JP7058133B2 - How to fill a container with a resin composite hydrogen storage alloy - Google Patents

How to fill a container with a resin composite hydrogen storage alloy Download PDF

Info

Publication number
JP7058133B2
JP7058133B2 JP2018020751A JP2018020751A JP7058133B2 JP 7058133 B2 JP7058133 B2 JP 7058133B2 JP 2018020751 A JP2018020751 A JP 2018020751A JP 2018020751 A JP2018020751 A JP 2018020751A JP 7058133 B2 JP7058133 B2 JP 7058133B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
container
resin composite
composite hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018020751A
Other languages
Japanese (ja)
Other versions
JP2019138349A (en
Inventor
健人 緒方
貴保 藤浦
彰利 藤澤
行伸 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018020751A priority Critical patent/JP7058133B2/en
Priority to CN201910012122.5A priority patent/CN110131566B/en
Publication of JP2019138349A publication Critical patent/JP2019138349A/en
Application granted granted Critical
Publication of JP7058133B2 publication Critical patent/JP7058133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、樹脂複合化水素吸蔵合金を容器に充填する方法に関する。 The present invention relates to a method for filling a container with a resin composite hydrogen storage alloy.

水素を貯蔵する方法として、容器に充填された水素吸蔵合金に、水素ガスを吸収させて水素を貯蔵する方法がある。この方法は、水素ガスをガスボンベに高圧貯蔵する方法などに比べて、安全性、および体積充填効率に優れるため、現在注目されている。 As a method of storing hydrogen, there is a method of absorbing hydrogen gas in a hydrogen storage alloy filled in a container to store hydrogen. This method is currently attracting attention because it is superior in safety and volume filling efficiency as compared with a method of storing hydrogen gas in a gas cylinder at high pressure.

一方、水素吸蔵合金は、水素ガスの吸収・放出にともなって、最大30%膨張・収縮するため、その際に生じる応力が容器に歪みを与え、容器の耐久性に悪影響を及ぼす。水素吸蔵合金が膨張・収縮することで容器へ作用する応力を緩和する方法として、水素吸蔵合金と樹脂とを混合して樹脂複合化水素吸蔵合金とし、この樹脂複合化水素吸蔵合金を、容器に充填する方法がある。 On the other hand, since the hydrogen storage alloy expands and contracts by up to 30% with the absorption and release of hydrogen gas, the stress generated at that time distorts the container and adversely affects the durability of the container. As a method of relieving the stress acting on the container due to the expansion and contraction of the hydrogen storage alloy, the hydrogen storage alloy and the resin are mixed to form a resin composite hydrogen storage alloy, and this resin composite hydrogen storage alloy is used in the container. There is a filling method.

ここで、特許文献1には、水素吸蔵合金と樹脂とカーボンファイバーとを混合してなる樹脂複合材を容器に充填する方法が記載されている。特許文献1では、上記樹脂複合材を容器に充填する際に、所定周波数の振動を容器に継続的に与えている。これにより、水素吸蔵合金を所望の充填率で容器内に充填することができるとのことである。 Here, Patent Document 1 describes a method of filling a container with a resin composite material obtained by mixing a hydrogen storage alloy, a resin, and carbon fiber. In Patent Document 1, when the resin composite material is filled in a container, vibration of a predetermined frequency is continuously applied to the container. As a result, the hydrogen storage alloy can be filled in the container at a desired filling rate.

なお、水素吸蔵合金を容器に充填する方法として、特許文献2に記載の方法もある。特許文献2には、ベルトコンベヤで容器を移送しながら、水素吸蔵合金を連続的に容器に充填する方法が記載されている。 As a method of filling a container with a hydrogen storage alloy, there is also a method described in Patent Document 2. Patent Document 2 describes a method of continuously filling a container with a hydrogen storage alloy while transferring the container by a belt conveyor.

特開2015-169269号公報JP 2015-169269A 特開2002-156097号公報Japanese Unexamined Patent Publication No. 2002-1506097

ここで、水素ガスが水素吸蔵合金に吸収される水素吸蔵反応は、発熱反応であるため、水素吸蔵合金が充填された容器に水素ガスを充填する際には、容器を迅速に冷却する必要がある。そのため、水素吸蔵合金が充填される容器は、熱交換機能を内部に有する容器である必要がある。 Here, since the hydrogen storage reaction in which hydrogen gas is absorbed by the hydrogen storage alloy is an exothermic reaction, it is necessary to quickly cool the container when filling the container filled with the hydrogen storage alloy with hydrogen gas. be. Therefore, the container filled with the hydrogen storage alloy needs to be a container having a heat exchange function inside.

熱交換器機能は、例えば、多数のフィン・仕切りなどを容器の内部に設けることで具現化される。一方、水素吸蔵合金と樹脂とを混合してなる樹脂複合化水素吸蔵合金は、流動性が悪く(粘性が高く)、多数のフィン・仕切りなどを内部に有する容器には充填しにくい。特許文献1に記載のように、容器を振動させる程度では、容器内に隙間なく、且つ時間効率良く、樹脂複合化水素吸蔵合金を充填することは難しい。 The heat exchanger function is realized, for example, by providing a large number of fins / partitions inside the container. On the other hand, the resin composite hydrogen storage alloy obtained by mixing a hydrogen storage alloy and a resin has poor fluidity (high viscosity) and is difficult to fill in a container having a large number of fins / partitions inside. As described in Patent Document 1, it is difficult to fill the container with the resin composite hydrogen storage alloy without gaps and with time efficiency by vibrating the container.

本発明は、上記実情に鑑みてなされたものであり、その目的は、水素吸蔵合金と樹脂とを混合してなる樹脂複合化水素吸蔵合金を、熱交換部を内部に有する容器内へ、隙間なく且つ時間効率良く、充填し得る方法を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to insert a resin composite hydrogen storage alloy, which is a mixture of a hydrogen storage alloy and a resin, into a container having a heat exchange portion inside. It is to provide a method which can be filled without and time-efficiently.

本発明は、複数の板状部が軸方向に並んでなる熱交換部を内部に有する容器への樹脂複合化水素吸蔵合金の充填方法であって、カバーを外した前記容器を軸方向まわりに回転させながら、隣り合う前記板状部の間に前記樹脂複合化水素吸蔵合金を注入していくことを特徴とする。 The present invention is a method for filling a container having a heat exchange portion in which a plurality of plate-shaped portions are arranged in the axial direction with a resin composite hydrogen storage alloy, and the container with the cover removed is placed around the axial direction. It is characterized in that the resin composite hydrogen storage alloy is injected between the adjacent plate-shaped portions while rotating.

本発明の充填方法によると、水素吸蔵合金と樹脂とを混合してなる樹脂複合化水素吸蔵合金を、熱交換部を内部に有する容器内へ、隙間なく且つ時間効率良く、充填し得る。 According to the filling method of the present invention, a resin composite hydrogen storage alloy formed by mixing a hydrogen storage alloy and a resin can be filled into a container having a heat exchange portion inside without gaps and with time efficiency.

樹脂複合化水素吸蔵合金が充填される容器の一実施形態を示す縦断面図である。It is a vertical sectional view which shows one Embodiment of a container filled with a resin composite hydrogen storage alloy. 隣り合う板状部の間に樹脂複合化水素吸蔵合金を注入していく方法の一例を示す図である。It is a figure which shows an example of the method of injecting a resin composite hydrogen storage alloy between adjacent plate-shaped portions. 樹脂複合化水素吸蔵合金が充填される容器の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the container filled with the resin composite hydrogen storage alloy. 樹脂複合化水素吸蔵合金が充填される容器の変形例を示す縦断面図である。It is a vertical sectional view which shows the modification of the container filled with the resin composite hydrogen storage alloy.

以下、本発明を実施するための形態について図面を参照しつつ説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(容器の構成)
まず、樹脂複合化水素吸蔵合金が充填される容器の一実施形態について、図1を参照しつつ説明する。なお、本発明に係る充填方法は、図1に示す容器101や、後述する図3、4に示す容器102、103に限られることはなく、複数の板状部(フィンや仕切り)が軸方向Zに並んでなる熱交換部を内部に有する様々な形態の容器に適用することができる。
(Container configuration)
First, an embodiment of a container filled with a resin composite hydrogen storage alloy will be described with reference to FIG. 1. The filling method according to the present invention is not limited to the container 101 shown in FIG. 1 and the containers 102 and 103 shown in FIGS. 3 and 4 described later, and a plurality of plate-shaped portions (fins and partitions) are axially oriented. It can be applied to various types of containers having heat exchange portions arranged side by side in Z.

図1に示すように、本実施形態の容器101は、複数の板状部2aが軸方向Zに並んでなる熱交換部としての螺旋フィン2を内部に有する容器であって、螺旋フィン2が外周面に固定された筒体1と、カバー3とを有する。螺旋フィン2が配置された、筒体1とカバー3との間の空間Sは、樹脂複合化水素吸蔵合金が充填される空間である。螺旋フィン2は、複数の板状部2aが螺旋状に形成されたものである。 As shown in FIG. 1, the container 101 of the present embodiment is a container having a spiral fin 2 as a heat exchange portion in which a plurality of plate-shaped portions 2a are arranged in the axial direction Z, and the spiral fin 2 is a container. It has a cylinder 1 fixed to an outer peripheral surface and a cover 3. The space S between the cylinder 1 and the cover 3 in which the spiral fins 2 are arranged is a space filled with the resin composite hydrogen storage alloy. The spiral fin 2 is formed by forming a plurality of plate-shaped portions 2a into a spiral shape.

ここで、樹脂複合化水素吸蔵合金とは、水素吸蔵合金と、樹脂(合成樹脂)とを混合してなるもののことをいう。例えば、粉末状の水素吸蔵合金に、合成樹脂を添加混合することで、樹脂複合化水素吸蔵合金が作製される。水素吸蔵合金としては、2元系合金、3元系合金、4元系合金、および5元系合金などが挙げられ、様々な種別、組成、結晶構造の水素吸蔵合金が存在するが、本発明に係る充填方法は、特定の水素吸蔵合金への適用に限定されるものではない。 Here, the resin composite hydrogen storage alloy refers to a mixture of a hydrogen storage alloy and a resin (synthetic resin). For example, a resin composite hydrogen storage alloy is produced by adding and mixing a synthetic resin to a powdered hydrogen storage alloy. Examples of the hydrogen storage alloy include binary alloys, ternary alloys, quaternary alloys, and quaternary alloys, and there are various types, compositions, and crystal structures of hydrogen storage alloys. The filling method according to the above is not limited to the application to a specific hydrogen storage alloy.

水素吸蔵合金と混合される合成樹脂としては、例えば、フェノール樹脂、メラミン樹脂、シリコン樹脂、およびポリウレタン樹脂などの熱硬化性樹脂、ならびに、ポリプロピレン樹脂、ポリエチレン樹脂、およびセルロイド樹脂などの熱可塑性樹脂が挙げられる。なお、合成樹脂は、水素吸蔵合金に吸蔵された水素の放出加熱温度よりも高い軟化点(例えば、100度以上の軟化点)を有する合成樹脂であることが好ましい。 Examples of the synthetic resin mixed with the hydrogen storage alloy include thermosetting resins such as phenol resin, melamine resin, silicon resin, and polyurethane resin, and thermoplastic resins such as polypropylene resin, polyethylene resin, and celluloid resin. Can be mentioned. The synthetic resin is preferably a synthetic resin having a softening point (for example, a softening point of 100 degrees or higher) higher than the release heating temperature of hydrogen stored in the hydrogen storage alloy.

筒体1の中には、熱交換媒体(例えば、水)が流される。樹脂複合化水素吸蔵合金が充填された容器101に水素ガスを充填する際、筒体1の中に例えば水を流し、この水により、樹脂複合化水素吸蔵合金は冷却される。樹脂複合化水素吸蔵合金からの熱は、容器101内の筒体1の外周面、および螺旋フィン2から、筒体1内を流れる水に移行する。螺旋フィン2(板状部2a)、および筒体1は、伝熱性に優れるものがよく、その材料は、例えば、ステンレス鋼、アルミニウム合金、銅合金などである。 A heat exchange medium (for example, water) is flowed through the cylinder 1. When filling the container 101 filled with the resin composite hydrogen storage alloy with hydrogen gas, for example, water is flowed through the cylinder 1, and the water cools the resin composite hydrogen storage alloy. The heat from the resin composite hydrogen storage alloy is transferred from the outer peripheral surface of the cylinder 1 in the container 101 and the spiral fins 2 to the water flowing in the cylinder 1. The spiral fin 2 (plate-shaped portion 2a) and the tubular body 1 are preferably those having excellent heat transfer properties, and the material thereof is, for example, stainless steel, an aluminum alloy, a copper alloy, or the like.

本実施形態のカバー3は、筒状のカバー本体4と、カバー本体4の軸方向両端部を閉止する円板状の2枚のプレート5とで構成される。なお、カバー本体4の軸方向端部のフランジ部4aとプレート5とは、例えばボルト(不図示)などの固定手段で固定される。また、カバー3(カバー本体4)には、水素ガスの入口・出口が設けられるが、この図示は省略されている。 The cover 3 of the present embodiment is composed of a tubular cover main body 4 and two disk-shaped plates 5 that close both ends of the cover main body 4 in the axial direction. The flange portion 4a at the axial end of the cover body 4 and the plate 5 are fixed by fixing means such as bolts (not shown). Further, the cover 3 (cover main body 4) is provided with an inlet / outlet for hydrogen gas, but this illustration is omitted.

(樹脂複合化水素吸蔵合金の充填方法)
図2を参照しつつ、樹脂複合化水素吸蔵合金を容器101に充填する方法について説明する。
(Filling method of resin composite hydrogen storage alloy)
A method of filling the container 101 with the resin composite hydrogen storage alloy will be described with reference to FIG. 2.

まず、カバー3を外した容器101の筒体1の端部を、回転駆動手段13に取り付ける。このとき、筒体1の姿勢は、縦(軸方向が鉛直方向)でもよいし、横(軸方向が水平方向)でもよい。なお、筒体1の姿勢が縦(軸方向が鉛直方向)にされていると、横(軸方向が水平方向)にされている場合よりも、隣り合う板状部2aの間に注入された樹脂複合化水素吸蔵合金は、隣り合う板状部2aの間に保持され易い(樹脂複合化水素吸蔵合金がたれて落下するのをより防止することができる)。 First, the end of the cylinder 1 of the container 101 from which the cover 3 has been removed is attached to the rotation driving means 13. At this time, the posture of the cylinder 1 may be vertical (the axial direction is the vertical direction) or horizontal (the axial direction is the horizontal direction). When the posture of the tubular body 1 is vertical (the axial direction is the vertical direction), the injection is performed between the adjacent plate-shaped portions 2a as compared with the case where the cylinder 1 is horizontal (the axial direction is the horizontal direction). The resin composite hydrogen storage alloy is easily held between the adjacent plate-shaped portions 2a (the resin composite hydrogen storage alloy can be more prevented from dripping and falling).

一方で、水素吸蔵合金に合成樹脂を添加混合して、樹脂複合化水素吸蔵合金を作製する。作製した樹脂複合化水素吸蔵合金を、押出機8(注入手段)のホッパ10に供給する。 On the other hand, a synthetic resin is added and mixed with the hydrogen storage alloy to prepare a resin composite hydrogen storage alloy. The produced resin composite hydrogen storage alloy is supplied to the hopper 10 of the extruder 8 (injection means).

なお、作製した樹脂複合化水素吸蔵合金は、粘性が高く、どろだんご状やクリーム状であり、流動性が悪い。樹脂複合化水素吸蔵合金の注入手段、すなわち、押出機8は、これに限定されるものではないが、例えば、スクリュー式の押出機である。 The produced resin composite hydrogen storage alloy has high viscosity, is in the form of dumplings or cream, and has poor fluidity. The injection means for the resin composite hydrogen storage alloy, that is, the extruder 8, is not limited to this, but is, for example, a screw type extruder.

カバー3を外した容器101を回転駆動手段13に取り付ける工程と、樹脂複合化水素吸蔵合金を作製し、作製した樹脂複合化水素吸蔵合金を押出機8へ供給する工程とは、どちらの工程が先行してもよいし、両工程が並行して行われてもよい。樹脂複合化水素吸蔵合金の硬化速度などによって、どちらの工程を先行させるのか適宜選択される。 Which step is the step of attaching the container 101 from which the cover 3 is removed to the rotation driving means 13 or the step of producing a resin composite hydrogen storage alloy and supplying the manufactured resin composite hydrogen storage alloy to the extruder 8. It may be preceded or both steps may be performed in parallel. Which step should be preceded is appropriately selected depending on the curing rate of the resin composite hydrogen storage alloy and the like.

次いで、押出機8の本体部9の吐出ノズル11の先端9a(吐出位置)を、隣り合う板状部2aの間の側方近傍に位置させる。その後、樹脂複合化水素吸蔵合金を押出機8から押し出しながら、カバー3を外した容器101(螺旋フィン2が外周面に固定された筒体1)を回転駆動手段13で軸方向Zまわりに回転させつつ、隣り合う板状部2aの間に樹脂複合化水素吸蔵合金を注入していく。 Next, the tip 9a (discharge position) of the discharge nozzle 11 of the main body 9 of the extruder 8 is positioned near the side between the adjacent plate-shaped portions 2a. After that, while extruding the resin composite hydrogen storage alloy from the extruder 8, the container 101 from which the cover 3 was removed (the cylinder 1 in which the spiral fins 2 are fixed to the outer peripheral surface) is rotated around the axial direction Z by the rotation driving means 13. The resin composite hydrogen storage alloy is injected between the adjacent plate-shaped portions 2a.

筒体1(カバー3を外した容器101)を軸方向Zまわりに回転させながら、隣り合う板状部2aの間に樹脂複合化水素吸蔵合金を注入していくことで、特許文献1に記載の振動を利用した充填方法よりも、隣り合う板状部2aの間に樹脂複合化水素吸蔵合金を隙間なく且つ時間効率良く、充填することができる。 Described in Patent Document 1 by injecting a resin composite hydrogen storage alloy between adjacent plate-shaped portions 2a while rotating the cylinder 1 (container 101 from which the cover 3 is removed) in the axial direction Z. The resin composite hydrogen storage alloy can be filled between the adjacent plate-shaped portions 2a without gaps and with time efficiency, as compared with the filling method using the vibration of.

このとき、押出機8の吐出ノズル11の先端9a(吐出位置)を、筒体1(カバー3を外した容器101)の軸方向Zに沿って移動させながら、隣り合う板状部2aの間に樹脂複合化水素吸蔵合金を注入していくことが好ましい。これによると、軸方向Zに並ぶ全ての板状部2aの間に、樹脂複合化水素吸蔵合金を効率良く充填することができる。 At this time, while moving the tip 9a (discharge position) of the discharge nozzle 11 of the extruder 8 along the axial direction Z of the tubular body 1 (container 101 from which the cover 3 is removed), between the adjacent plate-shaped portions 2a. It is preferable to inject the resin composite hydrogen storage alloy into the resin composite hydrogen storage alloy. According to this, the resin composite hydrogen storage alloy can be efficiently filled between all the plate-shaped portions 2a arranged in the axial direction Z.

さらには、押出機8の吐出ノズル11の先端9a(吐出位置)を、隣り合う板状部2aの間に沿わせつつ、当該先端9a(吐出位置)を筒体1(カバー3を外した容器101)の軸方向Zに沿って直線的に移動させながら、隣り合う板状部2aの間に樹脂複合化水素吸蔵合金を注入していくことが好ましい。この場合、螺旋フィン2が、例えば1条ねじであるとすると、筒体1が1回転したときに、押出機8の吐出ノズル11の先端9a(吐出位置)が、螺旋フィン2の1ピッチ分、ねじが進む軸方向に移動するように、筒体1(カバー3を外した容器101)の回転速度と、押出機8の吐出ノズル11の先端9a(吐出位置)の軸方向Zへの移動速度とを同期させる。この構成によると、軸方向Zに並ぶ全ての板状部2aの間に、樹脂複合化水素吸蔵合金をより効率良く充填することができる。なお、押出機8の移動手段の図示は、省略されている。 Further, the tip 9a (discharge position) of the discharge nozzle 11 of the extruder 8 is placed between the adjacent plate-shaped portions 2a, and the tip 9a (discharge position) is placed in the cylinder 1 (container from which the cover 3 is removed). It is preferable to inject the resin composite hydrogen storage alloy between the adjacent plate-shaped portions 2a while moving the resin linearly along the axial direction Z of 101). In this case, assuming that the spiral fin 2 is, for example, a single thread, when the tubular body 1 makes one rotation, the tip 9a (discharge position) of the discharge nozzle 11 of the extruder 8 is one pitch of the spiral fin 2. , The rotation speed of the cylinder 1 (the container 101 from which the cover 3 is removed) and the movement of the tip 9a (discharge position) of the discharge nozzle 11 of the extruder 8 in the axial direction Z so that the screw moves in the axial direction. Synchronize with speed. According to this configuration, the resin composite hydrogen storage alloy can be more efficiently filled between all the plate-shaped portions 2a arranged in the axial direction Z. The illustration of the moving means of the extruder 8 is omitted.

全ての板状部2aの間への樹脂複合化水素吸蔵合金の充填が完了すると、筒体1の回転を停止し、筒体1にカバー3を取り付ける。本実施形態の容器101のように、カバー3内において、螺旋フィン2(熱交換部)が配置されていない空間がある場合には、筒体1にカバー3を取り付けた後、樹脂複合化水素吸蔵合金を、この空間に充填する。当該空間は、フィンがないため、カバー3が取り付けられていても、樹脂複合化水素吸蔵合金を容器101内に容易に充填することができる。なお、この場合、カバー3(カバー本体4)には、樹脂複合化水素吸蔵合金の充填口が設けられるが、この図示は省略されている。筒体1とカバー3との間の空間S全体に(空間Sの軸方向の端から端まで)、螺旋フィン2(熱交換部)が配置されていてもよい。 When the filling of the resin composite hydrogen storage alloy between all the plate-shaped portions 2a is completed, the rotation of the tubular body 1 is stopped, and the cover 3 is attached to the tubular body 1. When there is a space in the cover 3 in which the spiral fin 2 (heat exchange portion) is not arranged as in the container 101 of the present embodiment, after the cover 3 is attached to the cylinder 1, the resin composite hydrogen is used. This space is filled with a storage alloy. Since the space has no fins, the container 101 can be easily filled with the resin composite hydrogen storage alloy even if the cover 3 is attached. In this case, the cover 3 (cover main body 4) is provided with a filling port for the resin composite hydrogen storage alloy, but this illustration is omitted. Spiral fins 2 (heat exchange portions) may be arranged in the entire space S between the cylinder 1 and the cover 3 (from end to end in the axial direction of the space S).

なお、板状部2aの間に注入された(容器101に充填された)樹脂複合化水素吸蔵合金は、時間が経てば硬化する。 The resin composite hydrogen storage alloy injected between the plate-shaped portions 2a (filled in the container 101) is cured over time.

(容器の変形例)
図3、および図4に示す容器102、および容器103は、図1に示す容器101の変形例である。容器102、および容器103と、容器101との相違点は、容器の内部の熱交換部の構成である。
(Transformation example of container)
The container 102 and the container 103 shown in FIGS. 3 and 4 are modified examples of the container 101 shown in FIG. The difference between the container 102 and the container 103 and the container 101 is the configuration of the heat exchange portion inside the container.

図3に示す容器102の熱交換部12は、複数のリング状の板12a(板状部)が、軸方向Zに直交する方向に対して傾斜した姿勢で、所定の間隔をあけて軸方向Zに並んだものである。 In the heat exchange portion 12 of the container 102 shown in FIG. 3, a plurality of ring-shaped plates 12a (plate-shaped portions) are inclined in a direction orthogonal to the axial direction Z in the axial direction with a predetermined interval. It is lined up in Z.

また、図4に示す容器103の熱交換部22は、複数のリング状の板22a(板状部)が、軸方向Zに直交する姿勢で、所定の間隔をあけて軸方向Zに並んだものである。 Further, in the heat exchange portion 22 of the container 103 shown in FIG. 4, a plurality of ring-shaped plates 22a (plate-shaped portions) are arranged in the axial direction Z at predetermined intervals in a posture orthogonal to the axial direction Z. It is a thing.

(樹脂複合化水素吸蔵合金の注入手段)
上記実施形態では、押出機8(例えば、スクリュー式の押出機)を用いて、隣り合う板状部2aの間に樹脂複合化水素吸蔵合金を注入する例を示した。樹脂複合化水素吸蔵合金の注入手段は、押出機8に限定されない。例えば、容器101がより小型な容器である場合などには、シーリング材の注入に用いる公知のコーキングガンなどを用いて、カバー3を外した容器101を軸方向Zまわりに回転させながら、隣り合う板状部2aの間に樹脂複合化水素吸蔵合金を注入してもよい。さらには、公知のへらなどを用いて、カバー3を外した容器101を軸方向Zまわりに回転させながら、隣り合う板状部2aの間に樹脂複合化水素吸蔵合金を注入してもよい。なお、押出機8を用いて、樹脂複合化水素吸蔵合金を注入すると、隣り合う板状部2aの間に樹脂複合化水素吸蔵合金を短時間で注入することができる。
(Injection means of resin composite hydrogen storage alloy)
In the above embodiment, an example is shown in which a resin composite hydrogen storage alloy is injected between adjacent plate-shaped portions 2a by using an extruder 8 (for example, a screw type extruder). The injection means of the resin composite hydrogen storage alloy is not limited to the extruder 8. For example, when the container 101 is a smaller container, the containers 101 from which the cover 3 is removed are rotated around Z in the axial direction and adjacent to each other by using a known caulking gun or the like used for injecting a sealing material. A resin composite hydrogen storage alloy may be injected between the plate-shaped portions 2a. Further, a resin composite hydrogen storage alloy may be injected between the adjacent plate-shaped portions 2a while rotating the container 101 from which the cover 3 is removed in the axial direction Z using a known spatula or the like. When the resin composite hydrogen storage alloy is injected using the extruder 8, the resin composite hydrogen storage alloy can be injected between the adjacent plate-shaped portions 2a in a short time.

以上、本発明の実施形態について説明した。なお、本発明は、上記実施形態に限定されるものではなく、当業者は、上記実施形態に対して、想定できる範囲内で種々の変更を行うことができる。 The embodiment of the present invention has been described above. The present invention is not limited to the above embodiment, and a person skilled in the art can make various changes to the above embodiment within a range that can be assumed.

2:螺旋フィン(熱交換部)
2a:板状部
3:カバー
8:押出機(注入手段)
9a:先端(吐出位置)
101~103:容器
Z:軸方向
2: Spiral fin (heat exchange part)
2a: Plate-shaped part 3: Cover 8: Extruder (injection means)
9a: Tip (discharge position)
101-103: Container Z: Axial direction

Claims (4)

複数の板状部が軸方向に並んでなる熱交換部と、
前記熱交換部が外周面に固定された、内部に熱交換媒体が流される直線状に延びる筒体と、
前記筒体および前記熱交換部を覆うカバーと、
を備える容器への樹脂複合化水素吸蔵合金の充填方法であって、
前記カバーを外した前記容器を、前記筒体の軸心を中心にして前記筒体の軸方向まわりに回転させながら、隣り合う前記板状部の間に前記樹脂複合化水素吸蔵合金を注入していくことを特徴とする、樹脂複合化水素吸蔵合金の容器への充填方法。
A heat exchange section in which multiple plate-shaped sections are lined up in the axial direction ,
A cylindrical body in which the heat exchange portion is fixed to the outer peripheral surface and the heat exchange medium is allowed to flow inside, and a tubular body extending in a straight line.
A cover that covers the cylinder and the heat exchange portion,
A method of filling a container provided with a resin composite hydrogen storage alloy.
While rotating the container with the cover removed around the axial center of the cylinder, the resin composite hydrogen storage alloy is injected between the adjacent plate-shaped portions. A method of filling a container with a resin composite hydrogen storage alloy, which is characterized by going on.
請求項1に記載の樹脂複合化水素吸蔵合金の容器への充填方法において、
前記樹脂複合化水素吸蔵合金の注入手段の吐出位置を、前記筒体の軸方向に沿って移動させながら、隣り合う前記板状部の間に前記樹脂複合化水素吸蔵合金を注入していくことを特徴とする、樹脂複合化水素吸蔵合金の容器への充填方法。
In the method for filling a container of a resin composite hydrogen storage alloy according to claim 1,
While moving the discharge position of the injection means of the resin composite hydrogen storage alloy along the axial direction of the cylinder, the resin composite hydrogen storage alloy is injected between the adjacent plate-shaped portions. A method for filling a container of a resin composite hydrogen storage alloy.
請求項2に記載の樹脂複合化水素吸蔵合金の容器への充填方法において、
前記注入手段が押出機であることを特徴とする、樹脂複合化水素吸蔵合金の容器への充填方法。
In the method for filling a container of the resin composite hydrogen storage alloy according to claim 2.
A method for filling a container of a resin composite hydrogen storage alloy, wherein the injection means is an extruder.
請求項2または3に記載の樹脂複合化水素吸蔵合金の容器への充填方法において、
前記複数の板状部が螺旋状に形成されており、
前記注入手段の吐出位置を、隣り合う前記板状部の間に沿わせつつ、前記筒体の軸方向に沿って直線的に移動させながら、隣り合う前記板状部の間に前記樹脂複合化水素吸蔵合金を注入していくことを特徴とする、樹脂複合化水素吸蔵合金の容器への充填方法。
In the method for filling a container of the resin composite hydrogen storage alloy according to claim 2 or 3.
The plurality of plate-shaped portions are formed in a spiral shape, and the plurality of plate-shaped portions are formed in a spiral shape.
While moving the discharge position of the injection means linearly along the axial direction of the cylinder while moving it along the adjacent plate-shaped portions, the resin composite is formed between the adjacent plate-shaped portions. A method for filling a container with a resin composite hydrogen storage alloy, which comprises injecting a hydrogen storage alloy.
JP2018020751A 2018-02-08 2018-02-08 How to fill a container with a resin composite hydrogen storage alloy Active JP7058133B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018020751A JP7058133B2 (en) 2018-02-08 2018-02-08 How to fill a container with a resin composite hydrogen storage alloy
CN201910012122.5A CN110131566B (en) 2018-02-08 2019-01-07 Method for filling container with resin-compounded hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018020751A JP7058133B2 (en) 2018-02-08 2018-02-08 How to fill a container with a resin composite hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2019138349A JP2019138349A (en) 2019-08-22
JP7058133B2 true JP7058133B2 (en) 2022-04-21

Family

ID=67568459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018020751A Active JP7058133B2 (en) 2018-02-08 2018-02-08 How to fill a container with a resin composite hydrogen storage alloy

Country Status (2)

Country Link
JP (1) JP7058133B2 (en)
CN (1) CN110131566B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7518010B2 (en) 2021-02-08 2024-07-17 株式会社神戸製鋼所 Hydrogen release method and hydrogen supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156097A (en) 2000-11-22 2002-05-31 Toyota Central Res & Dev Lab Inc Hydrogen absorbing alloy filling device
JP2015169269A (en) 2014-03-07 2015-09-28 株式会社日本製鋼所 Method for charging hydrogen storage alloy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156301A (en) * 1981-03-23 1982-09-27 Sekisui Chem Co Ltd Apparatus for containing metallic hydride
JPS60121398A (en) * 1983-12-01 1985-06-28 Nippon Steel Corp Hydrogen storage container using mixed hydrogen occluding alloy
JPH04149001A (en) * 1990-10-11 1992-05-22 Sanyo Electric Co Ltd Method for packing hydrogen storage alloy into reaction vessel
JPH06157001A (en) * 1992-11-24 1994-06-03 Nippon Steel Corp Method for rapid absorption and desorption of hydrogen and apparatus therefor
JP2000249425A (en) * 1998-12-28 2000-09-14 Hoshizaki Electric Co Ltd Reaction vessel of alloy for hydrogen storage
JP2002295798A (en) * 2001-03-29 2002-10-09 Ube Machinery Corporation Ltd Hydrogen transport vessel
US7431756B2 (en) * 2002-05-09 2008-10-07 Ovonic Hydrogen Systems Llc Modular metal hydride hydrogen storage system
CN2667678Y (en) * 2003-12-04 2004-12-29 财团法人工业技术研究院 Hydrogen-storing alloy tank device with even releasing hydrogen and effective heat exchange structure
KR100823974B1 (en) * 2006-09-28 2008-04-22 (주)오선텍 Hydrogen storage vessel
JP5840591B2 (en) * 2012-10-16 2016-01-06 株式会社神戸製鋼所 Hydrogen storage / release device
KR20170093326A (en) * 2016-02-05 2017-08-16 김병관 hydrogen storage vessel and method for producing thereof
CN205677217U (en) * 2016-06-15 2016-11-09 重庆格上建材有限公司 A kind of pointer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156097A (en) 2000-11-22 2002-05-31 Toyota Central Res & Dev Lab Inc Hydrogen absorbing alloy filling device
JP2015169269A (en) 2014-03-07 2015-09-28 株式会社日本製鋼所 Method for charging hydrogen storage alloy

Also Published As

Publication number Publication date
JP2019138349A (en) 2019-08-22
CN110131566A (en) 2019-08-16
CN110131566B (en) 2021-12-31

Similar Documents

Publication Publication Date Title
JP7058133B2 (en) How to fill a container with a resin composite hydrogen storage alloy
JP7256921B2 (en) SOLID MANUFACTURING METHOD, SYSTEM AND DEVICE
EP3309496B1 (en) Heat exchanger with support structure
JP2005240983A (en) Hydrogen storage tank
JP5394067B2 (en) Seamless capsule manufacturing equipment
WO1989003723A1 (en) A device for preparing putty and similar masses
US10916747B2 (en) Assembly of electrochemical cells using an additive manufacturing method
US9891010B2 (en) Waste heat recovery apparatus having hollow screw shaft and method for the same
US20020187217A1 (en) Injection molding cooling core and method of use
US9897348B2 (en) Device for converting thermal energy
US4866943A (en) Cyrogenic regenerator
CN101971310A (en) Method of forming a thermo pyrolytic graphite-embedded heatsink
CN114270126A (en) Moving bed particle heat exchanger
US3693711A (en) Monolithic cast body heat exchanger
WO2012138978A2 (en) Dome shaped capsules of thermal energy storage material for improved heat storage
CN205736035U (en) A kind of spray nozzle device for 3D printer
US20200080789A1 (en) Shell and tube heat exchanger with perforated fins interconnecting the tubes
US20070235892A1 (en) Reduced density foam and method for molding reduced density foam
US3977820A (en) Injection moulding manifold
KR102569709B1 (en) Die plate, resin machine, and nozzle heating method of die plate
CN106881865B (en) Molten copper infiltration 3D printing spray head
JPS5824426A (en) Method for extrusion molding of polyamideimide resin
KR20230124054A (en) hybrid heat exchanger
JP2010179633A (en) Extrusion molding die
EP3415853A1 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R150 Certificate of patent or registration of utility model

Ref document number: 7058133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150