得に用いた前2以上のサブセットのみに対して、当該2以上のサブセットに基づいたオブジェクト関数における前記第二の勾配情報を第一の勾配情報に基づき補正し、当該補正後の第二の勾配情報に基づいたオブジェクト関数を用いて前記2以上のサブセットについて逐次近似再構成処理を行い、再構成画像を取得することになる。
方法200のステップ210において、投影データyは、収集されOSへと配置される。加えて、再構成画像とループ変数とが初期化される。例えば、FBP、フェルドカンプ再構成法、または再構成画像を初期化するための任意のその他の方法を使用して、初期再構成画像の取得が出来る。
方法200のステップ220において、外側のループ(ボクセルに関するループ)処理変数がインクリメントされる。
方法200のステップ230において、フル勾配μは計算され(例えば、次の式(16)参照)内側のループ(サブセットに関するループ)処理変数が当該開始値へと初期化/再初期化される。
Figure 0007062444000016
方法200のステップ240において、補正項cが計算される(例えば、次の式(17)参照。
Figure 0007062444000017
更に、画像xは、式(18)に従って、アップデートされる。
Figure 0007062444000018
特定の実施形態において、画像アップデート法は、f(・)が、次の式(19)として表されるように、分離可能二次サロゲートアルゴリズムを使用する。
Figure 0007062444000019
ここでD=diag{AWA1}および[・]は、任意の負の値をゼロへと設定する作用素である。加えて、特定の実施形態において、ネステロフの加速法は、サブセットに基づく画像アップデートが、式(20-1)、(20-2)、(20-3)、(20-4)の計算によって実行することが出来る様に、分散が縮小された方法200と組み合わせることが出来る。
Figure 0007062444000020
ここで個別の変数は、t=1およびz=v=xとしてステップ210においてもともと初期化されている。更に、xはステップ210からの初期再構成画像である。最後に、ステップ240において、ループ変数nおよびkは、インクリメントされる。
方法200のステップ245において、内側のループ処理がサブセットのそれぞれを通してインクリメントされたかどうかを判定する問い合わせが実行される。ステップ240は、最後のサブセットまで繰り返される。いずれかの点において、再構成画像xは最後のオーダードサブセット画像x、つまりx←xの値を取得するために、アップデートされる。
方法200のステップ255において、外側のループ処理に対する停止基準が満たされているかどうかを判定するための問い合わせが実行される。例えば、外側のループ処理停止基準とは、再構成画像が十分に収束したかどうか、および/または逐次の最大数に達したかどうかの決定を含むことが出来る。停止基準に達していない場合、方法200はステップ255からステップ220へと戻る(proceed)。若しくは、方法200は完了する。
図3および4は、疑似コードを用いて表された方法200の様々な実行を図示する。図3は、分離可能二次サロゲートアルゴリズムが方法200において適用された場合に、アップデート(2.2.2)f(・)は、次の式(21)の様になる。
Figure 0007062444000021
ここでD=diag{AWA1}であり、且つ[・]は、任意の負の値をゼロへと設定する。図3に示された方法200の実行は、「OS-SQS-VR」と呼ばれ、分散が縮小されたOS-SQSの略である。
これに関連して、図4は、分散が縮小された方法200にネステロフの加速法が適用された場合を図示しており、サブセットに基づく画像アップデート(2.2.2)は、次の式(22-1)、(22-2)、(22-3)、(22-4)を用いて表すことができる。
Figure 0007062444000022
ここでt=1、z=v=xである。図4に図示された方法200の実行は、OS-SQS-mom-VRアルゴリズムと呼ばれ、ネステロフの加速法を含む分散が縮小されたOS-SQSの略である。
方法200は、組み合わされたOS-SQSアルゴリズムの適用が出来る。特定の実施形態において、OS-SQSアルゴリズムは、サブセットサロゲート関数としての式(23)を使用する。
Figure 0007062444000023
直行マトリクスDは、正の値として定義され、拘束条件としての式(24)を満たすよう選択される。
Figure 0007062444000024
分散が縮小された方法を適用するために、二次サロゲート関数はΦ (x)に対して、式(25)に従って構成される。
Figure 0007062444000025
当該サロゲート関数の最小化は、次の式(26)とすることが出来る。
Figure 0007062444000026
同様に、ネステロフの加速法は、上での説明の様に、組み込むことが出来る。x~に対する選択肢は多数ある。例えば、サブセット逐次の一つのループ後の画像出力は、x~のアップデートとして、使用が出来る。
画像アップデート方程式としての式(27)は、二つのサブセットに基づいた勾配∇Φ(x)および∇Φ(x)との間の差を使用して、計算される。
Figure 0007062444000027
しかし、勾配を拡大することで、次の式(28)を観察することが出来る。
Figure 0007062444000028
これは一つのサブセット順投影と一回の逆投影とを使用して実行出来ることを示している。更に、1フルセットの勾配は、サブセット数とは無関係である、xでの正則化の勾配を含む。従って、∇U(x)は、各逐次についてμ=∇L(x)のみが計算された場合に必要とされず、この場合、式(29)の様になる。
Figure 0007062444000029
この様にして、分散縮小があるOS-SQSアルゴリズムは、分散縮小がないOS-SQSアルゴリズムの複雑性と等価になる。
分散が縮小された方法200に関する一つの課題は、1フルセットの勾配μ(μLと同様)の評価が計算的に冗長ということである。μの計算は、一回のフル順投影と一回のフル逆投影とを使用して実行することが出来るので、故に当該計算にかなりの計算的なリソースを使用することがある。特定の実施形態において、一逐次の間に計算される1フルセットの勾配は、次に続く逐次の間に計算される予定のフル勾配に近い近似(close approximation)のままであり、また更にその後の逐次に対しても近い近似のままであることが想定出来る。しかし、各サブセット逐次と組み合わせられる再構成画像xへと変化するにつれて、より早い段階の逐次の間に計算されたフル勾配は、接近が近い状態で現在の逐次の1フルセットを近似している、またある時点で1フルセットの勾配は、分散があまりにかけ離れる(large)のを留めるために計算する必要がある。この様にして、1フルセットの勾配が、外側のループ処理の各逐次において、計算されずまたアップデートされなくても(つまり、図3および4における指数iによって追跡されたループ)、1フルセットの勾配の補正効果は、1フルセットの勾配が外側のループ処理の各逐次よりも低頻度でアップデートされる場合であっても、より低い程度に対してではあるが、持続することが想定出来る。この様にして、各逐次についてμをアップデートするのではなく、特定の実施形態において、1フルセット勾配アップデートは、T逐次毎に周期的に実行されるのみである。ここで、Tは1よりも大きい所定の整数値として事前に定義することが出来る。
図1Bに戻って、OS-SQSアルゴリズム(つまり、分離可能二次サロゲートを伴うオーダードサブセット)およびOS-SQS-momアルゴリズム(つまり、ネステロフの加速法を伴うOS-SQSアルゴリズム)に優る、OS-SQS-mom-VRアルゴリズムの利点が見て取れる。図1Bは、東芝Aquilion ONEスキャナを用いて収集された、実際の臨床円形320スライス腹部スキャン使用での、提案された再構成アルゴリズムの効率を実証している。関心領域(ROI)における収束率を評価するために、HUに基づく二乗平均平方根差(RMSD)は、所定の逐次の画像と収束した画像x(つまり、参照画像)との間で計算され、RMSDは、次の式(29)によって与えられる。
Figure 0007062444000030
ここで|ROI|はROIの内側のボクセル数を意味する。オブジェクト関数で使用される正則化は、次の式(31)によって与えられる。
Figure 0007062444000031
ここでNはボクセルjの近傍を表す。φ(t)はφ(t)=(t+δ1/2として定義される。δは所定の定数である。重みwijは、ボクセルjとボクセルiとの間の逆距離を使用して、計算することが出来る。収束した画像xは、一つのサブセットのみでSQSアルゴリズムの10,000回の逐次を実行することで取得され、初期画像はFBP再構成法を使用して再構成されたものである。
図1Bは、異なる数のサブセット(OS=12、24、30)が、様々なIR法の収束率を評価するために求められる。多数のサブセットを使用することで初期収束率は増えるものの、時間短縮に制限が掛かることが見て取れる。ネステロフの加速法で、OS-SQS-momは初め、非常に早く収束するが、これは例えばOS-SQS(OS=12)とOS-SQS-mom(OS=12)とを比較することで見て取れる。リミットサイクルが原因なのだが、しかし、ネステロフの加速法でのOS=12に対するRMSDは、約十回の逐次の後に減少が止まる。OS=24が使用された場合に、ネステロフの加速法でのOSは、約三回の逐次の後に発散する。より多くのサブセットはより大きなリミットサイクルを作り出し、また発散がより一層目立つようになっている。
本実施形態で説明された分散縮小スキームに付け加えることにより、方法200は、OS-SQS-momアルゴリズムよりもずっとパフォーマンスが上がる。OS=12の場合、OS-SQS-mom-VRアルゴリズムは、少数の逐次を使用してOS-SQS-momアルゴリズムと同様に実行する。しかし、逐次数が大きくなるにつれて、OS-SQS-mom-VRアルゴリズムは、OS-SQS-momアルゴリズムとは異なり、より大きなエラーリミットに収束するのではなく、RMSDにおいて連続的な縮小が発生する。これは、方法200が分散を縮小することでリミットサイクルを回避し、参照画像によって表された真画像により近い解へと繋がっている、ということを実証している。同様にサブセット数が増える場合に、方法200はリミットサイクルによって逆に影響を受けるように見えない。図1Bに示される通り、多数のサブセットに対してであっても、RMSDは発散することなく縮小する。これによって、方法200は、OS-SQS-mom(OS=12)に対して達成されるエラーリミットよりも、ずっと低いRMSDへと最終的には収束する。
図5は、OS=1でのSQSアルゴリズムの10,000回の逐次を使用して生成された参照画像を示している。図6A、7A、8Aは、図1Bに示された個別の方法に対する六回目の逐次での再構成画像を示している、つまり、図6A、7A、8Aは、方法OS-SQS、方法OS-SQS-mom(OS=24)、方法OS-SQS-mom-VR(OS=24)に個別に対応する。図6B、7B、8Bは、それぞれ図5と図6A、7A、8Aとの間の差分画像を、三枚示している。これらの差分画像は、24個のサブセットでのOS-SQS法が六回の逐次では完全には収束しないことを実証している。明らかに、図6Bにおけるかなりの構造と詳細とが、多くの高周波数特徴と同様に目立っている。OS-SQS-momアルゴリズムを使用して再構成された画像も、発散から生じるかなりのノイズを示している。他方で、OS―SQS―mom-VRアルゴリズムを使用する方法200は、たった六回の逐次後でも参照画像からの差の提示はごく僅かである。
図9Aは、頭部画像についての参照画像を示している。図9Bは、OS-SQS-momアルゴリズムを使用して十回の逐次後の再構成画像を示しており、図9Cは、OS-SQS-mom-VRアルゴリズムを使用して四回の逐次後の再構成画像を示している。図9A、9B、9Cにおける画像のそれぞれは、同じFBP画像から開始したものである。図9BにおいてOS-SQS-momアルゴリズムを使用して生成された十回の逐次後の画像であっても、リミットサイクルが原因で、まだ収束しておらずやはりノイジーに見える。図9Bとは対照的に、たった四回の逐次後に、OS-SQS-mom-VRアルゴリズム(つまり、図9C)を使用して生成された画像は、図9Aの参照画像と見た目としては(visually)より近いものとなる。
図10は、エラー測定を示しており、図1Bのプロットと同じく、サブセット数とOSとの両方、そして1フルセットの勾配計算Tの期間が変えられている。上で説明した通り、計算コストを抑えるために、1フルセットの勾配アップデートは、外側のループ処理の各逐次に対する1フルセットの勾配を計算することとは対照的に、周期的に計算するだけで良い。従って、図10において、1フルセットの勾配は、毎T逐次にアップデートされ、ここでTは1、2、3に等しい。当該対応するRMSDの結果は、図10において表示された。所定数のサブセット、例えばOS=12、そして24に対し、1から3まで変化するTは、RMSDにほぼ何も変化がないことが見て取れる。30のサブセットが使用された場合に、RMSDにおける差はわずかであり、このことは図10において逐次が五、六回辺りで観察することが出来る。しかし、当該差は、逐次を多数重ねると、図10で見ることが出来ない。従って、計算的な条件は、逐次数の関数として収束率を著しく減らすことなく、T>1を使用することで、縮らすことが出来る。
図11は、CT装置またはCTスキャナに含まれる放射線ガントリの実施例を描いている。なお、図2に示した分散が縮小されたOS IR法は、上述したように医用画像生成装置によって実現される。図11に示したCT装置は、例えば、システムコントローラ510(の一部の機能)、データ/制御バス511、格納部512は、再構成デバイス514、入力部515、表示部516等によって、上述したOS IR法を実施す医用画像生成装置を実現する。図11に図示されるように、放射線ガントリ500は側面から見て描かれており、X線管(X線発生装置)501、環状フレーム502、そして多列または2次元アレイ型X線検出器503を更に含む。X線管501及びX線検出器503は、環状フレーム502上に被検体OBJを横切って正反対に取り付けられ、環状フレーム502は回転軸RAの回りに回転可能に支持される。被検体OBJが図示された頁の奥の方向または手前の方向の軸RAに沿って移動されながら、回転ユニット507は環状フレーム502を0.4秒/回転もの高速で回転させる。
本発明に係るX線コンピュータ断層撮影(CT)装置の第一の実施形態は、付随する図面を参照しながら以下に説明される。X線CT装置は、様々なタイプの装置を含むことに留意されたい。具体的には、X線管とX線検出器とが検査される予定の被検体の周辺を一緒に回る回転/回転型機構と、そして多数の検出器素子がリング状または水平状に配置されており、X線管のみが検査される予定の被検体の周辺を回る固定/回転型機構とがある。本開示は、いずれのタイプにも適用可能である。今回は、現在の主流である回転/回転型機構が例示される。
マルチスライスX線CT装置は高電圧発生器509を更に含み、X線管501がX線を生成するように、スリップリング508を通して、高電圧発生器509はX線管501に印加される管電圧を生成する。X線は、被検体OBJに向かって照射され、被検体OBJの断面領域が円で表される。例えば、第一のスキャンにわたる平均的なX線エネルギーを有するX線管501は、第二のスキャンにわたる平均的なX線エネルギーよりも小さい。このようにして、二回以上のスキャンが異なるX線エネルギーに対応して、取得することが出来る。X線検出器503は、被検体OBJを通り抜けてきた照射X線を検出するために、被検体OBJを挟んでX線管501から反対側の位置にある。X線検出器503は、個々の検出器素子または検出器ユニットを更に含む。
CT装置は、X線検出器503から検出された信号を処理するための、その他のデバイスを更に含む。データ収集回路またはデータ収集システム(DAS)504は、各チャンネルに対するX線検出器503からの出力信号を電圧信号に変換し、その電圧信号を増幅し、更にその電圧信号をデジタル信号へと変換する。X線検出器503およびDAS504は、1回転当たりの所定全投影数(TPPR)を処理するよう構成されている。
上に説明されたデータは、非接触データ送信装置505を通して、放射線ガントリ500外部のコンソール内に収容された、前処理デバイス506へと送られる。前処理デバイス506は、ローデータに関する感度補正など、特定の補正を実行する。格納部512は、再構成処理直前のステージで、投影データとも呼ばれる結果データを格納する。格納部512は、再構成デバイス514、入力部515、表示部516と共に、データ/制御バス511を通して、システムコントローラ510に接続されている。システムコントローラ510は、CTシステムを駆動させるのに十分なレベルに達するまで電流を制限する電流調整器513を制御する。
検出器は、どんな世代のCTスキャナシステムであっても、患者に対して回転および/または固定される。一実施形態において、上に説明されたCTシステムは、第三世代ジオメトリシステムと第四世代ジオメトリシステムとが組み合わせられた例であってもよい。第三世代ジオメトリシステムにおいて、X線管501とX線検出器503とは、環状フレーム502上に正反対に取り付けられ、環状フレーム502が回転軸RAの周りを回転する時に、被検体OBJの周りを回転する。第四世代ジオメトリシステムにおいて、検出器は患者の周辺に固定して取り付けられており、X線管は患者の周辺を回転する。代替的な実施形態において、放射線ガントリ500は、Cアームおよびスタンドによって支持されている、環状フレーム502上に配置された多数の検出器を有する。
格納部512は、X線検出器503でX線照射量を示す測定値を格納することが出来る。更に、格納部512は、CT画像再構成用の方法200を実行するための専用プログラムを格納することが出来る。
再構成デバイス514は、方法200を実行することが出来る。更に、再構成デバイス514は、必要に応じてボリュームレンダリング処理や画像差分処理など、画像処理を実行することが出来る。
前処理デバイス506によって実行された投影データの前再構成処理は、例えば検出器キャリブレーション、検出器非直線性、極性効果のための補正を含むことが出来る。
再構成デバイス514によって実行される後再構成処理は、画像のフィルタリングや平滑化、ボリュームレンダリング処理、そして画像差分処理を、必要に応じて含むことが出来る。画像再構成処理は、方法200を実行出来る。再構成デバイス514は、例えば投影データ、再構成画像、キャリブレーションデータやパラメータ、そしてコンピュータプログラムを格納するのに格納部を使うことが出来る。
再構成デバイス514は、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、または複合プログラマブル論理デバイス(CPLD)など、個々の論理ゲートとして実行可能な、CPU(処理回路)を含むことが出来る。FPGAまたはCPLD実行は、VHDL、ベリログ、またはその他のハードウェア記述言語でコード化されていてもよく、そして当該コードはFPGAまたはCPLDにおいて直接電子メモリ内に格納されてもよいし、あるいは個別の電子メモリとして格納されてもよい。更に、格納部512は、ROM、EPROM、EEPROM(登録商標)、またはFLASHメモリなど、不揮発性メモリであってもよい。格納部512は、静的または動的RAMなど揮発性でよく、電子メモリおよびFPGAまたはCPLDと格納部との間の相互作用を管理するマイクロコントローラやマイクロプロセッサなどプロセッサ(処理回路)が提供されていてもよい。
代替的に、再構成デバイス514におけるCPUは、本実施形態で説明された機能を実行するコンピュータ読み取り可能命令のセットを含むコンピュータプログラムを実行することが出来、当該コンピュータプログラムは、任意の上述の非一時的電子メモリおよび/またはハードディスクドライブ、CD、DVD、FLASHドライブ、またはその他の任意の既知の格納媒体に格納されている。更に、コンピュータ読み取り可能命令は、ユーティリティアプリケーション、バックグラウンドデーモン、またはオペレーティングシステムの構成要素、またはそれらの組み合わせで提供されてもよく、所定のオペレーティングシステムや、当業者にとっては既知のその他のオペレーティングシステムと一体となって実行する。更に、CPUは、命令を実行するために並行して協同的に動く、マルチプルプロセッサとして実行されてもよい。
一実行において、再構成画像は、表示部516上に映し出されてよい。当該表示部516は、LCDディスプレイ、CRTディスプレイ、プラズマディスプレイ、OLED、LED、または当業者にとって既知のその他のディスプレイであってもよい。
格納部512は、ハードディスクドライブ、CD-ROMドライブ、DVDドライブ、FLASHドライブ、RAM、ROM、または当業者にとって既知のその他の格納メディアであってもよい。
特定の実施形態について説明してきたが、これらの実施形態は、一例として提示したに過ぎず、本発明の範囲を限定することを意図したものではない。実際に、本明細書で説明された新規の方法およびシステムはさまざまなその他の形態で具体化することが出来る。更には、本開示の精神から乖離することなく、本開示に説明された方法、装置やシステムの形式で省略、置き換え、変更が可能である。
500…放射線ガントリ
501…X線管
502…環状フレーム
503…X線検出器
504…データ収集システム
505…非接触データ送信装置
506…前処理デバイス
507…回転ユニット
508…スリップリング
509…高電圧発生器
510…システムコントローラ
511…データ/制御バス
512…格納部
513…電流調整器
514…再構成デバイス
515…入力部
516…表示部

Claims (10)

  1. X線発生装置から照射され被検体を透過した透過X線を用いて検出された、前記被検体に関する検出データを取得する取得部と、
    前記検出データを複数のサブセットに分けて、前記複数のサブセットのうち2以上のサブセットに基づいたオブジェクト関数における第一の勾配情報を取得し、前記サブセットそれぞれに基づいたオブジェクト関数における第二の勾配情報を前記第一の勾配情報に基づき補正し、当該補正後の第二の勾配情報に基づいたオブジェクト関数を用いて前記サブセット毎に逐次近似再構成処理を行い、再構成画像を取得する再構成部と、
    を具備する医用画像生成装置。
  2. 前記再構成部は、前記複数のサブセット全てに基づいたオブジェクト関数における前記第一の勾配情報を取得し、前記サブセットそれぞれに基づいたオブジェクト関数における第二の勾配情報を前記第一の勾配情報に基づき補正し、当該補正後の第二の勾配情報に基づいたオブジェクト関数を用いて前記各サブセット毎に前記逐次近似再構成処理を行い、前記再構成画像を取得する請求項1記載の医用画像生成装置。
  3. 前記再構成部は、前記第一の勾配情報の取得に用いた前記2以上のサブセットのみに対して、当該2以上のサブセットに基づいたオブジェクト関数における前記第二の勾配情報を前記第一の勾配情報に基づき補正し、当該補正後の第二の勾配情報に基づいたオブジェクト関数を用いて前記2以上のサブセットについて前記逐次近似再構成処理を行い、前記再構成画像を取得する請求項1記載の医用画像生成装置。
  4. 前記再構成部は、
    前記第二の勾配情報と前記各サブセットについて前記再構成画像のアップデートとを実行することで、ボクセルに関するループを繰り返し、
    前記ボクセルに関するループの各逐次は、過去の逐次からの再構成画像を使用して前記再構成画像の前記アップデートを実行する、
    請求項1記載の医用画像生成装置。
  5. 前記再構成部は、
    前記サブセットに関するループを繰り返し、
    前記サブセットに関するループの各逐次において、前記再構成画像から別の再構成画像を生成し、
    前記別の再構成画像を使用して前記第一の勾配情報を取得し、
    前記第二の勾配情報を補正するために、前記別の再構成画像を使用して前記サブセットに関するループを繰り返す、
    請求項4記載の医用画像生成装置。
  6. 前記再構成部は、
    前記ボクセルに関するループを繰り返し、
    前記ボクセルに関するループの各逐次において、前記再構成画像に相当する別の再構成画像を生成し、
    前記各サブセットに対応する前記サブセットに関するループの各逐次において、前記サブセットに関するループを繰り返し、
    所定の逐次期間における前記ボクセルに関する1回目のループにおいて、前記別の再構成画像を使用して前記第一の勾配情報を取得し、
    前記所定の逐次期間における前記ボクセルに関する2回目以降のループの各逐次において、前記第一の勾配情報に関する計算を省略する、
    請求項4記載の医用画像生成装置。
  7. 前記再構成部は、
    前記再構成画像に相当する別の再構成画像を初期化し、
    前記第一の勾配情報を取得し、
    前記第一の勾配情報を取得するために使用される前記複数のサブセットのうち一つ以上のサブセットのオブジェクト関数は前記別の再構成画像を含み、
    前記第二の勾配情報を補正するために使用される前記複数のサブセットのうちの一つのサブセットの前記オブジェクト関数は、前記別の再構成画像を含む、
    請求項4記載の医用画像生成装置。
  8. 前記再構成部は、フィルタ補正逆投影法とフェルドカンプ再構成法とのうちの一方を使用して前記再構成画像を初期化する請求項1乃至7のうちいずれか一項記載の医用画像生成装置。
  9. 前記再構成部は、分離可能二次サロゲート法とネステロフの加速法との組み合わせ、又はネステロフの加速法を使用して、前記再構成画像をアップデートする請求項1乃至8のうちいずれか一項記載の医用画像生成装置。
  10. X線発生装置から照射され被検体を透過した透過X線を用いて検出された、前記被検体に関する検出データを取得し、
    前記検出データを複数のサブセットに分けて、前記複数のサブセットのうち2以上のサブセットに基づいたオブジェクト関数における第一の勾配情報を取得し、
    前記サブセットそれぞれに基づいたオブジェクト関数における第二の勾配情報を前記第一の勾配情報に基づき補正し、
    戦記補正後の第二の勾配情報に基づいたオブジェクト関数を用いて前記サブセット毎に逐次近似再構成処理を行い、再構成画像を取得すること、
    を具備する医用画像生成方法。
JP2018004521A 2017-01-13 2018-01-15 医用画像生成装置及び医用画像生成方法 Active JP7062444B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/406,038 2017-01-13
US15/406,038 US10692251B2 (en) 2017-01-13 2017-01-13 Efficient variance-reduced method and apparatus for model-based iterative CT image reconstruction

Publications (2)

Publication Number Publication Date
JP2018110867A JP2018110867A (ja) 2018-07-19
JP7062444B2 true JP7062444B2 (ja) 2022-05-16

Family

ID=62841520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018004521A Active JP7062444B2 (ja) 2017-01-13 2018-01-15 医用画像生成装置及び医用画像生成方法

Country Status (2)

Country Link
US (1) US10692251B2 (ja)
JP (1) JP7062444B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3578102B1 (de) * 2018-06-07 2021-05-19 Siemens Healthcare GmbH Verfahren zum betreiben eines medizinischen röntgengerätes; sowie röntgengerät
US11087508B2 (en) * 2018-11-30 2021-08-10 Canon Medical Systems Corporation Method and apparatus for acceleration of iterative reconstruction of a computed tomography image
CN110363714B (zh) * 2019-06-19 2023-03-28 南京谱数光电科技有限公司 自适应学习速率的基于场景帧间配准的非均匀性校正方法
CN110763342B (zh) * 2019-09-30 2020-12-22 成都鼎屹信息技术有限公司 一种红外偏振超像元辐射光强图像分辨率还原方法
CN111754599B (zh) * 2020-06-30 2024-05-07 西北师范大学 一种基于自适应Nesterov加速的ECT图像重建方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140140599A1 (en) 2012-11-21 2014-05-22 The Regents Of The University Of Michigan Ordered subsets with momentum for x-ray ct image reconstruction

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257244B2 (en) * 2003-02-24 2007-08-14 Vanderbilt University Elastography imaging modalities for characterizing properties of tissue
WO2007112557A1 (en) 2006-03-31 2007-10-11 Calgary Scientific Inc. Super resolution contextual close-up visualization of volumetric data
US8971599B2 (en) * 2010-12-20 2015-03-03 General Electric Company Tomographic iterative reconstruction
US9147229B2 (en) * 2012-01-20 2015-09-29 Kabushiki Kaisha Toshiba Method and system for image denoising using discrete total variation (TV) minimization with one-direction condition
WO2013116709A1 (en) * 2012-02-01 2013-08-08 The Research Foundation of States University of New York Computerized image reconstruction method and apparatus
US8958660B2 (en) * 2012-06-22 2015-02-17 General Electric Company Method and apparatus for iterative reconstruction
EP3195265B1 (en) * 2014-09-15 2018-08-22 Koninklijke Philips N.V. Iterative image reconstruction with a sharpness driven regularization parameter
US9662084B2 (en) * 2015-06-18 2017-05-30 Toshiba Medical Systems Corporation Method and apparatus for iteratively reconstructing tomographic images from electrocardiographic-gated projection data
JP6293713B2 (ja) * 2015-08-27 2018-03-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 画像処理装置、放射線断層撮影装置並びにプログラム
US10115211B2 (en) * 2016-03-25 2018-10-30 L3 Security & Detection Systems, Inc. Systems and methods for reconstructing projection images from computed tomography volumes
WO2017192160A1 (en) * 2016-05-06 2017-11-09 L-3 Communications Security & Detection Systems, Inc. Systems and methods for generating projection images
US9916670B1 (en) * 2016-09-13 2018-03-13 Toshiba Medical Systems Corporation Fast, efficient, and list-mode compatible tomographic image reconstruction using a novel quadratic surrogate
US10762603B2 (en) * 2017-05-19 2020-09-01 Shanghai United Imaging Healthcare Co., Ltd. System and method for image denoising

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140140599A1 (en) 2012-11-21 2014-05-22 The Regents Of The University Of Michigan Ordered subsets with momentum for x-ray ct image reconstruction

Also Published As

Publication number Publication date
US10692251B2 (en) 2020-06-23
US20180204322A1 (en) 2018-07-19
JP2018110867A (ja) 2018-07-19

Similar Documents

Publication Publication Date Title
JP7062444B2 (ja) 医用画像生成装置及び医用画像生成方法
JP7518255B2 (ja) 医用画像処理装置及び医用画像処理システム
JP6937157B2 (ja) 放射線画像診断装置及び医用画像処理装置
JP7455622B2 (ja) 医用画像処理装置及び学習用画像の取得方法
JP5530637B2 (ja) 画像再構成の方法及びシステム
JP6824633B2 (ja) X線コンピュータ断層撮影装置、逐次近似再構成方法および医用画像処理装置
JP2021013726A (ja) 医用装置
JP6691793B2 (ja) X線コンピュータ断層撮像装置及び医用画像処理装置
US8768030B2 (en) CT measurement with multiple X-ray sources
JP5588849B2 (ja) X線画像の時間分解能を高めるシステム
US8712134B2 (en) Method and system for expanding axial coverage in iterative reconstruction in computer tomography (CT)
EP2633498B1 (en) Apparatus and method for hybrid reconstruction of an object from projection data.
JP2011139894A (ja) 画像処理方法及びx線コンピュータ断層撮影装置
JP2018008061A (ja) 医用画像処理装置及び医用画像診断装置
JPWO2012147471A1 (ja) 医用画像処理装置、医用画像処理方法
JP2019111346A (ja) 医用処理装置及び放射線診断装置
JP2016152916A (ja) X線コンピュータ断層撮像装置及び医用画像処理装置
JP7341879B2 (ja) 医用画像処理装置、x線コンピュータ断層撮影装置及びプログラム
JP6118324B2 (ja) 制限角度トモグラフィーにおけるフィルターバックプロジェクションのための画像再構成方法
JP6505513B2 (ja) X線コンピュータ断層撮像装置及び医用画像処理装置
US11087508B2 (en) Method and apparatus for acceleration of iterative reconstruction of a computed tomography image
JP6878147B2 (ja) X線コンピュータ断層撮影装置及び医用画像処理装置
US8548568B2 (en) Methods and apparatus for motion compensation
Mou et al. A beam hardening correction method based on HL consistency
Sun Rigid motion correction for head CT imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220420

R150 Certificate of patent or registration of utility model

Ref document number: 7062444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150