JPH04149001A - Method for packing hydrogen storage alloy into reaction vessel - Google Patents
Method for packing hydrogen storage alloy into reaction vesselInfo
- Publication number
- JPH04149001A JPH04149001A JP2274682A JP27468290A JPH04149001A JP H04149001 A JPH04149001 A JP H04149001A JP 2274682 A JP2274682 A JP 2274682A JP 27468290 A JP27468290 A JP 27468290A JP H04149001 A JPH04149001 A JP H04149001A
- Authority
- JP
- Japan
- Prior art keywords
- reaction vessel
- hydrogen storage
- storage alloy
- filling
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 79
- 239000000956 alloy Substances 0.000 title claims abstract description 79
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 72
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 69
- 239000001257 hydrogen Substances 0.000 title claims abstract description 66
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims description 20
- 238000012856 packing Methods 0.000 title 1
- 239000000843 powder Substances 0.000 claims abstract description 53
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000012530 fluid Substances 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 239000003960 organic solvent Substances 0.000 claims description 17
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 10
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- -1 polyphenylene Polymers 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000002861 polymer material Substances 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 239000004693 Polybenzimidazole Substances 0.000 claims description 3
- 239000005062 Polybutadiene Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 3
- 239000003570 air Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 229920002480 polybenzimidazole Polymers 0.000 claims description 3
- 229920002857 polybutadiene Polymers 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 150000008064 anhydrides Chemical class 0.000 claims description 2
- 238000004898 kneading Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229920001470 polyketone Polymers 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims 1
- 229920002396 Polyurea Polymers 0.000 claims 1
- 229920002647 polyamide Polymers 0.000 claims 1
- 229910002335 LaNi5 Inorganic materials 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 abstract 1
- 239000002904 solvent Substances 0.000 abstract 1
- 229910001295 No alloy Inorganic materials 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、水素を吸放出することによって、発熱、吸熱
する水素吸蔵合金を反応容器へ充填するときの充填方法
に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for filling a reaction vessel with a hydrogen storage alloy that generates and absorbs heat by absorbing and desorbing hydrogen.
(ロ)従来の技術
この種の水素吸蔵合金の反応容器では、反応容器内で生
じる反応熱を有効に、外部に取り出す必要がある。この
ため、反応容器には、特公昭58−55437号公報、
特公昭58−55438号公報に開示のように、反応熱
取り出し用のフィン付きの熱交換器がよく用いられてい
る。(B) Prior Art In a reaction vessel made of this type of hydrogen storage alloy, it is necessary to effectively extract the reaction heat generated within the reaction vessel to the outside. Therefore, in the reaction vessel,
As disclosed in Japanese Patent Publication No. 58-55438, a heat exchanger with fins for removing reaction heat is often used.
上記の熱交換器によって1反応熱をより有効に取り出す
ためには、前記のフィンと合金粒子との接触面積をより
多くとる必要がある。そのためには、前記のフィンの数
を増やして、フィンの間隔を小さくしたほうが良いこと
が知られている。In order to extract heat of one reaction more effectively by the heat exchanger, it is necessary to increase the contact area between the fins and the alloy particles. It is known that for this purpose, it is better to increase the number of fins and reduce the interval between the fins.
(ハ)発明が解決しようとする課題
このように、フィンの間隔を小さくした場合、水素吸蔵
合金の粉末を反応容器に充填する際に、熱交換器の隅々
まで合金の粉末を充填することが難しく、部分的に空隙
が発生し易い。(c) Problems to be Solved by the Invention When the spacing between the fins is reduced as described above, when filling the reaction vessel with hydrogen storage alloy powder, it is difficult to fill every corner of the heat exchanger with the alloy powder. It is difficult to do so, and voids are likely to occur in some areas.
そして、このように空隙が発生すると、反応容器内で生
じる反応熱を有効に外部に取り出すことが難しくなると
いう欠点があった。When such voids are generated, there is a drawback that it becomes difficult to effectively extract the reaction heat generated within the reaction vessel to the outside.
(ニ)課題を解決するための手段
本発明は、このような点に鑑みて為されたもので、水素
吸蔵合金の粉末を流体中に分散させて、反応容器に注入
した後、流体成分を取り除くようにしている。(d) Means for Solving the Problems The present invention has been made in view of the above points, and after dispersing hydrogen storage alloy powder in a fluid and injecting it into a reaction vessel, the fluid components are dispersed. I'm trying to remove it.
また、本発明は 水素吸蔵合金の粉末と少量の高分子材
料と水あるいは有機溶媒の一種以上とを混合、混練し、
スラリー状として、反応容器に注入した後、水及び有機
溶媒を取り除いている。Furthermore, the present invention involves mixing and kneading hydrogen storage alloy powder, a small amount of polymeric material, and one or more types of water or organic solvents.
After injecting the slurry into a reaction vessel, water and organic solvent are removed.
さらに本発明は、水素吸蔵合金の粉末と少量の高分子材
料と水あるいは有機溶媒の一種以上とを混合、混練し、
スラリー状として、反応容器に注入した後、水及び有機
溶媒及び高分子材料を取り除いている。Furthermore, the present invention mixes and kneads a hydrogen storage alloy powder, a small amount of a polymeric material, and one or more types of water or an organic solvent.
After injecting the slurry into a reaction vessel, water, organic solvent, and polymeric material are removed.
(ホ)作用
本発明によれば、水素吸蔵合金の反応容器内にフィンな
どの複雑な形状を持つ熱交換器を配置しても、水素吸蔵
合金の粉末を充填する際に、流体とともに水素吸蔵合金
粉末が隅々まで行き渡り熱交換器と合金粒子との接触面
積が増加する。(E) Effect According to the present invention, even if a heat exchanger having a complicated shape such as a fin is placed in the hydrogen storage alloy reaction vessel, hydrogen storage will be carried out together with the fluid when filling the hydrogen storage alloy powder. The alloy powder spreads to every corner, increasing the contact area between the heat exchanger and the alloy particles.
(へ)実施例
本発明を以下の実施例により、詳細に説明する第1図、
第2図に示す反応容51おいて、その外形は、横向き有
底筒上の外管2の開口を端板3で固着した形状である。(f) Examples FIG. 1 illustrates the present invention in detail with the following examples.
The reaction chamber 51 shown in FIG. 2 has an outer shape in which the opening of an outer tube 2 on a horizontally oriented cylinder with a bottom is fixed with an end plate 3.
この外管2内には、L a N i 、等の水素吸蔵合
金の粉末4を充填しており、更に、この水素吸蔵合金の
粉末4内にもぐるようにフィルター管5及び熱交換器6
が配設しである。フィルター管5は水素を通過させるが
、水素吸放出により微粒子化した水素吸蔵合金4は通過
させないものであり、端板3を貫通した水素ガス出入導
管7に連通している。また、熱交換器6は熱、冷媒体の
出入管にフィン8を付設したものであり、端板3を貫通
している。This outer tube 2 is filled with a powder 4 of a hydrogen storage alloy such as L a N i , and a filter tube 5 and a heat exchanger 6 are further inserted into the powder 4 of the hydrogen storage alloy.
is arranged. The filter tube 5 allows hydrogen to pass through, but does not allow the hydrogen storage alloy 4, which has been made into fine particles by absorption and release of hydrogen, to pass therethrough, and is in communication with a hydrogen gas inlet/output conduit 7 that penetrates the end plate 3. Further, the heat exchanger 6 has fins 8 attached to the inlet and outlet pipes for heat and coolant, and passes through the end plate 3.
最初、上記構造の反応容器に水素吸蔵合金の粉末4の充
填方法を従来の方法に沿って述べる。First, a conventional method of filling the hydrogen storage alloy powder 4 into the reaction vessel having the above structure will be described.
〈従来例〉
従来の方法では、水素吸蔵合金の粉末(10〜200m
esh程度)を熱交換器6のフィン8の間隙(約1〜3
m m )に少しずつ入れながら熱交換器6を外管2
に入れる方法を用いている。<Conventional example> In the conventional method, hydrogen storage alloy powder (10 to 200 m
esh) between the fins 8 of the heat exchanger 6 (approximately 1 to 3
m
I am using the method of putting it in.
この方法だと、第3図に示す様に、熱交換器6のフィン
8の間隙の奥まで水素吸蔵合金の粉末4が充填されずに
空隙]Oが生じるという欠点があった。This method has the disadvantage that, as shown in FIG. 3, the hydrogen storage alloy powder 4 is not filled deep into the gaps between the fins 8 of the heat exchanger 6, resulting in voids]O.
そこで、本発明では水素吸蔵合金の粉末4をあらかじめ
流体中に分散させて反応容器に注入した後、流体成分を
取り除くことにより反応容器に充填することで、前記問
題点を解決した。Therefore, in the present invention, the above-mentioned problem was solved by dispersing the hydrogen storage alloy powder 4 in a fluid in advance and injecting it into the reaction container, and then filling the reaction container by removing the fluid components.
次に未発明番実施例について述べる。Next, an uninvented embodiment will be described.
〈実施例1〉
まず、水素吸蔵合金の粉末4(100mesh以下)を
5kg/cm’に加圧された空気により水素吸蔵合金の
粉末の導入管9から注入する。同時に、水素ガス出入導
管7から水素吸蔵合金の粉末を除いた空気を排気する。<Example 1> First, hydrogen storage alloy powder 4 (100 mesh or less) is injected from the hydrogen storage alloy powder introduction pipe 9 using air pressurized to 5 kg/cm'. At the same time, the air excluding the hydrogen storage alloy powder is exhausted from the hydrogen gas inlet/output conduit 7.
このようにして、水素吸蔵合金の粉末を反応容器に充填
した場合、従来例でみられる空隙10は生じず、反応容
器内の隅々まで水素吸蔵合金の粉末が充填できた。When the reaction vessel was filled with the hydrogen storage alloy powder in this manner, the voids 10 seen in the conventional example were not created, and the hydrogen storage alloy powder could be filled into every corner of the reaction vessel.
該流体に空気以外の窒素、アルゴン、ヘリウムから成る
群から選ばれた1種以上の圧縮された気体を用いた場合
も反応容器内の隅々まで充填できた。Even when one or more compressed gases selected from the group consisting of nitrogen, argon, and helium other than air were used as the fluid, it was possible to fill every corner of the reaction vessel.
〈実施例2〉
該流体に水を用いる場合について説明する。合金粉末を
水と混合し、撹拌しながら合金粉未導入管9から注入し
た。この状態で、水素ガス出入導管7から合金粉末を除
いた水を排出することにより、反応容器内に合金を充填
した。<Example 2> A case where water is used as the fluid will be described. The alloy powder was mixed with water and injected from the pipe 9 into which no alloy powder had been introduced while stirring. In this state, water excluding the alloy powder was discharged from the hydrogen gas inlet/outlet conduit 7 to fill the reaction vessel with the alloy.
残留している水分の除去については、導入管9から約5
0℃に加熱された窒素ガス(5kg/cm’)を注入し
、7から排気することにより行い、水を除去した。To remove residual moisture, use the inlet pipe 9 to approx.
This was done by injecting nitrogen gas (5 kg/cm') heated to 0° C. and exhausting from 7 to remove water.
このようにして、反応容器内の隅々まで合金粉末を充填
することができた。In this way, it was possible to fill every corner of the reaction vessel with the alloy powder.
次に該流体に水以外の有機各課のメタノールを用いた場
合も、前記と同様の操作を行うことにより、反応容器の
隅々まで、合金粉末を充填することができた。Next, even when methanol of an organic type other than water was used as the fluid, the alloy powder could be filled to every corner of the reaction vessel by performing the same operation as described above.
また、メタノール以外の有機各課として、エタノール、
アセトン、テトラヒドロフラン及びその混合液を用いた
場合についても同様の結果が得られた。In addition, as organic materials other than methanol, ethanol,
Similar results were obtained using acetone, tetrahydrofuran, and a mixture thereof.
〈実施例3〉
水素吸蔵合金の粉末(100mesh以下)に2wt%
の分子量的2000のポリテトラフルオロエチレンと四
塩化炭素を混合、混練し、ペースト状とした後、合金粉
未導入管9から反応容器に注入した。同時に、水素ガス
出入導管7から合金粉末を除いた四塩化炭素を排出し、
反応容器内に合金を充填した。<Example 3> 2 wt% in hydrogen storage alloy powder (100 mesh or less)
Polytetrafluoroethylene with a molecular weight of 2,000 and carbon tetrachloride were mixed and kneaded to form a paste, and the paste was injected into the reaction vessel through the tube 9 into which no alloy powder was introduced. At the same time, carbon tetrachloride excluding alloy powder is discharged from the hydrogen gas inlet and outlet pipe 7,
The alloy was filled into the reaction vessel.
残留している四塩化炭素の除去については、導入管9か
ら約50℃に加熱された窒素ガス(5kg/cm”)を
注入し、7から排気することにより行い四塩化炭素を除
去した。The remaining carbon tetrachloride was removed by injecting nitrogen gas (5 kg/cm'') heated to about 50° C. from the inlet tube 9 and exhausting from the tube 7.
このようにして、反応容器内の隅々まで合金粉末を充填
することができた。In this way, it was possible to fill every corner of the reaction vessel with the alloy powder.
また、前記のポリテトラフルオロエチレンは、分解温度
が約500℃以上であるため、水素吸蔵合金が水素吸収
時の発熱によっても分解しないため水素吸蔵合金の被毒
による劣化が回避できる。Furthermore, since the polytetrafluoroethylene described above has a decomposition temperature of about 500° C. or higher, the hydrogen storage alloy does not decompose even when heat is generated during absorption of hydrogen, so deterioration due to poisoning of the hydrogen storage alloy can be avoided.
該有機溶媒には、メタノール、エタノール、プロパノー
ル、アセトン、テトラヒドロフラン、クロロホルム、塩
化メチレン、四塩化炭素から成る群から選ばれた一種以
上を用いることができた。As the organic solvent, one or more selected from the group consisting of methanol, ethanol, propanol, acetone, tetrahydrofuran, chloroform, methylene chloride, and carbon tetrachloride can be used.
この高分子材料にはポリアミド、ポリイミド。This polymer material includes polyamide and polyimide.
ポリエステル、ポリエーテル、ポリケトン、ポリカーボ
ネイト、ポリ酸無水物、ポリウレタン、ボノユリア、ポ
リフェニレン系、ポリベンゾイミダゾール、ポリビニル
系、ポリブタジェン系、セルロース系、シリコーン系、
ポリスルホン系から成る群から選ばれた一種以上、ある
いはその共重合体を用いることができた。上述において
、水素吸蔵合金の粉末を反応容器に注入する際に、空気
。Polyester, polyether, polyketone, polycarbonate, polyacid anhydride, polyurethane, bonourea, polyphenylene type, polybenzimidazole, polyvinyl type, polybutadiene type, cellulose type, silicone type,
One or more selected from the group consisting of polysulfones or copolymers thereof could be used. In the above, when the hydrogen storage alloy powder is injected into the reaction vessel, air is added.
窒素、アルゴン、・\リウム、から成る群から選ばれた
一種以−4−の圧縮された気体を用いることも可能であ
った。It was also possible to use one or more compressed gases selected from the group consisting of nitrogen, argon, .\lium.
更に、水素吸蔵合金の粉末を反応容器に注入した後、水
及び該有機溶媒を取り除く際 に、加熱あるいは減圧の
一種以上の方法を用いることができた。Furthermore, after the hydrogen storage alloy powder was injected into the reaction vessel, one or more methods of heating or depressurization could be used to remove water and the organic solvent.
〈実施例4〉
水素吸蔵合金の粉末(100mesh以下)にその2w
t%の分子量(約1000)のポリエチレンオキサイド
と水を混合、混練し、ペースト状とした後、合金粉未導
入管9から反応容器に注入した。<Example 4> 2w of hydrogen storage alloy powder (100 mesh or less)
Polyethylene oxide having a molecular weight of t% (approximately 1000) and water were mixed and kneaded to form a paste, and the paste was injected into the reaction vessel through the tube 9 into which no alloy powder had been introduced.
同時に、水素ガス出入導管7から合金粉末を除いた水を
排出し更に、水を合金粉未導入管9から注入し、ポリエ
チレンオキサイドを洗浄、除去し。At the same time, water excluding the alloy powder is discharged from the hydrogen gas inlet/output conduit 7, and water is further injected from the pipe 9 into which no alloy powder has been introduced to wash and remove polyethylene oxide.
反応容器内に合金を充填した。The alloy was filled into the reaction vessel.
残留している水分の除去については、導入管9から約5
0℃に加熱された窒素ガス(5kg/cm″)を注入し
、7から排気することにより行い、水を除去した。To remove residual moisture, use the inlet pipe 9 to approx.
This was done by injecting nitrogen gas (5 kg/cm'') heated to 0° C. and exhausting from 7 to remove water.
このようにして、反応容器内の隅々まで合金粉末を充填
することができた。In this way, it was possible to fill every corner of the reaction vessel with the alloy powder.
この高分子材料にはポリアミド、ポリイミド。This polymer material includes polyamide and polyimide.
ポリエステル、ポリエーテル、ボリウ゛トン、ポリカー
ボネイト、ポリ酸漿水物、ポリウレタン、ボフユリア、
ポリフェニレン系、ポリベンゾイミダゾール、ポリビニ
ル系、ポリブタジェン系、セルロース系、シリコーン系
、ポリスルホン系から成る群から選ばれた一種以上、あ
る いはその共重合体であって、水または有機溶媒に可
溶なものを用いることができた。Polyester, polyether, polycarbonate, polycarbonate, polyacid hydrate, polyurethane, bofuurea,
One or more types selected from the group consisting of polyphenylene, polybenzimidazole, polyvinyl, polybutadiene, cellulose, silicone, and polysulfone, or a copolymer thereof, which is soluble in water or organic solvents. I was able to use things.
該有機溶媒には、メタノール、エタノール、プロパノー
ル、アセトン、テトラヒドロフラン、クロロホルム、塩
化メチレン、四塩化炭素から成る群から選ばれた一種以
上を用いることができた。As the organic solvent, one or more selected from the group consisting of methanol, ethanol, propanol, acetone, tetrahydrofuran, chloroform, methylene chloride, and carbon tetrachloride can be used.
上記において、水素吸蔵合金の粉末を反応容器に注入す
る際に、空気、窒素、アルゴン、ヘリウム、から成る群
から選ばれた一種以上の圧縮された気体を用いることも
可能であった。In the above, it was also possible to use one or more compressed gases selected from the group consisting of air, nitrogen, argon, helium, when injecting the hydrogen storage alloy powder into the reaction vessel.
更に、水素吸蔵合金の粉末を反応容器に注入した後、水
、該有機溶媒、あるいは該高分子材料を取り除く際に、
加熱あるいは減圧の一種以上の方法を用いることができ
た。Furthermore, after injecting the hydrogen storage alloy powder into the reaction vessel, when removing water, the organic solvent, or the polymer material,
One or more methods of heating or vacuum could be used.
〈実施例5〉
第5図、第6図に示した冷熱発生用熱利用システムの熱
源側の反応容器であって、第5図は、その拡大図である
。水素吸収時は、放熱フィン11によって、反応容器を
冷却し、水素放出時は、ヒーター12によって、反応容
器を加熱することにより、機能する反応容器である。<Example 5> The reaction vessel on the heat source side of the heat utilization system for generating cold heat shown in FIGS. 5 and 6, and FIG. 5 is an enlarged view thereof. The reaction vessel functions by cooling the reaction vessel with the radiation fins 11 when absorbing hydrogen, and heating the reaction vessel with the heater 12 when releasing hydrogen.
サイズは、各合金層の厚みが約5mmと小さいため、従
来は、反応容器内の隅々まで
水素吸蔵合金の粉末を充填することができなかった。Since the size of each alloy layer is as small as approximately 5 mm, conventionally it has been impossible to fill every corner of the reaction vessel with hydrogen storage alloy powder.
しかし、本発明によれば、水素吸蔵合金の反応容器内の
形状が、第5.第6図のように複雑になっても、水素吸
蔵合金の粉末を充填する際に、空隙が発生し難く、反応
容器内の隅々まで水素吸蔵合金の粉末を充填することが
はじめて可能となった。However, according to the present invention, the shape of the hydrogen storage alloy inside the reaction vessel is the same as that of the fifth. Even if it is complicated as shown in Figure 6, it is difficult to create voids when filling the hydrogen storage alloy powder, making it possible for the first time to fill every corner of the reaction vessel with the hydrogen storage alloy powder. Ta.
(ト)発明の効果
以」・、述べた如く、本発明によれば、水素吸蔵合金の
反応容器内の形状が、複雑になっても、水素吸蔵合金の
粉末を充填する際に、空隙が発生し難く、反応容器内の
熱交換器等の隅々まで水素吸蔵合金の粉末を充填するこ
とが可能となる。(G) Effects of the Invention As stated above, according to the present invention, even if the shape of the hydrogen storage alloy reaction vessel becomes complicated, voids can be eliminated when filling the hydrogen storage alloy powder. This makes it possible to fill every corner of the heat exchanger, etc. in the reaction vessel with the hydrogen storage alloy powder.
このため、熱交換器と合金粒子との接触面積をより多く
とることができ、反応容器内で生じる反応熱を有効に外
部に取り出すことが可能となる。Therefore, the contact area between the heat exchanger and the alloy particles can be increased, and the reaction heat generated within the reaction vessel can be effectively extracted to the outside.
従って、反応容器の形状を自由に選ぶことができ、従来
は、サイズの点で、組み込みの難しかった装置にも応用
できるため、装置全体のコンパクト化が可能となる。Therefore, the shape of the reaction container can be freely selected, and the present invention can be applied to devices that were conventionally difficult to incorporate due to size, making it possible to make the entire device more compact.
第1図は水素吸蔵合金を充填すべき反応容器の側断面図
、第2図はその正面断面図、第3図は従米の充填方法に
よって水素吸蔵合金を充填したときの反応容器の要部側
断面図、第4図は本発明の充填方法によって水素吸蔵合
金を充填したときの反応容器の要部側断面図、第6図は
、従来の水素吸蔵合金の充填では充填が難しいが、本発
明により水素吸蔵合金の充填が可能となる反応容器の側
断面図、第5図はその拡大断面図である。
1・・・反応容器、2・・・外管、3
端板、4・・・水素吸蔵合金の粉末、
・フィルター管、6・・・熱交換器、
・水素ガス出入導管、8・・・フィン、・・水素吸蔵合
金の粉末の導入管、10・空隙、11・・・放熱フィン
、12・ヒーター
5 ・ −
7・ ・
9 ・Figure 1 is a side sectional view of the reaction vessel to be filled with hydrogen storage alloy, Figure 2 is its front sectional view, and Figure 3 is the main part side of the reaction vessel when filled with hydrogen storage alloy using the conventional filling method. 4 is a side sectional view of the main part of the reaction vessel when it is filled with a hydrogen storage alloy using the filling method of the present invention, and FIG. FIG. 5 is an enlarged sectional view of the reaction vessel which can be filled with a hydrogen storage alloy. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Outer tube, 3 End plate, 4... Hydrogen storage alloy powder, - Filter tube, 6... Heat exchanger, - Hydrogen gas inlet/output pipe, 8... Fin,... introduction pipe for hydrogen storage alloy powder, 10, void, 11... radiation fin, 12, heater 5 ・ - 7 ・ ・ 9 ・
Claims (11)
器に注入した後、流体成分を取り除くことを特徴とした
水素吸蔵合金の反応容器への充填方法。(1) A method for filling a reaction vessel with a hydrogen storage alloy, which comprises dispersing hydrogen storage alloy powder in a fluid and injecting the powder into the reaction vessel, and then removing fluid components.
空気、窒素、アルゴン、ヘリウム、から成る群から選ば
れた一種以上の圧縮された気体を用いることを特徴とし
た水素吸蔵合金の反応容器への充填方法。(2) In claim 1, the fluid includes:
A method for filling a reaction vessel with a hydrogen storage alloy, characterized by using one or more compressed gases selected from the group consisting of air, nitrogen, argon, and helium.
して、水を用いることを特徴とした水素吸蔵合金の反応
容器への充填方法。(3) A method for filling a reaction vessel with a hydrogen storage alloy according to claim 1, characterized in that water is used as the fluid.
有機溶媒を用いることを特徴とした水素吸蔵合金の反応
容器への充填方法。(4) In claim 1, the fluid includes:
A method for filling a reaction vessel with a hydrogen storage alloy characterized by using an organic solvent.
に、メタノール、エタノール、プロパノール、アセトン
、テトラヒドロフラン、クロロホルム、塩化メチレン、
四塩化炭素から成る群から選ばれた一種以上を用いるこ
とを特徴とした水素吸蔵合金の反応容器への充填方法。(5) In claim 4, the organic solvent includes methanol, ethanol, propanol, acetone, tetrahydrofuran, chloroform, methylene chloride,
A method for filling a reaction vessel with a hydrogen storage alloy, characterized by using one or more types selected from the group consisting of carbon tetrachloride.
いは有機溶媒の一種以上とを混合混練し、スラリー状と
して、反応容器に注入した後、水及び有機溶媒を取り除
くことを特徴とした水素吸蔵合金の反応容器への充填方
法。(6) The hydrogen-absorbing alloy powder, a small amount of polymeric material, and one or more types of water or organic solvent are mixed and kneaded, and the slurry is injected into a reaction vessel, after which the water and organic solvent are removed. Method of filling hydrogen storage alloy into reaction vessel.
いは有機溶媒の一種以上とを混合混練し、スラリー状と
して、反応容器に注入した後、水及び有機溶媒及び高分
子材料を取り除くことを特徴とした水素吸蔵合金の反応
容器への充填方法。(7) Mixing and kneading hydrogen-absorbing alloy powder, a small amount of polymeric material, and one or more types of water or organic solvents, making a slurry, and injecting the slurry into a reaction vessel, and then removing the water, organic solvent, and polymeric material. A method for filling a reaction vessel with a hydrogen storage alloy characterized by:
、上記有機溶媒に、メタノール、エタノール、プロパノ
ール、アセトン、テトラヒドロフラン、クロロホルム、
塩化メチレン、四塩化炭素から成る群から選ばれた一種
以上を用いることを特徴とする水素吸蔵合金の反応容器
への充填方法。(8) Claim 6 or 7, wherein the organic solvent includes methanol, ethanol, propanol, acetone, tetrahydrofuran, chloroform,
A method for filling a reaction vessel with a hydrogen storage alloy, characterized by using one or more selected from the group consisting of methylene chloride and carbon tetrachloride.
、該高分子材料に、ポリアミド、ポリイミド、ポリエス
テル、ポリエーテル、ポリケトン、ポリカーボネイト、
ポリ酸無水物、ポリウレタン、ポリユリア、ポリフェニ
レン系、ポリベンゾイミダゾール、ポリビニル系、ポリ
ブタジエン系、セルロース系、シリコーン系、ポリスル
ホン系から成る群から選ばれた一種以上、あるいはその
共重合体を用いることを特徴とした水素吸蔵合金の反応
容器への充填方法。(9) In claim 6 or 7, the polymer material includes polyamide, polyimide, polyester, polyether, polyketone, polycarbonate,
Characterized by using one or more selected from the group consisting of polyacid anhydride, polyurethane, polyurea, polyphenylene, polybenzimidazole, polyvinyl, polybutadiene, cellulose, silicone, and polysulfone, or a copolymer thereof. A method of filling a reaction vessel with hydrogen storage alloy.
第7項記載において、水素吸蔵合金の粉末を反応容器に
注入する際に、空気、窒素、アルゴン、ヘリウム、から
成る群から選ばれた一種以上の圧縮された気体を用いる
ことを特徴とした水素吸蔵合金の反応容器への充填方法
。(10) In claim 3, 4, 6, or 7, when the hydrogen storage alloy powder is injected into the reaction vessel, the group consisting of air, nitrogen, argon, helium, etc. A method for filling a reaction vessel with a hydrogen storage alloy, characterized by using one or more compressed gases selected from the following.
第7項記載において、水素吸蔵合金の粉末を反応容器に
注入した後、水、該有機溶媒、あるいは該高分子材料を
取り除く際に、加熱あるいは減圧の一種以上の方法を用
いることを特徴とした水素吸蔵合金の反応容器への充填
方法。(11) In claim 3, 4, 6, or 7, after the hydrogen storage alloy powder is injected into the reaction vessel, water, the organic solvent, or the polymer material is added to the reaction vessel. 1. A method for filling a reaction vessel with a hydrogen storage alloy, characterized by using one or more methods of heating or depressurization when removing the hydrogen storage alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2274682A JPH04149001A (en) | 1990-10-11 | 1990-10-11 | Method for packing hydrogen storage alloy into reaction vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2274682A JPH04149001A (en) | 1990-10-11 | 1990-10-11 | Method for packing hydrogen storage alloy into reaction vessel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04149001A true JPH04149001A (en) | 1992-05-22 |
Family
ID=17545097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2274682A Pending JPH04149001A (en) | 1990-10-11 | 1990-10-11 | Method for packing hydrogen storage alloy into reaction vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04149001A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1001123C2 (en) * | 1995-09-01 | 1997-03-04 | Stichting Energie | Activating metal surfaces for absorption and release of hydrogen |
JP2006219138A (en) * | 2005-02-08 | 2006-08-24 | Honda Motor Co Ltd | Powder filling method |
WO2013125328A1 (en) * | 2012-02-23 | 2013-08-29 | オルガノ株式会社 | Device and method for eliminating dissolved oxygen in alcohol, alcohol supply device, and cleaning liquid supply device |
US10247360B2 (en) | 2014-03-07 | 2019-04-02 | The Japan Steel Works, Ltd. | Method for filling hydrogen storage alloy |
JP2019138349A (en) * | 2018-02-08 | 2019-08-22 | 株式会社神戸製鋼所 | Method for filling resin composite hydrogen absorbing alloy into container |
-
1990
- 1990-10-11 JP JP2274682A patent/JPH04149001A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1001123C2 (en) * | 1995-09-01 | 1997-03-04 | Stichting Energie | Activating metal surfaces for absorption and release of hydrogen |
JP2006219138A (en) * | 2005-02-08 | 2006-08-24 | Honda Motor Co Ltd | Powder filling method |
WO2013125328A1 (en) * | 2012-02-23 | 2013-08-29 | オルガノ株式会社 | Device and method for eliminating dissolved oxygen in alcohol, alcohol supply device, and cleaning liquid supply device |
JP2013173678A (en) * | 2012-02-23 | 2013-09-05 | Japan Organo Co Ltd | Device and method for removing dissolved oxygen in alcohol, and alcohol supply device and cleaning liquid supply device |
US9217540B2 (en) | 2012-02-23 | 2015-12-22 | Organo Corporation | Device and method for removing dissolved oxygen in alcohol, alcohol supply apparatus and rinsing liquid supply apparatus |
US10247360B2 (en) | 2014-03-07 | 2019-04-02 | The Japan Steel Works, Ltd. | Method for filling hydrogen storage alloy |
JP2019138349A (en) * | 2018-02-08 | 2019-08-22 | 株式会社神戸製鋼所 | Method for filling resin composite hydrogen absorbing alloy into container |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hahne et al. | Thermal conductivity of metal hydride materials for storage of hydrogen: experimental investigation | |
CA1096787A (en) | Hydride storage containment | |
US4433063A (en) | Hydrogen sorbent composition | |
JPH04149001A (en) | Method for packing hydrogen storage alloy into reaction vessel | |
CN106554484A (en) | The preparation of covalent organic frame material and covalent organic frame material and its application | |
FR2536676A1 (en) | PLATE REACTORS FOR CHEMICAL SYNTHESES CARRIED OUT AT HIGH PRESSURE IN THE GAS PHASE AND HETEROGENEOUS CATALYSIS | |
JP2014080329A (en) | Hydrogen storage/release apparatus | |
US4001110A (en) | Method for the thermal treatment of tubular dialysis units and improved units resulting therefrom | |
Tuscher et al. | Porous metal hydride compacts: Preparation, properties and use | |
JP2920860B2 (en) | Heating device | |
JPH1061893A (en) | Filling method and filling structure for combustible gas and combustion supportable gas and filler using the gas | |
CN215139935U (en) | High-purity silicon carbide powder synthesizer | |
JPS609839A (en) | Hydrogen storing element | |
CA1213853A (en) | Method of improving hardly soluble gelatinizers | |
CN113464839A (en) | Self-heating type quick hydrogen supply device | |
Bertucco et al. | Characterization of a silica supported rhodium catalyst via hydrogen chemisorption, temperature programmed desorption and isotopic exchange measurements | |
JP3605502B2 (en) | Airgel production equipment | |
Iwamoto et al. | The behavior of iodine in adsorption and desorption by graphite | |
Tsuchiya et al. | Study of the high efficiency of ZrNi alloys for tritium gettering properties | |
JPH06174196A (en) | Hydrogen storage or release method using metallic hydride slurry | |
JPS6129881B2 (en) | ||
JPS62167202A (en) | Device for recovering, storing, and supplying hydrogen isotope | |
CN114797391A (en) | Hydrogen separator, regulation and control method and research reactor coolant purification system | |
JP2004243253A (en) | Particle manufacturing method and apparatus | |
KR20090012191A (en) | Activation of metal hydrides |