JP7062322B2 - Use in the treatment of membrane concentrates of Pseudomonas balealica and its debris leachate - Google Patents

Use in the treatment of membrane concentrates of Pseudomonas balealica and its debris leachate Download PDF

Info

Publication number
JP7062322B2
JP7062322B2 JP2021544869A JP2021544869A JP7062322B2 JP 7062322 B2 JP7062322 B2 JP 7062322B2 JP 2021544869 A JP2021544869 A JP 2021544869A JP 2021544869 A JP2021544869 A JP 2021544869A JP 7062322 B2 JP7062322 B2 JP 7062322B2
Authority
JP
Japan
Prior art keywords
pseudomonas
balealica
leachate
membrane concentrate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021544869A
Other languages
Japanese (ja)
Other versions
JP2022512455A (en
Inventor
開龍 黄
徐祥 張
林 叶
洪強 任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Publication of JP2022512455A publication Critical patent/JP2022512455A/en
Application granted granted Critical
Publication of JP7062322B2 publication Critical patent/JP7062322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

CCTCC CCTCC CCTCC M 2019730CCTCC M 2019730

本発明は、シュードモナス・バレアリカに関し、さらに上記シュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用に関し、汚水処理の分野に属する。 The present invention belongs to the field of sewage treatment with respect to Pseudomonas balealica and further to use in the treatment of a membrane concentrate of the above-mentioned Pseudomonas balealica waste leachate.

ゴミ浸出液は、成分が複雑な高濃度有機性廃水であり、生分解性が悪く、アンモニア態窒素の濃度が高く、有毒有害物質の含有量が高いなどを特徴とする。環境水質管理基準がますます激しくなるに伴い、特に2009年10月に『家庭ゴミ埋立処分場の浸出液処理工事技術仕様(公開草案)』が公布されると、高度処理が膜処理プロセスを主とするべきであることが提案され、膜プロセスの標準化傾向がさらに決定され、主流プロセスである膜法による高度処理において約15%~30%の膜濃縮液が生じる。ゴミ浸出液の膜濃縮液は腐植質類物質を主成分とし、茶色黒(黄)色であり、CODが通常1000~5000mg/Lであり、全窒素濃度が500~2500mg/Lであり、大量の無機イオンを含有し、TDSが20000~60000mg/Lであり、導電率が40000~50000us/cmであり、ゴミ埋立処分場の浸出液の膜濃縮液における塩分が3%以上に達し得、廃水の塩分が微生物内部の浸透圧に大きな影響を与え、高塩分により物質の吸収が阻害され、微生物の生長速度が低くなり、一部の微生物が大量に死亡し、このような廃水の生化学的処理効果を深刻に損なう。 The waste leachate is a high-concentration organic wastewater having a complicated component, has poor biodegradability, has a high concentration of ammonia nitrogen, and has a high content of toxic and harmful substances. As the environmental water quality management standards become more and more strict, especially when the "Technical Specifications for Leachate Treatment Work for Household Waste Landfills (Open Draft)" was promulgated in October 2009, advanced treatment will be mainly based on the membrane treatment process. It is suggested that this should be done, and the standardization tendency of the membrane process is further determined, resulting in about 15% to 30% membrane concentrate in the advanced treatment by the membrane method, which is the mainstream process. The membrane concentrate of garbage leachate is mainly composed of rotaceous substances, has a brown-black (yellow) color, has a COD of usually 1000 to 5000 mg / L, and has a total nitrogen concentration of 500 to 2500 mg / L, and is a large amount. It contains inorganic ions, has a TDS of 20,000 to 60,000 mg / L, a conductivity of 40,000 to 50,000 us / cm, and the salt content of the leachate in the wastewater landfill can reach 3% or more, and the salt content of wastewater. Has a great effect on the osmotic pressure inside the microorganism, the absorption of substances is hindered by high salt content, the growth rate of the microorganism is slowed down, some microorganisms die in large quantities, and the biochemical treatment effect of such wastewater Is seriously damaged.

ゴミ浸出液の膜濃縮液中の全窒素は、主にゴミ浸出液の生化学的処理廃水が多段膜を通過した濃縮液に由来する。原水中のほとんどのアンモニア態窒素は硝化作用により硝酸態窒素に変換され、濃縮液全窒素中に占める硝酸態窒素の割合が90%以上に達し得る。このような高塩分、高窒素の濃縮液については焼却処置が一般的であるが、ゴミ埋立処分場の含水量が大きいことにより、廃水の焼却発熱量が低く、濃縮液に廃水処理を行うことで基準に達させて排出する必要がある。このような廃水は、高塩分、高毒性、高窒素のため、一般的な微生物で処理すると、基準に達することができず、濃縮液に適した高度な生物学的脱窒法が期待される。 The total nitrogen in the membrane concentrate of the dust leachate is mainly derived from the concentrate in which the biochemically treated wastewater of the dust leachate has passed through the multi-stage membrane. Most of the ammonia nitrogen in the raw water is converted to nitrate nitrogen by nitrification, and the ratio of nitrate nitrogen in the total nitrogen of the concentrate can reach 90% or more. Incinerator treatment is generally used for such high-salt and high-nitrogen concentrates, but due to the high water content of the landfill disposal site, the amount of heat generated by incineration of wastewater is low, and the concentrate should be treated with wastewater. It is necessary to meet the standard and discharge. Since such wastewater has high salt content, high toxicity, and high nitrogen content, it cannot meet the standard when treated with general microorganisms, and an advanced biological denitrification method suitable for a concentrate is expected.

発明の目的:本発明が解決しようとする技術的課題は、ゴミ浸出液の膜濃縮液中の総窒素含有量を効果的に除去できるシュードモナス・バレアリカを提供することである。 An object of the present invention: The technical problem to be solved by the present invention is to provide Pseudomonas balealica capable of effectively removing the total nitrogen content in the membrane concentrate of the dust leachate.

本発明がまた解決しようとする技術的課題は、上記シュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用を提供することである。 The technical problem to be solved by the present invention is to provide the use in the treatment of the membrane concentrate of the above-mentioned Pseudomonas balealica dust leachate.

上記技術的課題を解決するために、本発明が採用する技術的手段は以下のとおりである。 The technical means adopted by the present invention in order to solve the above technical problems are as follows.

本発明のシュードモナス・バレアリカは、シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1と命名され、シュードモナス・バレアリカ(Pseudomonas balearica)と分類して命名され、菌株番号がEBT-1であり、2019年9月17日に中国武漢大学の中国典型培養物寄託センターにブタペスト条約に基づく国際寄託がなされ、寄託番号がCCTCC M 2019730である。 The Pseudomonas balealica of the present invention was named Pseudomonas balearica EBT-1, classified as Pseudomonas balealica, and the strain number was EBT-1 in September 2019. An international deposit based on the Pseudomonas pseudomonas was made to the China Typical Culture Deposit Center of Wuhan University in China on the same day, and the deposit number is CCTCC M 2009730.

ゴミ浸出液処理プラントの活性汚泥を収集し、高塩分のゴミ浸出液の膜濃縮液を段階的に馴養すると、本発明のシュードモナス・バレアリカを得る。 Activated sludge from a waste leachate treatment plant is collected and gradually acclimatized to a membrane concentrate of high-salt waste leachate to obtain Pseudomonas balealica of the present invention.

該菌株の生物学的性質は以下のとおりである。本発明のシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1菌株は高塩分ゴミ浸出液(塩分>3%)汚水処理システムにおける活性汚泥に由来し、分離精製後、LB培地にて35℃の好気性条件下で良好に成長しており、コロニーは不規則な円形をしており、直径が2~5mmであり、白色で不透明であり、表面に外部から内部へ皺があり、グラム染色したところ陰性を示し、顕微鏡で観察すると細胞の形状が棒状である。 The biological properties of the strain are as follows. The Pseudomonas balearica EBT-1 strain of the present invention is derived from activated sludge in a high-salt waste leachate (salt> 3%) sewage treatment system, and after separation and purification, it is separated and purified in an aerobic condition at 35 ° C. in an LB medium. The colonies are irregularly rounded, 2-5 mm in diameter, white and opaque, with wrinkles from the outside to the inside on the surface, and are negative when stained with Gram. When observed under a microscope, the shape of the cells is rod-shaped.

本発明で得られた菌株EBT-1について、16S rRNAでシーケンシングし、BLAST分析を行い、本発明で得たシュードモナス株EBT-1遺伝子配列をNCBIにおいて検出したところ、その遺伝子配列はシュードモナス・バレアリカ(Pseudomonas balearica)との類似性が99%以上と高く、このため、得られた菌株がシュードモナス・バレアリカであると同定される。 The strain EBT-1 obtained in the present invention was sequenced with 16S rRNA, subjected to BLAST analysis, and the Pseudomonas strain EBT-1 gene sequence obtained in the present invention was detected in NCBI. The similarity with (Pseudomonas baleria) is as high as 99% or more, and therefore, the obtained strain is identified as Pseudomonas balealica.

上記シュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用。 Use in the treatment of the membrane concentrate of the above-mentioned Pseudomonas balealica waste leachate.

シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1を培地に接種し、30~35℃で24~32h好気的培養し、EBT-1拡大培養生成物を得て、次に、ゴミ浸出液の膜濃縮液に接種して処理を行う。 Pseudomonas balearica EBT-1 was inoculated into the medium and aerobic cultured at 30-35 ° C. for 24-32 hours to obtain the EBT-1 expanded culture product, and then a membrane concentrate of dust leachate. Inoculate and process.

シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1を培地に接種して培養するときの接種量が3%~5%である。 When Pseudomonas balearica EBT-1 is inoculated into a medium and cultured, the inoculation amount is 3% to 5%.

培地(水)1Lは、成分として、コーンスティープリカー(乾燥粉末)10~12.5質量部、酵母エキス5質量部、リン酸水素二カリウム1質量部、塩化ナトリウム10質量部、無水酢酸ナトリウム2.5質量部及び硫酸マグネシウム0.03質量部を含む。 1 L of medium (water) contains 10 to 12.5 parts by mass of corn steep liquor (dry powder), 5 parts by mass of yeast extract, 1 part by mass of dipotassium hydrogen phosphate, 10 parts by mass of sodium chloride, and 2 parts by mass of anhydrous sodium acetate. Includes 5.5 parts by mass and 0.03 parts by mass of magnesium sulfate.

シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1は、ゴミ浸出液の膜濃縮液中の窒素含有化合物の分解に用いられ、窒素含有化合物は硝酸態窒素、亜硝酸態窒素、及びアンモニア態窒素を含む。 Pseudomonas balearica EBT-1 is used for the decomposition of nitrogen-containing compounds in the membrane concentrate of waste leachate, the nitrogen-containing compounds containing nitrate nitrogen, nitrite nitrogen, and ammonia nitrogen.

シュードモナス・バレアリカによるゴミ浸出液の膜濃縮液中の窒素含有化合物の分解は、嫌気性/低酸素条件下で行われる。 Degradation of nitrogen-containing compounds in the membrane concentrate of waste leachate by Pseudomonas balealica is carried out under anaerobic / hypoxic conditions.

シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1がゴミ浸出液の膜濃縮液中の窒素含有化合物を分解するときに、0.2%~0.4%の接種量で菌液をゴミ浸出液の膜濃縮液の嫌気性/低酸素処理反応器に添加し、反応器中の廃水のCOD/Nが4:1~6:1である。 When Pseudomonas balearica EBT decomposes nitrogen-containing compounds in the membrane concentrate of the leachate, the inoculum is 0.2% to 0.4%, and the bacterial solution is the membrane concentrate of the leachate. The COD / N of the waste water added to the anaerobic / low oxygen treatment reactor is 4: 1 to 6: 1.

ゴミ浸出液の膜濃縮液の塩分が3%以上である。 The salt content of the membrane concentrate of the dust leachate is 3% or more.

培養して得たシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1拡大培養生成物を遠心分離し、菌体固体を得る。0.4%の接種量で遠心分離後の固体を塩分の異なる測定給水に接種し、30℃、150rpmで振とう処理を行い、異なる塩分で窒素含有化合物に対するシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1の分解速度を追跡した結果、シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1は7%以下(7%含有)塩分の範囲の廃水に適用できる。 The Pseudomonas barealica EBT-1 expanded culture product obtained by culturing is centrifuged to obtain a bacterial cell solid. Pseudomonas balealica EBT- As a result of tracking the decomposition rate of No. 1, Pseudomonas balearica EBT-1 can be applied to wastewater in the range of 7% or less (7% content) salt.

塩分測定給水1Lあたり、質量分率で、グルコース 6.1g、KNO 6.07g、KHPO 1.5g、KHPO・3HO 6.0g、MgSO・7HO 1.0g及び所望の塩分に応じて添加されるNaClが成分として添加される。 Salinity measurement Per 1 L of water supply, in terms of mass fraction, glucose 6.1 g, KNO 3 6.07 g, KH 2 PO 4 1.5 g, K 2 HPO 4.3 H 2 O 6.0 g, Л4.7 H 2 O 1. NaCl added according to 0 g and a desired salt content is added as a component.

培養して得たシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1拡大培養生成物を遠心分離し、菌体固体を得る。遠心分離固体を、ゴミ浸出液の膜濃縮液を入れた低酸素瓶に0.4%の接種量で接種し、30℃、150rpmで振とう処理を行ったところ、ゴミ浸出液の膜濃縮液に対するシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1の全窒素除去率が99%と高い。 The Pseudomonas barealica EBT-1 expanded culture product obtained by culturing is centrifuged to obtain a bacterial cell solid. Centrifugated solids were inoculated into a low oxygen bottle containing a membrane concentrate of leachate at an inoculation amount of 0.4% and shaken at 30 ° C. and 150 rpm. Pseudomonas against the membrane concentrate of leachate -The total nitrogen removal rate of Pseudomonas balearica EBT-1 is as high as 99%.

ゴミ浸出液の膜濃縮液の嫌気性/低酸素処理反応器の有効体積は2Lであり、反応器中の元の汚泥は、濃度が60000~80000mg/Lであり、水理学的滞留時間が12hであり、炭素源を外添することにより炭素と窒素の比率を4:1とし、培養して得たシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1拡大培養菌液を0.2%の接種量でゴミ浸出液の膜濃縮液の嫌気性/低酸素処理反応器に添加すると、反応器中の汚泥活性が効果的に向上し、全窒素除去率が30%から98.89%に効果的に上がり、且つ排出水の水質が安定して基準に達する。本発明のシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1を既存の汚泥システムに添加することにより、汚泥システムの脱窒効率を効果的に向上できることが示される。 The effective volume of the anaerobic / low oxygen treatment reactor of the membrane concentrate of the dust leachate is 2 L, the original sludge in the reactor has a concentration of 60,000 to 80,000 mg / L, and the hydraulic residence time is 12 hours. The ratio of carbon to nitrogen was set to 4: 1 by externally adding a carbon source, and the Pseudomonas balearica EBT-1 expanded culture solution obtained by culturing was trashed at an inoculation amount of 0.2%. When added to the anaerobic / low oxygen treatment reactor of the membrane concentrate of the leachate, the sludge activity in the reactor is effectively improved, the total nitrogen removal rate is effectively increased from 30% to 98.89%, and The quality of the discharged water is stable and reaches the standard. It is shown that by adding Pseudomonas balearica EBT-1 of the present invention to an existing sludge system, the denitrification efficiency of the sludge system can be effectively improved.

有益な効果
本発明は、ゴミ浸出液の膜濃縮液を段階的に馴養して、高耐塩性シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1を得て、該シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1は、ゴミ浸出液の膜濃縮液に対する効率的な生物脱窒を実現でき、また、既存の活性汚泥の脱窒速度を効果的に向上させ、汚泥の脱窒効果を高めることができ、排出水の水質が安定的である。
Beneficial Effects In the present invention, a membrane concentrate of leachate is gradually acclimatized to obtain a highly salt-tolerant Pseudomonas balealica EBT-1, which is a Pseudomonas balealica. , Efficient biological denitrification of dust leachate against membrane concentrate can be achieved, the denitrification rate of existing activated sludge can be effectively improved, the denitrification effect of sludge can be enhanced, and the quality of discharged water can be improved. Is stable.

実施例3におけるEBT-1の塩分適応的脱窒効果図である。FIG. 3 is a salt-adaptive denitrification effect diagram of EBT-1 in Example 3. 実施例4におけるEBT-1のゴミ浸出液の膜濃縮液に対する高度脱窒効率図である。It is a high denitrification efficiency diagram with respect to the membrane concentrate of the dust leachate of EBT-1 in Example 4. ゴミ浸出液の膜濃縮液の嫌気性/低酸素処理反応器の構造模式図である。It is a structural schematic diagram of the anaerobic / hypoxic treatment reactor of the membrane concentrate of the dust leachate. 実施例5におけるEBT-1のゴミ浸出液の膜濃縮液反応器に対する脱窒強化効率図である。It is a denitrification strengthening efficiency diagram with respect to the membrane concentrate reactor of the dust leachate of EBT-1 in Example 5.

以下、図面及び具体的な実施例を参照して本発明の技術案をさらに説明する。 Hereinafter, the technical proposal of the present invention will be further described with reference to the drawings and specific examples.

実施例1:菌株の分離及び同定
菌株EBT-1は、ゴミ焼却プラントのゴミ浸出液汚水処理システムの活性汚泥からスクリーニングされた、脱窒活性を有する好気性脱窒細菌である。
Example 1: Isolation and Identification of Strain Strain EBT-1 is an aerobic denitrifying bacterium having denitrifying activity, screened from activated sludge of a waste leachate sewage treatment system in a garbage incineration plant.

分離スクリーニング方法:ゴミ浸出液(高塩分)汚水処理生化学システムから活性汚泥を取り出し、活性汚泥5gを硝酸態窒素濃度100mg/LのDM無機塩培地(培地中の塩分>3%)に接種し、温度35℃、回転数150rpmの振とう機にて1日間培養し、第一菌液を得て、5%(体積分率)の接種量で第一菌液を硝酸態窒素濃度200mg/LのDM無機塩培地(培地中の塩分>3%)に接種し、温度35℃、回転数150rpmの振とう機にて1日間培養し、第二菌液を得て、5%の接種量で第二菌液を硝酸態窒素濃度300mg/LのDM無機塩培地に接種し、温度35℃、回転数150rpmの振とう機にて1日間培養し、第三菌液を得て、第三菌液を吸い取り、DM無機塩固体培地(培地中の塩分>3%)に塗布し、35℃で静置して培養し、生長速度が速い菌株を選択し、生長速度が速い菌株を、ブロモチモールブルーを含有するDM無機塩固体培地(培地中の塩分>3%)にてストリークし、35℃で静置して培養し、平板が青くなった菌株を得て、スクリーニングした菌株をDM無機塩固体培地(培地中の塩分>3%)にてさらにストリークして精製し、単一コロニーを選択し、このコロニーは本発明のシュードモナス・バレアリカであり、菌株番号がEBT-1であり、該菌株EBT-1は、高塩分のゴミ浸出液の膜濃縮液に対する効率的な生物脱窒を実現できる。 Separation screening method: Waste leachate (high salt content) Sewage treatment Active sludge is taken out from the biochemical system, and 5 g of active sludge is inoculated into a DM inorganic salt medium (salt content in the medium> 3%) having a nitrate nitrogen concentration of 100 mg / L. Incubate for 1 day in a shaker at a temperature of 35 ° C. and a rotation speed of 150 rpm to obtain the first bacterial solution, and inoculate the first bacterial solution at a dose of 5% (body integration rate) to a nitrate nitrogen concentration of 200 mg / L. Inoculate a DM inorganic salt medium (salt content in the medium> 3%), incubate for 1 day in a shaker at a temperature of 35 ° C. and a rotation speed of 150 rpm to obtain a second bacterial solution, and inoculate at a dose of 5%. The two bacterial solutions were inoculated into a DM inorganic salt medium having a nitrate nitrogen concentration of 300 mg / L and cultured for one day in a shaker at a temperature of 35 ° C. and a rotation speed of 150 rpm to obtain a tertiary bacterial solution to obtain a tertiary bacterial solution. Is absorbed, applied to a DM inorganic salt solid medium (salt content in the medium> 3%), allowed to stand at 35 ° C. and cultured, a strain having a fast growth rate is selected, and a strain having a fast growth rate is bromotimol blue. Streak in a DM inorganic salt solid medium (salt content in the medium> 3%) containing Further streaked and purified in a medium (salt content in the medium> 3%) to select a single colony, which colony is Pseudomonas balealica of the present invention, the strain number is EBT-1, and the strain EBT. -1 can realize efficient biodenitration of the high-salt dust leachate against the membrane concentrate.

菌株EBT-1のコロニーの特徴は以下のとおりである。分離精製後、LB培地にて、35℃の好気性条件下で生長が良好であり、コロニーは不規則的な円形をしており、直径が2~5mmであり、白色で不透明であり、表面に外部から内部への皺があり、グラム染色したところ陰性を示し、顕微鏡で観察すると細胞の形状が棒状である。 The characteristics of the colony of the strain EBT-1 are as follows. After separation and purification, it grows well in LB medium under aerobic conditions at 35 ° C., the colonies are irregularly round, 2-5 mm in diameter, white and opaque, and the surface. There are wrinkles from the outside to the inside, and when Gram stain is performed, it shows a negative result, and when observed under a microscope, the cell shape is rod-shaped.

PCR増幅を行って得たEBT-1菌16S rRNAフルシーケンスは以下のとおりである(SEQ ID NO.1)。 The EBT-1 bacterium 16S rRNA full sequence obtained by PCR amplification is as follows (SEQ ID NO. 1).

gcttgcggcagactacacatgcagtcgagcggcagcgggtccttcgggatgccggcgagcggcggacgggtgagtaatgcctaggaatctgcctggtagtgggggataactcggggaaactcgagctaataccgcatacgtcctacgggagaaagcgggggatcttcggacctcgcgctaccagatgagcctaggtcggattagctagttggtgaggtaaaggctcaccaaggcgacgatccgtagctggtctgagaggatgatcagccacactggaactgagacacggtccagactcctacgggaggcagcagtggggaatattggacaatgggcgaaagcctgatccagccatgccgcgtgtgtgaagaaggtcttcggattgtaaagcactttaagttgggaggaagggcagtaagctaatatcttgctgttttgacgttaccgacagaataagcaccggctaacttcgtgccagcagccgcggtaatacgaagggtgcaagcgttaatcggaattactgggcgtaaagcgcgcgtaggtggtttgataagttggatgtgaaagccccgggctcaacctgggaattgcatccaaaactgtctgactagagtatggcagagggtggtggaatttcctgtgtagcggtgaaatgcgtagatataggaaggaacaccagtggcgaaggcgaccatctgggctaatactgacactgaggtgcgaaagcgtggggagcaaacaggattagataccctggtagtccacgccgtaaacgatgtcgactagccgttgggatccttgagatcttagtggcgcagctaacgcattaagtcgaccgcctggggagtacggccgcaaggttaaaactcaaatgaattgacgggggcccgcacaagcggtggagcatgtggtttaattcgaagcaacgcgaagaaccttaccaggccttgacatgcagagaactttccagagatggattggtgccttcgggaactctgacacaggtgctgcatggctgtcgtcagctcgtgtcgtgagatgttgggttaagtcccgtaacgagcgcaacccttgtccttagttaccagcacgttaaggtgggcactctaaggagactgccggtgacaaaccggaggaaggtggggatgacgtcaagtcatcatggcccttacggcctgggctacacacgtgctacaatggtcggtacaaagggttgccaagccgcgaggtggagctaatcccataaaaccgatcgtagtccggatcgcagtctgcaactcgactgcgtgaagtcggaatcgctagtaatcgtgaatcagaatgtcacggtgaatacgttcccgggccttgtacacaccgcccgtcacaccatgggtagtgggttgctccagaagtaagcgaagtctaaccttcggggggacggtaccacggagatactg gcttgcggcagactacacatgcagtcgagcggcagcgggtccttcgggatgccggcgagcggcggacgggtgagtaatgcctaggaatctgcctggtagtgggggataactcggggaaactcgagctaataccgcatacgtcctacgggagaaagcgggggatcttcggacctcgcgctaccagatgagcctaggtcggattagctagttggtgaggtaaaggctcaccaaggcgacgatccgtagctggtctgagaggatgatcagccacactggaactgagacacggtccagactcctacgggaggcagcagtggggaatattggacaatgggcgaaagcctgatccagccatgccgcgtgtgtgaagaaggtcttcggattgtaaagcactttaagttgggaggaagggcagtaagctaatatcttgctgttttgacgttaccgacagaataagcaccggctaacttcgtgccagcagccgcggtaatacgaagggtgcaagcgttaatcggaattactgggcgtaaagcgcgcgtaggtggtttgataagttggatgtgaaagccccgggctcaacctgggaattgcatccaaaactgtctgactagagtatggcagagggtggtggaatttcctgtgtagcggtgaaatgcgtagatataggaaggaacaccagtggcgaaggcgaccatctgggctaatactgacactgaggtgcgaaagcgtggggagcaaacaggattagataccctggtagtccacgccgtaaacgatgtcgactagccgttgggatccttgagatcttagtggcgcagctaacgcattaagtcgaccgcctggggagtacggccgcaaggttaaaactcaaatgaattgacgggggcccgcacaagcggtggagcatgtggtttaattcgaagcaacgcgaagaaccttaccaggccttgacatgcagagaactttccagagatggattggtgccttcgggaactctgac acaggtgctgcatggctgtcgtcagctcgtgtcgtgagatgttgggttaagtcccgtaacgagcgcaacccttgtccttagttaccagcacgttaaggtgggcactctaaggagactgccggtgacaaaccggaggaaggtggggatgacgtcaagtcatcatggcccttacggcctgggctacacacgtgctacaatggtcggtacaaagggttgccaagccgcgaggtggagctaatcccataaaaccgatcgtagtccggatcgcagtctgcaactcgactgcgtgaagtcggaatcgctagtaatcgtgaatcagaatgtcacggtgaatacgttcccgggccttgtacacaccgcccgtcacaccatgggtagtgggttgctccagaagtaagcgaagtctaaccttcggggggacggtaccacggagatactg

比較したところ、その遺伝子配列はシュードモナス・バレアリカ(Pseudomonas balearica)との類似性が99%以上と高く、このため、得られた菌株がシュードモナス・バレアリカであると同定される。 As a result of comparison, the gene sequence has a high similarity of 99% or more to Pseudomonas balealica, and therefore, the obtained strain is identified as Pseudomonas balealica.

実施例2:本発明のシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1の拡大培養
拡大培養に使用される培地は、成分として、水1Lあたりコーンスティープリカー(乾燥粉末)10g、酵母エキス5g、塩化ナトリウム10g、無水酢酸ナトリウム2.5g、リン酸水素二カリウム1g及び硫酸マグネシウム0.03gを含み、培地の初期pHが6.5である。
Example 2: Expanded culture of Pseudomonas barealica EBT-1 of the present invention The medium used for the expanded culture contains 10 g of corn steep liquor (dry powder), 5 g of yeast extract, and sodium chloride per 1 L of water. It contains 10 g, anhydrous sodium acetate 2.5 g, dipotassium hydrogen phosphate 1 g and magnesium sulfate 0.03 g, and the initial pH of the medium is 6.5.

培地の製造プロセス:コーンスティープリカー(乾燥粉末)10g、酵母エキス5g、塩化ナトリウム10g、無水酢酸ナトリウム2.5g、リン酸水素二カリウム1g及び硫酸マグネシウム0.03gを水1000gに溶解し、アルカリでそのpHを6.5に調整し、121℃で20min殺菌し、培地を得た。 Medium production process: 10 g of corn steep liquor (dry powder), 5 g of yeast extract, 10 g of sodium chloride, 2.5 g of anhydrous sodium acetate, 1 g of dipotassium hydrogen phosphate and 0.03 g of magnesium sulfate are dissolved in 1000 g of water and alkaline. The pH was adjusted to 6.5 and sterilized at 121 ° C. for 20 minutes to obtain a medium.

シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1菌母液を3%~5%(体積分率)の接種量で培地に接種し、30~35℃で28~32h培養した。 Pseudomonas balearica EBT-1 bacterial mother broth was inoculated into the medium at an inoculation amount of 3% to 5% (volume fraction) and cultured at 30 to 35 ° C. for 28 to 32 hours.

本発明の培地を用いて拡大培養した後、拡大培養した菌液を希釈平板法でカウントしたところ、目標有効菌量が5×10~1×10CFU/mLである。 After the expanded culture using the medium of the present invention, the expanded bacterial solution was counted by the dilution plate method, and the target effective bacterial amount was 5 × 10 8 to 1 × 10 9 CFU / mL.

実施例3:本発明のシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1の塩分適応性の検討
実施例2で培養したシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1拡大培養液を6000rpmで5min遠心分離し、上清液を捨てて、活性化した菌体固体を得た。0%、3%、7%、10%の4つの塩分の勾配を設定した。塩分測定給水1Lあたり、質量分率で、グルコース6.1g、KNO 6.07g、KHPO 1.5g、KHPO・3HO 6.0g、MgSO・7HO 1.0g、NaCl(所望の塩分に応じて調整される)が成分として含有される。遠心分離菌体固体を0.4%の接種量で塩分測定給水に接種し、250mL青蓋付瓶にて30℃、150rpmで振とう処理を行う。
Example 3: Examination of salt adaptability of Pseudomonas balealica of the present invention The Pseudomonas balealica EBT-1 expanded culture solution cultured in Example 2 was centrifuged at 6000 rpm for 5 min. The supernatant was discarded to obtain an activated cell solid. Four salt gradients of 0%, 3%, 7% and 10% were set. Salinity measurement Per 1 L of water supply, in terms of mass fraction, glucose 6.1 g, KNO 3 6.07 g, KH 2 PO 4 1.5 g, K 2 HPO 4.3 H 2 O 6.0 g, י 4.7 H 2 O 1. 0 g, NaCl (adjusted according to the desired salt content) is contained as an ingredient. Centrifugal cells are inoculated into salt-measured water supply at an inoculation amount of 0.4%, and shaken at 30 ° C. and 150 rpm in a 250 mL bottle with a blue lid.

異なる塩分の条件反応における全窒素の変化を検出し、結果を図1に示す。図1に示すように、シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1の脱窒速度は、塩分の増加に伴って低下し、5%塩分以下では、全窒素除去率は90%以上に達し、7%塩分では、全窒素除去率は50%以上である。本特許のシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1は、高塩分ゴミ浸出液の生化学システムにおける汚泥から得られるものであり、それ自体は一定の耐塩特性を有しており、効率的な脱窒馴養及びスクリーニングにより得られるものであり、自体は高塩耐性、脱窒性能がある。 Changes in total nitrogen in different salt condition reactions were detected and the results are shown in FIG. As shown in FIG. 1, the denitrification rate of Pseudomonas barealica EBT-1 decreases with increasing salt content, and at 5% salt content or less, the total nitrogen removal rate reaches 90% or more, 7 At% salt content, the total nitrogen removal rate is 50% or more. The Pseudomonas barealica EBT-1 of the present patent is obtained from sludge in the biochemical system of high-salt waste leachate, which itself has certain salt resistance and is efficient denitrification. It is obtained by acclimatization and screening, and has high salt resistance and denitrification performance.

実施例4:本発明のシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1のゴミ浸出液の膜濃縮液に対する生物脱窒効果の分析
実施例2で培養したシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1拡大培養液の菌液を新しい遠心分離管に移し、6000rpmで5min遠心分離し、上清液を捨てて、活性化した菌体固体を得て、きれいな青蓋付瓶を準備し、青蓋付瓶にゴミ浸出液の膜濃縮液(塩分3.5%)を200mL加え、次に無水酢酸ナトリウムを炭素源として加え、廃液中の炭素と窒素の比を4:1とし、最後に、シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1を0.4%の接種量で加え、30℃、150rpmで振とう処理した。
Example 4: Analysis of the biological denitrification effect of the Pseudomonas balealica EBT-1 dust exudate of the present invention on the membrane concentrate of the Pseudomonas balealica EBT-1 expanded culture solution cultured in Example 2. Transfer the bacterial solution from Pseudomonas to a new centrifuge tube, centrifuge at 6000 rpm for 5 minutes, discard the supernatant, obtain activated bacterial cell solids, prepare a clean bottle with a blue lid, and put dust in the bottle with a blue lid. Add 200 mL of leachate membrane concentrate (3.5% salt), then add anhydrous sodium acetate as a carbon source to a 4: 1 ratio of carbon to nitrogen in the waste liquid, and finally Pseudomonas barealica. ) EBT-1 was added at an inoculum of 0.4% and shaken at 30 ° C. and 150 rpm.

反応中のゴミ浸出液の膜濃縮液中の全窒素の変化を検出し、結果を図2に示す。図2に示すように、72h処理すると、ゴミ浸出液の膜濃縮液中の全窒素濃度は初期濃度1110.74mg/Lから13.37mg/Lに下がり、このことから分かるように、本発明のシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1は、ゴミ浸出液の膜濃縮液に対する全窒素除去率が99%と高い。シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1は通性嫌気性菌であり、また好気性脱窒特性を有し、低酸素環境でも高い脱窒機能を有する。 Changes in total nitrogen in the membrane concentrate of the dust leachate during the reaction were detected, and the results are shown in FIG. As shown in FIG. 2, after 72 hours of treatment, the total nitrogen concentration in the membrane concentrate of the dust leachate decreased from the initial concentration of 1110.74 mg / L to 13.37 mg / L, and as can be seen from this, the Pseudomonas of the present invention. -Pseudomonas balearica EBT-1 has a high total nitrogen removal rate of 99% with respect to the membrane concentrate of the dust leachate. Pseudomonas balearica EBT-1 is a facultative anaerobic bacterium, has aerobic denitrification properties, and has a high denitrification function even in a hypoxic environment.

実施例5:本発明のシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1のゴミ浸出液の膜濃縮液に対する生物脱窒の強化効果の分析
ゴミ浸出液の膜濃縮液の嫌気性/低酸素反応器の構造は図3に示される。ゴミ浸出液の膜濃縮液及び外添炭素源混合液が反応器の底部から入り、活性汚泥による嫌気性/低酸素反応を経た後、反応器の上部から流出する。反応器は、有効容積が2L、水理学的滞留時間が12h、汚泥濃度が60000mg/L~80000mg/L、外添の炭素源の炭素と窒素の比が4:1であり、給水と排出を連続的に行い、排出水の窒素含有化合物の指標を毎日検出し、脱窒効率を検出し、反応器からの排出水の水質が安定的になった後、実施例2において培養したシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1拡大培養液菌液を0.2%の接種量で反応器汚泥に投入し、菌剤投入前後に安定的に排出する水の脱窒効率を追跡する。
Example 5: Analysis of the effect of enhancing biological denitrification on the membrane concentrate of Pseudomonas barealica EBT-1 of the present invention The structure of the anaerobic / hypoxic reactor of the membrane concentrate of the dust leachate It is shown in FIG. The membrane concentrate of the dust leachate and the external carbon source mixture enter from the bottom of the reactor, undergo an anaerobic / hypoxic reaction with activated sludge, and then flow out from the top of the reactor. The reactor has an effective volume of 2 L, a hydraulic residence time of 12 hours, a sludge concentration of 60,000 mg / L to 80,000 mg / L, and a carbon-to-nitrogen ratio of an external carbon source of 4: 1 for water supply and discharge. Pseudomonas balealica cultured in Example 2 after continuous operation, daily detection of the index of nitrogen-containing compound in the discharged water, detection of denitrification efficiency, and stable water quality of the discharged water from the reactor. (Pseudomonas barealica) EBT-1 expanded culture solution The bacterial solution is charged into the reactor sludge at an inoculation amount of 0.2%, and the denitrification efficiency of the water stably discharged before and after the addition of the bacterial agent is followed.

ゴミ浸出液の膜濃縮液の嫌気性/低酸素反応器に菌剤を投入する前後に安定的に排出する水の脱窒効率の結果を図4に示す。図4に示すように、菌剤投入前(図4の第I段階)に、ゴミ浸出液の膜濃縮液の嫌気性/低酸素反応器への給水の全窒素濃度が547.48mg/Lであり、脱窒活性汚泥が過量の炭素源によるショックを受けているので、コミュニティの構造が変わり、これにより汚泥の脱窒活性が劣り、排出水の全窒素除去率が30%~50%の間で変動し、投入されるシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1菌剤と反応器の汚泥が十分に混合されると(図4の第II段階)、排出する水の全窒素除去率が効果的に向上し、適応周期の増加に伴い、全窒素除去率が明らかに向上し、最終的な排出水の全窒素除去率が98.89%に達し、次に、給水の全窒素濃度を1000mg/L(図4の第III段階)に向上させ、このようにしても、システムの全窒素除去率が90%以上に安定化されている。シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1菌剤は、高効率の脱窒性能を有し、脱窒活性汚泥システムに添加されると、該システムにおける脱窒脱窒菌群落の構造を豊富にし、汚泥の脱窒性能を大幅に向上させる。そして、該菌剤は、ゴミ浸出液の膜濃縮液に効果的に適用でき、システムにおいて生長して繁殖し、流失しにくく、それにより、排出水の水質の安定性が確保される。 FIG. 4 shows the results of the denitrification efficiency of the water that is stably discharged before and after the bacterial agent is put into the anaerobic / hypoxic reactor of the membrane concentrate of the dust leachate. As shown in FIG. 4, the total nitrogen concentration of the anaerobic / hypoxic reactor of the membrane concentrate of the dust exudate was 547.48 mg / L before the addition of the bacterial agent (stage I in FIG. 4). As the denitrifying active sludge is shocked by an excessive carbon source, the structure of the community changes, which results in poor denitrifying activity of the sludge and a total nitrogen removal rate of wastewater between 30% and 50%. When the Pseudomonas barealica EBT-1 fungus and the sludge of the reactor are sufficiently mixed (Phase II in FIG. 4), the total nitrogen removal rate of the discharged water is effective. With the increase in the adaptation cycle, the total nitrogen removal rate was clearly improved, the total nitrogen removal rate of the final discharged water reached 98.89%, and then the total nitrogen concentration of the feed water was 1000 mg / It was improved to L (stage III in FIG. 4), and even in this way, the total nitrogen removal rate of the system was stabilized to 90% or more. Pseudomonas barealica EBT-1 fungus has high efficiency denitrification performance, and when added to a denitrifying activated sludge system, enriches the structure of the denitrifying denitrifying community in the system and sludge. Greatly improves the denitrification performance of. The fungal agent can be effectively applied to the membrane concentrate of the leachate, grows and propagates in the system, and is less likely to be washed away, thereby ensuring the stability of the water quality of the discharged water.

本発明のシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1は、ゴミ浸出液の膜濃縮液の全窒素除去効率が高く、ゴミ浸出液の膜濃縮液の高度脱窒という難問を効果的に解決できる。そして、本発明のシュードモナス・バレアリカ(Pseudomonas balearica)EBT-1は、既存の汚泥システムに添加されると、汚泥システムの脱窒効率を効果的に向上できる。 The Pseudomonas barealica EBT-1 of the present invention has a high efficiency of removing total nitrogen from the membrane concentrate of the dust leachate, and can effectively solve the difficult problem of high denitrification of the membrane concentrate of the dust leachate. When the Pseudomonas barealica EBT-1 of the present invention is added to an existing sludge system, the denitrification efficiency of the sludge system can be effectively improved.

Claims (10)

シュードモナス・バレアリカであって、
シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1と命名され、2019年9月17日に中国典型培養物寄託センターに寄託され、寄託番号がCCTCC M 2019730である、ことを特徴とするシュードモナス・バレアリカ。
Pseudomonas Balearica,
Pseudomonas balealica, named Pseudomonas balealica, was deposited at the China Typical Culture Depositary Center on September 17, 2019, and has a deposit number of CCTCC M 2009730.
請求項1に記載のシュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用。 Use in the treatment of the membrane concentrate of the Pseudomonas balealica dust leachate according to claim 1. シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1を培地に接種し、30~35℃で24~32h好気的培養し、EBT-1拡大培養生成物を得て、次に、ゴミ浸出液の膜濃縮液に接種して処理を行う、ことを特徴とする請求項2に記載のシュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用。 Pseudomonas balearica EBT-1 was inoculated into the medium and aerobic cultured at 30-35 ° C. for 24-32 hours to obtain the EBT-1 expanded culture product, and then a membrane concentrate of trash leachate. The use in the treatment of the membrane concentrate of the Pseudomonas balealica dust leachate according to claim 2, wherein the treatment is carried out by inoculating the Pseudomonas balea. シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1を培地に接種して培養するときの接種量が3%~5%である、ことを特徴とする請求項3に記載のシュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用。 The film of Pseudomonas balealica dust exudate according to claim 3, wherein the inoculation amount of Pseudomonas balearica EBT-1 when inoculated into a medium and cultured is 3% to 5%. Use in the processing of concentrates. 培地1Lあたり、成分として、コーンスティープリカー10質量部、酵母エキス5質量部、リン酸水素二カリウム1質量部、塩化ナトリウム10質量部、無水酢酸ナトリウム2.5質量部、及び硫酸マグネシウム0.03質量部が含有される、ことを特徴とする請求項3に記載のシュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用。 As components, 10 parts by mass of corn steep liquor, 5 parts by mass of yeast extract, 1 part by mass of dipotassium hydrogen phosphate, 10 parts by mass of sodium chloride, 2.5 parts by mass of anhydrous sodium acetate, and 0.03 parts of magnesium sulfate per 1 L of medium. Use in the treatment of a membrane concentrate of the dust leachate of Pseudomonas balealica according to claim 3, wherein the mass is contained. 前記培地の初期pHが6.5~7.5である、ことを特徴とする請求項3に記載のシュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用。 The use in the treatment of the membrane concentrate of the Pseudomonas balealica dust leachate according to claim 3, wherein the initial pH of the medium is 6.5 to 7.5. シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1は、ゴミ浸出液の膜濃縮液中の窒素含有化合物の分解に用いられ、窒素含有化合物は硝酸態窒素、亜硝酸態窒素及びアンモニア態窒素を含む、ことを特徴とする請求項2に記載のシュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用。 Pseudomonas balearica EBT-1 is used to degrade nitrogen-containing compounds in the membrane concentrate of leachate, which nitrogen-containing compounds include nitrate nitrogen, nitrite nitrogen and ammonia nitrogen. Use in the treatment of a membrane concentrate of the Pseudomonas balealica dust leachate according to claim 2. シュードモナス・バレアリカによるゴミ浸出液の膜濃縮液中の窒素含有化合物の分解は嫌気性/低酸素条件下で行われる、ことを特徴とする請求項7に記載のシュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用。 The membrane concentrate of Pseudomonas balealica according to claim 7, wherein the decomposition of the nitrogen-containing compound in the membrane concentrate of the dust leachate by Pseudomonas balealica is carried out under anaerobic / low oxygen conditions. Use in processing. シュードモナス・バレアリカ(Pseudomonas balearica)EBT-1がゴミ浸出液の膜濃縮液中の窒素含有化合物を分解するときに、0.2%~0.4%の接種量で菌液をゴミ浸出液の膜濃縮液の嫌気性/低酸素処理反応器に添加し、反応器中の廃水のCOD/Nが4:1~6:1である、ことを特徴とする請求項7に記載のシュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用。 When Pseudomonas balealica EBT-1 decomposes nitrogen-containing compounds in the membrane concentrate of leachate, the inoculum is 0.2% to 0.4%, and the bacterial solution is the membrane concentrate of the leachate. The Pseudomonas balealica dust leachate according to claim 7, wherein the COD / N of the waste water in the reactor is 4: 1 to 6: 1 when added to the anaerobic / low oxygen treatment reactor. Use in the treatment of membrane concentrates. ゴミ浸出液の膜濃縮液の塩分が3%以上である、ことを特徴とする請求項7に記載のシュードモナス・バレアリカのゴミ浸出液の膜濃縮液の処理における使用。 The use in the treatment of the membrane concentrate of Pseudomonas balealica according to claim 7, wherein the membrane concentrate of the dust leachate has a salt content of 3% or more.
JP2021544869A 2019-10-24 2019-10-30 Use in the treatment of membrane concentrates of Pseudomonas balealica and its debris leachate Active JP7062322B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201911015527.0 2019-10-24
CN201911015527.0A CN110699285B (en) 2019-10-24 2019-10-24 Palyalisma and application thereof in treating landfill leachate membrane concentrated solution
PCT/CN2019/114170 WO2021077452A1 (en) 2019-10-24 2019-10-30 Pseudomonas balearica and application thereof in treating landfill leachate membrane concentrated solution

Publications (2)

Publication Number Publication Date
JP2022512455A JP2022512455A (en) 2022-02-03
JP7062322B2 true JP7062322B2 (en) 2022-05-06

Family

ID=69200292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021544869A Active JP7062322B2 (en) 2019-10-24 2019-10-30 Use in the treatment of membrane concentrates of Pseudomonas balealica and its debris leachate

Country Status (3)

Country Link
JP (1) JP7062322B2 (en)
CN (1) CN110699285B (en)
WO (1) WO2021077452A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113003726B (en) * 2021-03-04 2022-07-01 重庆理工大学 Treatment method of reverse osmosis membrane filtration concentrated solution of landfill leachate
CN113684159B (en) * 2021-10-27 2022-02-11 佛山市玉凰生态环境科技有限公司 Palyra barbadensis and application thereof in denitrification and dephosphorization of river water body
CN114836355B (en) * 2022-05-30 2024-04-02 沈阳风景园林股份有限公司 Pseudomonas DT04 and application thereof in sewage denitrification

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773723A (en) 2014-01-17 2014-05-07 南京曜动节能环保科技有限公司 Salt-resistant pseudomonas stutzeri having low-temperature biological denitrification function

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019900A (en) * 1998-08-03 2000-02-01 The Regents Of The University Of California Single stage denitrification anaerobic digestion
US20120277126A1 (en) * 2010-11-01 2012-11-01 E. I. Du Pont De Nemours And Company Methods, strains, and compositions useful for microbially enhanced oil recovery: pseudomonas stutzeri
CN103373767B (en) * 2012-04-29 2014-10-15 中国石油化工股份有限公司 Method for biologically denitrifying high-salinity sewage generated in production process of catalysts
CN102703350B (en) * 2012-05-29 2013-05-22 北京大学 Application of salt-tolerant nitrogen and phosphorus removing bacillus altitudinis to wastewater treatment
CN102703349B (en) * 2012-05-29 2013-07-31 北京大学 Small brevibacterium strain capable of carrying out biological denitrification under high-salt condition and application of small brevibacterium strain in wastewater treatment
CN108546656B (en) * 2018-04-08 2021-03-09 哈尔滨工业大学(威海) Salt-tolerant alteromonas and application thereof
CN108546657B (en) * 2018-04-09 2021-08-17 深圳市长隆科技有限公司 Baria alismoides FX-1 and application thereof
CN109486699B (en) * 2018-08-21 2021-04-09 四川大学 Salt-tolerant aerobic denitrifying bacterium and application thereof
CN110054302A (en) * 2019-04-01 2019-07-26 黄山市益天士生物科技有限公司 Inhibit the processing material and preparation method thereof of algal grown
CN110182961A (en) * 2019-04-01 2019-08-30 黄山市益天士生物科技有限公司 For adjusting the regulator and preparation method thereof of artificial breeding pond water quality

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773723A (en) 2014-01-17 2014-05-07 南京曜动节能环保科技有限公司 Salt-resistant pseudomonas stutzeri having low-temperature biological denitrification function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Environmental Management ,2019年07月31日,Vol. 248, 109294,pp.1-9

Also Published As

Publication number Publication date
JP2022512455A (en) 2022-02-03
CN110699285B (en) 2020-07-14
WO2021077452A1 (en) 2021-04-29
CN110699285A (en) 2020-01-17

Similar Documents

Publication Publication Date Title
JP7062322B2 (en) Use in the treatment of membrane concentrates of Pseudomonas balealica and its debris leachate
CN114703095B (en) Pseudomonas adulthood and application thereof in field of sewage and wastewater purification
CN110791444B (en) Pseudomonas stutzeri, composite microbial inoculum prepared from pseudomonas stutzeri and application of composite microbial inoculum
Cherni et al. Mixed culture of Lactococcus lactis and Kluyveromyces marxianus isolated from kefir grains for pollutants load removal from Jebel Chakir leachate
CN110656071B (en) Paracoccus huilkii for efficiently degrading DMF (dimethyl formamide) and application thereof
CN110699291B (en) Achromobacter xylosoxidans with sulfide degradation performance and application thereof
CN116042493B (en) Bacillus cereus, microbial inoculum, application of bacillus cereus and microbial inoculum in treatment of chemical wastewater and treatment device
CN115491338B (en) Chemical intermediate degrading strain and application thereof in wastewater treatment
CN115786191B (en) Citrobacter freundii and application thereof in pesticide production wastewater treatment
CN109609407B (en) Thermophilic microorganism strain for in-situ sludge reduction and application thereof
CN111139198A (en) Lactobacillus parvum GBW-HB1903 and application thereof
CN113249276B (en) Bacillus cereus and application thereof
CN103381418B (en) Method for processing tobacco waste or organic fluorine wastewater
CN111621438B (en) Wedner mannich bacillus LM-LZ separated from oxidation pond of pig farm and application thereof
CN112266074B (en) Method for enhancing denitrification of heterotrophic nitrification-aerobic denitrification strain by magnesium salt modified biomass charcoal
CN110938567B (en) Bacillus subtilis, microbial agent and application thereof
CN110257303B (en) Bacillus ornithii suitable for treating yellow borer-killing agent cyanide-containing waste water
CN114045238A (en) Rhodococcus ruber HJM-8 capable of efficiently degrading dimethylacetamide and application thereof
CN110484456B (en) Trichosporon and application thereof in degradation of ammonia nitrogen in water body
CN113583896A (en) Enterobacter huoshanense and application thereof
CN116715366B (en) Treatment method of cephalosporin pharmaceutical wastewater
CN112522131B (en) Rhizobium and application thereof in degradation of nonyl phenol in water environment
CN114214254B (en) Rhodococcus ruber and application thereof
CN117866793A (en) Facultative aerobic soil bacillus brevis FHY-17 with dichloroethylene degradation capability and application thereof
CN117264803A (en) Alcaligenes faecalis XN-1 and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210802

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220413

R150 Certificate of patent or registration of utility model

Ref document number: 7062322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150