JP7056799B2 - Hot pressed members and their manufacturing methods, and hot pressed plated steel sheets - Google Patents
Hot pressed members and their manufacturing methods, and hot pressed plated steel sheets Download PDFInfo
- Publication number
- JP7056799B2 JP7056799B2 JP2021510138A JP2021510138A JP7056799B2 JP 7056799 B2 JP7056799 B2 JP 7056799B2 JP 2021510138 A JP2021510138 A JP 2021510138A JP 2021510138 A JP2021510138 A JP 2021510138A JP 7056799 B2 JP7056799 B2 JP 7056799B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- plating layer
- based alloy
- phase
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 84
- 239000010959 steel Substances 0.000 title claims description 84
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000007747 plating Methods 0.000 claims description 91
- 229910045601 alloy Inorganic materials 0.000 claims description 66
- 239000000956 alloy Substances 0.000 claims description 66
- 229910018134 Al-Mg Inorganic materials 0.000 claims description 65
- 229910018467 Al—Mg Inorganic materials 0.000 claims description 65
- 238000007731 hot pressing Methods 0.000 claims description 40
- 229910052726 zirconium Inorganic materials 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 24
- 229910000859 α-Fe Inorganic materials 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 17
- 239000012535 impurity Substances 0.000 claims description 14
- 238000002441 X-ray diffraction Methods 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 7
- 229910052787 antimony Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 118
- 239000011248 coating agent Substances 0.000 description 70
- 238000000576 coating method Methods 0.000 description 70
- 239000012071 phase Substances 0.000 description 59
- 239000000126 substance Substances 0.000 description 44
- 238000006243 chemical reaction Methods 0.000 description 41
- 230000007797 corrosion Effects 0.000 description 40
- 238000005260 corrosion Methods 0.000 description 40
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 27
- 238000004070 electrodeposition Methods 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 21
- 239000011701 zinc Substances 0.000 description 18
- 239000011651 chromium Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 11
- 239000010936 titanium Substances 0.000 description 9
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000008961 swelling Effects 0.000 description 6
- 238000007739 conversion coating Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 5
- 229910000165 zinc phosphate Inorganic materials 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 2
- 239000004312 hexamethylene tetramine Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- ZARVOZCHNMQIBL-UHFFFAOYSA-N oxygen(2-) titanium(4+) zirconium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4] ZARVOZCHNMQIBL-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0242—Flattening; Dressing; Flexing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/261—After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Coating With Molten Metal (AREA)
- Chemical Treatment Of Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electroplating Methods And Accessories (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、熱間プレス部材及びその製造方法、並びに熱間プレス用めっき鋼板に関する。 The present invention relates to a hot pressed member, a method for manufacturing the same, and a plated steel sheet for hot pressing.
従来から、自動車の足廻り部材や車体構造部材などの多くは、所定の強度を有する鋼板をプレス加工して製造されている。近年、地球環境の保全という観点から、自動車車体の軽量化が熱望され、使用する鋼板を高強度化して、その板厚を低減する努力が続けられている。しかし、鋼板の高強度化に伴ってそのプレス加工性が低下するため、鋼板を所望の部材形状に加工することが困難になる場合が多くなっている。 Conventionally, most of the undercarriage members and vehicle body structural members of automobiles are manufactured by pressing a steel plate having a predetermined strength. In recent years, from the viewpoint of preserving the global environment, there has been an eager desire to reduce the weight of automobile bodies, and efforts have been made to increase the strength of the steel sheets used and reduce their thickness. However, as the strength of the steel sheet increases, the press workability thereof decreases, so that it is often difficult to process the steel sheet into a desired member shape.
このような問題に対して、加熱された鋼板を、ダイとパンチからなる金型を用いて加工すると同時に急冷することにより、加工の容易化と高強度化の両立を可能にした熱間プレスと呼ばれる加工技術が提案されている。Zn合金めっき鋼板は、加熱後に下地鋼板と比べ電気化学的に卑なめっき層が残存することから、高い防錆性を有する熱間プレス用鋼板として注目されており、このZn合金めっき鋼板を用いた熱間プレス部材およびその製造方法が提案されている。 To deal with such problems, a hot press that makes it possible to achieve both ease of processing and high strength by processing a heated steel sheet using a die consisting of a die and a punch and at the same time quenching it. A processing technique called is proposed. The Zn alloy-plated steel sheet is attracting attention as a hot-pressed steel sheet having high rust resistance because a plating layer that is electrochemically lower than that of the base steel sheet remains after heating, and this Zn alloy-plated steel sheet is used. A hot-pressed member and a method for manufacturing the same have been proposed.
特許文献1には、めっき層中のAl濃度{Al}が0.2~1.0g/m2の範囲内であり、めっき層中のMg濃度{Mg}(質量%)が前記Al濃度との関係で0.10≦{Mg}/{Al}≦5を満足する熱間プレス用めっき鋼板と、この熱間プレス用めっき鋼板を加熱後、熱間プレスして得た熱間プレス部材が記載されている。In Patent Document 1, the Al concentration {Al} in the plating layer is in the range of 0.2 to 1.0 g / m 2 , and the Mg concentration {Mg} (mass%) in the plating layer is the same as the Al concentration. The hot-pressed plated steel sheet satisfying 0.10 ≦ {Mg} / {Al} ≦ 5 and the hot-pressed member obtained by hot-pressing after heating this hot-pressed plated steel sheet are Have been described.
特許文献1に記載の熱間プレス部材は、リン酸亜鉛系化成処理を施した後に電着塗装を行った際の塗装後耐食性に優れることが特許文献1に記載されている。ここで、近年では、従来のリン酸亜鉛系化成処理に代わり、ジルコニウム系化成処理が普及し始めている。そのため、熱間プレス部材には、ジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性も求められるようになってきた。しかしながら、本発明者らが検討した結果、上記特許文献1に開示される熱間プレス部材は、リン酸亜鉛系化成処理を施した後に電着塗装を行った際の塗装後耐食性には優れるものの、ジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性が不十分であることが判明した。 It is described in Patent Document 1 that the hot press member described in Patent Document 1 is excellent in post-coating corrosion resistance when electrodeposition coating is performed after performing zinc phosphate-based chemical conversion treatment. Here, in recent years, a zirconium-based chemical conversion treatment has begun to spread in place of the conventional zinc phosphate-based chemical conversion treatment. Therefore, hot pressed members are also required to have coating film adhesion and post-coating corrosion resistance when electrodeposition coating is performed after zirconium-based chemical conversion treatment. However, as a result of studies by the present inventors, the hot press member disclosed in Patent Document 1 is excellent in post-coating corrosion resistance when electrodeposition coating is performed after performing zinc phosphate-based chemical conversion treatment. It was found that the adhesion to the coating film and the corrosion resistance after coating were insufficient when the electrodeposition coating was performed after the zirconium-based chemical conversion treatment was applied.
そこで本発明は、上記課題に鑑み、ジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性に優れる熱間プレス部材と、その好適な製造方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention provides a hot pressed member having excellent coating film adhesion and post-coating corrosion resistance when electrodeposition coating is performed after zirconium-based chemical conversion treatment, and a suitable manufacturing method thereof. The purpose is.
また、本発明は、そのような熱間プレス部材を得るための素材として好適な熱間プレス用めっき鋼板を提供することを目的とする。 Another object of the present invention is to provide a hot pressed plated steel sheet suitable as a material for obtaining such a hot pressed member.
上記課題を解決すべく本発明者らは鋭意研究を行い、以下の知見を得た。
熱間プレス部材のFe-Zn-Al-Mg系合金めっき層において、Fe3Zn10相などの電気化学的に卑な金属間化合物からなるΓ相の析出を制限し、かつ、当該めっき層上に形成されるZn-Al-Mg含有酸化物層において、Al濃度及びMg濃度の合計を大きくすることによって、ジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性を向上させることができる。In order to solve the above problems, the present inventors conducted diligent research and obtained the following findings.
In the Fe—Zn—Al—Mg based alloy plating layer of the hot press member, the precipitation of the Γ phase composed of an electrochemically base metal compound such as Fe3Zn10 phase is restricted, and it is formed on the plating layer. By increasing the total of Al concentration and Mg concentration in the Zn-Al-Mg-containing oxide layer, the adhesion to the coating film and the corrosion resistance after coating can be improved when electrodeposition coating is performed after the zirconium-based chemical conversion treatment. Can be improved.
上記のような、Γ相の析出量が少ないFe-Zn-Al-Mg系合金めっき層と、Al濃度及びMg濃度の合計が大きい酸化物層とを有する熱間プレス部材を製造するためには、所定のAl量及びMg量を有し、かつ、液相線温度が400℃以下となるZn-Al-Mg系合金めっき層を有する熱間プレス用めっき鋼板を、比較的低温に加熱後、熱間プレスする必要がある。 In order to manufacture a hot press member having a Fe—Zn—Al—Mg based alloy plating layer having a small amount of Γ phase precipitation and an oxide layer having a large total Al concentration and Mg concentration as described above. After heating a plated steel sheet for hot pressing having a predetermined Al amount and Mg amount and having a Zn—Al—Mg based alloy plating layer having a liquidus temperature of 400 ° C. or less at a relatively low temperature, Need to be hot pressed.
上記知見に基づき完成された本発明の要旨構成は以下のとおりである。
[1]下地鋼板と、
前記下地鋼板の少なくとも片面に、片面当たりの付着量が40~400g/m2で形成された、α-Fe相及びΓ相を含むFe-Zn-Al-Mg系合金めっき層と、
前記Fe-Zn-Al-Mg系合金めっき層上に形成された、Zn、Al及びMgを含有する酸化物層と、
を有し、
入射角度25°のCo-Kα(波長1.79021Å)を線源としたX線回折による、41.5°≦2θ≦43.0°に存在するΓ相の(411)面の回折ピークの強度IΓと、51.0°≦2θ≦52.0°に存在するα-Fe相の(110)面の回折ピークの強度Iαとの比IΓ/Iαが0.5以下であり、
前記酸化物層のAl濃度とMg濃度の和が28原子%以上である
ことを特徴とする熱間プレス部材。The abstract structure of the present invention completed based on the above findings is as follows.
[1] Base steel plate and
An Fe—Zn—Al—Mg-based alloy plating layer containing an α—Fe phase and a Γ phase formed on at least one surface of the base steel sheet with an adhesion amount of 40 to 400 g / m 2 per surface.
An oxide layer containing Zn, Al and Mg formed on the Fe—Zn—Al—Mg based alloy plating layer and
Have,
The intensity of the diffraction peak of the (411) plane of the Γ phase existing at 41.5 ° ≤ 2θ ≤ 43.0 ° by X-ray diffraction using Co-Kα (wavelength 1.79021Å) with an incident angle of 25 ° as the radiation source. The ratio I Γ / I α between I Γ and the intensity I α of the diffraction peak of the (110) plane of the α—Fe phase existing at 51.0 ° ≦ 2θ ≦ 52.0 ° is 0.5 or less.
A hot pressing member characterized in that the sum of the Al concentration and the Mg concentration of the oxide layer is 28 atomic% or more.
[2]下地鋼板と、
前記下地鋼板の少なくとも片面に、片面当たりの付着量が30~180g/m2で形成された、質量%で、Al:3~10%及びMg:0.2~0.8%を含み、残部がZn及び不可避的不純物である成分組成を有し、大気雰囲気下における液相線温度が400℃以下であるZn-Al-Mg系合金めっき層と、
を有する熱間プレス用めっき鋼板を、Ac3変態点~1000℃の温度範囲に加熱後、熱間プレスすることを特徴とする熱間プレス部材の製造方法。[2] Base steel plate and
The base steel sheet is formed on at least one side with an adhesion amount of 30 to 180 g / m 2 per side, and contains Al: 3 to 10% and Mg: 0.2 to 0.8% in mass%, and the balance. Is a Zn—Al—Mg based alloy plating layer having a component composition of Zn and unavoidable impurities and having a liquidus temperature of 400 ° C. or lower in an air atmosphere.
A method for manufacturing a hot-pressed member, which comprises heating a plated steel sheet for hot pressing, which comprises the above, to a temperature range of Ac 3 transformation point to 1000 ° C., and then hot-pressing.
[3]前記Zn-Al-Mg系合金めっき層の成分組成が、さらに、質量%で、Ca、Sr、Mn、V、Cr、Mo、Ti、Ni、Co、Sb、Zr及びBから選ばれる少なくとも一種を、合計で1%以下の範囲で含む、上記[2]に記載の熱間プレス部材の製造方法。 [3] The component composition of the Zn—Al—Mg based alloy plating layer is further selected from Ca, Sr, Mn, V, Cr, Mo, Ti, Ni, Co, Sb, Zr and B in mass%. The method for manufacturing a hot-pressed member according to the above [2], which comprises at least one type in a range of 1% or less in total.
[4]下地鋼板と、
前記下地鋼板の少なくとも片面に、片面当たりの付着量が30~180g/m2で形成された、質量%で、Al:3~10%及びMg:0.2~0.8%を含み、残部がZn及び不可避的不純物である成分組成を有し、大気雰囲気下における液相線温度が400℃以下であるZn-Al-Mg系合金めっき層と、
を有することを特徴とする熱間プレス用めっき鋼板。[4] Base steel plate and
The base steel sheet is formed on at least one side with an adhesion amount of 30 to 180 g / m 2 per side, and contains Al: 3 to 10% and Mg: 0.2 to 0.8% in mass%, and the balance. Is a Zn—Al—Mg based alloy plating layer having a component composition of Zn and unavoidable impurities and having a liquidus temperature of 400 ° C. or lower in an air atmosphere.
A plated steel sheet for hot pressing, characterized by having.
[5]前記Zn-Al-Mg系合金めっき層の成分組成が、さらに、質量%で、Ca、Sr、Mn、V、Cr、Mo、Ti、Ni、Co、Sb、Zr及びBから選ばれる少なくとも一種を、合計で1%以下の範囲で含む、上記[4]に記載の熱間プレス用めっき鋼板。 [5] The component composition of the Zn—Al—Mg based alloy plating layer is further selected from Ca, Sr, Mn, V, Cr, Mo, Ti, Ni, Co, Sb, Zr and B in mass%. The plated steel sheet for hot pressing according to the above [4], which contains at least one type in a total range of 1% or less.
本発明の熱間プレス部材は、ジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性に優れる。また、本発明の熱間プレス部材の製造方法によれば、ジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性に優れる熱間プレス部材を製造することができる。 The hot pressed member of the present invention is excellent in coating film adhesion and post-coating corrosion resistance when electrodeposition coating is performed after zirconium-based chemical conversion treatment. Further, according to the method for manufacturing a hot pressed member of the present invention, a hot pressed member having excellent coating film adhesion and post-coating corrosion resistance when electrodeposition coating is performed after zirconium-based chemical conversion treatment is performed is to be produced. Can be done.
本発明の熱間プレス用めっき鋼板は、ジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性に優れる熱間プレス部材を製造するための素材として好適である。 The plated steel sheet for hot pressing of the present invention is suitable as a material for producing a hot-pressed member having excellent coating film adhesion and post-coating corrosion resistance when electrodeposition coating is performed after zirconium-based chemical conversion treatment. be.
(熱間プレス部材)
本発明の一実施形態による熱間プレス部材は、下地鋼板と、前記下地鋼板の少なくとも片面に形成されたFe-Zn-Al-Mg系合金めっき層と、前記Fe-Zn-Al-Mg系合金めっき層上に形成された酸化物層と、を有する。(Hot pressing member)
The hot press member according to the embodiment of the present invention includes a base steel plate, a Fe—Zn—Al—Mg-based alloy plating layer formed on at least one surface of the base steel plate, and the Fe—Zn—Al—Mg-based alloy. It has an oxide layer formed on the plating layer.
[下地鋼板]
本実施形態の熱間プレス部材における下地鋼板は、特に限定されないが、熱間プレス部材の引張強さTSを1470MPa以上とするためには、後記の熱間プレス用めっき鋼板の項で説明する成分組成を有する鋼板を用いることが好ましい。[Base steel plate]
The base steel sheet in the hot-pressed member of the present embodiment is not particularly limited, but in order to make the tensile strength TS of the hot-pressed member 1470 MPa or more, the components described in the section of the hot-pressed plated steel sheet below. It is preferable to use a steel sheet having a composition.
[Fe-Zn-Al-Mg系合金めっき層]
本実施形態の熱間プレス部材におけるFe-Zn-Al-Mg系合金めっき層は、α-Fe相及びΓ相を含み、好ましくは、α-Fe相及びΓ相からなる。[Fe-Zn-Al-Mg based alloy plating layer]
The Fe—Zn—Al—Mg-based alloy plating layer in the hot press member of the present embodiment contains an α—Fe phase and a Γ phase, and is preferably composed of an α—Fe phase and a Γ phase.
α-Fe相は、Feを主体としZn、Al及びMgを含有する固溶体相である。Zn-Al-Mg系合金めっき層を有する熱間プレス用めっき鋼板に熱間プレスを施すと、めっき層中のZn、Al及びMgが下地鋼板に拡散し、この拡散領域においてFeを主体としZn、Al及びMgを含有する固溶体相(α-Fe相)を形成する。α-Fe相は、めっき鋼板における下地鋼板の表層部を侵食するように形成されるが、熱間プレス部材においては、一般的に、下地鋼板上に位置するFe-Zn-Al-Mg系合金めっき層の一部を構成するものと解釈される。 The α—Fe phase is a solid solution phase containing Fe as a main component and Zn, Al and Mg. When a hot-pressed plated steel sheet having a Zn—Al—Mg-based alloy plating layer is hot-pressed, Zn, Al and Mg in the plated layer diffuse into the underlying steel sheet, and Zn is mainly Fe in this diffusion region. , Al and Mg-containing solid solution phase (α-Fe phase) is formed. The α—Fe phase is formed so as to erode the surface layer portion of the base steel sheet in the plated steel sheet, but in hot press members, it is generally a Fe—Zn—Al—Mg-based alloy located on the base steel sheet. It is interpreted as forming a part of the plating layer.
Γ相は、Znを主体とし、Al、Mg、及びFeを含有する金属間化合物からなる相であり、主に、Fe3Zn10相からなる。また、Γ1相はΓ相と類似した結晶構造を有し、X線回折により判別することが困難であることから、本明細書において「Γ相」は、Γ1相も含むものとする。Γ相を構成する他の組成の金属間化合物としては、Fe4Zn9、FeZn4、Fe5Zn21などが例示される。熱間プレスの際に、下地鋼板への拡散に寄与せずに残存するZn-Al-Mg系合金めっき層が、下地鋼板から拡散したFeを取り込むことによって、金属間化合物からなるΓ相が形成され、熱間プレス部材において、Fe-Zn-Al-Mg系合金めっき層の一部を構成する。 The Γ phase is a phase composed of an intermetallic compound containing Zn as a main component, Al, Mg, and Fe, and is mainly composed of a Fe3Zn10 phase. Further, since the Γ1 phase has a crystal structure similar to that of the Γ phase and is difficult to discriminate by X-ray diffraction, the “Γ phase” in the present specification also includes the Γ1 phase. Examples of the intermetallic compound having another composition constituting the Γ phase include Fe4Zn9, FeZn4, and Fe5Zn21. During hot pressing, the Zn—Al—Mg-based alloy plating layer that remains without contributing to the diffusion to the base steel sheet takes in Fe diffused from the base steel sheet to form a Γ phase composed of an intermetallic compound. Then, in the hot press member, it constitutes a part of the Fe—Zn—Al—Mg based alloy plating layer.
ここで、α-Fe相及びΓ相は、熱間プレス部材のFe-Zn-Al-Mg系合金めっき層の断面SEM画像において、明確に異なるコントラストを有することから、各々識別可能である。図1及び図2を参照して、熱間プレス部材の表層部において比較的明るく見える部分がΓ相であり、比較的暗く見える部分がα-Fe相である。また、α-Fe相及びΓ相は、入射角度25°のCo-Kα(波長1.79021Å)を線源としたX線回折により同定できる。 Here, the α—Fe phase and the Γ phase can be distinguished from each other because they have clearly different contrasts in the cross-sectional SEM image of the Fe—Zn—Al—Mg-based alloy plating layer of the hot press member. With reference to FIGS. 1 and 2, the portion of the surface layer of the hot pressed member that looks relatively bright is the Γ phase, and the portion that looks relatively dark is the α—Fe phase. Further, the α-Fe phase and the Γ phase can be identified by X-ray diffraction using Co-Kα (wavelength 1.79021 Å) having an incident angle of 25 ° as a radiation source.
Fe-Zn-Al-Mg系合金めっき層中のΓ相は、下地鋼板やα-Fe相と比べて著しく卑な電位を有するため、腐食環境に曝露された際に、優先的に腐食される。すなわち、Γ相は下地鋼板やα-Fe相に対して犠牲防食能を示す。 Since the Γ phase in the Fe—Zn—Al—Mg alloy plating layer has a significantly lower potential than the underlying steel sheet and α—Fe phase, it is preferentially corroded when exposed to a corrosive environment. .. That is, the Γ phase exhibits sacrificial anticorrosion ability against the base steel plate and the α-Fe phase.
ここで、リン酸亜鉛系の化成処理皮膜は、Zn系合金に対し優れた腐食インヒビターとしての機能を有する。そのため、Zn-Al-Mg系合金めっき鋼板を熱間プレスして得た熱間プレス部材にリン酸亜鉛系化成処理を施した後に電着塗装した部材が、塗膜、化成処理皮膜、及びめっき層を貫通して下地鋼板まで到達する疵を受けて、犠牲防食状態となっても、Γ相の腐食速度は小さく、塗膜下での腐食速度は十分に小さく、実使用環境において塗装後耐食性は問題とならない。 Here, the zinc phosphate-based chemical conversion-treated film has a function as an excellent corrosion inhibitor with respect to the Zn-based alloy. Therefore, the hot-pressed member obtained by hot-pressing a Zn-Al-Mg-based alloy-plated steel plate is subjected to zinc phosphate-based chemical conversion treatment and then electrodeposition-coated to form a coating film, a chemical conversion-treated film, and plating. The corrosion rate of the Γ phase is low, the corrosion rate under the coating film is sufficiently low, and the corrosion resistance after coating is low even in the sacrificial corrosion protection state due to the flaw that penetrates the layer and reaches the underlying steel plate. Does not matter.
これに対して、ジルコニウム酸化物系の化成処理皮膜は、Zn系合金に対する腐食インヒビター機能を有さない。そのため、犠牲防食状態となった後に、Γ相の腐食速度が大きく、その結果、塗膜下での腐食速度は大きくなる。そして、Γ相の量が多く、Fe-Zn-Al-Mg系合金めっき層中にΓ相が分断せずに連続的に存在する場合には、犠牲防食状態となった際に、塗膜下環境においてΓ相の腐食が面内に伝播し、塗膜膨れなどの外観不良として視認される。よって、ジルコニウム系化成処理を適用する場合は、塗装後耐食性の確保のためにΓ相の量を制限することが肝要である。 On the other hand, the zirconium oxide-based chemical conversion coating does not have a corrosion inhibitor function for Zn-based alloys. Therefore, after the sacrificial anticorrosion state is reached, the corrosion rate of the Γ phase is high, and as a result, the corrosion rate under the coating film is high. When the amount of the Γ phase is large and the Γ phase is continuously present in the Fe—Zn—Al—Mg based alloy plating layer without being divided, it is under the coating film when the sacrificial anticorrosion state is reached. In the environment, corrosion of the Γ phase propagates in the plane and is visually recognized as poor appearance such as swelling of the coating film. Therefore, when applying zirconium-based chemical conversion treatment, it is important to limit the amount of Γ phase in order to ensure corrosion resistance after painting.
そこで本実施形態では、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗装後耐食性を向上するための必要条件の一つとして、Fe3Zn10相などの電気化学的に卑な金属間化合物からなるΓ相の析出を制限することが肝要である。具体的には、入射角度25°のCo-Kα(波長1.79021Å)を線源としたX線回折による、41.5°≦2θ≦43.0°に存在するΓ相の(411)面の回折ピークの強度IΓと、51.0°≦2θ≦52.0°に存在するα-Fe相の(110)面の回折ピークの強度Iαとの比IΓ/Iαが0.5以下であることが肝要である。IΓ/Iαが0.5超えの場合、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗装後耐食性が不十分となる。IΓ/Iαが0.5以下であれば、Fe-Zn-Al-Mg系合金めっき層中でΓ相はα-Fe相により十分に分断され、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際に優れた塗装後耐食性を得ることができる。Therefore, in the present embodiment, as one of the necessary conditions for improving the corrosion resistance after coating when electrodeposition coating is performed after the hot press member is subjected to zirconium-based chemical conversion treatment, Fe3Zn10 phase or the like is electrochemically used. It is essential to limit the precipitation of the Γ phase, which consists of a base intermetallic compound. Specifically, the (411) plane of the Γ phase existing at 41.5 ° ≤ 2θ ≤ 43.0 ° by X-ray diffraction using Co-Kα (wavelength 1.79021 Å) with an incident angle of 25 ° as the radiation source. The ratio I Γ / I α of the diffraction peak intensity I Γ to the diffraction peak intensity I α of the (110) plane of the α-Fe phase existing at 51.0 ° ≤ 2θ ≤ 52.0 ° is 0. It is important that it is 5 or less. When I Γ / I α is more than 0.5, the corrosion resistance after coating when the hot pressed member is subjected to zirconium-based chemical conversion treatment and then electrodeposition coating is performed becomes insufficient. If I Γ / I α is 0.5 or less, the Γ phase is sufficiently separated by the α—Fe phase in the Fe—Zn—Al—Mg-based alloy plating layer, and the hot-pressed member is subjected to zirconium-based chemical conversion treatment. When electrodeposition coating is performed after application, excellent post-coating corrosion resistance can be obtained.
IΓ/Iαの値は小さいほど好ましいため、下限は特に限定されないが、上記のようにX線回折で測定した際に検出されるIΓ/Iαの値は、通常0.01以上となる。The smaller the value of I Γ / I α , the more preferable, so the lower limit is not particularly limited, but the value of I Γ / I α detected when measured by X-ray diffraction as described above is usually 0.01 or more. Become.
なお、上記の入射角度及び線源以外のX線回折の測定条件については、比IΓ/Iαに影響を与えるものではないが、後述の実施例に記載の条件を採用することができる。The measurement conditions for X-ray diffraction other than the above incident angle and radiation source do not affect the ratio I Γ / I α , but the conditions described in Examples described later can be adopted.
片面当たりの付着量:40~400g/m2
熱間プレス部材のFe-Zn-Al-Mg系合金めっき層の付着量を40~400g/m2とすることにより、耐食性に優れた熱間プレス部材を得ることができる。付着量が40g/m2未満であると、所望の耐食性を有する熱間プレス部材を得ることができない。付着量が400g/m2を超えると、熱間プレス後のめっき層の凝固収縮の影響で、めっき層内を横断するクラックの本数が著しく大きくなり、めっき層内の密着性が著しく劣化する。熱間プレス部材のめっき層の付着量は、好ましくは50g/m2以上とし、より好ましくは60g/m2以上する。また、熱間プレス部材のめっき層の付着量は、好ましくは350g/m2以下とし、より好ましくは300g/m2以下とする。Adhesion amount per side: 40-400 g / m 2
By setting the adhesion amount of the Fe—Zn—Al—Mg-based alloy plating layer of the hot pressing member to 40 to 400 g / m 2 , a hot pressing member having excellent corrosion resistance can be obtained. If the adhesion amount is less than 40 g / m 2 , a hot pressed member having a desired corrosion resistance cannot be obtained. When the adhesion amount exceeds 400 g / m 2 , the number of cracks crossing the inside of the plating layer is remarkably increased due to the influence of solidification shrinkage of the plating layer after hot pressing, and the adhesion in the plating layer is remarkably deteriorated. The amount of adhesion of the plating layer of the hot pressed member is preferably 50 g / m 2 or more, and more preferably 60 g / m 2 or more. The amount of adhesion of the plating layer of the hot pressed member is preferably 350 g / m 2 or less, and more preferably 300 g / m 2 or less.
本明細書において、熱間プレス部材の「Fe-Zn-Al-Mg系合金めっき層の片面当たりの付着量」は、以下の方法で求めるものとする。評価対象とする熱間プレス部材を打抜き加工して、48mmφの試料3つを採取する。その後、各試料において付着量を評価する片面とは反対側の非評価面をマスキングする。まず、室温の20%酸化クロム(VI)水溶液に、各試料を10分間浸漬することにより、酸化物層を溶解し、各試料を計量する。次に、ヘキサメチレンテトラミン3.5gを添加した500mLの35%塩酸水溶液を1Lにメスアップした溶液に、各試料を120分間浸漬することにより、Fe-Zn-Al-Mg系合金めっき層を溶解し、各試料を再度計量する。Fe-Zn-Al-Mg系合金めっき層の溶解前後の質量差から、各試料における単位面積あたりの付着量を算出する。そして、3試料の平均値を、片面あたりの付着量とする。 In the present specification, the "adhesion amount of the Fe-Zn-Al-Mg-based alloy plating layer per one side" of the hot pressed member shall be determined by the following method. The hot pressed member to be evaluated is punched and three 48 mmφ samples are collected. Then, in each sample, the non-evaluation surface on the opposite side to the one surface for which the adhesion amount is evaluated is masked. First, the oxide layer is dissolved by immersing each sample in a 20% aqueous solution of chromium oxide (VI) at room temperature for 10 minutes, and each sample is weighed. Next, the Fe—Zn—Al—Mg-based alloy plating layer was dissolved by immersing each sample in a solution prepared by adding 3.5 g of hexamethylenetetramine to 1 L of a 500 mL 35% hydrochloric acid aqueous solution for 120 minutes. Then weigh each sample again. The amount of adhesion per unit area in each sample is calculated from the mass difference before and after the dissolution of the Fe—Zn—Al—Mg based alloy plating layer. Then, the average value of the three samples is taken as the adhesion amount per one side.
[酸化物層]
本実施形態の熱間プレス部材における酸化物層は、Fe-Zn-Al-Mg系合金めっき層上に形成され、Zn、Al及びMgを含有する。Zn-Al-Mg系合金めっき層を有する熱間プレス用めっき鋼板に熱間プレスを施すと、めっき層中のZn、Al及びMgが加熱雰囲気中に存在する酸素と結合して、Zn、Al及びMgを含有する酸化物層が形成される。なお、酸化物層は、Al酸化物を主体とするが、めっき層に含有されるZnやMgを含有し、さらに下地鋼板を構成する元素、例えばFe、Mn、Cr等を含有してもよい。[Oxide layer]
The oxide layer in the hot press member of the present embodiment is formed on the Fe—Zn—Al—Mg based alloy plating layer and contains Zn, Al and Mg. When a hot-pressed plated steel plate having a Zn—Al—Mg-based alloy plating layer is hot-pressed, Zn, Al and Mg in the plating layer combine with oxygen existing in the heating atmosphere to combine Zn and Al. And an oxide layer containing Mg is formed. Although the oxide layer is mainly composed of Al oxide, it may contain Zn and Mg contained in the plating layer, and may further contain elements constituting the base steel sheet, such as Fe, Mn and Cr. ..
本実施形態では、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗装後耐食性を向上するためのもう一つの必要条件として、酸化物層のAl濃度とMg濃度の和が28原子%以上であることが肝要である。酸化物層のAl濃度とMg濃度の和が28原子%未満の場合、上記のIΓ/Iαが0.5以下であったとしても、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗装後耐食性が不十分となる。これは、酸化物層を構成するZn濃度が大きい場合、化成処理液と酸化物層の反応が不均一となり、酸化物層の表面に生成するジルコニウム系化成処理皮膜の厚さのムラが大きくなるためであると推定される。すなわち、化成処理皮膜が薄くなる箇所が形成されやすくなり、酸化物層と化成処理皮膜、あるいは化成処理皮膜と塗膜の間の密着性が低下する、あるいは化成処理皮膜の被覆が不完全となるためであると推定される。これに対して、酸化物層のAl濃度とMg濃度の和が28原子%以上であれば、ジルコニウム系化成処理皮膜が健全に生成するため、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際に優れた塗装後耐食性を得ることができる。In the present embodiment, the Al concentration and Mg concentration of the oxide layer are another necessary conditions for improving the corrosion resistance after coating when the hot press member is subjected to zirconium-based chemical conversion treatment and then electrodeposition coating is performed. It is important that the sum of is 28 atomic% or more. When the sum of the Al concentration and the Mg concentration of the oxide layer is less than 28 atomic%, even if the above I Γ / I α is 0.5 or less, after the hot press member is subjected to zirconium-based chemical conversion treatment. Corrosion resistance after coating when electrodeposition coating is performed becomes insufficient. This is because when the Zn concentration constituting the oxide layer is high, the reaction between the chemical conversion treatment liquid and the oxide layer becomes non-uniform, and the thickness of the zirconium-based chemical conversion treatment film formed on the surface of the oxide layer becomes uneven. It is presumed to be due to. That is, a portion where the chemical conversion coating is thinned is likely to be formed, and the adhesion between the oxide layer and the chemical conversion coating, or the adhesion between the chemical conversion coating and the coating film is lowered, or the coating of the chemical conversion coating is incomplete. It is presumed to be due to. On the other hand, if the sum of the Al concentration and the Mg concentration of the oxide layer is 28 atomic% or more, a zirconium-based chemical conversion treatment film is formed soundly. Therefore, after the hot press member is subjected to the zirconium-based chemical conversion treatment. Excellent post-coating corrosion resistance can be obtained when electrodeposition coating is performed.
また、酸化物層のAl濃度とMg濃度の和が28原子%未満の場合、酸化物層が脆くなるため、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性が不十分となる。これに対して、酸化物層のAl濃度とMg濃度の和が28原子%以上であれば、酸化物層が十分な強度を有するため、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性が良好となる。 Further, when the sum of the Al concentration and the Mg concentration of the oxide layer is less than 28 atomic%, the oxide layer becomes brittle. The adhesion of the coating film becomes insufficient. On the other hand, if the sum of the Al concentration and the Mg concentration of the oxide layer is 28 atomic% or more, the oxide layer has sufficient strength. The adhesion of the coating film when the coating is applied is improved.
酸化物層のAl濃度とMg濃度の和の上限は特に限定されない。ただし、過剰に高濃度のAlとMgを含有する酸化物層は、塗装下地処理用の化成処理液のような酸性環境下において化学的に安定であり、化成処理皮膜の形成を妨げる場合がある。よって、酸化物層のAl濃度とMg濃度の和は50原子%以下とすることが好ましい。 The upper limit of the sum of the Al concentration and the Mg concentration of the oxide layer is not particularly limited. However, the oxide layer containing an excessively high concentration of Al and Mg is chemically stable in an acidic environment such as a chemical conversion treatment liquid for coating base treatment, and may hinder the formation of a chemical conversion treatment film. .. Therefore, the sum of the Al concentration and the Mg concentration of the oxide layer is preferably 50 atomic% or less.
本実施形態において、酸化物層はFe-Zn-Al-Mg系合金めっき層上にごく薄く形成されるため、図1に示すように、断面SEM画像では視認できないこともある。ただし、酸化物層は、熱間プレス部材の表層部の断面を、SEMと組み合わせたエネルギー分散型X線分析(EDX)により測定して、元素マッピングを行うことによって、酸素が検出される領域として同定することができる。また、本明細書において「酸化物層のAl濃度とMg濃度」は、以下の方法により測定される値とする。すなわち、熱間プレス部材の平坦部から断面観察用の試験片を採取する。試験片のFe-Zn-Al―Mg系合金めっき層及び酸化物層を含む断面を、加速電圧15kVの走査電子顕微鏡(SEM)を用いて10000倍で観察し、任意の3箇所において、酸化物層の組成をエネルギー分散型X線分析(EDX)によって測定する。3箇所のAl濃度及びMg濃度の加算平均を、それぞれ「酸化物層のAl濃度」及び「酸化物層のMg濃度」とする。 In the present embodiment, since the oxide layer is formed very thinly on the Fe—Zn—Al—Mg based alloy plating layer, it may not be visible in the cross-sectional SEM image as shown in FIG. However, the oxide layer is a region where oxygen is detected by measuring the cross section of the surface layer of the hot press member by energy dispersive X-ray analysis (EDX) combined with SEM and performing element mapping. Can be identified. Further, in the present specification, the "Al concentration and Mg concentration of the oxide layer" are values measured by the following method. That is, a test piece for cross-section observation is collected from the flat portion of the hot pressed member. The cross section of the test piece including the Fe-Zn-Al-Mg based alloy plating layer and the oxide layer was observed at 10000 times using a scanning electron microscope (SEM) with an acceleration voltage of 15 kV, and the oxide was observed at any three points. The composition of the layer is measured by energy dispersive X-ray analysis (EDX). The added average of the Al concentration and the Mg concentration at the three locations is defined as the "Al concentration of the oxide layer" and the "Mg concentration of the oxide layer", respectively.
(熱間プレス部材の製造方法)
本発明の一実施形態による熱間プレス部材の製造方法は、後記する本発明の一実施形態による熱間プレス用めっき鋼板を、Ac3変態点~1000℃の温度範囲に加熱後、熱間プレスすることを特徴とする。(Manufacturing method of hot pressing member)
In the method for manufacturing a hot pressed member according to an embodiment of the present invention, a galvanized steel sheet for hot pressing according to an embodiment of the present invention, which will be described later, is heated to a temperature range of Ac 3 transformation point to 1000 ° C. and then hot pressed. It is characterized by doing.
熱間プレス前の熱間プレス用鋼板の加熱温度をAc3変態点~1000℃とすることにより、上記で説明した、α-Fe相及びΓ相を有するFe-Zn-Al-Mg系合金めっき層並びに所定のAl濃度及びMg濃度を有する酸化物層を得ることができる。加熱温度がAc3変態点より低いと、熱間プレス後において、Fe-Zn-Al-Mg系合金めっき層のIΓ/Iαが0.5を超えてしまう。その結果、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗装後耐食性が不十分となる。加熱温度が1000℃を超えると、所望の酸化物層を得ることができず、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性が不十分となる。なお、ここでいう「加熱温度」とは、鋼板の最高到達温度のことをいう。なお、本明細書において、「Ac3変態点」は、鋼板の成分組成に基づき、以下の式から算出した値とする。
Ac3変態点(℃)=910-203C1/2+44.7Si-4Mn+11Cr
なお、式の右辺における元素記号は、各元素の含有量を示し、Crを含有しない場合は、Cr=0とする。By setting the heating temperature of the hot-pressed steel sheet before hot-pressing to the Ac 3 transformation point to 1000 ° C., the Fe—Zn—Al—Mg-based alloy plating having the α—Fe phase and the Γ phase described above was performed. A layer and an oxide layer having a predetermined Al concentration and Mg concentration can be obtained. If the heating temperature is lower than the Ac 3 transformation point, the I Γ / I α of the Fe—Zn—Al—Mg based alloy plating layer exceeds 0.5 after hot pressing. As a result, the corrosion resistance after coating when the hot pressed member is subjected to zirconium-based chemical conversion treatment and then electrodeposited is insufficient. If the heating temperature exceeds 1000 ° C, the desired oxide layer cannot be obtained, and the coating film adhesion and post-coating corrosion resistance when electrodeposition coating is performed after the hot-pressed member is subjected to zirconium-based chemical conversion treatment. Is insufficient. The "heating temperature" here means the maximum temperature reached by the steel sheet. In this specification, the "Ac 3 transformation point" is a value calculated from the following formula based on the composition of the steel sheet.
Ac 3 transformation point (° C) = 910-203C 1/2 + 44.7Si-4Mn + 11Cr
The element symbol on the right side of the equation indicates the content of each element, and when Cr is not contained, Cr = 0.
加熱温度に昇温後の保持時間については何ら限定されるものではないが、Γ相を消失させて、熱間プレス時の液体金属脆化割れを回避する観点から、保持時間は30秒以上とすることが望ましい。保持時間中に炉内の水蒸気を取り込むことによる水素浸入を避ける観点からは、保持時間は5分以内とすることが好ましく、より好ましくは3分以内、さらに好ましくは2分以内とする。 The holding time after raising the temperature to the heating temperature is not limited at all, but the holding time is 30 seconds or more from the viewpoint of eliminating the Γ phase and avoiding the embrittlement cracking of the liquid metal during hot pressing. It is desirable to do. From the viewpoint of avoiding hydrogen infiltration due to taking in water vapor in the furnace during the holding time, the holding time is preferably 5 minutes or less, more preferably 3 minutes or less, and further preferably 2 minutes or less.
熱間プレス用鋼板を加熱する方法は何ら限定されるものでなく、電気炉やガス炉による炉加熱、通電加熱、誘導加熱、高周波加熱、火炎加熱などが例示される。 The method for heating the hot pressed steel sheet is not limited in any way, and examples thereof include furnace heating by an electric furnace or a gas furnace, energization heating, induction heating, high frequency heating, and flame heating.
熱間プレスでは、上記のように加熱された熱間プレス用めっき鋼板に、成形用金型を用いてプレス成形及び焼入れを同時に施して、所定形状の熱間プレス部材を得る。熱間プレスの条件は特に限定されず、定法を採用することができる。 In hot pressing, a hot-pressed plated steel sheet heated as described above is simultaneously pressed and quenched using a forming die to obtain a hot-pressed member having a predetermined shape. The conditions for hot pressing are not particularly limited, and a fixed method can be adopted.
(熱間プレス用めっき鋼板)
本発明の一実施形態による熱間プレス用めっき鋼板は、下地鋼板と、前記下地鋼板の少なくとも片面に、片面当たりの付着量が30~180g/m2で形成された、質量%で、Al:3~10%及びMg:0.2~0.8%を含み、残部がZn及び不可避的不純物である成分組成を有し、大気雰囲気下における液相線温度が400℃以下であるZn-Al-Mg系合金めっき層と、を有することを特徴とする。(Plated steel sheet for hot pressing)
The hot-pressed plated steel sheet according to the embodiment of the present invention is formed on the base steel sheet and at least one side of the base steel sheet with an adhesion amount of 30 to 180 g / m 2 per side, in mass%, Al: Zn-Al containing 3 to 10% and Mg: 0.2 to 0.8%, having a component composition in which the balance is Zn and unavoidable impurities, and the liquidus temperature in an air atmosphere is 400 ° C. or lower. It is characterized by having a Mg-based alloy plating layer.
[下地鋼板]
1470MPa以上の引張強さTSを有する熱間プレス部材を得るには、下地鋼板として、例えば、質量%で、C:0.20~0.35%、Si:0.1~0.5%、Mn:1.0~3.0%、P:0.1%以下、S:0.05%以下、Al:0.1%以下、N:0.01%以下を含有し、残部がFe及び不可避的不純物である成分組成を有する鋼板を用いることが好ましい。なお、下地鋼板は冷延鋼板及び熱延鋼板のいずれでも構わない。各成分元素の限定理由を、以下に説明する。[Base steel plate]
In order to obtain a hot pressed member having a tensile strength TS of 1470 MPa or more, as a base steel sheet, for example, in terms of mass%, C: 0.20 to 0.35%, Si: 0.1 to 0.5%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: 0.05% or less, Al: 0.1% or less, N: 0.01% or less, and the balance is Fe and It is preferable to use a steel sheet having a component composition that is an unavoidable impurity. The base steel plate may be either a cold-rolled steel plate or a hot-rolled steel plate. The reasons for limiting each component element will be described below.
C:0.20~0.35%
Cは、鋼組織としてマルテンサイトなどを形成させることで強度を向上させる。1470MPa以上のTSを得るためには、C量を0.20%以上とする必要がある。一方、C量が0.35%を超えると、スポット溶接部の靱性が劣化する。したがって、C量は0.20~0.35%とすることが好ましい。C: 0.20 to 0.35%
C improves the strength by forming martensite or the like as a steel structure. In order to obtain TS of 1470 MPa or more, the amount of C needs to be 0.20% or more. On the other hand, if the amount of C exceeds 0.35%, the toughness of the spot welded portion deteriorates. Therefore, the amount of C is preferably 0.20 to 0.35%.
Si:0.1~0.5%
Siは、鋼を強化して良好な材質を得るのに有効な元素である。そのためには、Si量を0.1%以上とする必要がある。一方、Si量が0.5%を超えると、フェライトが安定化されるため、焼入れ性が低下する。したがって、Si量は0.1~0.5%とすることが好ましい。Si: 0.1-0.5%
Si is an effective element for strengthening steel to obtain a good material. For that purpose, the amount of Si needs to be 0.1% or more. On the other hand, when the amount of Si exceeds 0.5%, the ferrite is stabilized and the hardenability is lowered. Therefore, the amount of Si is preferably 0.1 to 0.5%.
Mn:1.0~3.0%
Mnは、鋼の高強度化に有効な元素である。機械特性や強度を確保するためは、Mn量を1.0%以上とする必要がある。一方、Mn量が3.0%超えると、焼鈍時の表面濃化が増加し、めっき密着性の確保が困難になる。したがって、Mn量は1.0~3.0%とすることが好ましい。Mn: 1.0-3.0%
Mn is an element effective for increasing the strength of steel. In order to secure the mechanical properties and strength, it is necessary to set the Mn amount to 1.0% or more. On the other hand, when the amount of Mn exceeds 3.0%, the surface thickening at the time of annealing increases, and it becomes difficult to secure the plating adhesion. Therefore, the amount of Mn is preferably 1.0 to 3.0%.
P:0.1%以下
P量が0.1%を超えると、鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化により、局部延性の劣化を通じて強度と延性のバランスが低下する。したがって、P量は0.1%以下とすることが好ましい。また、製鋼コストの観点から、P量は0.01%以上とすることが好ましい。P: 0.1% or less When the amount of P exceeds 0.1%, the balance between strength and ductility deteriorates through deterioration of local ductility due to grain boundary embrittlement due to P segregation to austenite grain boundaries during casting. Therefore, the amount of P is preferably 0.1% or less. Further, from the viewpoint of steelmaking cost, the amount of P is preferably 0.01% or more.
S:0.05%以下
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。したがって、S量は極力低減することが望ましく、0.05%以下とすることが好ましい。また、良好な伸びフランジ性を確保するため、S量はより好ましくは0.01%以下とする。また、製鋼コストの観点から、S量は0.002%以上とすることが好ましい。S: 0.05% or less S becomes inclusions such as MnS and causes deterioration of impact resistance and cracking along the metal flow of the welded portion. Therefore, it is desirable to reduce the amount of S as much as possible, and it is preferably 0.05% or less. Further, in order to secure good stretch flangeability, the amount of S is more preferably 0.01% or less. Further, from the viewpoint of steelmaking cost, the amount of S is preferably 0.002% or more.
Al:0.1%以下
Al量が0.1%を超えると、下地鋼板のブランキング加工性や焼入れ性が低下する。したがって、Al量は0.1%以下とすることが好ましい。また、脱酸材としての効果を確保する観点から、Al量は0.01%以上とすることが好ましい。Al: 0.1% or less If the Al amount exceeds 0.1%, the blanking workability and hardenability of the base steel sheet deteriorate. Therefore, the amount of Al is preferably 0.1% or less. Further, from the viewpoint of ensuring the effect as a deoxidizing material, the Al amount is preferably 0.01% or more.
N:0.01%以下
N量が0.01%を超えると、熱間圧延時や熱間プレス前の加熱時にAlNが生成し、下地鋼板のブランキング加工性や焼入れ性が低下する。したがって、N量は0.01%以下とすることが好ましい。また、製鋼コストの観点から、N量は0.001%以上とすることが好ましい。N: 0.01% or less When the amount of N exceeds 0.01%, AlN is generated during hot rolling or heating before hot pressing, and the blanking workability and hardenability of the base steel sheet are deteriorated. Therefore, the amount of N is preferably 0.01% or less. Further, from the viewpoint of steelmaking cost, the amount of N is preferably 0.001% or more.
上記元素以外の残部はFe及び不可避的不純物である。ただし、以下の理由により、質量%で、Nb:0.05%以下、Ti:0.05%以下、B:0.0002~0.005%、Cr:0.1~0.3%、Sb:0.003~0.03%のうちから選ばれた少なくとも1種を、必要に応じて適宜含有させてもよい。 The rest other than the above elements are Fe and unavoidable impurities. However, for the following reasons, in mass%, Nb: 0.05% or less, Ti: 0.05% or less, B: 0.0002 to 0.005%, Cr: 0.1 to 0.3%, Sb. : At least one selected from 0.003 to 0.03% may be appropriately contained, if necessary.
Nb:0.05%以下
Nbは鋼の強化に有効な成分であるが、過剰に含まれると形状凍結性が低下する。したがって、Nbを含有させる場合、Nb量は0.05%以下とする。Nb: 0.05% or less Nb is an effective component for strengthening steel, but if it is contained in an excessive amount, the shape freezing property is lowered. Therefore, when Nb is contained, the amount of Nb is 0.05% or less.
Ti:0.05%以下
TiもNbと同様に鋼の強化には有効であるが、過剰に含まれると形状凍結性が低下する。したがって、Tiを含有させる場合、Ti量は0.05%以下とする。Ti: 0.05% or less Ti is also effective for strengthening steel like Nb, but if it is contained in excess, the shape freezing property is lowered. Therefore, when Ti is contained, the amount of Ti is 0.05% or less.
B:0.0002~0.005%
Bは、オーステナイト粒界からのフェライト生成および成長を抑制する作用を有する。そのため、B量は0.0002%以上とすることが好ましい。一方、過剰なBの添加は成形性を大きく損なう。したがって、Bを含有させる場合、B量は0.005%以下とする。B: 0.0002 to 0.005%
B has an action of suppressing ferrite formation and growth from austenite grain boundaries. Therefore, the amount of B is preferably 0.0002% or more. On the other hand, the addition of excess B greatly impairs moldability. Therefore, when B is contained, the amount of B is 0.005% or less.
Cr:0.1~0.3%
Crは、鋼の強化および焼入れ性を向上させるために有用である。このような効果を発現するためには、Cr量は0.1%以上とすることが好ましい。一方、合金コストの観点から、Crを含有させる場合、Cr量は0.3%以下とする。Cr: 0.1-0.3%
Cr is useful for strengthening steel and improving hardenability. In order to exhibit such an effect, the amount of Cr is preferably 0.1% or more. On the other hand, from the viewpoint of alloy cost, when Cr is contained, the amount of Cr is set to 0.3% or less.
Sb:0.003~0.03%
Sbは、熱間プレス中に鋼板表層の脱炭を抑止する効果がある。このような効果を発現するためには、Sb量を0.003%以上とすることが好ましい。一方、Sb量が0.03%を超えると、圧延荷重の増加を招くため生産性が低下する。したがって、Sbを含有させる場合、Sb量は0.03%以下とする。Sb: 0.003 to 0.03%
Sb has the effect of suppressing decarburization of the surface layer of the steel sheet during hot pressing. In order to exhibit such an effect, the amount of Sb is preferably 0.003% or more. On the other hand, if the amount of Sb exceeds 0.03%, the rolling load is increased and the productivity is lowered. Therefore, when Sb is contained, the amount of Sb is 0.03% or less.
[Zn-Al-Mg系合金めっき層]
本実施形態において、熱間プレス用めっき鋼板のZn-Al-Mg系合金めっき層は、質量%で、Al:3~10%及びMg:0.2~0.8%を含み、残部がZn及び不可避的不純物であり、かつ、大気雰囲気下における液相線温度が400℃以下となる成分組成を有するものとする。[Zn-Al-Mg based alloy plating layer]
In the present embodiment, the Zn—Al—Mg-based alloy plating layer of the hot-pressed plated steel sheet contains Al: 3 to 10% and Mg: 0.2 to 0.8% in mass%, and the balance is Zn. It is assumed that it is an unavoidable impurity and has a component composition in which the liquidus temperature in an air atmosphere is 400 ° C. or lower.
Al:3~10%
Al含有率が3%未満の場合、熱間プレス後において、Fe-Zn-Al-Mg系合金めっき層のIΓ/Iαが0.5を超えてしまい、また、酸化物層のAl濃度とMg濃度の和が28原子%未満となってしまう。その結果、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性が不十分となる。また、Al含有率が3%未満の場合、Mg含有率によっては、後述の液相線温度を400℃以下にすることができない。一方、Al含有率が10%超えの場合、後述の液相線温度を400℃以下にすることができず、熱間プレス後において、Fe-Zn-Al-Mg系合金めっき層のIΓ/Iαが0.5を超えてしまう。その結果、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗装後耐食性が不十分となる。したがって、Al含有率は3~10%とする。Al: 3-10%
When the Al content is less than 3%, the I Γ / I α of the Fe—Zn—Al—Mg based alloy plating layer exceeds 0.5 after hot pressing, and the Al concentration of the oxide layer And the sum of Mg concentrations is less than 28 atomic%. As a result, the adhesion of the coating film and the corrosion resistance after coating when the hot pressed member is subjected to zirconium-based chemical conversion treatment and then electrodeposition coating is insufficient. Further, when the Al content is less than 3%, the liquidus temperature described later cannot be set to 400 ° C. or lower depending on the Mg content. On the other hand, when the Al content exceeds 10%, the liquidus temperature, which will be described later, cannot be lowered to 400 ° C. or lower, and after hot pressing, I Γ / of the Fe—Zn—Al—Mg based alloy plating layer. I α exceeds 0.5. As a result, the corrosion resistance after coating when the hot pressed member is subjected to zirconium-based chemical conversion treatment and then electrodeposited is insufficient. Therefore, the Al content is set to 3 to 10%.
Mg:0.2~0.8%
Mg含有率が0.2%未満の場合、熱間プレス後において、Fe-Zn-Al-Mg系合金めっき層のIΓ/Iαが0.5を超えてしまう。その結果、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗装後耐食性が不十分となる。よって、Mg含有率は0.2%以上とし、好ましくは0.3%以上とし、より好ましくは0.4%以上とする。一方、Mg含有率が0.8%超えの場合、熱間プレス後において、酸化物層のAl濃度とMg濃度の和が28原子%未満となってしまう。その結果、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性が不十分となる。よって、Mg含有率は0.8%以下とし、好ましくは0.7%以下とし、より好ましくは0.6%以下とする。Mg: 0.2-0.8%
When the Mg content is less than 0.2%, the I Γ / I α of the Fe—Zn—Al—Mg based alloy plating layer exceeds 0.5 after hot pressing. As a result, the corrosion resistance after coating when the hot pressed member is subjected to zirconium-based chemical conversion treatment and then electrodeposited is insufficient. Therefore, the Mg content is 0.2% or more, preferably 0.3% or more, and more preferably 0.4% or more. On the other hand, when the Mg content exceeds 0.8%, the sum of the Al concentration and the Mg concentration of the oxide layer becomes less than 28 atomic% after hot pressing. As a result, the adhesion of the coating film and the corrosion resistance after coating when the hot pressed member is subjected to zirconium-based chemical conversion treatment and then electrodeposition coating is insufficient. Therefore, the Mg content is 0.8% or less, preferably 0.7% or less, and more preferably 0.6% or less.
大気雰囲気下における液相線温度:400℃以下
本実施形態では、Al含有率とMg含有率を適宜制御することによって、大気雰囲気下におけるZn-Al-Mg系合金めっき層の液相線温度を400℃以下とすることが肝要である。液相線温度が400℃超えの場合、熱間プレス後において、Fe-Zn-Al-Mg系合金めっき層のIΓ/Iαが0.5を超えてしまう。その結果、熱間プレス部材にジルコニウム系化成処理を施した後に電着塗装を行った際の塗装後耐食性が不十分となる。液相線温度の下限は特に限定されないが、上記Al含有率とMg含有率の範囲では、液相線温度は概ね380℃以上となる。Zn-Al-Mg系合金層の大気雰囲気下における液相線温度は、熱力学計算ソフトウェアThermo Calcでデータベースを用いて計算することにより求めることができる。Liquidus temperature in atmospheric atmosphere: 400 ° C. or less In this embodiment, the liquidus temperature of the Zn—Al—Mg based alloy plating layer in the atmospheric atmosphere is adjusted by appropriately controlling the Al content and Mg content. It is important to keep the temperature below 400 ° C. When the liquidus temperature exceeds 400 ° C., the I Γ / I α of the Fe—Zn—Al—Mg based alloy plating layer exceeds 0.5 after hot pressing. As a result, the corrosion resistance after coating when the hot pressed member is subjected to zirconium-based chemical conversion treatment and then electrodeposited is insufficient. The lower limit of the liquidus temperature is not particularly limited, but within the range of the Al content and the Mg content, the liquidus temperature is generally 380 ° C. or higher. The liquidus temperature of the Zn—Al—Mg-based alloy layer under an atmospheric atmosphere can be obtained by calculating using a database with the thermodynamic calculation software Thermo Calc.
なお、Zn-Al-Mg系合金めっき層に含まれる不可避的不純物としては、めっき処理中にめっき浴と下地鋼板との反応でめっき層中に取り込まれる下地鋼板成分や、めっき浴中の不可避的不純物が挙げられる。めっき層中に取り込まれる下地鋼板成分としては、Feが0.01%~数%程度含まれる。めっき浴中の不可避的不純物の種類としては、例えば、Fe、Cr、Cu、Mo、Ni、Zr等が挙げられる。めっき層中のFeについては、下地鋼板から取り込まれるFeと、めっき浴から取り込まれるFeとを区別して定量することはできない。不可避的不純物の総含有量は特に限定はしないが、熱間プレス工程でめっき層を均一に溶融させるという観点から、Feを除いた不可避的不純物量は合計で1質量%以下であることが好ましい。 The unavoidable impurities contained in the Zn—Al—Mg-based alloy plating layer include the base steel plate component incorporated into the plating layer by the reaction between the plating bath and the base steel plate during the plating process, and the unavoidable impurities in the plating bath. Includes impurities. Fe is contained in the plating layer in an amount of 0.01% to several% as a base steel sheet component. Examples of the types of unavoidable impurities in the plating bath include Fe, Cr, Cu, Mo, Ni, Zr and the like. The Fe in the plating layer cannot be quantified separately from the Fe taken in from the base steel sheet and the Fe taken in from the plating bath. The total content of unavoidable impurities is not particularly limited, but from the viewpoint of uniformly melting the plating layer in the hot pressing process, the total amount of unavoidable impurities excluding Fe is preferably 1% by mass or less. ..
Zn-Al-Mg系合金めっき層の成分組成は、さらに、質量%で、Ca、Sr、Mn、V、Cr、Mo、Ti、Ni、Co、Sb、Zr及びBから選ばれる少なくとも一種を、合計で1%以下の範囲で含むこともできる。 The component composition of the Zn—Al—Mg-based alloy plating layer further comprises at least one selected from Ca, Sr, Mn, V, Cr, Mo, Ti, Ni, Co, Sb, Zr and B in mass%. It can be included in the range of 1% or less in total.
片面当たりの付着量:30~180g/m2
Zn-Al-Mg系合金めっき層の付着量を30~180g/m2とすることにより、耐食性及び熱間プレス時の液体金属脆化割れに対する耐性に優れた熱間プレス部材を得ることができる。付着量が30g/m2未満であると、所望の耐食性を有する熱間プレス部材を得ることができない。付着量が180g/m2を超えると、熱間プレス前の加熱工程で合金化が完了せずに液相が残存し、液体金属脆化割れが発生する場合がある。Zn-Al-Mg系合金めっき層の付着量は、好ましくは45g/m2以上とし、より好ましくは55g/m2以上とする。また、Zn-Al-Mg系合金めっき層の付着量は、好ましくは120g/m2以下とし、より好ましくは100g/m2以下とする。Adhesion amount per side: 30-180 g / m 2
By setting the adhesion amount of the Zn—Al—Mg based alloy plating layer to 30 to 180 g / m 2 , it is possible to obtain a hot press member having excellent corrosion resistance and resistance to embrittlement cracking of liquid metal during hot pressing. .. If the adhesion amount is less than 30 g / m 2 , a hot pressed member having a desired corrosion resistance cannot be obtained. If the adhesion amount exceeds 180 g / m 2 , the liquid phase may remain without completing the alloying in the heating step before the hot press, and liquid metal embrittlement cracking may occur. The adhesion amount of the Zn—Al—Mg based alloy plating layer is preferably 45 g / m 2 or more, and more preferably 55 g / m 2 or more. The adhesion amount of the Zn—Al—Mg based alloy plating layer is preferably 120 g / m 2 or less, and more preferably 100 g / m 2 or less.
本明細書において、「Zn-Al-Mg系合金めっき層の片面当たりの付着量」は、以下の方法で求めるものとする。評価対象とするZn-Al-Mg系合金めっき鋼板を打抜き加工して、48mmφの試料3つを採取し、各試料を計量する。その後、各試料において付着量を評価する片面とは反対側の非評価面をマスキングする。その後、ヘキサメチレンテトラミン3.5gを添加した500mLの35%塩酸水溶液を1Lにメスアップした溶液に、各試料を10分間浸漬することにより、Zn-Al-Mg系合金めっき層を溶解し、各試料を再度計量する。Zn-Al-Mg系合金めっき層の溶解前後の質量差から、各試料における単位面積あたりの付着量を算出する。そして、3試料の平均値を、片面あたりの付着量とする。 In the present specification, the "adhesion amount of the Zn-Al-Mg-based alloy plating layer per one side" is determined by the following method. The Zn—Al—Mg based alloy plated steel sheet to be evaluated is punched, three 48 mmφ samples are collected, and each sample is weighed. Then, in each sample, the non-evaluation surface on the opposite side to the one surface for which the adhesion amount is evaluated is masked. Then, the Zn—Al—Mg based alloy plating layer was dissolved by immersing each sample in a solution prepared by adding 3.5 g of hexamethylenetetramine to 1 L of a 500 mL 35% hydrochloric acid aqueous solution for 10 minutes. Weigh the sample again. The amount of adhesion per unit area in each sample is calculated from the mass difference before and after the dissolution of the Zn—Al—Mg based alloy plating layer. Then, the average value of the three samples is taken as the adhesion amount per one side.
本実施形態において、Zn-Al-Mg系合金めっき層の下層又は上層には、本発明の作用効果に影響を及ぼさない範囲で、目的に応じて別途の皮膜を設けてもよい。下層皮膜としては、ニッケルプレめっきが例示される。上層皮膜としては、ジルコニウム酸化物やジルコニウム-チタン酸化物を含有する化成処理皮膜が例示される。 In the present embodiment, a separate film may be provided on the lower layer or the upper layer of the Zn—Al—Mg based alloy plating layer according to the purpose as long as it does not affect the action and effect of the present invention. Nickel pre-plating is exemplified as the underlayer film. Examples of the upper layer film include a chemical conversion-treated film containing a zirconium oxide or a zirconium-titanium oxide.
下地鋼板として、質量%で、C:0.23%、Si:0.25%、Mn:1.2%、P:0.005%、S:0.001%、Al:0.03%、N:0.004%、Nb:0.02%、Ti:0.02%、B:0.002%、Cr:0.2%、及びSb:0.008%を含有し、残部がFe及び不可避的不純物である成分組成を有する、板厚1.4mmの冷延鋼板を用いた(Ac3=814℃)。As a base steel sheet, in terms of mass%, C: 0.23%, Si: 0.25%, Mn: 1.2%, P: 0.005%, S: 0.001%, Al: 0.03%, Contains N: 0.004%, Nb: 0.02%, Ti: 0.02%, B: 0.002%, Cr: 0.2%, and Sb: 0.008%, with the balance being Fe and A cold-rolled steel sheet having a thickness of 1.4 mm and having a component composition that is an unavoidable impurity was used (Ac 3 = 814 ° C.).
この冷延鋼板を、溶融めっき設備によって、所定の成分組成と浴温とを有する溶融Zn-Al-Mg系めっき浴中に浸漬し、その後N2ガスワイピングを行って、表1に示す水準No.1~14の熱間プレス用めっき鋼板を作製した。表1に、Zn-Al-Mg系合金めっき層中のAl含有率、Mg含有率、及びその他の元素の含有率、並びに大気雰囲気下における液相線温度を示す。各元素の含有率及び液相線温度は、めっき浴の成分組成を調整することにより制御した。めっき層中の各元素の含有率は、めっき層の塩酸剥離液に含有される各成分をICP-AESにより定量分析する方法で求めた。また、めっき層の液相線温度は既述の方法で求めた。また、表1には、既述の方法により求めた、Zn-Al-Mg系合金めっき層の片面当たりの付着量も示す。めっき付着量は、ワイピングガスの流量及びライン速度を調整することにより制御した。This cold-rolled steel sheet was immersed in a hot-dip Zn-Al-Mg-based plating bath having a predetermined composition and bath temperature by a hot-dip plating facility, and then N 2 gas wiping was performed. .. Plated steel sheets for hot pressing from 1 to 14 were produced. Table 1 shows the Al content, Mg content, and other element content in the Zn—Al—Mg based alloy plating layer, and the liquidus temperature in the atmosphere. The content of each element and the liquidus temperature were controlled by adjusting the composition of the components of the plating bath. The content of each element in the plating layer was determined by a method of quantitatively analyzing each component contained in the hydrochloric acid stripping solution of the plating layer by ICP-AES. The liquidus temperature of the plating layer was determined by the method described above. Table 1 also shows the amount of adhesion per side of the Zn—Al—Mg-based alloy plating layer obtained by the method described above. The amount of plating adhesion was controlled by adjusting the flow rate of the wiping gas and the line speed.
次いで、上記の熱間プレス用鋼板を、熱間プレスに供した。すなわち、得られた熱間プレス用鋼板から150mm×300mmの試験片を採取し、電気炉によって熱処理を行った。熱処理条件(加熱温度、保持時間)を表1に示す。熱処理後の試験片を電気炉から取り出し、直ちにハット型金型を用いて成形開始温度700℃で熱間プレスを行うことにより熱間プレス部材を得た。なお、得られた熱間プレス部材の形状は、上面の平坦部長さ100mm、側面の平坦部長さ50mm、下面の平坦部長さ50mmである。また、金型の曲げRは、上面の両肩、下面の両肩いずれも7Rである。 Next, the above-mentioned steel sheet for hot pressing was subjected to hot pressing. That is, a 150 mm × 300 mm test piece was collected from the obtained hot pressed steel sheet and heat-treated by an electric furnace. Table 1 shows the heat treatment conditions (heating temperature, holding time). The test piece after the heat treatment was taken out from the electric furnace and immediately pressed by hot pressing at a molding start temperature of 700 ° C. using a hat mold to obtain a hot pressed member. The shape of the obtained hot pressed member is a flat portion length of 100 mm on the upper surface, a flat portion length of 50 mm on the side surface, and a flat portion length of 50 mm on the lower surface. Further, the bending R of the mold is 7R for both the upper shoulders and the lower shoulders.
(熱間プレス部材のFe-Zn-Al-Mg系合金めっき層/酸化物層の評価)
得られた熱間プレス部材の上面の平坦部から断面観察用の試験片を採取し、Fe-Zn-Al-Mg系合金めっき層の断面をSEM観察した。各水準において、α-Fe相及びΓ相は、断面SEM画像において、明確に異なるコントラストを有することから、各々識別可能であった。図1には、発明例を代表して、No.2による熱間プレス部材のFe-Zn-Al-Mg系合金めっき層の断面SEM画像を示し、図2には、比較例を代表して、No.8による熱間プレス部材のFe-Zn-Al-Mg系合金めっき層の断面SEM画像を示す。図1では、Γ相の析出が抑制されており、α-Fe相中にΓ相が不連続に点在している。これに対して、図2では、Γ相が多く析出して、Γ相が連続した面状に存在している。また、入射角度25°のCo-Kα(波長1.79021Å)を線源としたX線回折による、41.5°≦2θ≦43.0°に存在するΓ相の(411)面の回折ピークの強度IΓと、51.0°≦2θ≦52.0°に存在するα-Fe相の(110)面の回折ピークの強度Iαとをそれぞれ測定し、その比IΓ/Iαを表1に示した。なお、X線回折の測定は、湾曲IPX線回折装置(株式会社リガク製 RINT-RAPID II-R)を用いて、管電圧:45kV、管電流:160mA、積分時間:600秒、及びコリメータ直径:3mmの条件下で行った。(Evaluation of Fe-Zn-Al-Mg based alloy plating layer / oxide layer for hot pressing members)
A test piece for cross-section observation was taken from the flat portion on the upper surface of the obtained hot-pressed member, and the cross-section of the Fe—Zn—Al—Mg-based alloy plating layer was observed by SEM. At each level, the α-Fe phase and the Γ phase were distinguishable because they had distinctly different contrasts in the cross-sectional SEM image. In FIG. 1, representative of the invention example, No. A cross-sectional SEM image of the Fe—Zn—Al—Mg-based alloy plating layer of the hot pressed member according to No. 2 is shown, and FIG. 2 shows No. 2 as a representative of a comparative example. The cross-sectional SEM image of the Fe—Zn—Al—Mg based alloy plating layer of the hot pressing member according to No. 8 is shown. In FIG. 1, the precipitation of the Γ phase is suppressed, and the Γ phase is discontinuously scattered in the α—Fe phase. On the other hand, in FIG. 2, many Γ phases are precipitated, and the Γ phases exist in a continuous plane. In addition, the diffraction peak of the (411) plane of the Γ phase existing at 41.5 ° ≤ 2θ ≤ 43.0 ° by X-ray diffraction using Co-Kα (wavelength 1.79021 Å) with an incident angle of 25 ° as the radiation source. The intensity I Γ of the above and the intensity I α of the diffraction peak of the (110) plane of the α-Fe phase existing at 51.0 ° ≤ 2θ ≤ 52.0 ° are measured, and the ratio I Γ / I α is calculated. It is shown in Table 1. The X-ray diffraction was measured using a curved IPX-ray diffractometer (RINT-RAPID II-R manufactured by Rigaku Co., Ltd.), tube voltage: 45 kV, tube current: 160 mA, integration time: 600 seconds, and collimator diameter: It was performed under the condition of 3 mm.
また、各水準において、既述の方法で酸化物層のAl濃度及びMg濃度を測定し、表1に示した。また、各水準において、既述の方法でFe-Zn-Al-Mg系合金めっき層の片面当たりの付着量を測定し、表1に示した。 Further, at each level, the Al concentration and the Mg concentration of the oxide layer were measured by the method described above, and are shown in Table 1. Further, at each level, the amount of adhesion of the Fe—Zn—Al—Mg based alloy plating layer per surface was measured by the method described above, and is shown in Table 1.
(評価1:塗膜密着性)
得られた熱間プレス部材の上面の平坦部から70mm×150mmの試験片を切り出し、当該試験片に対してジルコニウム系化成処理を施した。具体的には、市販の化成処理液(ジルコニウム系化成処理:日本パーカライジング株式会社製 パルミナ2100)を用いて、浴温:35℃、処理時間:120秒の条件で化成処理を行った。その後、各試験片に、市販のカチオン電着塗料を用いて、30秒間で昇圧し150秒間定電圧で保持し、焼き付け後の塗膜厚が15μmとなる電圧条件で通電し、雰囲気温度170℃の電気炉で20分間焼き付けを行った。なお、カチオン電着塗料としては、関西ペイント製 エレクトロンGT-100V-1 グレーを用いた。(Evaluation 1: Coating film adhesion)
A 70 mm × 150 mm test piece was cut out from the flat portion on the upper surface of the obtained hot pressed member, and the test piece was subjected to zirconium-based chemical conversion treatment. Specifically, a commercially available chemical conversion treatment liquid (zirconium-based chemical conversion treatment: Palmina 2100 manufactured by Nihon Parkerizing Co., Ltd.) was used to perform the chemical conversion treatment under the conditions of a bath temperature of 35 ° C. and a treatment time of 120 seconds. After that, each test piece was boosted in 30 seconds using a commercially available cationic electrodeposition paint, held at a constant voltage for 150 seconds, energized under voltage conditions where the coating thickness after baking was 15 μm, and the ambient temperature was 170 ° C. It was baked for 20 minutes in the electric furnace of. As the cationic electrodeposition paint, Kansai Paint's Electron GT-100V-1 Gray was used.
電着塗装後の試験片に、カッターナイフを用いて、下地鋼板に到達する11本の切り傷を縦方向及び横方向それぞれに間隔1mmで付けて、100個の碁盤目を作った。碁盤目部分にセロハンテープ(登録商標)を強く圧着させ、テープの端を45°の角度で一気に引き剥がした。試験片表面から剥離した塗膜のマス数を測定して、以下の基準で判定を行い、◎または○を合格とした。評価結果を表1に示す。
◎:剥離マス数=0
○:剥離マス数=1
△:剥離マス数=2~5
×:剥離マス数>5Using a cutter knife, 11 cuts reaching the base steel plate were made on the test piece after electrodeposition coating at intervals of 1 mm in each of the vertical and horizontal directions to make 100 grids. Cellophane tape (registered trademark) was strongly crimped to the grid portion, and the end of the tape was peeled off at a stretch at an angle of 45 °. The number of cells of the coating film peeled off from the surface of the test piece was measured, and the judgment was made according to the following criteria. The evaluation results are shown in Table 1.
⊚: Number of peeled cells = 0
◯: Number of peeled cells = 1
Δ: Number of peeled cells = 2 to 5
×: Number of peeled cells> 5
(評価2:塗装後耐食性)
評価1と同じ方法で電着塗装まで行った試験片を用意し、その評価面の端部7.5mm及び非評価面(背面)をテープでシール処理した。その後、評価面の中央にカッターナイフで下地鋼板に到達する深さまで、長さ60mm、中心角60°のクロスカット傷を加えた。この試験片を腐食試験(VDA 233-102)に供し、4週間後の腐食状況により評価した。(Evaluation 2: Corrosion resistance after painting)
A test piece that had been subjected to electrodeposition coating by the same method as in Evaluation 1 was prepared, and the end portion of the evaluation surface of 7.5 mm and the non-evaluation surface (back surface) were sealed with tape. Then, a cross-cut scratch with a length of 60 mm and a central angle of 60 ° was made in the center of the evaluation surface to a depth reaching the base steel plate with a cutter knife. This test piece was subjected to a corrosion test (VDA 233-102) and evaluated according to the corrosion condition after 4 weeks.
クロスカットからの片側最大膨れ幅を測定して、以下の基準で判定を行い、◎または○を合格とした。評価結果を表1に示す。
◎:片側最大膨れ幅<1.5mm
○:1.5mm≦片側最大膨れ幅<3.0mm
△:3.0mm≦片側最大膨れ幅<4.0mm
×:4.0mm≦片側最大膨れ幅The maximum swelling width on one side from the cross cut was measured, and the judgment was made according to the following criteria, and ◎ or ○ was regarded as acceptable. The evaluation results are shown in Table 1.
⊚: Maximum swelling width on one side <1.5 mm
◯: 1.5 mm ≤ maximum swelling width on one side <3.0 mm
Δ: 3.0 mm ≤ maximum swelling width on one side <4.0 mm
×: 4.0 mm ≤ maximum swelling width on one side
表1の結果から、本発明例の熱間プレス部材は、ジルコニウム系化成処理を施した後に電着塗装を行った際の塗膜密着性及び塗装後耐食性に優れる。 From the results shown in Table 1, the hot pressed member of the example of the present invention is excellent in coating film adhesion and post-coating corrosion resistance when electrodeposition coating is performed after zirconium-based chemical conversion treatment.
本発明の熱間プレス部材は、自動車の足廻り部材や車体構造部材に好適である。 The hot pressing member of the present invention is suitable for an automobile suspension member and a vehicle body structural member.
Claims (3)
前記下地鋼板の少なくとも片面に、片面当たりの付着量が40~400g/m2で形成された、α-Fe相及びΓ相を含むFe-Zn-Al-Mg系合金めっき層と、
前記Fe-Zn-Al-Mg系合金めっき層上に形成された、Zn、Al及びMgを含有する酸化物層と、
を有し、
入射角度25°のCo-Kα(波長1.79021Å)を線源としたX線回折による、41.5°≦2θ≦43.0°に存在するΓ相の(411)面の回折ピークの強度IΓと、51.0°≦2θ≦52.0°に存在するα-Fe相の(110)面の回折ピークの強度Iαとの比IΓ/Iαが0.5以下であり、
前記酸化物層のAl濃度とMg濃度の和が28原子%以上である
ことを特徴とする熱間プレス部材。 With the base steel plate,
An Fe—Zn—Al—Mg-based alloy plating layer containing an α—Fe phase and a Γ phase formed on at least one surface of the base steel sheet with an adhesion amount of 40 to 400 g / m 2 per surface.
An oxide layer containing Zn, Al and Mg formed on the Fe—Zn—Al—Mg based alloy plating layer and
Have,
The intensity of the diffraction peak of the (411) plane of the Γ phase existing at 41.5 ° ≤ 2θ ≤ 43.0 ° by X-ray diffraction using Co-Kα (wavelength 1.79021Å) with an incident angle of 25 ° as the radiation source. The ratio I Γ / I α between I Γ and the intensity I α of the diffraction peak of the (110) plane of the α—Fe phase existing at 51.0 ° ≦ 2θ ≦ 52.0 ° is 0.5 or less.
A hot pressing member characterized in that the sum of the Al concentration and the Mg concentration of the oxide layer is 28 atomic% or more.
前記下地鋼板の少なくとも片面に、片面当たりの付着量が30~180g/m2で形成された、質量%で、Al:3~10%及びMg:0.2~0.8%を含み、残部がZn及び不可避的不純物である成分組成を有し、大気雰囲気下における液相線温度が400℃以下であるZn-Al-Mg系合金めっき層と、
を有する熱間プレス用めっき鋼板を、Ac3変態点~1000℃の温度範囲に加熱後、熱間プレスして、請求項1に記載の熱間プレス部材を製造することを特徴とする熱間プレス部材の製造方法。 With the base steel plate,
The base steel sheet is formed on at least one side with an adhesion amount of 30 to 180 g / m 2 per side, and contains Al: 3 to 10% and Mg: 0.2 to 0.8% in mass%, and the balance. Is a Zn—Al—Mg based alloy plating layer having a component composition of Zn and unavoidable impurities and having a liquidus temperature of 400 ° C. or lower in an air atmosphere.
The hot-pressed plated steel sheet having the above is heated to a temperature range of Ac 3 transformation point to 1000 ° C. and then hot-pressed to produce the hot-pressed member according to claim 1. A method for manufacturing a pressed member.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020036054 | 2020-03-03 | ||
JP2020036054 | 2020-03-03 | ||
PCT/JP2020/040696 WO2021176768A1 (en) | 2020-03-03 | 2020-10-29 | Hot-pressed member, method for manufacturing same, and plated steel sheet for hot pressing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2021176768A1 JPWO2021176768A1 (en) | 2021-09-10 |
JP7056799B2 true JP7056799B2 (en) | 2022-04-19 |
Family
ID=77613213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021510138A Active JP7056799B2 (en) | 2020-03-03 | 2020-10-29 | Hot pressed members and their manufacturing methods, and hot pressed plated steel sheets |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230095166A1 (en) |
EP (1) | EP4116457B1 (en) |
JP (1) | JP7056799B2 (en) |
KR (1) | KR102666358B1 (en) |
CN (1) | CN115053009B (en) |
MX (1) | MX2022010448A (en) |
WO (1) | WO2021176768A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001348678A (en) | 2000-04-03 | 2001-12-18 | Nisshin Steel Co Ltd | Precoated steel sheet excellent in durability |
JP2005113233A (en) | 2003-10-09 | 2005-04-28 | Nippon Steel Corp | Zn-BASED PLATED STEEL FOR HOT PRESS |
JP2012112010A (en) | 2010-11-26 | 2012-06-14 | Jfe Steel Corp | Plated steel sheet for hot press, method for manufacturing hot-pressed member using the same, and hot-pressed member |
JP2013241671A (en) | 2012-04-25 | 2013-12-05 | Nisshin Steel Co Ltd | Method for producing black-plated steel sheet and method for producing molded article of black-plated steel sheet |
WO2014122900A1 (en) | 2013-02-08 | 2014-08-14 | Jfeスチール株式会社 | Surface treatment liquid for galvanized steel sheet, galvanized steel sheet with surface treatment film and method for producing same |
JP2019531413A (en) | 2016-08-08 | 2019-10-31 | スピアー,ジョン | Modified hot dip galvanized coating having low liquidus temperature, method for its production and use |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4630099B2 (en) | 2005-03-25 | 2011-02-09 | 株式会社神戸製鋼所 | Hot-dip hot-dip galvanized steel sheet with excellent phosphatability and post-coating corrosion resistance and method for producing the same |
EP2808417B1 (en) * | 2012-03-07 | 2019-04-24 | JFE Steel Corporation | Steel sheet for hot press-forming, method for manufacturing the same and method for producing hot press-formed parts using the same |
CN104755655B (en) * | 2012-10-31 | 2017-09-22 | 杰富意钢铁株式会社 | The manufacture method of hot pressing steel plate, hot press parts and hot press parts |
CN105283573B (en) * | 2013-06-11 | 2017-05-03 | 新日铁住金株式会社 | Hot-stamped product and process for producing hot-stamped product |
KR20150073021A (en) * | 2013-12-20 | 2015-06-30 | 주식회사 포스코 | Alloy plated steel sheet for hot press forming having excellent anti-corrosion and method for manufacturing the same |
US20180320260A1 (en) * | 2015-10-26 | 2018-11-08 | Posco | Zinc alloy plated steel sheet having excellent bending workability and manufacturing method therefor |
KR20170075046A (en) * | 2015-12-22 | 2017-07-03 | 주식회사 포스코 | Hot pressed part having excellent corrosion resistance and method for manufacturing same |
-
2020
- 2020-10-29 JP JP2021510138A patent/JP7056799B2/en active Active
- 2020-10-29 US US17/905,277 patent/US20230095166A1/en active Pending
- 2020-10-29 KR KR1020227023141A patent/KR102666358B1/en active IP Right Grant
- 2020-10-29 CN CN202080095524.7A patent/CN115053009B/en active Active
- 2020-10-29 WO PCT/JP2020/040696 patent/WO2021176768A1/en active Application Filing
- 2020-10-29 EP EP20923408.7A patent/EP4116457B1/en active Active
- 2020-10-29 MX MX2022010448A patent/MX2022010448A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001348678A (en) | 2000-04-03 | 2001-12-18 | Nisshin Steel Co Ltd | Precoated steel sheet excellent in durability |
JP2005113233A (en) | 2003-10-09 | 2005-04-28 | Nippon Steel Corp | Zn-BASED PLATED STEEL FOR HOT PRESS |
JP2012112010A (en) | 2010-11-26 | 2012-06-14 | Jfe Steel Corp | Plated steel sheet for hot press, method for manufacturing hot-pressed member using the same, and hot-pressed member |
JP2013241671A (en) | 2012-04-25 | 2013-12-05 | Nisshin Steel Co Ltd | Method for producing black-plated steel sheet and method for producing molded article of black-plated steel sheet |
WO2014122900A1 (en) | 2013-02-08 | 2014-08-14 | Jfeスチール株式会社 | Surface treatment liquid for galvanized steel sheet, galvanized steel sheet with surface treatment film and method for producing same |
JP2019531413A (en) | 2016-08-08 | 2019-10-31 | スピアー,ジョン | Modified hot dip galvanized coating having low liquidus temperature, method for its production and use |
Also Published As
Publication number | Publication date |
---|---|
US20230095166A1 (en) | 2023-03-30 |
EP4116457B1 (en) | 2024-05-08 |
EP4116457A4 (en) | 2023-01-11 |
CN115053009A (en) | 2022-09-13 |
EP4116457A1 (en) | 2023-01-11 |
CN115053009B (en) | 2024-05-31 |
WO2021176768A1 (en) | 2021-09-10 |
MX2022010448A (en) | 2022-09-19 |
JPWO2021176768A1 (en) | 2021-09-10 |
KR20220109459A (en) | 2022-08-04 |
KR102666358B1 (en) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6836600B2 (en) | Hot stamping material | |
JP6607338B1 (en) | Fe-Al plating hot stamp member and method for producing Fe-Al plating hot stamp member | |
KR101668638B1 (en) | Hot-dip galvannealed steel sheet | |
WO2020170667A1 (en) | Hot-pressed member, cold-rolled steel sheet for hot press use, and methods respectively manufacturing these products | |
JP6406475B1 (en) | Al-plated welded pipe for quenching, Al-plated hollow member and method for producing the same | |
JP2012102359A (en) | Heat-treatable hot-dip galvanized steel sheet, and method of manufacturing the same | |
JP7332967B2 (en) | hot stamping parts | |
JP2020180312A (en) | Hot press member, and method of producing the same | |
JP7453583B2 (en) | Al-plated hot stamping steel material | |
WO2022091529A1 (en) | Hot-pressed member, steel sheet for hot-pressing, and methods for producing same | |
JP7056799B2 (en) | Hot pressed members and their manufacturing methods, and hot pressed plated steel sheets | |
JP2020041175A (en) | Steel plate for hot pressing | |
JP7440771B2 (en) | hot stamp molded body | |
JP6888743B1 (en) | Hot-pressed members, hot-pressed steel sheets, and their manufacturing methods | |
WO2020049833A1 (en) | Steel sheet for hot pressing | |
JP2020041174A (en) | Steel plate for hot pressing | |
JP2020041177A (en) | Steel plate for hot pressing | |
KR102639103B1 (en) | hot stamp molding body | |
JP7243948B1 (en) | hot pressed parts | |
JP7243949B1 (en) | hot pressed parts | |
JP7173368B2 (en) | HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER | |
JP7126093B2 (en) | HOT PRESS MEMBER AND MANUFACTURING METHOD THEREOF | |
WO2023074115A1 (en) | Hot-pressed member | |
WO2023074114A1 (en) | Hot-pressed member | |
JP2022071515A (en) | Hot press member, steel sheet for hot pressing, and production method of hot press member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220321 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7056799 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |