JP2022071515A - Hot press member, steel sheet for hot pressing, and production method of hot press member - Google Patents

Hot press member, steel sheet for hot pressing, and production method of hot press member Download PDF

Info

Publication number
JP2022071515A
JP2022071515A JP2020180531A JP2020180531A JP2022071515A JP 2022071515 A JP2022071515 A JP 2022071515A JP 2020180531 A JP2020180531 A JP 2020180531A JP 2020180531 A JP2020180531 A JP 2020180531A JP 2022071515 A JP2022071515 A JP 2022071515A
Authority
JP
Japan
Prior art keywords
steel sheet
plating layer
hot
based plating
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020180531A
Other languages
Japanese (ja)
Other versions
JP7338606B2 (en
Inventor
林太 佐藤
Rinta SATO
稔 田中
Minoru Tanaka
大輔 水野
Daisuke Mizuno
遼人 西池
Ryoto NISHIIKE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020180531A priority Critical patent/JP7338606B2/en
Publication of JP2022071515A publication Critical patent/JP2022071515A/en
Application granted granted Critical
Publication of JP7338606B2 publication Critical patent/JP7338606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide a hot press member and a production method thereof with excellent corrosion resistance after painting and resistance spot weldability, and to provide a steel sheet for hot pressing suitable for the hot press member with excellent corrosion resistance after painting and resistance spot weldability.SOLUTION: A hot press member comprises a steel sheet having Zn-based plating layers on its both surfaces. One surface of the steel sheet has an amount of Zn deposition of 36 g/m2 or more, and has an average line roughness Ra of 2.5 μm or less. The other surface of the steel sheet has an average line roughness Ra of 3.5 μm or more.SELECTED DRAWING: None

Description

本発明は、熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法に関する。特に、ジルコニウム系化成処理を適用した場合の塗装後耐食性および抵抗スポット溶接性に優れた熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法に関する。 The present invention relates to a hot pressed member, a steel sheet for hot pressing, and a method for manufacturing the same. In particular, the present invention relates to a method for manufacturing a hot pressed member, a steel sheet for hot pressing, and a hot pressed member having excellent post-painting corrosion resistance and resistance spot weldability when a zirconium-based chemical conversion treatment is applied.

近年、自動車の分野では素材鋼板の高性能化と共に軽量化が促進されており、防錆性を有する高強度溶融亜鉛めっき鋼板または電気亜鉛めっき鋼板の使用が増加している。しかし、多くの場合、鋼板の高強度化に伴ってそのプレス成形性が低下するため、複雑な部品形状を得ることは困難になる。例えば、自動車用途で、防錆性が必要であり、かつ難成形部品としては、シャシーなどの足回り部材やBピラーなどの骨格用構造部材が挙げられる。 In recent years, in the field of automobiles, the performance of raw steel sheets has been improved and the weight has been reduced, and the use of high-strength hot-dip galvanized steel sheets or electrogalvanized steel sheets having rust resistance is increasing. However, in many cases, as the strength of the steel sheet increases, its press formability deteriorates, so that it becomes difficult to obtain a complicated part shape. For example, in automobile applications, rustproofing is required, and examples of difficult-to-mold parts include undercarriage members such as chassis and structural members for skeletons such as B-pillars.

このような背景から、近年では冷間プレスに比べてプレス成形性と高強度化の両立が容易である熱間プレスによる自動車用部品の製造が急速に増加しており、熱間プレス技術の諸課題を解決する様々な技術が開示されている。 Against this background, in recent years, the production of automobile parts by hot pressing, which makes it easier to achieve both press formability and high strength compared to cold pressing, has been rapidly increasing, and various hot pressing technologies have been used. Various techniques for solving the problems are disclosed.

なかでもZn-Ni合金めっき鋼板は、めっき層の融点が高いことから熱間プレス用鋼板として注目されており、この鋼板を用いた熱間プレス部材およびその製造方法が提案されている。 Among them, the Zn—Ni alloy plated steel sheet is attracting attention as a hot press steel sheet because the melting point of the plated layer is high, and a hot press member using this steel sheet and a method for manufacturing the same have been proposed.

例えば、特許文献1には、α-Fe(Zn、Ni)混晶と、Zn、NiおよびFeの金属間化合物と、Mnを含む層とを有する熱間プレス部材が開示されている。 For example, Patent Document 1 discloses a hot press member having an α-Fe (Zn, Ni) mixed crystal, an intermetallic compound of Zn, Ni and Fe, and a layer containing Mn.

また、特許文献2には、Ni拡散領域と、γ相に相当する金属間化合物層と、ZnO層とを有する熱間プレス部材が開示されている。 Further, Patent Document 2 discloses a hot pressing member having a Ni diffusion region, an intermetallic compound layer corresponding to the γ phase, and a ZnO layer.

特表2013―503254号公報Special Table 2013-503254A 特開2011-246801号公報Japanese Unexamined Patent Publication No. 2011-246801 特開2004-323897公報Japanese Unexamined Patent Publication No. 2004-323897

しかしながら、近年では、従来のリン酸亜鉛系化成処理に代わり、ジルコニウム系化成処理が普及し始めており、このジルコニウム系化成処理を施した後に電着塗装を行った部材の塗装後耐食性も求められるようになってきた。 However, in recent years, zirconium-based chemical conversion treatment has begun to spread in place of the conventional zinc phosphate-based chemical conversion treatment, and post-coating corrosion resistance of members subjected to electrodeposition coating after this zirconium-based chemical conversion treatment is also required. It has become.

特許文献1および特許文献2に開示される熱間プレス部材は、いずれもZn-Ni合金めっき鋼板を加熱して製造された熱間プレス部材であり、無塗装での耐食性やリン酸亜鉛系化成処理を適用した場合の塗装後耐食性には優れるものの、ジルコニウム系化成処理を適用した場合の塗装後耐食性については不十分であるという問題がある。 The hot press members disclosed in Patent Document 1 and Patent Document 2 are both hot press members manufactured by heating a Zn—Ni alloy plated steel sheet, and have corrosion resistance without coating and zinc phosphate-based chemical conversion. Although it is excellent in post-painting corrosion resistance when the treatment is applied, there is a problem that the post-painting corrosion resistance when the zinc-based chemical conversion treatment is applied is insufficient.

一方、抵抗スポット溶接性も熱間プレス部材に要求される重要な特性である。亜鉛系めっき鋼板を熱間プレスに供すると、加熱前のめっき層中に含まれるZnが熱間プレス工程で酸化されることで、表面に、酸化亜鉛を主成分とし、数μmの厚さを有する酸化物皮膜が生成する。酸化亜鉛は半導体であるが、比抵抗が大きく、抵抗スポット溶接性を低下させる。そのため、亜鉛系めっき鋼板を用いた熱間プレス部材に対しては、特許文献3で開示されるように、ショットブラストなどにより酸化物皮膜を除去する場合がある。しかしながら、抵抗スポット溶接性確保のためのショットブラスト工程は、工数およびコストが増大するため、亜鉛系めっき鋼板を熱間プレスに適用する際の課題となっている。 On the other hand, resistance spot weldability is also an important characteristic required for hot pressed members. When a zinc-based plated steel sheet is subjected to hot pressing, Zn contained in the plating layer before heating is oxidized in the hot pressing process, so that the surface is mainly composed of zinc oxide and has a thickness of several μm. The oxide film to have is formed. Zinc oxide is a semiconductor, but it has a large resistivity and reduces resistance spot weldability. Therefore, as disclosed in Patent Document 3, the oxide film may be removed by shot blasting or the like for a hot pressed member using a galvanized steel sheet. However, the shot blasting process for ensuring resistance spot weldability increases man-hours and costs, and is a problem when applying a galvanized steel sheet to hot pressing.

本発明は、上記実情に鑑みてなされたものであり、塗装後耐食性および抵抗スポット溶接性に優れる熱間プレス部材およびその製造方法を提供することを目的とする。また、塗装後耐食性および抵抗スポット溶接性に優れる熱間プレス部材に適した熱間プレス用鋼板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hot pressed member having excellent post-painting corrosion resistance and resistance spot weldability, and a method for manufacturing the same. Another object of the present invention is to provide a hot pressing steel sheet suitable for a hot pressing member having excellent post-coating corrosion resistance and resistance spot weldability.

本発明者らは、上記課題を達成するために、鋭意研究を行い、以下の知見を得た。
(1)熱間プレス部材の塗装後耐食性を向上させるためには、熱間プレス部材の一方の面の平均線粗さRaを2.5μm以下とすることが有効である。さらに、熱間プレス部材の抵抗スポット溶接性を向上させるためには、熱間プレス部材のもう一方の面の平均線粗さRaを3.5μm以上とすることが有効である。
(2)鋼板の両面に、付着量が36g/m以上のZn系めっき層を備える鋼板を、Ac変態点~1000℃の温度範囲に加熱後熱間プレスする熱間プレス部材の製造方法であって、Zn系めっき層が該Zn系めっき層を縦断するクラックを有し、一方の面のZn系めっき層の少なくとも1断面における単位断面長さ当たりのクラック密度が30箇所/mm以上であり、もう一方の面のZn系めっき層の少なくとも1断面における単位断面長さ当たりのクラック密度が20箇所/mm以下である熱間プレス用鋼板を熱間プレスすることにより、第一面の塗装後耐食性と、抵抗スポット溶接性に優れる熱間プレス部材を得ることができる。
The present inventors conducted diligent research in order to achieve the above-mentioned problems, and obtained the following findings.
(1) In order to improve the corrosion resistance of the hot pressed member after painting, it is effective to set the average line roughness Ra of one surface of the hot pressed member to 2.5 μm or less. Further, in order to improve the resistance spot weldability of the hot pressed member, it is effective to set the average line roughness Ra of the other surface of the hot pressed member to 3.5 μm or more.
(2) A method for manufacturing a hot-pressed member in which a steel sheet having a Zn-based plating layer having an adhesion amount of 36 g / m 2 or more on both sides of the steel sheet is heated to a temperature range of Ac 3 transformation point to 1000 ° C. and then hot-pressed. The Zn-based plating layer has cracks that traverse the Zn-based plating layer, and the crack density per unit cross-sectional length in at least one cross section of the Zn-based plating layer on one surface is 30 points / mm or more. The first surface is coated by hot-pressing a hot-pressed steel sheet having a crack density of 20 points / mm or less per unit cross-sectional length in at least one cross section of the Zn-based plating layer on the other side. It is possible to obtain a hot pressed member having excellent post-corrosion resistance and resistance spot weldability.

本発明は上記知見に基づくものであり、その特徴は以下の通りである。
[1]鋼板の両面にZn系めっき層を備え、
鋼板の一方の面のZn付着量が36g/m以上であり、かつ平均線粗さRaが2.5μm以下であり、
鋼板のもう一方の面の平均線粗さRaが3.5μm以上である、熱間プレス部材。
[2]鋼板の両面にZn系めっき層を備え、前記Zn系めっき層が該Zn系めっき層を縦断するクラックを有し、
鋼板の一方の面のZn付着量が36g/m以上であり、かつZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が30箇所/mm以上であり、
鋼板のもう一方の面のZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が20箇所/mm以下である、熱間プレス用鋼板。
[3]鋼板の両面にZn系めっき層を備え、前記Zn系めっき層が該Zn系めっき層を縦断するクラックを有し、
鋼板の一方の面のZn付着量が36g/m以上であり、かつZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が30箇所/mm以上であり、
鋼板のもう一方の面のZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が20箇所/mm以下である、熱間プレス用鋼板を、
室温からAc変態点~1000℃の温度範囲に5秒以上600秒以下の時間で昇温し、さらに、Ac変態点~1000℃の温度範囲に300秒以下の時間保持した後、熱間プレスする熱間プレス部材の製造方法。
The present invention is based on the above findings, and its features are as follows.
[1] A Zn-based plating layer is provided on both sides of the steel sheet.
The amount of Zn adhered to one surface of the steel sheet is 36 g / m 2 or more, and the average line roughness Ra is 2.5 μm or less.
A hot pressed member having an average linear roughness Ra of 3.5 μm or more on the other surface of the steel sheet.
[2] A Zn-based plating layer is provided on both sides of the steel sheet, and the Zn-based plating layer has cracks that vertically traverse the Zn-based plating layer.
The amount of Zn adhered to one surface of the steel sheet is 36 g / m 2 or more, and the crack density per unit cross-sectional length in any 1 mm long cross section of the Zn-based plating layer is 30 points / mm or more.
A steel sheet for hot pressing in which the crack density per unit cross-sectional length in a cross section of an arbitrary 1 mm length of the Zn-based plating layer on the other surface of the steel sheet is 20 points / mm or less.
[3] A Zn-based plating layer is provided on both sides of the steel sheet, and the Zn-based plating layer has cracks that vertically traverse the Zn-based plating layer.
The amount of Zn adhered to one surface of the steel sheet is 36 g / m 2 or more, and the crack density per unit cross-sectional length in any 1 mm long cross section of the Zn-based plating layer is 30 points / mm or more.
A steel sheet for hot pressing, wherein the crack density per unit cross-sectional length in a cross section of an arbitrary 1 mm length of the Zn-based plating layer on the other surface of the steel sheet is 20 points / mm or less.
The temperature is raised from room temperature to the temperature range of Ac 3 transformation point to 1000 ° C. for 5 seconds or more and 600 seconds or less, and further, the temperature is maintained in the temperature range of Ac 3 transformation point to 1000 ° C. for 300 seconds or less, and then hot. A method for manufacturing a hot pressed member to be pressed.

本発明によれば、塗装後耐食性および抵抗スポット溶接性に優れる熱間プレス部材を得ることができる。また、本発明の熱間プレス用鋼板は、塗装後耐食性および抵抗スポット溶接性に優れる熱間プレス部材に適している。 According to the present invention, it is possible to obtain a hot pressed member having excellent post-painting corrosion resistance and resistance spot weldability. Further, the steel sheet for hot pressing of the present invention is suitable for a hot pressing member having excellent post-coating corrosion resistance and resistance spot weldability.

図1は、Zn系めっき層にクラックが形成されている場合の、熱間プレス前(加熱前)のZn系めっき層の断面を示す模式図である。FIG. 1 is a schematic view showing a cross section of a Zn-based plating layer before hot pressing (before heating) when cracks are formed in the Zn-based plating layer. 図2は、Zn系めっき層にクラックが形成されている場合の、熱間プレス後(加熱後)のZn系めっき層の断面を示す模式図である。FIG. 2 is a schematic view showing a cross section of the Zn-based plating layer after hot pressing (after heating) when cracks are formed in the Zn-based plating layer.

以下、本発明の実施形態について説明する。なお、以下の説明は、本発明の好適な一実施態様を示すものであり、以下の説明によって何ら限定されるものではない。また、鋼成分組成の各元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。 Hereinafter, embodiments of the present invention will be described. The following description shows a preferred embodiment of the present invention, and is not limited by the following description. In addition, the unit of the content of each element in the steel composition is "mass%", and hereinafter, it is simply indicated by "%" unless otherwise specified.

1)熱間プレス部材
本発明の熱間プレス部材は、鋼板の両面にZn系めっき層を備え、鋼板の一方の面のZn付着量が36g/m以上であり、かつ平均線粗さRaが2.5μm以下であり、
鋼板のもう一方の面の平均線粗さRaが3.5μm以上である。本発明は、熱間プレス部材の表裏面での表面凹凸の大きさに意図的に差を設けることを最大の特徴とする。
1) Hot press member The hot press member of the present invention is provided with Zn-based plating layers on both sides of the steel sheet, the amount of Zn adhered to one surface of the steel sheet is 36 g / m 2 or more, and the average line roughness Ra. Is 2.5 μm or less,
The average line roughness Ra of the other surface of the steel sheet is 3.5 μm or more. The greatest feature of the present invention is that a difference is intentionally provided in the size of the surface unevenness on the front and back surfaces of the hot pressed member.

Zn系めっき層を備える鋼板に熱間プレスを施すと、めっき層中のZnが下地鋼板に拡散し、この拡散領域においてFeおよびZnを含有する固溶体相を形成する。めっき層がその他の合金元素を含有する場合、その合金元素を含有してもよい。同時に、Zn系めっき層中のZnと加熱雰囲気中に存在する酸素とが結合して、Zn系めっき層の表面にZnを含有する酸化物層を形成する場合がある。また、下地鋼板への拡散にも酸化物層の形成にも寄与しなかった金属間化合物であるZn系めっき層は、金属間化合物相として残存するが、下地鋼板から拡散したFeが取り込まれるため、Zn、Feおよびめっき層が含有するその他の合金元素を含有する金属間化合物相となる。固溶体相と金属間化合物相は、いずれも犠牲防食作用を有するZnを含有するため、耐食性の向上に寄与する。以上説明したとおり、本発明が課題とする塗装後耐食性を満足するためには、Znを含有するめっき層が必須の構成要件であり、このZn系めっき層は固溶体相、金属間化合物相の少なくともいずれかを含むものである。 When a steel sheet having a Zn-based plating layer is hot-pressed, Zn in the plating layer diffuses into the underlying steel sheet, and a solid solution phase containing Fe and Zn is formed in this diffusion region. When the plating layer contains other alloying elements, the alloying elements may be contained. At the same time, Zn in the Zn-based plating layer and oxygen existing in the heating atmosphere may be combined to form an oxide layer containing Zn on the surface of the Zn-based plating layer. Further, the Zn-based plating layer, which is an intermetallic compound that did not contribute to the diffusion into the base steel plate or the formation of the oxide layer, remains as an intermetallic compound phase, but Fe diffused from the base steel plate is taken in. , Zn, Fe and other alloying elements contained in the plating layer. Since both the solid solution phase and the intermetallic compound phase contain Zn having a sacrificial anticorrosion effect, they contribute to the improvement of corrosion resistance. As described above, in order to satisfy the post-painting corrosion resistance which is the subject of the present invention, a plating layer containing Zn is an indispensable constituent requirement, and this Zn-based plating layer is at least a solid solution phase and an intermetallic compound phase. It includes either.

本発明において、Zn系めっき層の表面に、厚さ0.2μm以上で金属酸化物を主体とする層とを備えていてもよい。厚さが0.2μm以上とすることにより、化成処理工程で溶解しきらず残存することで,一層の塗装後耐食性改善を見込むことができる。 In the present invention, the surface of the Zn-based plating layer may be provided with a layer having a thickness of 0.2 μm or more and mainly composed of a metal oxide. By setting the thickness to 0.2 μm or more, it can be expected that the corrosion resistance after coating is further improved because it is not completely dissolved and remains in the chemical conversion treatment step.

本発明において、鋼板の一方の面のZn付着量が36g/m以上であり、かつ平均線粗さRaが2.5μm以下である。Zn付着量が36g/m未満である場合、塗膜下における亜鉛の腐食速度が著しく大きくなり、塗装後耐食性が低下する。一方、Zn付着量が120g/mを超えると、塗装後耐食性改善効果は飽和しコスト高となるばかりであることから、上限は120g/mとすることが好ましい。塗装後耐食性のさらなる向上を目的とする場合、Zn付着量は40g/m以上とすることがより好ましく、50g/m以上とすることがさらに好ましい。 In the present invention, the amount of Zn adhered to one surface of the steel sheet is 36 g / m 2 or more, and the average line roughness Ra is 2.5 μm or less. When the amount of Zn adhered is less than 36 g / m 2 , the corrosion rate of zinc under the coating film becomes remarkably high, and the corrosion resistance after painting is lowered. On the other hand, if the amount of Zn adhered exceeds 120 g / m 2 , the effect of improving corrosion resistance after coating is saturated and the cost is only increased. Therefore, the upper limit is preferably 120 g / m 2 . For the purpose of further improving the corrosion resistance after coating, the Zn adhesion amount is more preferably 40 g / m 2 or more, and further preferably 50 g / m 2 or more.

また、本発明において、一方の面のZn系めっき層表面の平均線粗さRaは2.5μm以下である。この面は、熱間プレス部材の外面に位置し、主として外観腐食性能を評価される面である。一方、平均線粗さが2.5μmを超えるような大きな凹凸を有する熱間プレス部材に、ジルコニウム系化成処理および電着塗装を施して塗装後耐食性を評価すると、特にクロスカットを施していない一般部からの赤錆発生が顕著となる。この理由は、電着塗装が熱間プレス部材表面の凹凸に追従せず、凸部において電着塗装の膜厚が極めて薄くなるため、このような部分で赤錆が発生するものと考えられる。ただし、一般部から発生する赤錆は板厚方向への進展は遅いため、部材の機械特性に影響するものでなく、外観品質のみに影響する。平均線粗さRaは、好ましくは2.2μm未満、より好ましくは2.0μm未満とする。 Further, in the present invention, the average line roughness Ra of the surface of the Zn-based plating layer on one surface is 2.5 μm or less. This surface is located on the outer surface of the hot pressed member and is mainly evaluated for its appearance corrosion performance. On the other hand, when a hot pressed member having large irregularities having an average line roughness exceeding 2.5 μm is subjected to zirconium-based chemical conversion treatment and electrodeposition coating to evaluate post-coating corrosion resistance, it is generally not cross-cut. The occurrence of red rust from the part becomes remarkable. It is considered that the reason for this is that the electrodeposition coating does not follow the unevenness of the surface of the hot pressed member, and the film thickness of the electrodeposition coating becomes extremely thin at the convex portion, so that red rust occurs in such a portion. However, since red rust generated from the general part progresses slowly in the plate thickness direction, it does not affect the mechanical properties of the member, but only the appearance quality. The average line roughness Ra is preferably less than 2.2 μm, more preferably less than 2.0 μm.

本発明において、もう一方の面のZn系めっき層表面の平均線粗さRaは3.5μm以上である。この面は、上述した一方の面(平均線粗さRaが2.5μm以下である面)の反対側に位置する面であり、熱間プレス部材の内面に位置し、抵抗スポット溶接の際に合わせ面となる面である(Zn系めっき層表面の平均線粗さRaは2.5μm以下である面を鋼板の表面とすると、平均線粗さRaは3.5μm以上である面は鋼板の裏面に相当する)。前述の様に、熱間プレス後の部材の表面には酸化物皮膜が生成する。これは比抵抗が大きいため、厚く均一に存在するほど抵抗スポット溶接性が低下する。具体的には、表面に厚い酸化物皮膜が存在する場合、通電経路が狭まるために通電が不安定化し、局所的な通電による散り(バースト)が比較的低い溶接電流で発生するようになる。酸化物皮膜は、金属皮膜や電極金属と比べ高硬度であるが、靭性に乏しい。そのため、電極、あるいは相手材の鋼板により押圧されることで容易に破壊される。このとき、熱間プレス部材の平均線粗さRaを3.5μm以上とすることで、抵抗スポット溶接におおける電極圧下の際の酸化皮膜の破壊が促進され、通電点が確保されることで散りの発生が低減する。平均線粗さRaは、好ましくは4.0μm以上、より好ましくは4.5μm以上とする。 In the present invention, the average line roughness Ra of the surface of the Zn-based plating layer on the other surface is 3.5 μm or more. This surface is located on the opposite side of one of the above-mentioned surfaces (the surface having an average line roughness Ra of 2.5 μm or less), is located on the inner surface of the hot press member, and is used during resistance spot welding. The surface to be the mating surface (when the surface having an average line roughness Ra of the surface of the Zn-based plating layer is 2.5 μm or less is the surface of the steel sheet, the surface having the average line roughness Ra of 3.5 μm or more is the surface of the steel sheet. Corresponds to the back side). As described above, an oxide film is formed on the surface of the member after hot pressing. Since this has a large resistivity, the thicker and more uniform it is, the lower the resistance spot weldability. Specifically, when a thick oxide film is present on the surface, energization becomes unstable due to the narrowing of the energization path, and scattering (burst) due to local energization occurs at a relatively low welding current. The oxide film has a higher hardness than the metal film and the electrode metal, but has poor toughness. Therefore, it is easily broken by being pressed by the electrode or the steel plate of the mating material. At this time, by setting the average linear roughness Ra of the hot pressed member to 3.5 μm or more, the destruction of the oxide film under electrode pressure in resistance spot welding is promoted, and the energization point is secured. The occurrence of scattering is reduced. The average line roughness Ra is preferably 4.0 μm or more, more preferably 4.5 μm or more.

なお、鋼板のもう一方の面(Zn系めっき層表面の平均線粗さRaが3.5μm以上である面)のZn付着量は特に制限されないが、36g/m以上であることが好ましい。Zn付着量が36g/m未満である場合、塗膜下における亜鉛の腐食速度が著しく大きくなり、塗装後耐食性が低下する場合がある。一方、Zn付着量が120g/mを超えると、塗装後耐食性改善効果は飽和しコスト高となるばかりであることから、上限は120g/mとすることが好ましい。塗装後耐食性のさらなる向上を目的とする場合、Zn付着量は40g/m以上とすることがより好ましく、50g/m以上とすることがさらに好ましい。 The amount of Zn adhered to the other surface of the steel sheet (the surface having an average line roughness Ra of the surface of the Zn-based plating layer of 3.5 μm or more) is not particularly limited, but is preferably 36 g / m 2 or more. When the amount of Zn adhered is less than 36 g / m 2 , the corrosion rate of zinc under the coating film becomes remarkably high, and the corrosion resistance after painting may decrease. On the other hand, if the amount of Zn adhered exceeds 120 g / m 2 , the effect of improving corrosion resistance after coating is saturated and the cost is only increased. Therefore, the upper limit is preferably 120 g / m 2 . For the purpose of further improving the corrosion resistance after coating, the Zn adhesion amount is more preferably 40 g / m 2 or more, and further preferably 50 g / m 2 or more.

2)熱間プレス用鋼板
本発明の熱間プレス用鋼板は、鋼板の両面にZn系めっき層を備え、Zn系めっき層が該Zn系めっき層を縦断するクラックを有し、鋼板の一方の面のZn付着量が36g/m以上であり、かつZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が30箇所/mm以上であり、鋼板のもう一方の面のZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が20箇所/mm以下である。本発明では、後述のように、めっき層内の残留応力を活用してクラックを付与するのが最も経済的であることから、めっき層を構成する金属は、合金元素を含有するものであることが望ましい。たとえば、Cr、Fe、Co、Niから選択される元素を8~30%含有させることが好ましい。また、めっき層は酸化物が分散したものでもよく、SiOまたはAlのナノ粒子を0.1~10%含有するものが例示される。
2) Steel plate for hot pressing The steel sheet for hot pressing of the present invention is provided with Zn-based plating layers on both sides of the steel sheet, and the Zn-based plating layer has cracks that traverse the Zn-based plating layer, and is one of the steel sheets. The amount of Zn adhered to the surface is 36 g / m 2 or more, and the crack density per unit cross-sectional length in any 1 mm long cross section of the Zn-based plated layer is 30 points / mm or more, and the other side of the steel sheet. The crack density per unit cross-sectional length in a cross section of an arbitrary 1 mm long surface of the Zn-based plated layer is 20 points / mm or less. In the present invention, as will be described later, it is most economical to apply cracks by utilizing the residual stress in the plating layer, so that the metal constituting the plating layer contains an alloy element. Is desirable. For example, it is preferable to contain 8 to 30% of an element selected from Cr, Fe, Co and Ni. Further, the plating layer may be one in which oxides are dispersed, and those containing 0.1 to 10% of SiO 2 or Al 2 O 3 nanoparticles are exemplified.

本発明では、Zn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が30箇所/mm以上である面のZn付着量を36g/m以上とすることにより、塗装後耐食性と抵抗スポット溶接性に優れた熱間プレス部材を得ることができる。加熱方法にも依存するが、一般的な炉加熱ホットスタンプでは3~10g/m、通電加熱ホットスタンプでは0~5g/m程度のZnが気化し消失するので、加熱後部材に残存させるZn量を見込んで設定することが望ましい。付着量が36g/m未満であると、加熱後のZn付着量も36g/m未満となり、結果的に塗装欠陥部での赤錆発生が著しくなる。付着量が120g/mを超えると、上記の赤錆抑制効果は飽和する。塗装後耐食性のさらなる向上を目的とする場合、Zn付着量は40g/m以上とすることが好ましく、50g/m以上とすることがより好ましい。 In the present invention, the Zn adhesion amount on the surface of the Zn-based plating layer having a crack density of 30 points / mm or more per unit cross-sectional length in an arbitrary 1 mm length cross section is set to 36 g / m 2 or more for coating. A hot press member having excellent post-corrosion resistance and resistance spot weldability can be obtained. Although it depends on the heating method, Zn of about 3 to 10 g / m 2 in a general furnace heating hot stamp and about 0 to 5 g / m 2 in an energized heating hot stamp vaporizes and disappears, so it is left in the member after heating. It is desirable to set in anticipation of the amount of Zn. When the adhesion amount is less than 36 g / m 2 , the Zn adhesion amount after heating is also less than 36 g / m 2 , and as a result, red rust is remarkably generated in the coating defect portion. When the adhesion amount exceeds 120 g / m 2 , the above-mentioned red rust suppressing effect is saturated. For the purpose of further improving the corrosion resistance after coating, the Zn adhesion amount is preferably 40 g / m 2 or more, and more preferably 50 g / m 2 or more.

なお、鋼板のもう一方の面、すなわち、Zn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が20箇所/mm以下である面のZn付着量については特に制限されないが、36g/m以上であることが好ましい。付着量が36g/m未満であると、加熱後のZn付着量も36g/m未満となり、結果的に塗装欠陥部での赤錆発生が著しくなる。付着量が120g/mを超えると、上記の赤錆抑制効果は飽和する。塗装後耐食性のさらなる向上を目的とする場合、Zn付着量は40g/m以上とすることが好ましく、50g/m以上とすることがより好ましい。 The amount of Zn adhered to the other surface of the steel sheet, that is, the surface having a crack density of 20 points / mm or less per unit cross-sectional length in an arbitrary 1 mm long cross section of the Zn-based plating layer, is not particularly limited. However, it is preferably 36 g / m 2 or more. When the adhesion amount is less than 36 g / m 2 , the Zn adhesion amount after heating is also less than 36 g / m 2 , and as a result, red rust is remarkably generated in the coating defect portion. When the adhesion amount exceeds 120 g / m 2 , the above-mentioned red rust suppressing effect is saturated. For the purpose of further improving the corrosion resistance after coating, the Zn adhesion amount is preferably 40 g / m 2 or more, and more preferably 50 g / m 2 or more.

本発明の熱間プレス用鋼板において、Zn系めっき層が該Zn系めっき層を縦断するクラックを有し、一方の面のZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が30箇所/mm以上であり、もう一方の面のZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が20箇所/mm以下であることを特徴とする。なお、Zn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が30箇所/mm以上である面を鋼板の表面とした場合、Zn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が20箇所/mm以下である面が裏面となる。 In the hot-pressed steel sheet of the present invention, the Zn-based plating layer has cracks that traverse the Zn-based plating layer, and the per unit cross-sectional length in any 1 mm length cross section of the Zn-based plating layer on one surface. The crack density is 30 points / mm or more, and the crack density per unit cross-sectional length in an arbitrary 1 mm length cross section of the Zn-based plating layer on the other surface is 20 points / mm or less. do. When the surface of the steel sheet has a crack density of 30 points / mm or more per unit cross-sectional length in an arbitrary 1 mm length cross section of the Zn-based plated layer, the Zn-based plated layer has an arbitrary 1 mm length. The back surface is the surface where the crack density per unit cross-sectional length in the cross section is 20 points / mm or less.

クラック密度が30箇所/mm以上の熱間プレス用鋼板(図1)を熱間プレスに供した場合、熱間プレス前にクラックが存在した部分においては酸化物層が形成する(図2)。そして、熱間プレス前の加熱によりZn系合金めっき層が溶融して液体になったとしても、酸化物層が金属間化合物相を分断しているため、Zn系めっき層全体が大きな凹凸を形成することはない。このため、Zn系めっき層全体として見た場合に、平坦なZn系めっき層を有する熱間プレス部材を得ることができる。 When a steel sheet for hot pressing (FIG. 1) having a crack density of 30 points / mm or more is subjected to hot pressing, an oxide layer is formed in a portion where cracks exist before hot pressing (FIG. 2). Even if the Zn-based alloy plating layer is melted and turned into a liquid by heating before hot pressing, the entire Zn-based plating layer forms large irregularities because the oxide layer divides the intermetallic compound phase. There is nothing to do. Therefore, when viewed as a whole Zn-based plating layer, a hot pressed member having a flat Zn-based plating layer can be obtained.

一方、クラック密度が20箇所/mm以下の熱間プレス用鋼板に対し、熱間プレス前の加熱により鋼板の温度を上昇させていくと、温度上昇に伴いZn系めっき層の表面に酸化物層が形成されていく。やがて鋼板の温度がZn系めっき層の融点を超えると、酸化物層と鋼板との間に位置するめっき層が溶融して液体となる。なおも加熱が進み鋼板の温度が上昇を続けると、酸化物層も成長を継続していくこととなるが、このとき、めっき層表面に対して垂直な方向では、酸化物層はその厚みを増大させて成長し、めっき層表面に水平な方向には酸化物層が凹凸を形成しながらその表面積を増大させることによって成長する。これは、酸化物層と鋼板との間に位置するめっき層が流動可能な液体であるため、酸化物層がその形状を変化させることが可能なためである。なお、この面のクラック密度は、0箇所/mmであってもよい。 On the other hand, when the temperature of the steel sheet for hot pressing with a crack density of 20 points / mm or less is raised by heating before hot pressing, an oxide layer is formed on the surface of the Zn-based plating layer as the temperature rises. Is formed. When the temperature of the steel sheet eventually exceeds the melting point of the Zn-based plating layer, the plating layer located between the oxide layer and the steel sheet melts and becomes a liquid. If heating continues and the temperature of the steel sheet continues to rise, the oxide layer will continue to grow, but at this time, the oxide layer will increase its thickness in the direction perpendicular to the surface of the plating layer. It grows by increasing, and the oxide layer grows by increasing its surface surface while forming irregularities in the direction horizontal to the surface of the plating layer. This is because the plating layer located between the oxide layer and the steel plate is a fluid liquid, so that the oxide layer can change its shape. The crack density on this surface may be 0 points / mm.

抵抗スポット溶接性の確保の観点では、特に、相手材との合わせ面側の表面凹凸を大きくすることが有効である。そのため、熱間プレス用鋼板の一方の面のクラック密度は小さいことが望ましい。一方、表面凹凸は電着塗膜の局所的な薄膜化を誘発し、塗装後耐食性を低下させる。そのため、塗装後耐食性の評価面側には、高密度のクラックを付与し、加熱後の表面を平坦化することが重要である。 From the viewpoint of ensuring resistance spot weldability, it is particularly effective to increase the surface unevenness on the mating surface side with the mating material. Therefore, it is desirable that the crack density on one surface of the hot pressed steel sheet is small. On the other hand, the surface unevenness induces a local thinning of the electrodeposition coating film and lowers the corrosion resistance after coating. Therefore, it is important to impart high-density cracks on the evaluation surface side of the corrosion resistance after painting to flatten the surface after heating.

本発明の熱間プレス用鋼板において、Zn系めっき層を分断するクラックとは、Zn系めっき層表面に対して垂直な方向、すなわち、Zn系めっき層の表面から下地鋼板側に向かって形成されたクラックのことを指すものとする。また、クラックの幅は、塗装後耐食性の観点から5μm以下とし、より好ましくは2μm以下とする。 In the hot-pressed steel sheet of the present invention, the cracks that divide the Zn-based plating layer are formed in the direction perpendicular to the surface of the Zn-based plating layer, that is, from the surface of the Zn-based plating layer toward the base steel sheet side. It shall refer to a crack. The width of the crack is 5 μm or less, more preferably 2 μm or less, from the viewpoint of corrosion resistance after painting.

なお、本発明の熱間プレス用鋼板におけるZn系めっき層は、単層のZn系めっき層であってもよいが、本発明の作用効果に影響を及ぼさない範囲で、目的に応じて下層皮膜または上層皮膜を設けてもよい。例えば、下層皮膜としては、Niを主体とする下地めっき層が例示される。 The Zn-based plating layer in the hot-pressed steel sheet of the present invention may be a single-layer Zn-based plating layer, but it is a lower layer film depending on the purpose as long as it does not affect the action and effect of the present invention. Alternatively, an upper layer film may be provided. For example, as the underlayer film, a base plating layer mainly composed of Ni is exemplified.

本発明において、熱間プレス後に1470MPa級を超えるような熱間プレス部材を得るためには、熱間プレス用鋼板におけるZn系めっき層の下地鋼板として、例えば、質量%で、C:0.20~0.50%、Si:0.1~0.5%、Mn:1.0~3.0%、P:0.02%以下、S:0.01%以下、Al:0.1%以下、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることができる。なお、鋼板としては冷延鋼板または熱延鋼板のいずれでも構わない。以下に各成分の限定理由を記載する。 In the present invention, in order to obtain a hot-pressed member having a temperature exceeding 1470 MPa class after hot-pressing, it is used as a base steel sheet for a Zn-based plating layer in a hot-pressed steel sheet, for example, by mass%, C: 0.20. ~ 0.50%, Si: 0.1 ~ 0.5%, Mn: 1.0 ~ 3.0%, P: 0.02% or less, S: 0.01% or less, Al: 0.1% Hereinafter, a steel sheet containing N: 0.01% or less and having a component composition in which the balance is composed of Fe and unavoidable impurities can be used. The steel plate may be either a cold-rolled steel plate or a hot-rolled steel plate. The reasons for limiting each component are described below.

C:0.20~0.50%
Cは、鋼組織としてマルテンサイトなどを形成させることで強度を向上させる。1470MPa級を超えるような強度を得るためには0.20%以上が好ましい。一方、0.50%を超えるとスポット溶接部の靱性が低下する。したがって、C量は0.20~0.50%とすることが好ましい。
C: 0.20 to 0.50%
C improves the strength by forming martensite or the like as a steel structure. In order to obtain a strength exceeding 1470 MPa class, 0.20% or more is preferable. On the other hand, if it exceeds 0.50%, the toughness of the spot welded portion decreases. Therefore, the amount of C is preferably 0.20 to 0.50%.

Si:0.1~0.5%
Siは鋼を強化して良好な材質を得るのに有効な元素である。そのためには0.1%以上が好ましい。一方、0.5%を超えるとフェライトが安定化されるため、焼き入れ性が低下する。したがって、Si量は0.1~0.5%とすることが好ましい。
Si: 0.1-0.5%
Si is an effective element for strengthening steel to obtain a good material. For that purpose, 0.1% or more is preferable. On the other hand, if it exceeds 0.5%, the ferrite is stabilized and the quenchability is lowered. Therefore, the amount of Si is preferably 0.1 to 0.5%.

Mn:1.0~3.0%
Mnは冷却後の強度確保を広い冷却速度範囲で得るために有効な元素である。機械特性や強度を確保するためは1.0%以上含有させることが好ましい。一方、3.0%を超えると、コストが上昇するばかりでなく効果は飽和する。したがって、Mn量は1.0~3.0%とすることが好ましい。
Mn: 1.0-3.0%
Mn is an element effective for obtaining strength after cooling in a wide cooling rate range. In order to secure mechanical properties and strength, it is preferable to contain 1.0% or more. On the other hand, if it exceeds 3.0%, not only the cost increases but also the effect is saturated. Therefore, the amount of Mn is preferably 1.0 to 3.0%.

P:0.02%以下
P量が0.02%を超えると鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化により、局部延性の劣化を通じて強度と延性のバランスが低下する。したがって、P量は0.02%以下とすることが好ましい。
P: 0.02% or less When the amount of P exceeds 0.02%, the balance between strength and ductility deteriorates through deterioration of local ductility due to grain boundary embrittlement due to P segregation to austenite grain boundaries during casting. Therefore, the amount of P is preferably 0.02% or less.

S:0.01%以下
SはMnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。したがって、極力低減することが望ましく0.01%以下とすることが好ましい。また、良好な伸びフランジ性を確保するため、より好ましくは0.005%以下とする。
S: 0.01% or less S becomes inclusions such as MnS and causes deterioration of impact resistance and cracking along the metal flow of the welded portion. Therefore, it is desirable to reduce it as much as possible, and it is preferably 0.01% or less. Further, in order to secure good stretch flangeability, it is more preferably 0.005% or less.

Al:0.1%以下
Al量が0.1%を超えると、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、Al量は0.1%以下とすることが好ましい。
Al: 0.1% or less When the Al amount exceeds 0.1%, the blanking workability and hardenability of the raw steel sheet are deteriorated. Therefore, the amount of Al is preferably 0.1% or less.

N:0.01%以下
N量が0.01%を超えると、熱間圧延時や熱間プレス前の加熱時にAlNの窒化物を形成し、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、N量は0.01%以下とすることが好ましい。
N: 0.01% or less When the amount of N exceeds 0.01%, AlN nitride is formed during hot rolling or heating before hot pressing, and the blanking workability and hardenability of the raw steel sheet are improved. Decrease. Therefore, the amount of N is preferably 0.01% or less.

また、本発明では、上記した基本成分のほかに鋼板の特性の更なる改善を意図して、Nb:0.05%以下、Ti:0.05%以下、B:0.0002~0.005%、Cr:0.1~0.3%、Sb:0.003~0.03%のうちから選ばれた少なくとも1種を、必要に応じて適宜含有させることが可能である。 Further, in the present invention, in addition to the above-mentioned basic components, Nb: 0.05% or less, Ti: 0.05% or less, B: 0.0002 to 0.005, with the intention of further improving the characteristics of the steel sheet. %, Cr: 0.1 to 0.3%, Sb: 0.003 to 0.03%, at least one selected from these can be appropriately contained, if necessary.

Nb:0.05%以下
Nbは鋼の強化に有効な成分であるが、過剰に含まれると形状凍結性が低下する。したがって、Nbを含有させる場合は0.05%以下とする。
Nb: 0.05% or less Nb is an effective component for strengthening steel, but if it is contained in an excessive amount, the shape freezing property is lowered. Therefore, when Nb is contained, it should be 0.05% or less.

Ti:0.05%以下
TiもNbと同様に鋼の強化には有効であるが、過剰に含まれると形状凍結性が低下するという課題がある。したがって、Tiを含有させる場合は0.05%以下とする。
Ti: 0.05% or less Ti is also effective for strengthening steel like Nb, but there is a problem that shape freezing property is lowered if it is contained in an excessive amount. Therefore, when Ti is contained, the content is 0.05% or less.

B:0.0002~0.005%
Bはオーステナイト粒界からのフェライト生成および成長を抑制する作用を有するため、0.0002%以上の添加が好ましい。一方、過剰なBの添加は成形性を大きく損なう。したがって、Bを含有させる場合は0.0002~0.005%とする。
B: 0.0002 to 0.005%
Since B has an effect of suppressing the formation and growth of ferrite from the austenite grain boundaries, it is preferable to add 0.0002% or more. On the other hand, the addition of excess B greatly impairs moldability. Therefore, when B is contained, it is set to 0.0002 to 0.005%.

Cr:0.1~0.3%
Crは鋼の強化および焼き入れ性を向上させるために有用である。このような効果を発現するためには0.1%以上の添加が好ましい。一方、合金コストが高いため0.3%超えの添加では大幅なコストアップを招く。したがって、Crを含有させる場合は0.1~0.3%とする。
Cr: 0.1-0.3%
Cr is useful for strengthening steel and improving hardenability. In order to exhibit such an effect, addition of 0.1% or more is preferable. On the other hand, since the alloy cost is high, adding more than 0.3% causes a significant cost increase. Therefore, when Cr is contained, it is set to 0.1 to 0.3%.

Sb:0.003~0.03%
Sbはめっき用原板の焼鈍工程で、鋼板表層の脱炭を抑止する効果がある。このような効果を発現するためには0.003%以上の添加が必要である。一方、Sb量が0.03%を超えると圧延荷重の増加を招くため生産性を低下させる。したがって、Sbを含有させる場合は0.003~0.03%とする。
Sb: 0.003 to 0.03%
Sb has the effect of suppressing decarburization of the surface layer of the steel sheet in the annealing process of the original plate for plating. In order to exhibit such an effect, it is necessary to add 0.003% or more. On the other hand, if the amount of Sb exceeds 0.03%, the rolling load is increased and the productivity is lowered. Therefore, when Sb is contained, it is set to 0.003 to 0.03%.

上記以外の残部は、Feおよび不可避的不純物からなる。 The rest other than the above consists of Fe and unavoidable impurities.

3)熱間プレス用鋼板の製造方法
本発明の熱間プレス用鋼板の製造条件については特に規定しないが、以下に望ましい製造条件について説明する。前述したような成分の鋼を鋳造し、得られた熱片スラブを直接または加熱した後、あるいは冷片を再加熱して熱間圧延を施す。その際、熱片スラブを直接圧延することと再加熱後に圧延することでの特性変化はほとんど認められない。また、再加熱温度は特に限定しないが、生産性を考慮して1000℃から1300℃の範囲とすることが好ましい。熱間圧延は通常の熱延工程、あるいは仕上圧延においてスラブを接合し圧延する連続化熱延工程のどちらでも可能である。熱間圧延の際の圧延終了温度は生産性や板厚精度を考慮してAr変態点以上とすることが望ましい。熱間圧延後の冷却は通常の方法で行うが、その際の巻取温度は生産性の観点からは550℃以上とすることが好ましく、また、巻取温度が高すぎる場合には酸洗性が劣化するため750℃以下とすることが望ましい。酸洗、冷間圧延は常法でよい。
3) Method for manufacturing a steel sheet for hot pressing The manufacturing conditions for the steel sheet for hot pressing of the present invention are not particularly specified, but desirable manufacturing conditions will be described below. Steel with the above-mentioned components is cast, and the obtained hot piece slab is directly or heated, or the cold piece is reheated for hot rolling. At that time, almost no change in characteristics is observed between the direct rolling of the hot piece slab and the rolling after reheating. The reheating temperature is not particularly limited, but is preferably in the range of 1000 ° C to 1300 ° C in consideration of productivity. Hot rolling can be performed by either a normal hot rolling process or a continuous hot rolling process in which slabs are joined and rolled in finish rolling. It is desirable that the rolling end temperature during hot rolling be equal to or higher than the Ar 3 transformation point in consideration of productivity and plate thickness accuracy. Cooling after hot rolling is performed by a usual method, but the take-up temperature at that time is preferably 550 ° C. or higher from the viewpoint of productivity, and if the take-up temperature is too high, pickling property It is desirable to keep the temperature below 750 ° C. because it deteriorates. Pickling and cold rolling may be carried out by conventional methods.

その後の亜鉛系めっきの成膜方法は限定されず、合金系に応じて適宜選択されるが、後述するように、一方の面に対して選択的にクラック付与を行う場合、電気めっき法が最も効率的である。また、めっき後に合金化処理を施すことで、鉄を合金化しためっきを効率的に得ることができる。なお、めっき工程における雰囲気については、無酸化炉を有する連続式めっき設備でも無酸化炉を有しない連続式めっき設備でも通常の条件とすることでめっき可能であり、本鋼板だけ特別な制御を必要としないことから生産性を阻害することもない。 The subsequent method for forming a zinc-based plating film is not limited and is appropriately selected depending on the alloy system. However, as described later, when selectively cracking one surface, the electroplating method is the most suitable. It is efficient. Further, by performing an alloying treatment after plating, it is possible to efficiently obtain plating in which iron is alloyed. Regarding the atmosphere in the plating process, it is possible to perform plating under normal conditions in both continuous plating equipment with a non-oxidizing furnace and continuous plating equipment without a non-oxidizing furnace, and special control is required only for this steel sheet. Since it does not, it does not hinder productivity.

鋼板の両面にZn系めっき層を備え、Zn系めっき層が該Zn系めっき層を縦断するクラックを有する熱間プレス用鋼板は、Zn系めっき層を備える鋼板をpH4.0以下の酸性水溶液中で、1.5秒以上浸漬させることにより得られる。具体的には、一方の面については、通電せずにpH4.0以下の酸性水溶液中で、1.5秒以上浸漬させた状態で保持、またはアノードとして電解することにより、付着量が36g/m以上のZn系めっき層を備え、Zn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が30箇所/mm以上である面が得られる。もう一方の面については、0.01A/dm以上の電流密度でカソードとして電解することにより、Zn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が20箇所/mm以下である面が得られる。すなわち、電解条件を表裏面で制御することにより、表裏でクラック密度の異なる所望の熱間プレス用鋼板を製造することができる。このとき、浸漬状態で保持、またはアノードとして電解された面では、めっき層中のZnのアノード溶解が進行し、その結果、Zn系めっき層のクラック密度は高い数値となる。一方で、0.01A/dm以上の電流密度でカソードとして電解された面では、めっき層中のZnのアノード溶解は進行せず、Zn系めっき層のクラック密度は低い数値となる。 A hot-pressed steel sheet having a Zn-based plating layer on both sides of the steel sheet and having a crack in which the Zn-based plating layer traverses the Zn-based plating layer is a steel sheet having a Zn-based plating layer in an acidic aqueous solution having a pH of 4.0 or less. It is obtained by immersing it for 1.5 seconds or longer. Specifically, one surface is kept immersed in an acidic aqueous solution having a pH of 4.0 or less for 1.5 seconds or more without being energized, or electrolyzed as an anode to have an adhesion amount of 36 g / g. A surface having a Zn-based plating layer of m 2 or more and having a crack density of 30 points / mm or more per unit cross-sectional length in an arbitrary 1 mm length cross section of the Zn-based plating layer can be obtained. On the other side, by electrolyzing as a cathode with a current density of 0.01 A / dm 2 or more, the crack density per unit cross-sectional length in any 1 mm long cross section of the Zn-based plating layer is 20 points / A surface of mm or less is obtained. That is, by controlling the electrolysis conditions on the front and back surfaces, it is possible to manufacture desired hot pressing steel sheets having different crack densities on the front and back surfaces. At this time, on the surface held in the immersed state or electrolyzed as the anode, the anode dissolution of Zn in the plating layer proceeds, and as a result, the crack density of the Zn-based plating layer becomes a high numerical value. On the other hand, on the surface electrolyzed as a cathode with a current density of 0.01 A / dm 2 or more, the anode dissolution of Zn in the plating layer does not proceed, and the crack density of the Zn-based plating layer becomes a low value.

意図的にクラックを設ける面に対しては、酸性水溶液のpHが4.0を超えると、クラックを形成する効果が減少し、所望のクラック密度を得ることができないため、酸性水溶液のpHは4.0以下とすることが好ましい。また、酸性水溶液への浸漬時間が1.5秒未満である場合にも、クラックを形成する効果が減少し、所望のクラック密度を得ることができないため、酸性水溶液への浸漬時間は1.5秒以上とすることが好ましい。特に本発明では、pH4.0以下の酸性水溶液に1.5秒以上鋼板を浸漬することにより、Zn-Ni系合金めっき層における直交する2断面について、単位断面当たりのクラック密度がいずれも10分断箇所/mm以上である熱間プレス用鋼板を得ることができる。 When the pH of the acidic aqueous solution exceeds 4.0 for the surface on which cracks are intentionally formed, the effect of forming cracks is reduced and the desired crack density cannot be obtained. Therefore, the pH of the acidic aqueous solution is 4. It is preferably 0.0 or less. Further, even when the immersion time in the acidic aqueous solution is less than 1.5 seconds, the effect of forming cracks is reduced and the desired crack density cannot be obtained. Therefore, the immersion time in the acidic aqueous solution is 1.5. It is preferably 2 seconds or more. In particular, in the present invention, by immersing the steel sheet in an acidic aqueous solution having a pH of 4.0 or less for 1.5 seconds or longer, the crack density per unit cross section is divided by 10 for each of the two orthogonal cross sections in the Zn—Ni alloy plating layer. A steel plate for hot pressing having a location / mm or more can be obtained.

意図的にクラックを設けない面に対しては、0.01A/dm以上の電流密度でカソード電解することで、クラックの発生を防止することができる。これは、クラックの発生が、めっき層がわずかにアノード溶解することに起因するためである。めっき鋼板を酸性水溶液に浸漬し、電解を行わないと、めっき鋼板上でアノード反応として亜鉛の選択溶解が生じ、それを起点としてクラックが発生する。一方、鋼板をカソードとして電解すると、上記アノード溶解が起きず、クラックの発生が抑制される。 For surfaces that are not intentionally cracked, the occurrence of cracks can be prevented by performing cathode electrolysis at a current density of 0.01 A / dm 2 or more. This is because the generation of cracks is caused by the slight anode dissolution of the plating layer. If the plated steel sheet is immersed in an acidic aqueous solution and electrolysis is not performed, zinc selective dissolution occurs as an anodic reaction on the plated steel sheet, and cracks occur from that point. On the other hand, when electrolysis is performed using a steel plate as a cathode, the above-mentioned anode dissolution does not occur and the occurrence of cracks is suppressed.

本発明において、酸性水溶液は、Zn系めっき層を形成するめっき液であることが好ましい。Zn系めっき層を形成するためのめっき液は、通常pH4.0以下の酸性水溶液である。したがって、Zn系めっき層を形成した後、引き続きこのめっき液への浸漬処理を行えば、1つの液を用いてZn系めっき層の形成処理とクラック形成処理を行うことができるので、コスト的に有利である。 In the present invention, the acidic aqueous solution is preferably a plating solution that forms a Zn-based plating layer. The plating solution for forming the Zn-based plating layer is usually an acidic aqueous solution having a pH of 4.0 or less. Therefore, if the Zn-based plating layer is formed and then immersed in this plating solution, the Zn-based plating layer can be formed and the cracks can be formed using one solution, which is cost effective. It is advantageous.

なお、本発明において、上記のとおりZn系合金めっき層形成後に、引き続きめっき液に浸漬してクラック形成処理を行った後、さらにZn系めっき層を形成するめっき処理を行ってもよい。 In the present invention, as described above, after the Zn-based alloy plating layer is formed, the plating solution may be continuously immersed in a plating solution to perform a crack forming treatment, and then a plating treatment for further forming a Zn-based plating layer may be performed.

4)熱間プレス部材の製造方法
本発明において、鋼板の両面にZn系めっき層を備え、Zn系めっき層が該Zn系めっき層を縦断するクラックを有し、鋼板の一方の面のZn付着量が36g/m以上であり、かつZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が30箇所/mm以上であり、鋼板のもう一方の面のZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が20箇所/mm以下である、熱間プレス用鋼板を、室温からAc変態点~1000℃の温度範囲に5秒以上600秒以下の時間で昇温し、さらに、Ac変態点~1000℃の温度範囲に300秒以下の時間保持した後、熱間プレスすることにより、所望の分断密度を有する熱間プレス部材を得ることができる。
4) Method for manufacturing a hot-pressed member In the present invention, a Zn-based plating layer is provided on both sides of a steel sheet, the Zn-based plating layer has cracks that traverse the Zn-based plating layer, and Zn adhesion on one surface of the steel sheet is performed. The amount is 36 g / m 2 or more, the crack density per unit cross-sectional length in any 1 mm long cross section of the Zn-based plated layer is 30 points / mm or more, and the Zn-based on the other surface of the steel sheet is Zn-based. A hot-pressed steel sheet having a crack density of 20 points / mm or less per unit cross-sectional length in a cross section of an arbitrary 1 mm length of a plated layer is placed in a temperature range of Ac 3 transformation point to 1000 ° C. from room temperature for 5 seconds. A hot-pressed member having a desired breaking density by raising the temperature in a time of 600 seconds or less, holding the temperature in the temperature range of Ac 3 transformation point to 1000 ° C. for 300 seconds or less, and then hot-pressing. Can be obtained.

熱間プレス用鋼板の加熱温度の範囲をAc変態点~1000℃とすることにより、上記1)で説明したZn系めっき層を得ることができる。加熱温度がAc変態点より低いと、熱間プレス部材として必要な強度を得ることができない場合があり、加熱温度が1000℃を超えると、Znが消失してしまう場合がある。「Ac変態点」は成分組成に基づき以下の式から算出した値とする。
Ac変態点(℃)=910-203C1/2+44.7Si-4Mn+11Cr
上記式における元素記号は、各元素の含有量(質量%)を意味し、当該元素が含有されていない場合にはゼロとする。
By setting the heating temperature range of the hot-pressed steel sheet to the Ac 3 transformation point to 1000 ° C., the Zn-based plating layer described in 1) above can be obtained. If the heating temperature is lower than the Ac 3 transformation point, it may not be possible to obtain the strength required for the hot pressing member, and if the heating temperature exceeds 1000 ° C., Zn may disappear. The “Ac 3 transformation point” is a value calculated from the following formula based on the component composition.
Ac 3 transformation point (° C) = 910-203C 1/2 + 44.7Si-4Mn + 11Cr
The element symbol in the above formula means the content (mass%) of each element, and is zero when the element is not contained.

金属間化合物相を残存させて塗装後耐食性を維持するため、室温から上記加熱温度に至るまでに要する時間は600秒以下とする。室温から上記加熱温度に至るまでに要する時間は好ましくは450秒以下、さらに好ましくは300秒以下とする。また、昇温速度が過度に大きい、すなわち室温から加熱温度に至るまでの時間が短すぎると、金属間化合物の残存量が飽和するのみでなく、加熱処理中にめっき層が溶融することで、垂れ模様を生じ外観を劣化させる恐れがある。このことから、昇温時間については、室温から上記加熱温度に至るまでに要する時間は5秒以上とし、好ましくは10秒以上とする。 In order to maintain the corrosion resistance after coating by leaving the intermetallic compound phase, the time required from room temperature to the above heating temperature is 600 seconds or less. The time required to reach the heating temperature from room temperature is preferably 450 seconds or less, more preferably 300 seconds or less. Further, if the heating rate is excessively high, that is, the time from room temperature to the heating temperature is too short, not only the residual amount of the intermetallic compound is saturated, but also the plating layer is melted during the heat treatment, so that the plating layer is melted. It may cause a drooping pattern and deteriorate the appearance. From this, regarding the temperature rise time, the time required from room temperature to the above heating temperature is 5 seconds or more, preferably 10 seconds or more.

また、上記加熱温度における保持時間については、金属間化合物相をなるべく多く残存させて塗装後耐食性をより一層向上させる観点、および、保持時間中に炉内の水蒸気を取り込むことによる水素侵入を避ける観点から、保持時間は300秒以下とする。保持時間は、より好ましくは180秒以下、さらに好ましくは60秒以下とし、保持しないことが最も好ましい。 Regarding the holding time at the above heating temperature, there is a viewpoint of further improving the corrosion resistance after coating by leaving as much intermetallic compound phase as possible, and a viewpoint of avoiding hydrogen intrusion by taking in water vapor in the furnace during the holding time. Therefore, the holding time is set to 300 seconds or less. The holding time is more preferably 180 seconds or less, further preferably 60 seconds or less, and most preferably no holding.

また、熱間プレス用鋼板を加熱する方法は何ら限定されるものでなく、電気炉やガス炉による炉加熱、通電加熱、誘導加熱、高周波加熱、火炎加熱などが例示される。 Further, the method for heating the hot pressed steel sheet is not limited in any way, and examples thereof include furnace heating by an electric furnace or a gas furnace, energization heating, induction heating, high frequency heating, and flame heating.

加熱に次いで、熱間プレス加工を行い、加工と同時または直後に金型や水などの冷媒を用いて冷却を行うことにより熱間プレス部材が製造される。本発明においては、熱間プレス条件は特に限定されないが、一般的な熱間プレス温度範囲である600~800℃でプレスを行う事が出来る。 Following heating, hot pressing is performed, and at the same time as or immediately after the processing, cooling is performed using a refrigerant such as a die or water to manufacture a hot pressed member. In the present invention, the hot pressing conditions are not particularly limited, but pressing can be performed at 600 to 800 ° C., which is a general hot pressing temperature range.

以下、本発明を実施例に基づいて具体的に説明する。下記の実施例は本発明を限定するものではなく、要旨構成の範囲内で適宜変更することは、本発明の範囲に含まれるものとする。 Hereinafter, the present invention will be specifically described with reference to Examples. The following examples do not limit the present invention, and appropriate changes within the scope of the abstract structure are included in the scope of the present invention.

下地鋼板として、質量%で、C:0.24%、Si:0.25%、Mn:1.28%、P:0.005%、S:0.001%、Al:0.03%、N:0.004%、Nb:0.02%、Ti:0.02%、B:0.002%、Cr:0.2%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、板厚1.4mmの冷延鋼板を用いた(Ac変態点=848℃)。 As a base steel sheet, in terms of mass%, C: 0.24%, Si: 0.25%, Mn: 1.28%, P: 0.005%, S: 0.001%, Al: 0.03%, N: 0.004%, Nb: 0.02%, Ti: 0.02%, B: 0.002%, Cr: 0.2%, Sb: 0.008%, the balance is Fe and inevitable A cold-rolled steel sheet having a thickness of 1.4 mm and having a component composition composed of target impurities was used (Ac 3 transformation point = 848 ° C.).

上記の下地鋼板に、以下の電気めっき法により、鋼板の両面(表面・裏面)にZn系めっき層を施し、熱間プレス用鋼板を得た。
<電気めっき法>
硫酸亜鉛・7水和物115g/L、硫酸ニッケル・6水和物230g/L、硫酸ナトリウム55g/LからなるpH1.4、浴温50℃のめっき浴中で電流密度を10~100A/dm、通電時間5~60秒と変化させて電気めっき処理を施すことで、表1に示す水準No.1~19、26の、Ni含有率12%で、Zn付着量の異なるZn-Ni系合金めっき層を形成させた。また、電流密度を120A/dmとすることで、No.20の、Ni含有率20%のZn-Ni系合金めっき層を形成させた。さらに、前記の硫酸ニッケル・6水和物を、硫酸鉄・6水和物、硫酸コバルト・6水和物面、硫酸クロム・6水和物で置き換えることにより、No.21~25の各種Zn系合金めっき層を形成させた。めっき層形成後、面ごとに電流密度のパターンを変化させることにより、めっき後の両面または片面の浸漬処理を行った。上記のようなめっき及び浸漬処理を行った後のZn系めっき層について、表面観察を行い、クラック密度を測定した。具体的には、Zn系めっき層の表面を、走査型電子顕微鏡(SEM)を用いて1000倍で観察し、任意に3本直線を引き、クラックとの交点を数え、直線の長さで除することにより、単位長さ当たりのクラック密度(箇所/mm)に換算した。このとき、クラック密度の測定精度を上げるため、1つの供試材について3視野の表面観察を行い、その平均値をクラック密度とした。めっき方法、Zn系めっき層の付着量およびクラックの数密度を表1に示す。なお、熱間プレス用鋼板の表面のZn系めっき層の付着量は、後述する熱間プレス部材のZn付着量と同様の方法で求めた。
The above base steel sheet was subjected to a Zn-based plating layer on both sides (front surface and back surface) of the steel sheet by the following electroplating method to obtain a hot pressing steel sheet.
<Electroplating method>
The current density is 10 to 100 A / dm in a plating bath consisting of zinc sulfate heptahydrate 115 g / L, nickel sulfate hexahydrate 230 g / L, and sodium sulfate 55 g / L at a pH of 1.4 and a bath temperature of 50 ° C. 2. By performing electroplating treatment with the energization time changed to 5 to 60 seconds, the level No. 1 shown in Table 1 was applied. A Zn—Ni alloy plating layer having a Ni content of 12% and a Zn adhesion amount of 1 to 19 and 26 was formed. Further, by setting the current density to 120 A / dm 2 , No. A Zn—Ni alloy plating layer having a Ni content of 20% was formed. Further, by replacing the nickel sulfate hexahydrate with iron sulfate hexahydrate, cobalt sulfate hexahydrate surface, and chromium sulfate hexahydrate, No. 21 to 25 various Zn-based alloy plating layers were formed. After forming the plating layer, the dipping treatment on both sides or one side after plating was performed by changing the pattern of the current density for each surface. The surface of the Zn-based plating layer after the above plating and dipping treatment was observed, and the crack density was measured. Specifically, the surface of the Zn-based plating layer is observed at a magnification of 1000 using a scanning electron microscope (SEM), three straight lines are arbitrarily drawn, the intersections with cracks are counted, and the length of the straight line is divided. By doing so, it was converted into a crack density (location / mm) per unit length. At this time, in order to improve the measurement accuracy of the crack density, the surface observation of three fields of view was performed for one test material, and the average value was taken as the crack density. Table 1 shows the plating method, the amount of adhesion of the Zn-based plating layer, and the number density of cracks. The amount of the Zn-based plating layer adhered to the surface of the hot-pressed steel sheet was determined by the same method as the amount of Zn adhered to the hot-pressed member described later.

次いで、上記のめっき処理により得られた熱間プレス用鋼板から100mm×200mmの試験片を採取し、電気炉もしくは通電加熱によって加熱処理を行った。熱処理条件(加熱時間、加熱温度、保持時間)を表1に示す。熱処理後の試験片を電気炉または通電加熱炉から取り出し、直ちにハット型金型を用いて成形開始温度700℃で熱間プレスを行うことにより熱間プレス部材を得た。なお、得られた熱間プレス部材の形状は上面の平坦部長さ100mm、側面の平坦部長さ50mm、下面の平坦部長さ50mmである。また、金型の曲げRは上面の両肩、下面の両肩いずれも7Rである。 Next, a 100 mm × 200 mm test piece was collected from the hot pressed steel sheet obtained by the above plating treatment, and heat-treated by an electric furnace or energization heating. Table 1 shows the heat treatment conditions (heating time, heating temperature, holding time). The test piece after the heat treatment was taken out from an electric furnace or an energization heating furnace, and immediately hot pressed using a hat mold at a molding start temperature of 700 ° C. to obtain a hot pressed member. The shape of the obtained hot pressed member is a flat portion length of 100 mm on the upper surface, a flat portion length of 50 mm on the side surface, and a flat portion length of 50 mm on the lower surface. Further, the bending R of the mold is 7R for both the upper shoulders and the lower shoulders.

得られた熱間プレス部材について、Zn付着量および平均線粗さRaの測定、塗装後耐食性の評価、および抵抗スポット溶接性の評価を行った。 With respect to the obtained hot pressed member, the amount of Zn adhered and the average line roughness Ra were measured, the corrosion resistance after painting was evaluated, and the resistance spot weldability was evaluated.

<Zn付着量および平均線粗さRaの測定>
得られた熱間ブレス部材について、表面のZn付着量および両面(表裏面)の平均線粗さRaを測定した。熱間プレス部材のZn付着量は、以下の方法で求めるものとする。評価対象とする熱間プレス部材を打抜き加工して、48mmφの試料3つを採取し、各試料を計量する。その後、各試料において付着量を評価する片面とは反対側の非評価面をマスキングする。その後、重クロム酸アンモニウム20gを1Lにメスアップした溶液に、各試料を60分間浸漬することにより、酸化物層のみを溶解させた。Zn系めっき層の溶解前後の質量差から、各試料における単位面積あたりの付着量を算出した。その後、ヘキサメチレンテトラミン3.5gを添加した500mLの35%塩酸水溶液を1Lにメスアップした溶液に、各試料を10分間浸漬することにより、Zn系めっき層を溶解し、各試料を再度計量する。めっき層を溶解した上記の塩酸溶液試料中の金属成分を、誘導結合プラズマ発光分析法(ICP-AES)により定量し、熱間プレス部材のめっき層中のZn量を同定した。
<Measurement of Zn adhesion and average line roughness Ra>
With respect to the obtained hot breath member, the amount of Zn adhered to the front surface and the average line roughness Ra on both sides (front and back surfaces) were measured. The amount of Zn adhered to the hot pressed member shall be determined by the following method. The hot pressed member to be evaluated is punched, three samples having a diameter of 48 mmφ are collected, and each sample is weighed. Then, in each sample, the non-evaluation surface on the opposite side to the one surface for which the adhesion amount is evaluated is masked. Then, each sample was immersed in a solution prepared by adding 20 g of ammonium dichromate to 1 L for 60 minutes to dissolve only the oxide layer. The amount of adhesion per unit area in each sample was calculated from the mass difference before and after the dissolution of the Zn-based plating layer. Then, by immersing each sample in a solution prepared by adding 3.5 g of hexamethylenetetramine to 1 L of a 500 mL 35% hydrochloric acid aqueous solution for 10 minutes, the Zn-based plating layer is dissolved and each sample is weighed again. .. The metal component in the above-mentioned hydrochloric acid solution sample in which the plating layer was dissolved was quantified by inductively coupled plasma emission spectrometry (ICP-AES), and the amount of Zn in the plating layer of the hot press member was identified.

ミツトヨ製サーフトストSJ-2100を用い、JIS B 0601-2001に準拠し、走査速度0.5mm/s、操作距離4mm、測定荷重0.75mNとして、Zn系めっき層表面の算術平均粗さRaを測定した。任意の30区間で測定を行い、その平均値を算出し、本発明の平均線粗さRaとした。 Arithmetic mean roughness Ra of the surface of the Zn-based plating layer is measured using Mitutoyo's Surfst SJ-2100, in accordance with JIS B 0601-2001, with a scanning speed of 0.5 mm / s, an operating distance of 4 mm, and a measured load of 0.75 mN. bottom. Measurement was performed in any 30 sections, the average value was calculated, and the average line roughness Ra of the present invention was used.

<抵抗スポット溶接性>
熱間プレス部材の抵抗スポット溶接性を評価するため、得られた熱間プレス部材について、上面の平坦部から30mm×50mmの試験片を切り出し、同種の2枚板組で、抵抗スポット溶接性を行った。溶接機には交流抵抗スポット溶接機を用い、電極にはDRφ16タイプ 先端径6mm Cr-Cu電極を用いた。加圧力は3.5kN、通電時間は0.42秒とした。溶接電流は3.0kAよりチリが発生するまで0.1kA刻みで上昇させ、チリの発生しない最大の電流値を記録した。溶接後の試験片の溶接部の断面観察よりナゲット径を測定し、板厚t(mm)に対してナゲット径が4√t(mm)以上となる最小の電流と、チリの発生しない最大の電流値の差を、溶接の適正電流範囲とした。適正電流範囲を以下の基準で以下の基準で判定を行い、◎または○を合格とした。評価結果を表1に示す。
◎:1.5kA≦適正電流範囲
○:0.8kA≦適正電流範囲<1.5kA
×:0.8kA>適正電流範囲
また、5°の打角を設け、その他の条件は上記と同様に同種の2枚板組で溶接を行い、ナゲット内に生じたクラックの最大長さを断面から測定することにより、溶接部LME割れ長さとした。溶接部LME割れ長さを以下の基準で判定を行い、〇を合格とした。評価結果を表1に示す。
〇:20μm≧溶接部LME割れ長さ
△:100μm≧溶接部LME割れ長さ>20μm
×:100μm<適正電流範囲
<塗装後耐食性>
熱間プレス部材の塗装後耐食性を評価するため、得られた熱間プレス部材について、上面の平坦部から70mm×150mmの試験片を切り出し、この試験片に対してジルコニウム系化成処理および電着塗装を施した。ジルコニウム系化成処理は、日本パーカライジング社製PLM2100を用いて標準条件で行い、電着塗装は関西ペイント社製カチオン電着塗料エレクトロンGT100を用いて塗装膜厚が10μmとなるように行い、焼付け条件は170℃で20分間保持とした。次いで、ジルコニウム系化成処理および電着塗装を施した熱間プレス部材を腐食試験(SAE-J2334)に供し、30サイクル後の腐食状況の評価を行った。
クロスカットを施していない一般部については、以下の基準で判定を行い、◎または○を合格とした。評価結果を表1に示す。
◎:一般部における赤錆発生なし
○:1箇所≦赤錆発生箇所<3箇所
△:3箇所≦赤錆発生箇所<10箇所
×:10箇所≦赤錆発生箇所
クロスカット部(疵部)については、クロスカットからの片側最大膨れ幅を測定して以下の基準で判定を行い、◎または○を合格とした。評価結果を表1に示す。
◎:片側最大膨れ幅<1.5mm
○:1.5mm≦片側最大膨れ幅<3.0mm
△:3.0mm≦片側最大膨れ幅<4.0mm
×:4.0mm≦片側最大膨れ幅
<Resistance spot weldability>
In order to evaluate the resistance spot weldability of the hot press member, a test piece of 30 mm × 50 mm was cut out from the flat portion on the upper surface of the obtained hot press member, and the resistance spot weldability was improved by using a two-plate set of the same type. gone. An AC resistance spot welder was used as the welder, and a DRφ16 type Cr-Cu electrode with a tip diameter of 6 mm was used as the electrode. The pressing force was 3.5 kN and the energizing time was 0.42 seconds. The welding current was increased from 3.0 kA in increments of 0.1 kA until dust was generated, and the maximum current value at which dust was not generated was recorded. The nugget diameter is measured by observing the cross section of the welded part of the test piece after welding, and the minimum current at which the nugget diameter is 4√t (mm) or more with respect to the plate thickness t (mm) and the maximum without dust generation. The difference in current value was taken as the appropriate current range for welding. The appropriate current range was judged according to the following criteria, and ◎ or ○ was regarded as acceptable. The evaluation results are shown in Table 1.
⊚: 1.5 kA ≤ appropriate current range ○: 0.8 kA ≤ appropriate current range <1.5 kA
×: 0.8 kA> Appropriate current range In addition, a 5 ° striking angle is provided, and welding is performed with a two-plate assembly of the same type as described above under other conditions, and the maximum length of cracks generated in the nugget is cross-sectionald. The welded portion LME crack length was determined by measuring from. The welded LME crack length was judged according to the following criteria, and ◯ was regarded as acceptable. The evaluation results are shown in Table 1.
〇: 20 μm ≧ weld LME crack length Δ: 100 μm ≧ weld LME crack length> 20 μm
×: 100 μm <appropriate current range <corrosion resistance after painting>
In order to evaluate the corrosion resistance of the hot pressed member after coating, a 70 mm × 150 mm test piece was cut out from the flat portion on the upper surface of the obtained hot pressed member, and the test piece was subjected to zirconium-based chemical conversion treatment and electrodeposition coating. Was given. The zirconium-based chemical conversion treatment is performed under standard conditions using PLM2100 manufactured by Nihon Parkerizing Co., Ltd., and the electrodeposition coating is performed using the cationic electrodeposition coating Electron GT100 manufactured by Kansai Paint Co., Ltd. so that the coating film thickness is 10 μm, and the baking conditions are as follows. It was held at 170 ° C. for 20 minutes. Next, the hot pressed member subjected to the zirconium-based chemical conversion treatment and electrodeposition coating was subjected to a corrosion test (SAE-J2334), and the corrosion state after 30 cycles was evaluated.
For general parts that have not been cross-cut, the judgment was made according to the following criteria, and ◎ or ○ was judged as acceptable. The evaluation results are shown in Table 1.
⊚: No red rust generated in general part ○: 1 place ≤ red rust generated place <3 places △: 3 places ≤ red rust generated place <10 places ×: 10 places ≤ red rust generated place Cross cut part (scratch part) The maximum swelling width on one side was measured from the above, and the judgment was made according to the following criteria, and ◎ or ○ was regarded as acceptable. The evaluation results are shown in Table 1.
⊚: Maximum swelling width on one side <1.5 mm
◯: 1.5 mm ≤ maximum swelling width on one side <3.0 mm
Δ: 3.0 mm ≤ maximum swelling width on one side <4.0 mm
×: 4.0 mm ≤ maximum swelling width on one side

Figure 2022071515000001
Figure 2022071515000001

表1の結果から、本発明の熱間プレス部材は、塗装後耐食性および抵抗スポット溶接性に優れる。また、本発明の熱間プレス用鋼板であれば、塗装後耐食性および抵抗スポット溶接性に優れる熱間プレス部材を得ることができる。 From the results shown in Table 1, the hot pressed member of the present invention is excellent in corrosion resistance after painting and resistance spot weldability. Further, with the hot-pressed steel sheet of the present invention, it is possible to obtain a hot-pressed member having excellent post-coating corrosion resistance and resistance spot weldability.

Claims (3)

鋼板の両面にZn系めっき層を備え、
鋼板の一方の面のZn付着量が36g/m以上であり、かつ平均線粗さRaが2.5μm以下であり、
鋼板のもう一方の面の平均線粗さRaが3.5μm以上である、熱間プレス部材。
With Zn-based plating layers on both sides of the steel sheet,
The amount of Zn adhered to one surface of the steel sheet is 36 g / m 2 or more, and the average line roughness Ra is 2.5 μm or less.
A hot pressed member having an average linear roughness Ra of 3.5 μm or more on the other surface of the steel sheet.
鋼板の両面にZn系めっき層を備え、前記Zn系めっき層が該Zn系めっき層を縦断するクラックを有し、
鋼板の一方の面のZn付着量が36g/m以上であり、かつZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が30箇所/mm以上であり、
鋼板のもう一方の面のZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が20箇所/mm以下である、熱間プレス用鋼板。
A Zn-based plating layer is provided on both sides of the steel sheet, and the Zn-based plating layer has cracks that traverse the Zn-based plating layer.
The amount of Zn adhered to one surface of the steel sheet is 36 g / m 2 or more, and the crack density per unit cross-sectional length in any 1 mm long cross section of the Zn-based plating layer is 30 points / mm or more.
A steel sheet for hot pressing in which the crack density per unit cross-sectional length in a cross section of an arbitrary 1 mm length of the Zn-based plating layer on the other surface of the steel sheet is 20 points / mm or less.
鋼板の両面にZn系めっき層を備え、前記Zn系めっき層が該Zn系めっき層を縦断するクラックを有し、
鋼板の一方の面のZn付着量が36g/m以上であり、かつZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が30箇所/mm以上であり、
鋼板のもう一方の面のZn系めっき層の任意の1mm長さの断面における単位断面長さ当たりのクラック密度が20箇所/mm以下である、熱間プレス用鋼板を、
室温からAc変態点~1000℃の温度範囲に5秒以上600秒以下の時間で昇温し、さらに、Ac変態点~1000℃の温度範囲に300秒以下の時間保持した後、熱間プレスする熱間プレス部材の製造方法。
A Zn-based plating layer is provided on both sides of the steel sheet, and the Zn-based plating layer has cracks that traverse the Zn-based plating layer.
The amount of Zn adhered to one surface of the steel sheet is 36 g / m 2 or more, and the crack density per unit cross-sectional length in any 1 mm long cross section of the Zn-based plating layer is 30 points / mm or more.
A steel sheet for hot pressing, wherein the crack density per unit cross-sectional length in a cross section of an arbitrary 1 mm length of the Zn-based plating layer on the other surface of the steel sheet is 20 points / mm or less.
The temperature is raised from room temperature to the temperature range of Ac 3 transformation point to 1000 ° C. for 5 seconds or more and 600 seconds or less, and further, the temperature is maintained in the temperature range of Ac 3 transformation point to 1000 ° C. for 300 seconds or less, and then hot. A method for manufacturing a hot pressed member to be pressed.
JP2020180531A 2020-10-28 2020-10-28 HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER Active JP7338606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020180531A JP7338606B2 (en) 2020-10-28 2020-10-28 HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020180531A JP7338606B2 (en) 2020-10-28 2020-10-28 HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER

Publications (2)

Publication Number Publication Date
JP2022071515A true JP2022071515A (en) 2022-05-16
JP7338606B2 JP7338606B2 (en) 2023-09-05

Family

ID=81593827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020180531A Active JP7338606B2 (en) 2020-10-28 2020-10-28 HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER

Country Status (1)

Country Link
JP (1) JP7338606B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170694A (en) * 1989-11-29 1991-07-24 Kobe Steel Ltd Rust preventive steel sheet for automobile use and its production
JP2020041177A (en) * 2018-09-07 2020-03-19 Jfeスチール株式会社 Steel plate for hot pressing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170694A (en) * 1989-11-29 1991-07-24 Kobe Steel Ltd Rust preventive steel sheet for automobile use and its production
JP2020041177A (en) * 2018-09-07 2020-03-19 Jfeスチール株式会社 Steel plate for hot pressing

Also Published As

Publication number Publication date
JP7338606B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
CN102482753B (en) High-strength hot-dip galvanized steel sheet and process for producing same
CN112805395B (en) Hot-rolled steel sheet and method for producing same
JPWO2019003541A1 (en) Hot pressed member, method for producing the same, cold rolled steel sheet for hot pressing, and method for producing the same
JP6540908B2 (en) Hot pressed member, method for producing the same, cold rolled steel sheet for hot pressing, and method for producing the same
WO2019003448A1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing
JP6897757B2 (en) Surface-treated steel sheet
JPWO2020170710A1 (en) High-strength steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full-hard steel sheet manufacturing method, and high-strength steel sheet manufacturing method
JP7063430B1 (en) A method for manufacturing a hot pressed member, a coated member, a steel plate for hot pressing, and a method for manufacturing a hot pressed member and a method for manufacturing a painted member.
JP2018090879A (en) Steel plate for hot press molding, method for producing hot press molding, and hot press molding
WO2022091529A1 (en) Hot-pressed member, steel sheet for hot-pressing, and methods for producing same
JP2020041175A (en) Steel plate for hot pressing
JP6888743B1 (en) Hot-pressed members, hot-pressed steel sheets, and their manufacturing methods
WO2022091351A1 (en) Zn-plated hot-stamped molded article
JP6981385B2 (en) Steel plate for hot pressing
JP7338606B2 (en) HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER
JP7173368B2 (en) HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER
JP2020041174A (en) Steel plate for hot pressing
JP7126093B2 (en) HOT PRESS MEMBER AND MANUFACTURING METHOD THEREOF
JPWO2020049833A1 (en) Steel plate for hot pressing
JP7243949B1 (en) hot pressed parts
JP7243948B1 (en) hot pressed parts
JP6819796B2 (en) Steel plate for hot pressing
JP7056799B2 (en) Hot pressed members and their manufacturing methods, and hot pressed plated steel sheets
WO2023153099A1 (en) Steel sheet for hot pressing, hot-pressed member and method for producing hot-pressed member
WO2024053207A1 (en) Steel sheet for hot pressing, hot-pressed member and method for producing hot-pressed member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R150 Certificate of patent or registration of utility model

Ref document number: 7338606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150