JP7056499B2 - Configuration layout design method and configuration layout design equipment for power receiving and distribution equipment - Google Patents

Configuration layout design method and configuration layout design equipment for power receiving and distribution equipment Download PDF

Info

Publication number
JP7056499B2
JP7056499B2 JP2018189493A JP2018189493A JP7056499B2 JP 7056499 B2 JP7056499 B2 JP 7056499B2 JP 2018189493 A JP2018189493 A JP 2018189493A JP 2018189493 A JP2018189493 A JP 2018189493A JP 7056499 B2 JP7056499 B2 JP 7056499B2
Authority
JP
Japan
Prior art keywords
disconnector
bus
power receiving
equipment
load equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018189493A
Other languages
Japanese (ja)
Other versions
JP2020061794A (en
Inventor
裕徳 中谷内
潤 小淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018189493A priority Critical patent/JP7056499B2/en
Publication of JP2020061794A publication Critical patent/JP2020061794A/en
Application granted granted Critical
Publication of JP7056499B2 publication Critical patent/JP7056499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、受配電設備の構成配置設計方法及び構成配置設計装置に関する。 The present invention relates to a configuration layout design method and a configuration layout design device for power receiving and distribution equipment.

近年、所定敷地内に点在している、工場施設等の複数の負荷設備に対して、電源から電力を供給する際、事故発生時に電力系統を分離して、他への事故波及を防ぐため、第1母線と第2母線とが母線連絡線により接続された二重母線構造の受配電設備が提案されている(例えば、特許文献1参照)。 In recent years, when supplying power from a power source to multiple load facilities such as factory facilities scattered within a predetermined site, the power system is separated in the event of an accident to prevent the accident from spreading to others. , A power receiving and distributing facility having a double bus structure in which the first bus and the second bus are connected by a bus connecting line has been proposed (see, for example, Patent Document 1).

特開2001-258145号公報Japanese Unexamined Patent Publication No. 2001-258145

このような受配電設備は、電源の配置位置、母線連絡線の配置位置、負荷設備の配置位置、遮断器等の電気機器の配置位置等に応じて、負荷設備の稼働率が変わってくる。このため、受配電設備内に、これら電気機器、電源及び負荷設備等をどの位置に配置させるかは重要な事項となる。 In such power receiving and distribution equipment, the operating rate of the load equipment changes depending on the arrangement position of the power supply, the arrangement position of the bus connecting line, the arrangement position of the load equipment, the arrangement position of the electric equipment such as the circuit breaker, and the like. Therefore, it is an important matter at which position these electric devices, power supplies, load facilities, etc. are arranged in the power receiving and distribution equipment.

しかしながら、従来では、これら受配電設備の電気機器、電源及び負荷設備等の配置位置を一元的に決定する手法は確立されていなかった。 However, in the past, a method for centrally determining the arrangement positions of electrical equipment, power sources, load equipment, etc. of these power receiving and distribution equipments has not been established.

本発明は、上記のような問題に鑑みてなされたものであり、受配電設備の電気機器、電源及び負荷設備の配置位置を一元的に決定することができる、受配電設備の構成配置設計方法及び構成配置設計装置を提供することを目的とする。 The present invention has been made in view of the above problems, and is a method for designing the configuration and arrangement of power receiving and distributing equipment, which can centrally determine the arrangement positions of electric equipment, power supply, and load equipment of power receiving and distributing equipment. And to provide a configuration layout design device.

本発明の受配電設備の構成配置設計方法は、第1母線と第2母線とが母線連絡線で接続された二重母線構造からなる受配電設備の構成配置設計方法において、電気機器、第1受電断路器及び第2受電断路器を介して前記第1母線及び前記第2母線に接続可能な電源と、第1負荷設備断路器及び第2負荷設備断路器を介して前記第1母線及び前記第2母線に接続可能な負荷設備とを、前記第1母線及び前記第2母線に配置させた前記受配電設備の設計情報を取得する設計情報取得工程と、前記第1受電断路器、前記第2受電断路器、前記第1負荷設備断路器及び前記第2負荷設備断路器をそれぞれオンオフ動作させた場合に、各前記電源から各前記負荷設備に電力が供給可能となる全てのルートを抽出する全ルート抽出工程と、前記全ルート抽出工程で抽出された前記ルートのうち、前記第1受電断路器及び前記第2受電断路器の両方がオン動作して前記電源が前記第1母線及び前記第2母線の両方に接続されたときのルートと、前記第1負荷設備断路器及び前記第2負荷設備断路器の両方がオン動作して前記負荷設備が前記第1母線及び前記第2母線の両方に接続されたときのルートと、を変則的ルートとし、前記全ルート抽出工程で抽出した前記ルートから前記変則的ルートを排除した、計算対象ルートを特定する計算対象ルート特定工程と、前記計算対象ルートに沿って配置されている、前記第1受電断路器、前記第2受電断路器、前記第1負荷設備断路器、前記第2負荷設備断路器及び前記電気機器におけるそれぞれの既知の信頼度を基に、各前記負荷設備毎に、少なくとも稼働率及び不稼働率のいずれか一方を算出する算出工程と、前記稼働率又は前記不稼働率を基に、前記電気機器、前記電源、又は前記負荷設備について前記二重母線構造での配置設計を行う配置設計工程と、を備えるものである。 The method for designing the configuration and layout of the power receiving and distributing equipment of the present invention is the method for designing the configuration and layout of the power receiving and distributing equipment having a double bus structure in which the first bus and the second bus are connected by a bus connecting line. A power supply that can be connected to the first bus and the second bus via the power receiving disconnector and the second disconnector, and the first bus and the above via the first load equipment disconnector and the second load equipment disconnector. A design information acquisition step for acquiring design information of the power receiving and distributing equipment in which the load equipment connectable to the second bus is arranged on the first bus and the second bus, and the first power receiving disconnector and the first disconnector. 2 When the power receiving disconnector, the first load equipment disconnector, and the second load equipment disconnector are turned on and off, all routes that can supply power to each load equipment from each power source are extracted. Of the routes extracted in the all route extraction step and the all route extraction step, both the first power receiving disconnector and the second power receiving disconnector are turned on, and the power supply is the first bus and the first bus. Both the route when connected to both of the two bus wires and the first load equipment disconnector and the second load equipment disconnector are turned on, and the load equipment is both the first bus and the second bus. The calculation target route specifying process for specifying the calculation target route and the calculation target, in which the route when connected to is an irregular route and the irregular route is excluded from the route extracted in the all route extraction step. The known reliability of the first power receiving disconnector, the second power receiving disconnector, the first load equipment disconnector, the second load equipment disconnector, and the electric equipment arranged along the route. Based on the calculation process for calculating at least one of the operating rate and the disconnecting rate for each of the load facilities, and the electrical equipment, the power supply, or the load based on the operating rate or the disconnecting rate. The equipment includes an arrangement design process for performing an arrangement design with the double bus structure.

また、本発明の受配電設備の構成配置設計装置は、第1母線と第2母線とが母線連絡線で接続された二重母線構造からなる受配電設備の構成配置設計装置において、電気機器、第1受電断路器及び第2受電断路器を介して前記第1母線及び前記第2母線に接続可能な電源と、第1負荷設備断路器及び第2負荷設備断路器を介して前記第1母線及び前記第2母線に接続可能な負荷設備とを、前記第1母線及び前記第2母線に配置させた前記受配電設備の設計情報を取得する設計情報取得部と、前記第1受電断路器、前記第2受電断路器、前記第1負荷設備断路器及び前記第2負荷設備断路器をそれぞれオンオフ動作させた場合に、各前記電源から各前記負荷設備に電力が供給可能となる全てのルートを抽出する全ルート抽出部と、前記全ルート抽出部で抽出された前記ルートのうち、前記第1受電断路器及び前記第2受電断路器の両方がオン動作して前記電源が前記第1母線及び前記第2母線の両方に接続されたときのルートと、前記第1負荷設備断路器及び前記第2負荷設備断路器の両方がオン動作して前記負荷設備が前記第1母線及び前記第2母線の両方に接続されたときのルートと、を変則的ルートとし、前記全ルート抽出部で抽出した前記ルートから前記変則的ルートを排除した、計算対象ルートを特定する計算対象ルート特定部と、前記計算対象ルートに沿って配置されている、前記第1受電断路器、前記第2受電断路器、前記第1負荷設備断路器、前記第2負荷設備断路器及び前記電気機器におけるそれぞれの既知の信頼度を基に、各前記負荷設備毎に、少なくとも稼働率及び不稼働率のいずれか一方を算出する算出部と、を備え、前記稼働率又は前記不稼働率を基に、設計者に対して、前記電気機器、前記電源、又は前記負荷設備について前記二重母線構造での配置設計を行わせるものである。 Further, the configuration / distribution design device for the power receiving / distribution equipment of the present invention is the configuration / layout design device for the power receiving / distribution equipment having a double bus structure in which the first bus and the second bus are connected by a bus connecting line. A power supply that can be connected to the first bus and the second bus via the first disconnector and the second disconnector, and the first bus via the first load equipment disconnector and the second load equipment disconnector. And the design information acquisition unit for acquiring the design information of the power receiving and distributing equipment in which the load equipment connectable to the second bus is arranged on the first bus and the second bus, and the first power receiving disconnector. When the second power receiving disconnector, the first load equipment disconnector, and the second load equipment disconnector are turned on and off, all routes that can supply power from each power source to each load equipment are provided. Of the routes extracted by the all route extraction unit and the all route extraction unit, both the first power receiving disconnector and the second power receiving disconnector are turned on, and the power supply is the first bus and the first bus. Both the route when connected to both of the second bus and the first load equipment disconnector and the second load equipment disconnector are turned on, and the load equipment is the first bus and the second bus. The calculation target route specifying unit for specifying the calculation target route, which excludes the irregular route from the routes extracted by the all route extraction unit, with the route when connected to both of the above as an irregular route, and the above Known reliability of the first power receiving disconnector, the second power receiving disconnector, the first load equipment disconnector, the second load equipment disconnector, and the electric equipment arranged along the calculation target route. Each of the load facilities is provided with a calculation unit that calculates at least one of the operating rate and the disconnecting rate based on the degree, and the designer is provided with the operating rate or the disconnecting rate based on the disconnecting rate. , The electric device, the power source, or the load facility is to be arranged and designed in the double bus structure.

本発明によれば、各負荷設備毎に稼働率及び/又は不稼働率を計算する際、第1受電断路器、第2受電断路器、第1負荷設備断路器及び第2負荷設備断路器の運用特性を活かし算出式項数を大幅に減らすことができるので、各負荷設備の稼働率及び/又は不稼働率を容易に求めることができる。このような稼働率及び/又は不稼働率を基に、受配電設備の構成配置を設計することで、受配電設備の電気機器、電源及び負荷設備の配置位置を一元的に決定することができる。 According to the present invention, when calculating the operating rate and / or the non-operating rate for each load equipment, the first power receiving disconnector, the second power receiving disconnector, the first load equipment disconnector, and the second load equipment disconnector are used. Since the number of calculation formula terms can be significantly reduced by taking advantage of the operational characteristics, the operating rate and / or the non-operating rate of each load facility can be easily obtained. By designing the configuration arrangement of the power receiving and distributing equipment based on such an operating rate and / or the non-operating rate, it is possible to centrally determine the arrangement position of the electric equipment, the power supply and the load equipment of the power receiving and distributing equipment. ..

受配電設備の構成の一例と、所定位置で事故が発生したときの事故電流の流れと、を示した概略図である。It is a schematic diagram which showed an example of the structure of the power receiving and distribution equipment, and the flow of the accident current when an accident occurred at a predetermined position. 母線連絡遮断器をオフ動作させたときの概略図である。It is a schematic diagram when the bus connection circuit breaker is turned off. 電源と第1母線との間に配置された受電遮断器をオフ動作させたときの概略図である。It is a schematic diagram at the time of turning off the power receiving circuit breaker arranged between a power source and a 1st bus. 所定の負荷設備に接続された第1負荷設備断路器及び第2負荷設備断路器をいずれもオン動作させたときの概略図である。It is a schematic diagram when both the 1st load equipment disconnector and the 2nd load equipment disconnector connected to a predetermined load equipment are turned on. 第1母線に接続されていた負荷設備を第2母線に接続させたときの概略図である。It is a schematic diagram when the load equipment connected to the 1st bus is connected to the 2nd bus. 本発明の構成配置設計装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the structure arrangement design apparatus of this invention. 本発明による構成配置設計装置にて設計される受配電設備の設計情報の一例を示した概略図である。It is a schematic diagram which showed an example of the design information of the power receiving and distribution equipment designed by the configuration arrangement design apparatus by this invention. 構成配置設計装置で算出した稼働率を基に、図7の設計情報を改変したときの概略図である。It is a schematic diagram when the design information of FIG. 7 is modified based on the operating rate calculated by the configuration arrangement design apparatus. 構成配置設計処理を示すフローチャートである。It is a flowchart which shows the composition arrangement design process. 通常運転時のルート数を説明するための概略図であり、図10Aは一の電源から負荷設備までのルートの概略図(1)、図10Bは一の電源から負荷設備までのルートの概略図(2)、図10Cは一の電源から負荷設備までのルートの概略図(3)、図10Dは一の電源から負荷設備までのルートの概略図(4)を示す。It is a schematic diagram for explaining the number of routes in normal operation, FIG. 10A is a schematic diagram of a route from one power source to a load facility (1), and FIG. 10B is a schematic diagram of a route from one power source to a load facility. (2), FIG. 10C shows a schematic diagram (3) of the route from one power supply to the load equipment, and FIG. 10D shows a schematic diagram (4) of the route from one power supply to the load equipment. 通常運転時のルート数を説明するための概略図であり、図11Aは他の電源から負荷設備までのルートの概略図(1)、図11Bは他の電源から負荷設備までのルートの概略図(2)、図11Cは他の電源から負荷設備までのルートの概略図(3)、図11Dは他の電源から負荷設備までのルートの概略図(4)を示す。It is a schematic diagram for explaining the number of routes in normal operation, FIG. 11A is a schematic diagram of a route from another power source to a load facility (1), and FIG. 11B is a schematic diagram of a route from another power source to a load facility. (2), FIG. 11C shows a schematic diagram (3) of a route from another power source to the load equipment, and FIG. 11D shows a schematic diagram (4) of a route from another power source to the load equipment. 母線切換運転時を考慮したルート数を説明するための概略図であり、図12Aは一の電源から負荷設備までの変則的ルートの概略図(1)、図12Bは一の電源から負荷設備までの変則的ルートの概略図(2)、図12Cは一の電源から負荷設備までの変則的ルートの概略図(3)、図12Dは一の電源から負荷設備までの変則的ルートの概略図(4)、図12Eは一の電源から負荷設備までの変則的ルートの概略図(5)、図12Fは一の電源から負荷設備までの変則的ルートの概略図(6)、図12Gは一の電源から負荷設備までの変則的ルートの概略図(7)、図12Hは一の電源から負荷設備までの変則的ルートの概略図(8)を示す。It is a schematic diagram for explaining the number of routes considering the time of bus switching operation, FIG. 12A is a schematic diagram of an irregular route from one power source to load equipment (1), and FIG. 12B is a schematic diagram from one power source to load equipment. Schematic diagram of the irregular route (2), FIG. 12C is a schematic diagram of the irregular route from one power supply to the load equipment (3), and FIG. 12D is a schematic diagram of the irregular route from one power supply to the load equipment (1). 4), FIG. 12E is a schematic diagram of an irregular route from one power source to load equipment (5), FIG. 12F is a schematic diagram of an irregular route from one power source to load equipment (6), and FIG. 12G is one. Schematic diagram (7) of the irregular route from the power supply to the load equipment, FIG. 12H shows the schematic diagram (8) of the irregular route from one power supply to the load equipment. 母線切換運転時を考慮したルート数を説明するための概略図であり、図13Aは他の電源から負荷設備までの変則的ルートの概略図(1)、図13Bは他の電源から負荷設備までの変則的ルートの概略図(2)、図13Cは他の電源から負荷設備までの変則的ルートの概略図(3)、図13Dは他の電源から負荷設備までの変則的ルートの概略図(4)、図13Eは他の電源から負荷設備までの変則的ルートの概略図(5)、図13Fは他の電源から負荷設備までの変則的ルートの概略図(6)を示す。It is a schematic diagram for explaining the number of routes considering the time of bus switching operation, FIG. 13A is a schematic diagram of an irregular route from another power source to load equipment (1), and FIG. 13B is a schematic diagram from another power source to load equipment. Schematic diagram of the irregular route (2), FIG. 13C is a schematic diagram of the irregular route from another power source to the load equipment (3), and FIG. 13D is a schematic diagram of the irregular route from the other power source to the load equipment. 4), FIG. 13E shows a schematic diagram (5) of an irregular route from another power source to the load equipment, and FIG. 13F shows a schematic diagram (6) of an irregular route from another power source to the load equipment.

以下図面について、本発明の一実施形態を詳述する。以下の説明において、同様の要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. In the following description, similar elements are designated by the same reference numerals, and duplicate description will be omitted.

<設計対象となる二重母線構造の受配電設備について>
始めに、本発明の構成配置設計装置にて設計を行う、一般的な二重母線構造の受配電設備1について説明する。図1は、二重母線構造の受配電設備1について構成の一例を示した概略図である。受配電設備1は、第1母線2aと第2母線2bとが母線連絡線3で接続された二重母線構造を有する。
<Regarding the power receiving and distribution equipment with a double bus structure to be designed>
First, a power receiving / distributing facility 1 having a general double-bus structure, which is designed by the configuration / arrangement design device of the present invention, will be described. FIG. 1 is a schematic view showing an example of the configuration of a power receiving / distributing facility 1 having a double bus structure. The power receiving and distributing equipment 1 has a double bus structure in which the first bus 2a and the second bus 2b are connected by a bus connecting line 3.

受配電設備1は、電源4a,4bから供給される電力を、第1母線2a又は第2母線2bを介して各負荷設備5a,5bに供給する。なお、図1では、電源4a,4bの2つを設け、負荷設備5a,5bの2つを設けた場合について述べるが、電源を3つ以上設けても良く、また負荷設備を3つ以上設けても良い。電源4a,4bの具体例としては、受配電設備1が置かれた構内に設けた電源でもよく、また構内とは別の、構外にある一般の電力会社が管理する電源であってもよい。 The power receiving and distributing equipment 1 supplies the electric power supplied from the power supplies 4a and 4b to the load equipments 5a and 5b via the first bus 2a or the second bus 2b. Note that FIG. 1 describes a case where two power supplies 4a and 4b are provided and two load equipments 5a and 5b are provided. However, three or more power supplies may be provided, and three or more load equipments may be provided. May be. As a specific example of the power sources 4a and 4b, a power source provided in the premises where the power receiving and distributing equipment 1 is placed may be used, or a power source managed by a general electric power company outside the premises may be used.

この場合、受配電設備1では、受電遮断器10aに電源4aが接続され、他の受電遮断器10bに他の電源4bが接続されている。なお、図1では、2つの受電遮断器10a,10b間に、第1母線2a及び第2母線2bに沿って負荷設備5a,5bが配置されている、また、母線連絡線3が、第1母線2a及び第2母線2bの末端に配置されている。 In this case, in the power receiving and distributing equipment 1, the power supply 4a is connected to the power receiving and distributing circuit breaker 10a, and the other power supply 4b is connected to the other power receiving and distributing circuit breaker 10b. In FIG. 1, load equipment 5a and 5b are arranged between the two power receiving circuit breakers 10a and 10b along the first bus 2a and the second bus 2b, and the bus connecting line 3 is the first bus. It is arranged at the end of the bus 2a and the second bus 2b.

電源4aは、受電遮断器10aを介して、第1受電断路器7aと第2受電断路器7bとに接続されている。受電遮断器10aは、オン動作することで、電源4aを、第1受電断路器7a及び第2受電断路器7bに接続し、電源4aからの電力を、第1受電断路器7a及び第2受電断路器7bに供給する。 The power supply 4a is connected to the first power receiving disconnector 7a and the second power receiving disconnector 7b via the power receiving disconnector 10a. The power receiving disconnector 10a is turned on to connect the power supply 4a to the first power receiving disconnector 7a and the second power receiving disconnector 7b, and the power from the power supply 4a is supplied to the first power receiving disconnector 7a and the second power receiving disconnector 7a. It is supplied to the disconnector 7b.

一方、受電遮断器10aは、オフ動作することで、電源4aを、第1受電断路器7a及び第2受電断路器7bから切り離す。これにより、受電遮断器10aは、電源4aからの電力を遮断し、第1受電断路器7a及び第2受電断路器7bの両方に電力が供給されないようにする。 On the other hand, the power receiving disconnector 10a is turned off to disconnect the power supply 4a from the first power receiving disconnector 7a and the second power receiving disconnector 7b. As a result, the power receiving disconnector 10a cuts off the power from the power supply 4a so that the power is not supplied to both the first power receiving disconnector 7a and the second power receiving disconnector 7b.

第1受電断路器7aは、受電遮断器10a及び第1母線2aの間に配置されている。第1受電断路器7aは、オン動作することで、第1母線2aに受電遮断器10aを接続し、オフ動作することで、第1母線2aから受電遮断器10aを切り離す。 The first power receiving disconnector 7a is arranged between the power receiving disconnector 10a and the first bus 2a. The first power receiving disconnector 7a connects the power receiving disconnector 10a to the first bus 2a by operating on, and disconnects the power receiving disconnector 10a from the first bus 2a by operating off.

第2受電断路器7bは、受電遮断器10a及び第2母線2bの間に配置されている。第2受電断路器7bは、オン動作することで、第2母線2bに受電遮断器10aを接続し、オフ動作することで、第2母線2bから受電遮断器10aを切り離す。 The second power receiving disconnector 7b is arranged between the power receiving disconnector 10a and the second bus 2b. The second power receiving disconnector 7b connects the power receiving disconnector 10a to the second bus 2b by operating on, and disconnects the power receiving disconnector 10a from the second bus 2b by operating off.

なお、第1受電断路器7a及び第2受電断路器7bは、それぞれ独立にオン動作又はオフ動作とすることができる。そのため、受電遮断器10aがオン動作の場合には、第1受電断路器7a及び第2受電断路器7bのオンオフ動作によって、電源4aが、第1母線2a及び第2母線2bの少なくともいずれか一方と接続されることになる。 The first power receiving disconnector 7a and the second power receiving disconnector 7b can be independently turned on or off. Therefore, when the power receiving disconnector 10a is on, the power supply 4a is at least one of the first bus 2a and the second bus 2b by the on / off operation of the first power receiving disconnector 7a and the second power receiving disconnector 7b. Will be connected to.

なお、他の電源4bも、上述した電源4aと同一構成を有しており、受電遮断器10b、第1受電断路器7c又は第2受電断路器7dを介して第1母線2a及び第2母線2bに接続されている。なお、ここでは、説明の重複を避けるため、他の電源4bについての説明は省略する。 The other power supply 4b also has the same configuration as the power supply 4a described above, and has the first bus 2a and the second bus via the power receiving disconnector 10b, the first power receiving disconnector 7c, or the second power receiving disconnector 7d. It is connected to 2b. Here, in order to avoid duplication of description, the description of the other power supply 4b will be omitted.

この実施形態の場合、通常運転時、電源4a,4bに接続された各受電遮断器10a,10bはオン動作する。また、通常運転時、電源4a,4bは、それぞれ第1母線2a又は第2母線2bのいずれか一方にのみ接続される。例えば、本実施形態では、第1受電断路器7aがオン動作し、第2受電断路器7bがオフ動作しており、電源4aは、第2受電断路器7bにより第2母線2bとの接続が切り離され、第1母線2aにのみ接続される。 In the case of this embodiment, the power receiving circuit breakers 10a and 10b connected to the power supplies 4a and 4b are turned on during normal operation. Further, during normal operation, the power supplies 4a and 4b are connected to only one of the first bus 2a and the second bus 2b, respectively. For example, in the present embodiment, the first power receiving disconnector 7a is turned on, the second power receiving disconnector 7b is off, and the power supply 4a is connected to the second bus 2b by the second power receiving disconnector 7b. It is disconnected and connected only to the first bus 2a.

また、本実施形態の場合、通常運転時、他の電源4bは、電源4aが接続されてない第2母線2bに接続される。具体的には、電源4bと第1母線2aとの間に配置された第1受電断路器7cはオフ動作し、他の電源4bと第2母線2bとの間に配置された第2受電断路器7dはオン動作している。これにより、他の電源4bは、第1受電断路器7cにより第1母線2aとの接続が切り離され、第2母線2bにのみ接続される。 Further, in the case of the present embodiment, during normal operation, the other power source 4b is connected to the second bus line 2b to which the power source 4a is not connected. Specifically, the first power receiving disconnector 7c arranged between the power source 4b and the first bus 2a operates off, and the second power receiving disconnector arranged between the other power source 4b and the second bus 2b operates off. The vessel 7d is operating on. As a result, the other power supply 4b is disconnected from the first bus 2a by the first power receiving disconnector 7c, and is connected only to the second bus 2b.

母線連絡線3には、母線連絡遮断器12が設けられており、通常運転時、オン動作することで、第1母線2a及び第2母線2bを接続する。通常運転時は、母線連絡遮断器12をオン動作し、第1母線2a及び第2母線2bを接続することで、第1母線2a及び第2母線2bには、電源4a及び電源4bの両電源から電力供給される。なお、母線連絡遮断器12は、後述する事故点Tの除去動作や、点検作業時にオフ動作され、第1母線2a及び第2母線2bの接続を切り離す。 The busbar connecting line 3 is provided with a busbar connecting circuit breaker 12, and by operating on during normal operation, the first busbar 2a and the second busbar 2b are connected. During normal operation, the bus connection circuit breaker 12 is turned on and the first bus 2a and the second bus 2b are connected, so that the first bus 2a and the second bus 2b are supplied with both power sources 4a and 4b. Powered from. The bus-bar contact circuit breaker 12 is operated to remove the accident point T, which will be described later, or to be turned off during inspection work to disconnect the first bus 2a and the second bus 2b.

負荷設備5aは、負荷設備遮断器11aを介して第1負荷設備断路器8a及び第2負荷設備断路器8bに接続されている。第1負荷設備断路器8aは、負荷設備遮断器11aと第1母線2aとの間に配置され、一方、第2負荷設備断路器8bは、負荷設備遮断器11aと第2母線2bとの間に配置されている。第1負荷設備断路器8a及び第2負荷設備断路器8bは、それぞれ独立にオン動作又はオフ動作とすることができる。なお、他の負荷設備5b側も、上述した負荷設備5a側と同一構成を有しているため、ここでは説明の重複を避けるため、その説明は省略する。 The load equipment 5a is connected to the first load equipment disconnector 8a and the second load equipment disconnector 8b via the load equipment disconnector 11a. The first load equipment disconnector 8a is arranged between the load equipment disconnector 11a and the first bus 2a, while the second load equipment disconnector 8b is between the load equipment circuit breaker 11a and the second bus 2b. Is located in. The first load equipment disconnector 8a and the second load equipment disconnector 8b can be independently turned on or off. Since the other load equipment 5b side also has the same configuration as the load equipment 5a side described above, the description thereof will be omitted here in order to avoid duplication of description.

通常運転時、負荷設備5a,5bに接続された各負荷設備遮断器11a,11bはオン動作する。また、通常運転時、負荷設備5a,5bは、それぞれ第1母線2a又は第2母線2bのいずれか一方にのみ接続される。例えば、本実施形態では、通常運転時、第1負荷設備断路器8aがオン動作し、第2負荷設備断路器8bがオフ動作している。これにより、一方の負荷設備5aは、第2負荷設備断路器8bによって第2母線2bとの接続が切り離され、第1負荷設備断路器8aによって第1母線2aにのみ接続される。 During normal operation, the load equipment circuit breakers 11a and 11b connected to the load equipment 5a and 5b are turned on. Further, during normal operation, the load equipment 5a and 5b are connected to only one of the first bus 2a and the second bus 2b, respectively. For example, in the present embodiment, during normal operation, the first load equipment disconnector 8a is turned on and the second load equipment disconnector 8b is off. As a result, one of the load equipment 5a is disconnected from the second bus 2b by the second load equipment disconnector 8b, and is connected only to the first bus 2a by the first load equipment disconnector 8a.

また、本実施形態の場合、他方の負荷設備5bは、通常運転時、一方の負荷設備5aが接続されてない第2母線2bに接続される。具体的には、第1負荷設備断路器8cがオフ動作し、第2負荷設備断路器8dがオン動作している。これにより、他方の負荷設備5bは、第1負荷設備断路器8cによって第1母線2aとの接続が切り離され、第2負荷設備断路器8dによって第2母線2bにのみ接続される。 Further, in the case of the present embodiment, the other load equipment 5b is connected to the second bus 2b to which the one load equipment 5a is not connected during normal operation. Specifically, the first load equipment disconnector 8c is off and the second load equipment disconnector 8d is on. As a result, the other load equipment 5b is disconnected from the first bus 2a by the first load equipment disconnector 8c, and is connected only to the second bus 2b by the second load equipment disconnector 8d.

ここで、負荷設備5a,5bは、例えば、工場内で動作する製造装置(圧延機、搬送装置、加熱炉、制御装置等)の様な工場施設等であり、第1母線2a、第2母線2b及び母線連絡線3等を経由して、電源4a,4bから必要な電力が供給される。 Here, the load equipment 5a and 5b are, for example, factory facilities such as manufacturing equipment (rolling mill, transfer equipment, heating furnace, control device, etc.) operating in the factory, and the first bus 2a and the second bus are the first bus. The necessary power is supplied from the power supplies 4a and 4b via 2b, the bus connecting line 3, and the like.

<受配電設備における事故点の除去動作>
ここで、一般的な二重母線構造の受配電設備1において、例えば、第1母線2aの所定位置(事故点T)で事故が発生したときに、当該事故点Tを除去する除去動作について、以下簡単に説明する。この場合、図1に示すように、例えば、電源4aから受電遮断器10a及び第1受電断路器7aを経由して事故点Tに向けて事故電流が流れるとともに、他の電源4bからも第2母線2b及び母線連絡線3を経由して第1母線2aの事故点Tに向けて事故電流Iが流れる。
<Operation to remove accident points in power receiving and distribution equipment>
Here, in the power receiving and distribution equipment 1 having a general double bus structure, for example, when an accident occurs at a predetermined position (accident point T) of the first bus 2a, the removal operation for removing the accident point T is described. The following is a brief explanation. In this case, as shown in FIG. 1, for example, the fault current flows from the power supply 4a to the fault point T via the power receiving circuit breaker 10a and the first power receiving disconnector 7a, and the second power supply 4b also flows. The fault current I 1 flows toward the fault point T of the first bus 2a via the bus 2b and the bus connecting line 3.

受配電設備1は事故点Tの除去動作として、始めに、図2に示すように、母線連絡遮断器12がオフ動作され、第1母線2a及び第2母線2bの接続を切り離し、他の電源4bから第1母線2aの事故点Tに流れる事故電流Iを遮断する。これにより、事故点Tには、電源4aのみから事故電流Iが流れる。 In the power receiving and distribution equipment 1, as an operation of removing the accident point T, first, as shown in FIG. 2, the bus connection circuit breaker 12 is turned off, the connection of the first bus 2a and the second bus 2b is disconnected, and another power source is used. The fault current I1 flowing from the fault point T of the first bus 2a from 4b is cut off. As a result, the fault current I 2 flows from only the power supply 4a to the fault point T.

次いで、図3に示すように、第1受電断路器7aを介して第1母線2aと接続している受電遮断器10aをオフ動作し、電源4aから事故点Tへ流れる事故電流Iを遮断する。これにより、受配電設備1は、例えば、事故点Tが発生した第1母線2aと接続された負荷設備5aのみを停止させるだけに留まり、第2母線2bに接続された負荷設備5bについてはそのまま通常運転を維持させることができる。 Next, as shown in FIG. 3, the power receiving disconnector 10a connected to the first bus 2a via the first power receiving disconnector 7a is turned off to cut off the accident current I 2 flowing from the power supply 4a to the accident point T. do. As a result, the power receiving and distributing equipment 1 only stops the load equipment 5a connected to the first bus 2a where the accident point T has occurred, and the load equipment 5b connected to the second bus 2b remains as it is. Normal operation can be maintained.

<負荷設備の母線切換運転について>
以上のように、通常運転時、各負荷設備5a,5bは、第1負荷設備断路器8a,8c及び第2負荷設備断路器8b,8dのうち、いずれか一方のみをオン動作させて、第1母線2a又は第2母線2bのいずれかにのみ接続される。しかしながら、第1母線2a又は第2母線2bについて保守点検を行ったり、或いは、工事を行う場合等、例えば、第1負荷設備断路器8a及び第2負荷設備断路器8bの両方がオン動作するときがある。以下、このようなケースについて説明する。
<About bus switching operation of load equipment>
As described above, during normal operation, the load equipments 5a and 5b are operated by turning on only one of the first load equipment disconnectors 8a and 8c and the second load equipment disconnectors 8b and 8d. It is connected only to either the 1 bus 2a or the 2nd bus 2b. However, when performing maintenance and inspection of the first bus 2a or the second bus 2b, or performing construction work, for example, when both the first load equipment disconnector 8a and the second load equipment disconnector 8b are turned on. There is. Hereinafter, such a case will be described.

例えば、第1母線2aの保守点検等を行う際には、第1母線2aへの電力供給を停止する必要がある。この場合、図4に示すように、第1母線2aの電力供給の停止に先立って、第1母線2aにのみ接続されている負荷設備5aを、第2母線2bにも接続させる母線切換運転がなされる。母線切換運転では、始めに、母線連絡遮断器12をオン動作させた状態と、第1負荷設備断路器8aをオン動作させて負荷設備5aを第1母線2aに接続させた状態とのまま、オフ状態にある第2負荷設備断路器8bをオン動作させて、負荷設備5aを第2母線2bにも接続する。 For example, when performing maintenance and inspection of the first bus 2a, it is necessary to stop the power supply to the first bus 2a. In this case, as shown in FIG. 4, prior to the stop of the power supply of the first bus 2a, the bus switching operation of connecting the load equipment 5a connected only to the first bus 2a to the second bus 2b is performed. Will be done. In the bus switching operation, first, the bus connecting disconnector 12 is turned on and the first load equipment disconnector 8a is turned on to connect the load equipment 5a to the first bus 2a. The second load equipment disconnector 8b in the off state is turned on, and the load equipment 5a is also connected to the second bus 2b.

このように、第1負荷設備断路器8a及び第2負荷設備断路器8bの両方をオン動作させると、母線連絡線3により第1母線2a及び第2母線2bが接続されていることに加え、これら第1負荷設備断路器8a及び第2負荷設備断路器8bによっても、第1母線2aと第2母線2bとが接続される。 In this way, when both the first load equipment disconnector 8a and the second load equipment disconnector 8b are turned on, in addition to the fact that the first bus 2a and the second bus 2b are connected by the bus connecting line 3. The first bus 2a and the second bus 2b are also connected by the first load equipment disconnector 8a and the second load equipment disconnector 8b.

この場合、第2母線2bに接続されている負荷設備5bには、電源4aからの電力がいくつかのルートを経由して供給されることになる。例えば、電源4aから負荷設備5bまで電力を供給するルートとして、電源4aから、受電遮断器10a、第1受電断路器7a、第1母線2a、母線連絡線3、第2母線2b、第2負荷設備断路器8d及び負荷設備遮断器11bを順次経由して負荷設備5bに電力を供給する今までのルートRaに加えて、第1負荷設備断路器8a及び第2負荷設備断路器8bを経由した新たなルートが形成される。 In this case, the power from the power source 4a is supplied to the load equipment 5b connected to the second bus 2b via some routes. For example, as a route for supplying power from the power supply 4a to the load facility 5b, the power receiving disconnector 10a, the first power receiving disconnector 7a, the first bus 2a, the bus connecting line 3, the second bus 2b, and the second load are used as a route for supplying power from the power supply 4a. In addition to the conventional route Ra that supplies power to the load equipment 5b via the equipment disconnector 8d and the load equipment disconnector 11b in sequence, the route goes through the first load equipment disconnector 8a and the second load equipment disconnector 8b. A new route is formed.

例えば、通常運転時にない、新たな電力供給のルートとして、図4に示すように、電源4aから、受電遮断器10a、第1受電断路器7a、第1母線2a、負荷設備5aが接続された第1負荷設備断路器8a、第2負荷設備断路器8b、第2母線2b、第2負荷設備断路器8d及び負荷設備遮断器11bを介して負荷設備5bに電力が供給されるルートRbが形成される。 For example, as a new power supply route that does not exist during normal operation, as shown in FIG. 4, a power receiving disconnector 10a, a first power receiving disconnector 7a, a first bus 2a, and a load facility 5a are connected from the power supply 4a. A route Rb is formed in which power is supplied to the load equipment 5b via the first load equipment disconnector 8a, the second load equipment disconnector 8b, the second bus 2b, the second load equipment disconnector 8d, and the load equipment circuit breaker 11b. Will be done.

そして、図5に示すように、母線連絡遮断器12をオン動作させた状態で、負荷設備5aにおける第1負荷設備断路器8a及び第2負荷設備断路器8bを両方オン動作させた状態を経た後、負荷設備5aを第1母線2aに接続させている第1負荷設備断路器8aをオフ動作させる。これにより、負荷設備5aへの電力供給を遮断せずに、負荷設備5aの接続を第1母線2aから第2母線2bへと切り替えることができる。 Then, as shown in FIG. 5, with the bus connecting disconnector 12 turned on, both the first load equipment disconnector 8a and the second load equipment disconnector 8b in the load equipment 5a were turned on. After that, the first load equipment disconnector 8a connecting the load equipment 5a to the first bus 2a is turned off. As a result, the connection of the load equipment 5a can be switched from the first bus 2a to the second bus 2b without interrupting the power supply to the load facility 5a.

なお、電源4a,4bについても、上述した母線切換運転の手順に沿って、母線連絡遮断器12をオン動作させた状態で、第1受電断路器7a,7c及び第2受電断路器7b,7dの両方をオン動作させることで、負荷設備5a,5bへの電力供給を遮断せずに、電源4a,4bの接続を第1母線2aから第2母線2bへと切り替えることができる。 Regarding the power supplies 4a and 4b, the first power receiving disconnector 7a and 7c and the second power receiving disconnector 7b and 7d are also operated with the bus connecting disconnector 12 turned on according to the procedure of the bus switching operation described above. By turning on both of the above, the connection of the power supplies 4a and 4b can be switched from the first bus 2a to the second bus 2b without interrupting the power supply to the load equipment 5a and 5b.

<負荷設備の稼働率を算出する際の母線切換運転について>
ここで、図1に示すような受配電設備1を設計する際には、各負荷設備5a,5bの稼働率(負荷設備5a,5bまで電力供給可能な確率)を考慮して受配電設備1を設計することが望ましい。この際、各負荷設備5a,5bの稼働率について厳格に考えると、第1負荷設備断路器8a,8c又は第2負荷設備断路器8b,8dのいずれかのみをオン動作させる通常運転時の他、上述したように、例えば、第1負荷設備断路器8a,8c及び第2負荷設備断路器8b,8dの両方をオン動作させた母線切換運転時と、第1受電断路器7a,7c及び第2受電断路器7b,7dの両方をオン動作させた母線切換運転時と、についても考慮する必要がある。
<About bus switching operation when calculating the operating rate of load equipment>
Here, when designing the power receiving and distributing equipment 1 as shown in FIG. 1, the power receiving and distributing equipment 1 takes into consideration the operating rate of each load equipment 5a and 5b (probability that power can be supplied to the load equipments 5a and 5b). It is desirable to design. At this time, if the operating rate of each load equipment 5a, 5b is strictly considered, other than the normal operation in which only one of the first load equipment disconnector 8a, 8c or the second load equipment disconnector 8b, 8d is turned on. As described above, for example, during the bus switching operation in which both the first load equipment disconnector 8a, 8c and the second load equipment disconnector 8b, 8d are turned on, and the first power receiving disconnector 7a, 7c and the first. 2 It is also necessary to consider the time of the bus switching operation in which both the power receiving disconnectors 7b and 7d are turned on.

しかしながら、受配電設備1で、負荷設備5a,5bや母線連絡線3等の各構成の配置位置を設計する際、通常運転のみならず、母線切換運転時等も全て考慮し、起点となる電源4a,4bから終点となる各負荷設備5a,5bまでの全てのルートを抽出しようとすると、想定すべきルートの数が多くなり過ぎてしまう。 However, when designing the arrangement position of each configuration of the load equipment 5a, 5b, the bus connecting line 3, etc. in the power receiving and distribution equipment 1, not only the normal operation but also the bus switching operation, etc. are taken into consideration, and the power source becomes the starting point. If we try to extract all the routes from 4a and 4b to the end point of each load equipment 5a and 5b, the number of routes to be assumed becomes too large.

そのため、全てのルートを考慮して、各負荷設備5a,5b毎に稼働率を算出すると、ルートの数が多い分、各負荷設備5a,5b毎に稼働率を算出する際の演算処理が複雑化してしまう。 Therefore, if the operating rate is calculated for each load facility 5a, 5b in consideration of all routes, the calculation process for calculating the operating rate for each load facility 5a, 5b is complicated due to the large number of routes. It will be transformed.

そこで、本実施形態では、各負荷設備5a,5b毎に稼働率を算出する際、演算処理負担を軽減するために、起点から終点までのルートを削減できるか否かについて検討を行った。 Therefore, in the present embodiment, when calculating the operating rate for each load equipment 5a and 5b, it is examined whether or not the route from the starting point to the ending point can be reduced in order to reduce the calculation processing load.

ここで、1つの負荷設備5aにおいて母線切換運転を行うために必要となる時間は、過去の操業データから、1回あたり約5分程度である。また、母線切換運転は、通常、月に1回程度である。そのため、負荷設備の数を、例えば20個とした場合、1ヶ月内に負荷設備が第1母線2a及び第2母線2bの両方に接続している時間的割合は、(5分×20個)/(1440分×30日)=0.23%となる。 Here, the time required to perform the bus switching operation in one load facility 5a is about 5 minutes each time based on the past operation data. In addition, the bus switching operation is usually performed once a month. Therefore, when the number of load equipment is, for example, 20, the time ratio that the load equipment is connected to both the first bus 2a and the second bus 2b within one month is (5 minutes x 20). / (1440 minutes x 30 days) = 0.23%.

従って、負荷設備が第1母線2a及び第2母線2bの両方に接続している時間は、全体の運転時間から考えると、極めて短い時間であると評価できる。そこで、本発明の構成配置設計装置では、各負荷設備5a,5b毎に稼働率を算出して受配電設備1の構成配置を設計してゆく際、母線切換運転は稀なケースであるとし、各負荷設備5a,5bの稼働率を算出する際、第1負荷設備断路器8a,8c及び第2負荷設備断路器8b,8dの両方が同時にオン動作したときの電力供給のルートを変則的ルートとして排除した。 Therefore, it can be evaluated that the time during which the load equipment is connected to both the first bus 2a and the second bus 2b is an extremely short time in consideration of the total operating time. Therefore, in the configuration layout design device of the present invention, when designing the configuration layout of the power receiving and distribution facility 1 by calculating the operating rate for each load facility 5a and 5b, the bus switching operation is a rare case. When calculating the operating rate of each load equipment 5a, 5b, the route of power supply when both the first load equipment disconnector 8a, 8c and the second load equipment disconnector 8b, 8d are turned on at the same time is an irregular route. Excluded as.

また、二重母線構造の受配電設備1では、通常運転時や母線切換運転時、第1受電断路器7a,7c又は第2受電断路器7b,7dのいずれか一方のみがオン動作して、電源4a,4bが第1母線2a又は第2母線2bにのみ接続される。そこで、第1受電断路器7a,7c及び第2受電断路器7b,7dの両方が同時にオン動作する母線切換運転も極めて稀なケースであるとし、各負荷設備5a,5bの稼働率を算出する際、第1受電断路器7a,7c及び第2受電断路器7b,7dの両方が同時にオン動作したときの電力供給のルートも変則的ルートとして排除した。 Further, in the power receiving / distributing facility 1 having a double bus structure, only one of the first power receiving disconnectors 7a and 7c or the second power receiving disconnectors 7b and 7d is turned on during normal operation or bus switching operation. The power supplies 4a and 4b are connected only to the first bus 2a or the second bus 2b. Therefore, assuming that the bus switching operation in which both the first power receiving disconnector 7a and 7c and the second power receiving disconnector 7b and 7d are turned on at the same time is an extremely rare case, the operating rate of each load equipment 5a and 5b is calculated. At this time, the power supply route when both the first power receiving disconnector 7a and 7c and the second power receiving disconnector 7b and 7d are turned on at the same time is also excluded as an irregular route.

以上より、本実施形態では、各負荷設備5a,5bの稼働率を算出する際、第1負荷設備断路器8a,8c又は第2負荷設備断路器8b,8dのいずれか一方のみをオン動作させ、かつ第1受電断路器7a,7c又は第2受電断路器7b,7dのいずれか一方のみをオン動作させた通常運転時のルートのみを考慮することとした。 From the above, in the present embodiment, when calculating the operating rate of each load equipment 5a, 5b, only one of the first load equipment disconnector 8a, 8c or the second load equipment disconnector 8b, 8d is turned on. In addition, it was decided to consider only the route during normal operation in which only one of the first power receiving disconnector 7a, 7c or the second power receiving disconnector 7b, 7d was turned on.

<本発明の構成配置設計装置>
次に、上述したように、変則的ルートを排除して通常運転時のルートのみを用い、各負荷設備の稼働率を算出する、本発明の構成配置設計装置について以下説明する。図6に示すように、本発明の構成配置設計装置31は、設計情報取得部32aと、設計情報変更部32bと、演算処理部33と、記憶部34と、表示部35と、を備えている。設計情報取得部32aは、負荷設備の稼働率を算出する受配電設備の構成を示した設計情報を取得し、当該設計情報を記憶部34に記憶させる。
<Structural layout design device of the present invention>
Next, as described above, the configuration layout design device of the present invention, which excludes irregular routes and uses only routes during normal operation to calculate the operating rate of each load facility, will be described below. As shown in FIG. 6, the configuration layout design device 31 of the present invention includes a design information acquisition unit 32a, a design information change unit 32b, an arithmetic processing unit 33, a storage unit 34, and a display unit 35. There is. The design information acquisition unit 32a acquires design information indicating the configuration of the power receiving / distributing equipment for calculating the operating rate of the load equipment, and stores the design information in the storage unit 34.

この場合、受配電設備の設計情報は、設計情報取得部32aにより設計者自身が作製したものでもよく、また、外部メモリーやインターネットから、設計情報取得部32aを介して取得するようにしてもよい。 In this case, the design information of the power receiving / distributing equipment may be created by the designer himself / herself by the design information acquisition unit 32a, or may be acquired from the external memory or the Internet via the design information acquisition unit 32a. ..

ここで、図7は、設計情報取得部32aで取得する、受配電設備21の設計情報の一例を示したものである。なお、図1~図5に示した受配電設備1は、二重母線構造の基本的な動作等を説明するため、主に電源4a,4bや、負荷設備5a,5bを中心に示しており、変圧器等の電気機器についての説明は省略していた。実際には、図7に示すように、調整機能付変圧器22、計器用変流器(CT)23、計器用変圧器(PT)25及び避雷器24等の電気機器が所定箇所に配置されている。 Here, FIG. 7 shows an example of the design information of the power receiving / distributing equipment 21 acquired by the design information acquisition unit 32a. The power receiving and distributing equipment 1 shown in FIGS. 1 to 5 mainly shows the power supplies 4a and 4b and the load equipment 5a and 5b in order to explain the basic operation of the double bus structure. , The explanation about the electric equipment such as the transformer was omitted. Actually, as shown in FIG. 7, electric devices such as a transformer 22 with an adjustment function, an instrument transformer (CT) 23, an instrument transformer (PT) 25, and a lightning arrester 24 are arranged at predetermined locations. There is.

なお、ここでは、2つの電源4a,4bと、3つの負荷設備5a,5b,5cを設けた受配電設備21の設計情報について説明する。図7に示すように、実際の受配電設備21には、例えば、電源4a(4b)と受電遮断器10a(10b)との間に、調整機能付変圧器22及び計器用変流器23が設けられている。 Here, the design information of the power receiving and distributing equipment 21 provided with the two power supplies 4a and 4b and the three load equipments 5a, 5b and 5c will be described. As shown in FIG. 7, in the actual power receiving and distributing equipment 21, for example, a transformer 22 with an adjusting function and a current transformer 23 for an instrument are provided between the power supply 4a (4b) and the power receiving circuit breaker 10a (10b). It is provided.

また、第1母線2a及び第2母線2bには、避雷器24と計器用変圧器25が設けられ、母線連絡線3には、母線連絡遮断器12の両側に計器用変流器23が設けられている。さらに、例えば、負荷設備5a(5b,5c)と負荷設備遮断器11a(11b,11c)との間には計器用変流器23が設けられている。 Further, the first bus 2a and the second bus 2b are provided with a lightning arrester 24 and a voltage transformer 25, and the bus connecting line 3 is provided with instrument transformers 23 on both sides of the bus connecting circuit breaker 12. ing. Further, for example, an instrument transformer 23 is provided between the load equipment 5a (5b, 5c) and the load equipment circuit breaker 11a (11b, 11c).

設計情報取得部32aは、このように、電源4a,4bとともに、電気機器(調整機能付変圧器22、計器用変流器23、計器用変圧器25、受電遮断器10a,10b、負荷設備遮断器11a,11b,11c、避雷器24等)や、第1受電断路器7a,7c、第2受電断路器7b,7d、負荷設備5a,5b,5c、第1負荷設備断路器8a,8c,8e、第2負荷設備断路器8b,8d,8f、母線連絡線3、等の配置位置が特定された受配電設備21の設計情報を取得する。 In this way, the design information acquisition unit 32a, together with the power supplies 4a and 4b, has electrical equipment (transformer 22 with adjustment function, transformer for instrument 23, transformer for instrument 25, power receiving disconnector 10a, 10b, disconnector for load equipment). Devices 11a, 11b, 11c, lightning arrester 24, etc.), first power receiving disconnector 7a, 7c, second power receiving disconnector 7b, 7d, load equipment 5a, 5b, 5c, first load equipment disconnector 8a, 8c, 8e , Second load equipment disconnector 8b, 8d, 8f, bus connection line 3, etc. The design information of the power receiving and distributing equipment 21 whose arrangement position is specified is acquired.

設計情報取得部32aで取得した設計情報は、記憶部34に記憶される。ここで、構成配置設計装置31には、図示しない操作部が設けられており、設計者によって操作部に各種操作命令が与えられる。構成配置設計装置31は、操作部から与えられる各種操作命令に応じて、記憶部34に記憶された設計情報を適宜読み出し、演算処理部33、表示部35又は設計情報変更部32bに出力する。 The design information acquired by the design information acquisition unit 32a is stored in the storage unit 34. Here, the configuration arrangement design device 31 is provided with an operation unit (not shown), and various operation commands are given to the operation unit by the designer. The configuration layout design device 31 appropriately reads the design information stored in the storage unit 34 in response to various operation commands given from the operation unit, and outputs the design information to the arithmetic processing unit 33, the display unit 35, or the design information change unit 32b.

例えば、表示部35には、記憶部34から読み出された、図7に示すような受配電設備21の設計図が設計情報として表示される。これにより、設計者は、当該受配電設備21の構成を確認することができる。 For example, on the display unit 35, a design drawing of the power receiving and distribution equipment 21 as shown in FIG. 7 read from the storage unit 34 is displayed as design information. This allows the designer to confirm the configuration of the power receiving and distribution equipment 21.

また、演算処理部33は、記憶部34から読み出された設計情報(図7)を受け取ると、設計情報における第1受電断路器7a,7c、第2受電断路器7b,7d、第1負荷設備断路器8a,8c,8e、第2負荷設備断路器8b,8d,8fの運用特性を考慮して、パス法を適用した演算処理を実行し、各負荷設備5a,5b,5cの稼働率を算出する。 When the arithmetic processing unit 33 receives the design information (FIG. 7) read from the storage unit 34, the arithmetic processing unit 33 receives the first power receiving disconnector 7a, 7c, the second power receiving disconnector 7b, 7d, and the first load in the design information. Considering the operational characteristics of the equipment disconnectors 8a, 8c, 8e and the second load equipment disconnectors 8b, 8d, 8f, the arithmetic processing to which the path method is applied is executed, and the operating rates of the respective load equipments 5a, 5b, 5c are executed. Is calculated.

ここで、演算処理部33は、全ルート抽出部33aと、変則的ルート特定部33bと、計算対象ルート特定部33cと、算出部33dとを備えている。本実施形態の場合、通信工学に適用されているパス法を利用して負荷設備5a,5b,5c毎にそれぞれ稼働率を求める。ここでは、説明の重複を避けるため、負荷設備5a,5b,5cのうち、主に負荷設備5aの1つに着目して、パス法を利用した稼働率の算出手法について以下説明する。 Here, the arithmetic processing unit 33 includes an all-route extraction unit 33a, an irregular route specifying unit 33b, a calculation target route specifying unit 33c, and a calculation unit 33d. In the case of this embodiment, the operating rate is obtained for each of the load equipments 5a, 5b, and 5c by using the pass method applied to communication engineering. Here, in order to avoid duplication of explanation, the method of calculating the operating rate using the pass method will be described below, focusing mainly on one of the load equipment 5a, 5b, and 5c.

全ルート抽出部33aは、記憶部34から受配電設備21の設計情報を取得すると、パス法の第1工程として、取得した設計情報に規定される受配電設備21の構成の中で、電源4a,4bから負荷設備5a(5b,5c)に電力供給が可能な全てのルートを抽出する。 When the all route extraction unit 33a acquires the design information of the power receiving and distributing equipment 21 from the storage unit 34, as the first step of the path method, the power supply 4a is included in the configuration of the power receiving and distributing equipment 21 specified in the acquired design information. , 4b extracts all routes capable of supplying power to the load equipment 5a (5b, 5c).

この場合、電源4a,4bをそれぞれ起点とし、負荷設備5a(5b,5c)を終点とする。そして、全ルート抽出部33aは、第1受電断路器7a,7c及び第2受電断路器7b,7dの両方をオン動作させたときと、第1受電断路器7a,7c及び第2受電断路器7b,7dのいずれか一方のみをオン動作させたときと、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fの両方をオン動作させたときと、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fのいずれか一方のみをオン動作させたときとに、起点の1つとした電源4aから、終点である負荷設備5a(5b,5c)までの間の全ての電力供給のルートを抽出する。 In this case, the power supplies 4a and 4b are the starting points, and the load equipment 5a (5b, 5c) is the ending point. Then, the all route extraction unit 33a is when both the first power receiving disconnector 7a, 7c and the second power receiving disconnector 7b, 7d are turned on, and when the first power receiving disconnector 7a, 7c and the second power receiving disconnector are turned on. When only one of 7b and 7d is turned on, and when both the first load equipment disconnector 8a, 8c, 8e and the second load equipment disconnector 8b, 8d, 8f are turned on, the first When only one of the 1 load equipment disconnector 8a, 8c, 8e and the 2nd load equipment disconnector 8b, 8d, 8f is turned on, the load equipment which is the end point from the power supply 4a which is one of the starting points. All power supply routes up to 5a (5b, 5c) are extracted.

また、起点としたもう1つの電源4bについても同様にして、第1受電断路器7a,7c及び第2受電断路器7b,7dの両方をオン動作させたときと、第1受電断路器7a,7c及び第2受電断路器7b,7dのいずれか一方のみをオン動作させたときと、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fの両方をオン動作させたときと、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fのいずれか一方のみをオン動作させたときとに、電源4bから終点である負荷設備5a(5b,5c)に電力供給が可能な全てのルートを抽出する。 Similarly, for the other power source 4b as the starting point, when both the first power receiving disconnector 7a, 7c and the second power receiving disconnector 7b, 7d are turned on, and when the first power receiving disconnector 7a, When only one of the 7c and the second power receiving disconnector 7b, 7d is turned on, and both the first load equipment disconnector 8a, 8c, 8e and the second load equipment disconnector 8b, 8d, 8f are turned on. The load that is the end point from the power supply 4b when it is operated and when only one of the first load equipment disconnector 8a, 8c, 8e and the second load equipment disconnector 8b, 8d, 8f is turned on. All routes that can supply power to the equipment 5a (5b, 5c) are extracted.

電源4a,4bをそれぞれ起点とし、負荷設備5a(5b,5c)を終点として、起点から終点までの間の全てのルートを抽出すると、全ルート抽出部33aは、これらを変則的ルート特定部33bに出力する。変則的ルート特定部33bは、パス法の第2工程として、全てのルートの中から、第1受電断路器7a,7c及び第2受電断路器7b,7dの両方をオン動作させたときの負荷設備5aへの電力供給のルートと、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fの両方をオン動作させたときの負荷設備5aへの電力供給のルートとを、それぞれ母線切換運転時の変則的ルートとして特定する。 When all routes from the start point to the end point are extracted with the power supplies 4a and 4b as the starting points and the load equipment 5a (5b, 5c) as the ending points, the all route extraction unit 33a uses these as the irregular route specifying unit 33b. Output to. The irregular route specifying unit 33b is a load when both the first power receiving disconnector 7a and 7c and the second power receiving disconnector 7b and 7d are turned on from all the routes as the second step of the path method. The route of power supply to the equipment 5a and the power supply to the load equipment 5a when both the first load equipment disconnectors 8a, 8c, 8e and the second load equipment disconnectors 8b, 8d, 8f are turned on. The route is specified as an irregular route during the bus switching operation.

計算対象ルート特定部33cは、負荷設備5a(5b,5c)に対して電力を供給可能な全てのルートを全ルート抽出部33aから受け取るとともに、このルートの中から特定した変則的ルートを変則的ルート特定部33bから受け取る。パス法の第3工程として、計算対象ルート特定部33cは、変則的ルートが母線切換運転時の稀なケースであるとし、負荷設備5a(5b,5c)へ電力供給可能なルートとして特定したルートの中から変則的ルートを排除し、残りのルートを計算対象ルートとして特定する。 The calculation target route specifying unit 33c receives all routes capable of supplying electric power to the load equipment 5a (5b, 5c) from the all route extraction unit 33a, and irregular routes specified from these routes are irregular. Received from the route identification unit 33b. As the third step of the pass method, the calculation target route specifying unit 33c considers that the irregular route is a rare case during the bus switching operation, and identifies the route as a route capable of supplying power to the load equipment 5a (5b, 5c). Exclude irregular routes from the list and specify the remaining routes as calculation target routes.

このようにして特定された計算対象ルートは、第1受電断路器7a,7c及び第2受電断路器7b,7dのいずれか一方のみをオン動作させたときと、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fのいずれか一方のみをオン動作させたときとに、電源4a,4bから負荷設備5a(5b,5c)に対して電力供給が可能なルートを示す。 The calculation target route identified in this way is when only one of the first power receiving disconnector 7a, 7c and the second power receiving disconnector 7b, 7d is turned on, and the first load equipment disconnector 8a, Power can be supplied from the power supplies 4a and 4b to the load equipment 5a (5b, 5c) when only one of the 8c and 8e and the second load equipment disconnector 8b, 8d and 8f is turned on. Show the route.

計算対象ルート特定部33cは、起点となる電源4a,4bから終点となる負荷設備5a(5b,5c)までの間の全ての計算対象ルートを特定すると、その結果を算出部33d及び表示部35に出力する。表示部35は、例えば、表示部35に表示している受配電設備21の設計情報上に、母線切換運転時を含んだ、電源4a,4bから負荷設備5a(5b,5c)に電力を供給する全ルートと、母線切換運転時の変則的ルートと、計算対象ルートとを適宜表示し、これらを設計者に目視で確認させるようにしてもよい。 When the calculation target route specifying unit 33c specifies all the calculation target routes from the power sources 4a and 4b as the starting point to the load equipment 5a (5b, 5c) as the ending point, the calculation unit 33d and the display unit 35 obtain the results. Output to. The display unit 35 supplies power from the power supplies 4a and 4b to the load equipment 5a (5b, 5c), including the time of the bus switching operation, on the design information of the power receiving and distribution equipment 21 displayed on the display unit 35, for example. It is also possible to display all the routes to be performed, the irregular routes during the bus switching operation, and the calculation target routes as appropriate, and have the designer visually confirm these.

ここで、記憶部34には、図7に示すような受配電設備21の設計情報内にある、各電気機器(例えば、調整機能付変圧器22や、計器用変流器23、受電遮断器10a,10b、負荷設備遮断器11a,11b,11c、母線連絡遮断器12、避雷器24等)、第1受電断路器7a,7c、第2受電断路器7b,7d、第1負荷設備断路器8a,8c,8e、第2負荷設備断路器8b,8d,8fの既知の信頼率が信頼率情報として予め記憶されている。 Here, in the storage unit 34, each electric device (for example, a transformer 22 with an adjustment function, a current transformer 23 for an instrument, and a power receiving disconnector) in the design information of the power receiving and distributing equipment 21 as shown in FIG. 10a, 10b, load equipment disconnector 11a, 11b, 11c, bus connection disconnector 12, lightning arrester 24, etc.), first power receiving disconnector 7a, 7c, second power receiving disconnector 7b, 7d, first load equipment disconnector 8a , 8c, 8e, and the known reliability rates of the second load equipment disconnectors 8b, 8d, 8f are stored in advance as reliability rate information.

なお、電気機器、第1受電断路器7a,7c、第2受電断路器7b,7d、第1負荷設備断路器8a,8c,8e、第2負荷設備断路器8b,8d,8f等、受配電設備内の各種部品機器の信頼率は、部品メーカ等が一般的に公開している内容を適用すればよい。 Electric equipment, first power receiving disconnector 7a, 7c, second power receiving disconnector 7b, 7d, first load equipment disconnector 8a, 8c, 8e, second load equipment disconnector 8b, 8d, 8f, etc. For the reliability rate of various parts and devices in the equipment, the contents publicly disclosed by the parts manufacturers and the like may be applied.

この場合、算出部33dは、記憶部34から信頼率情報を読み出す。そして、パス法の第4工程として、算出部33dは、各電源4a,4bから負荷設備5a(5b,5c)までの計算対象ルートと、信頼率情報とを用いて、負荷設備5a(5b,5c)の稼働率を算出する。 In this case, the calculation unit 33d reads the reliability rate information from the storage unit 34. Then, as the fourth step of the pass method, the calculation unit 33d uses the calculation target route from each power supply 4a, 4b to the load equipment 5a (5b, 5c) and the reliability rate information, and the load equipment 5a (5b, 5b, Calculate the operating rate of 5c).

具体的には、以下のようにして負荷設備5a(5b,5c)の稼働率を算出する。始めに、負荷設備5a(5b,5c)へ電力供給可能な各計算対象ルート上にある、各電気機器(調整機能付変圧器22、計器用変流器23、避雷器24等)、第1受電断路器7a,7c、第2受電断路器7b,7d、第1負荷設備断路器8a,8c,8e、第2負荷設備断路器8b,8d,8fを特定する。 Specifically, the operating rate of the load equipment 5a (5b, 5c) is calculated as follows. First, each electric device (transformer 22 with adjustment function, current transformer 23 for instrument, lightning arrester 24, etc.) on each calculation target route that can supply power to the load equipment 5a (5b, 5c), the first power receiving The disconnectors 7a, 7c, the second power receiving disconnectors 7b, 7d, the first load equipment disconnectors 8a, 8c, 8e, and the second load equipment disconnectors 8b, 8d, 8f are specified.

算出部33dは、各計算対象ルートに沿って特定した電気機器、第1受電断路器7a,7c、第2受電断路器7b,7d、第1負荷設備断路器8a,8c,8e、第2負荷設備断路器8b,8d,8fの既知の信頼率を信頼率情報から特定し、特定した信頼率を全て乗算してトータル稼働率を算出する。算出部33dは、このようにして求めた全ての計算対象ルートの存在を考慮したトータル稼働率を、取得した設計情報における、負荷設備5a(5b,5c)の稼働率とする。 The calculation unit 33d is an electric device specified along each calculation target route, a first power receiving disconnector 7a, 7c, a second power receiving disconnector 7b, 7d, a first load equipment disconnector 8a, 8c, 8e, a second load. The known reliability of the equipment disconnectors 8b, 8d, and 8f is specified from the reliability information, and the total operation rate is calculated by multiplying all the specified reliabilitys. The calculation unit 33d uses the total operating rate considering the existence of all the calculation target routes thus obtained as the operating rate of the load equipment 5a (5b, 5c) in the acquired design information.

なお、「直列・並列計算による稼働率」(例えば、インターネット「初級シスアド講座 稼働率」(http://www.pursue.ne.jp/jouhousyo/sysad/sysad0061.htm))による算出手法では、第1母線2aと第2母線2bとが母線連絡線3で接続された二重母線構造への対応は難しいものの、このように、母線切換運転時の変則的ルートを排除した計算対象ルートから稼働率を求めるパス法を利用することで、二重母線構造でも稼働率を求めることができる。 In addition, in the calculation method based on "availability by serial / parallel calculation" (for example, Internet "beginner sysadmin course utilization rate" (http://www.pursue.ne.jp/jouhousyo/sysad/sysad0061.htm)), the first Although it is difficult to deal with the double bus structure in which the 1 bus 2a and the 2nd bus 2b are connected by the bus connecting line 3, the operating rate is excluded from the calculation target route excluding the irregular route during the bus switching operation. By using the path method for finding, the operating rate can be found even with a double bus structure.

特に、本実施形態の場合、母線切換運転を稀なケースとして排除して通常運転時の状態にだけ着目していることから、全ルート数を格段的に低減させることができるので、負荷設備5a(5b,5c)の稼働率を算出する際、複雑な演算処理となることを回避させることができる。 In particular, in the case of this embodiment, since the bus switching operation is excluded as a rare case and only the state during normal operation is focused on, the total number of routes can be significantly reduced. Therefore, the load equipment 5a When calculating the operating rate of (5b, 5c), it is possible to avoid complicated arithmetic processing.

このようにして、算出部33dは、パス法を利用して、各負荷設備5a,5b,5c毎にそれぞれ稼働率を算出し、各算出結果を表示部35に出力する。表示部35は、算出部33dから受け取った各負荷設備5a,5b,5cの稼働率を表示し、当該稼働率を設計者に対して提示する。 In this way, the calculation unit 33d calculates the operating rate for each of the load equipments 5a, 5b, and 5c by using the pass method, and outputs each calculation result to the display unit 35. The display unit 35 displays the operating rate of each load facility 5a, 5b, 5c received from the calculation unit 33d, and presents the operating rate to the designer.

これにより、設計者は、図7に示すような受配電設備21の設計情報のときには、各負荷設備5a,5b,5cがどの程度の稼働率になるかを確認することができる。ここで、得られた各負荷設備5a,5b,5cの稼働率が、設計者が所望する稼働率を満たしていない場合等もある。そのような場合、設計者は、受配電設備21の設計情報を再考し、例えば、図8に示すように、電源4a,4bの配置位置を変えた、新たな受配電設備41の設計情報を作製する。 Thereby, the designer can confirm the operating rate of each load facility 5a, 5b, 5c at the time of the design information of the power receiving / distributing facility 21 as shown in FIG. Here, the operating rates of the obtained load facilities 5a, 5b, and 5c may not satisfy the operating rates desired by the designer. In such a case, the designer reconsiders the design information of the power receiving / distributing equipment 21, and for example, as shown in FIG. 8, the designer obtains the design information of the new power receiving / distributing equipment 41 in which the arrangement positions of the power supplies 4a and 4b are changed. To make.

図7に示す受配電設備21の設計情報の内容を変更する場合、例えば、図6に示す設計情報変更部32bは、図7の設計情報を記憶部34から読み出す。設計情報変更部32bは、例えば、表示部35に表示された受配電設備21の設計情報を基に、設計者から与えられる変更命令に基づいて、受配電設備21内の電源4a,4b等の配置位置を変更して、例えば、図8に示すような新たな受配電設備41の設計情報を作製し、これを記憶部34に記憶させる。 When changing the content of the design information of the power receiving and distributing equipment 21 shown in FIG. 7, for example, the design information changing unit 32b shown in FIG. 6 reads the design information of FIG. 7 from the storage unit 34. The design information changing unit 32b is, for example, based on the design information of the power receiving and distributing equipment 21 displayed on the display unit 35, and based on the change command given by the designer, the power supplies 4a, 4b and the like in the power receiving and distributing equipment 21. By changing the arrangement position, for example, design information of a new power receiving / distributing facility 41 as shown in FIG. 8 is created, and this is stored in the storage unit 34.

そして、このようにして改変された受配電設備41の設計情報は、表示部35に表示されたり、或いは、演算処理部33において、再び各負荷設備5a,5b,5cの稼働率が算出される。これにより、設計者は、図8に示すように、電源4a,4bの配置位置を、負荷設備5aと負荷設備5bとの間に移動した場合、各負荷設備5a,5b,5cがどの程度の稼働率になるかを確認することができる。 Then, the design information of the power receiving and distributing equipment 41 modified in this way is displayed on the display unit 35, or the operation rate of each load equipment 5a, 5b, 5c is calculated again in the arithmetic processing unit 33. .. As a result, as shown in FIG. 8, when the designer moves the arrangement position of the power supplies 4a and 4b between the load equipment 5a and the load equipment 5b, how much each load equipment 5a, 5b, 5c is. You can check if the operating rate is reached.

設計者は、このような受配電設備の設計情報の改変と、改変した設計情報に基づいた各負荷設備5a,5b,5cの稼働率の算出と、を繰り返し行ってゆくことで、各負荷設備5a,5b,5cの稼働率が所望の値となった受配電設備を設計できる。 The designer repeatedly modifies the design information of the power receiving and distributing equipment and calculates the operating rate of each load equipment 5a, 5b, 5c based on the modified design information, so that each load equipment can be modified. It is possible to design a power receiving and distributing facility in which the operating rates of 5a, 5b, and 5c are desired values.

<受配電設備の構成配置設計処理>
次に、本発明の構成配置設計装置31において実行される、上述した構成配置設計処理について、図9のフローチャートを用いて以下説明する。図9に示すように、構成配置設計装置31は、開始ステップからステップS1に移る。ステップS1において、設計情報取得部32aは、例えば、図7に示すような受配電設備21の設計情報を取得し、次のステップS2に移る。
<Structure layout design processing of power receiving and distribution equipment>
Next, the above-mentioned configuration / layout design process executed by the configuration / layout design device 31 of the present invention will be described below with reference to the flowchart of FIG. As shown in FIG. 9, the configuration arrangement design device 31 moves from the start step to step S1. In step S1, the design information acquisition unit 32a acquires, for example, the design information of the power receiving and distributing equipment 21 as shown in FIG. 7, and moves to the next step S2.

ステップS2において、全ルート抽出部33aは、電源4a,4bを起点とし、各負荷設備5a,5b,5cを終点として、各負荷設備5a,5b,5c毎に、それぞれ起点から終点までの電力供給のルートの全てを抽出し、次のステップS3に移る。 In step S2, the all route extraction unit 33a supplies power from the start point to the end point for each load facility 5a, 5b, 5c with the power supplies 4a, 4b as the starting point and the load facilities 5a, 5b, 5c as the ending points. All of the routes of are extracted, and the process proceeds to the next step S3.

ステップS3において、変則的ルート特定部33bは、各負荷設備5a,5b,5c毎にステップS2で特定した全ルートの中から、第1受電断路器7a,7c及び第2受電断路器7b,7dの両方が同時にオン動作したときの電力供給のルートと、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fの両方が同時にオン動作したときの電力供給のルートとを、変則的ルートとして特定し、次のステップS4に移る。 In step S3, the irregular route specifying unit 33b includes the first power receiving disconnector 7a, 7c and the second power receiving disconnector 7b, 7d from all the routes specified in step S2 for each load equipment 5a, 5b, 5c. Power supply route when both of the disconnectors 8a, 8c, 8e and the second load equipment disconnector 8b, 8d, 8f are turned on at the same time. The route is specified as an irregular route, and the process proceeds to the next step S4.

ステップS4において、計算対象ルート特定部33cは、ステップS3で特定した変則的ルートが母線切換運転時の稀なケースであるとし、各負荷設備5a,5b,5c毎にステップS2で特定した全ルートから変則的ルートを排除し、各負荷設備5a,5b,5c毎に計算対象ルートを特定して次のステップS5に移る。 In step S4, the calculation target route specifying unit 33c considers that the irregular route specified in step S3 is a rare case during the bus switching operation, and all routes specified in step S2 for each load equipment 5a, 5b, 5c. The irregular route is excluded from the above, the calculation target route is specified for each load equipment 5a, 5b, 5c, and the process proceeds to the next step S5.

ステップS5において、算出部33dは、例えば、電源4a,4bを起点とし、負荷設備5aを終点として特定した計算対象ルート上にある、第1受電断路器7a,7c、第2受電断路器7b,7d、第1負荷設備断路器8a,8c,8e、第2負荷設備断路器8b,8d,8f及び各電気機器(母線連絡遮断器12や、計器用変流器23、避雷器24)の既知の信頼率を全て乗算して、計算対象ルートのトータル稼働率を算出し、これを負荷設備5aの稼働率とする。ステップS5において、算出部33dにより、各負荷設備5a,5b,5c毎にそれぞれ稼働率を算出すると、次のステップS6に移る。 In step S5, the calculation unit 33d has, for example, the first power receiving disconnector 7a, 7c, the second power receiving disconnector 7b, on the calculation target route specified with the power supply 4a, 4b as the starting point and the load equipment 5a as the ending point. 7d, 1st load equipment disconnector 8a, 8c, 8e, 2nd load equipment disconnector 8b, 8d, 8f and known electrical equipment (bus disconnector 12, instrument current transformer 23, lightning arrester 24) Multiply all the reliability rates to calculate the total operating rate of the route to be calculated, and use this as the operating rate of the load facility 5a. In step S5, when the operation rate is calculated for each load equipment 5a, 5b, 5c by the calculation unit 33d, the process proceeds to the next step S6.

ステップS6において、表示部35によって、設計者に対して、受配電設備21の設計情報と、ステップS5で求めた各負荷設備5a,5b,5cの稼働率とを提示し、次のステップS7に移る。 In step S6, the display unit 35 presents the designer with the design information of the power receiving and distributing equipment 21 and the operating rates of the load equipments 5a, 5b, and 5c obtained in step S5, and in the next step S7. Move.

ステップS7において、構成配置設計装置31は、現在提示している受配電設備21の設計情報の内容が、設計情報変更部32bにより変更されたか否かを判断する。ここで、否定結果が得られると、このことは、現在提示している受配電設備21の設計情報が設計者により変更されていないこと、すなわち、現在提示している受配電設備21の設計情報であれば、各負荷設備5a,5b,5cにおいて所望する稼働率が得られていることを示しており、このとき構成配置設計装置31は、構成配置設計処理を終了する。 In step S7, the configuration layout design device 31 determines whether or not the content of the design information of the power receiving and distributing equipment 21 currently presented has been changed by the design information changing unit 32b. Here, if a negative result is obtained, this means that the design information of the power receiving and distributing equipment 21 currently presented has not been changed by the designer, that is, the design information of the power receiving and distributing equipment 21 currently presented. If this is the case, it indicates that the desired operating rate is obtained in each of the load facilities 5a, 5b, and 5c, and at this time, the configuration layout design device 31 ends the configuration layout design process.

これに対して、肯定結果が得られると、このことは、現在提示している受配電設備21の設計情報が設計者により変更されたこと、すなわち、現在提示している受配電設備21の設計情報では、各負荷設備5a,5b,5cにおいて所望する稼働率が得られていないことを示しており、このとき構成配置設計装置31は、再び、ステップS2に戻る。 On the other hand, when an affirmative result is obtained, this means that the design information of the power receiving and distributing equipment 21 currently presented has been changed by the designer, that is, the design of the power receiving and distributing equipment 21 currently presented. The information indicates that the desired operating rate is not obtained in each of the load facilities 5a, 5b, and 5c, and at this time, the configuration layout design device 31 returns to step S2 again.

そして、ステップS7で否定結果が得られるまで、上述したステップS2~ステップS6を繰り返し、受配電設備の設計情報が変更されるたびに、各負荷設備5a,5b,5cの稼働率を算出し、設計者に提示する。 Then, the above-mentioned steps S2 to S6 are repeated until a negative result is obtained in step S7, and the operating rates of the load facilities 5a, 5b, and 5c are calculated each time the design information of the power receiving and distributing equipment is changed. Present to the designer.

<作用及び効果>
以上、本実施形態では、始めに、電気機器(例えば、調整機能付変圧器22や、計器用変流器23、受電遮断器10a,10b、負荷設備遮断器11a,11b,11c、母線連絡遮断器12、避雷器24等)と、第1受電断路器7a,7cと、第2受電断路器7b,7dと、第1負荷設備断路器8a,8c,8eと、第2負荷設備断路器8b,8d,8fと、電源4a,4bと、負荷設備5a,b,5cとを、第1母線2a及び第2母線2bに配置させた受配電設備21の設計情報を取得する(設計情報取得工程)。
<Action and effect>
As described above, in the present embodiment, first, electrical equipment (for example, a transformer 22 with an adjustment function, a current transformer 23 for an instrument, a power receiving disconnector 10a, 10b, a load equipment disconnector 11a, 11b, 11c, a bus disconnector is cut off. Device 12, lightning arrester 24, etc.), first power receiving disconnector 7a, 7c, second power receiving disconnector 7b, 7d, first load equipment disconnector 8a, 8c, 8e, second load equipment disconnector 8b, Acquires design information of the power receiving and distributing equipment 21 in which 8d, 8f, power supplies 4a, 4b, and load equipment 5a, b, 5c are arranged on the first bus 2a and the second bus 2b (design information acquisition process). ..

そして、第1受電断路器7a,7c、第2受電断路器7b,7d、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fをそれぞれオンオフ動作させた場合に、各電源4a,4bを起点とし、各負荷設備5a,5b,5cを終点として、各負荷設備5a,5b,5c毎に、各電源4a,4bからの電力供給のルートを全て抽出する(全ルート抽出工程)。 When the first power receiving disconnector 7a, 7c, the second power receiving disconnector 7b, 7d, the first load equipment disconnector 8a, 8c, 8e and the second load equipment disconnector 8b, 8d, 8f are operated on and off, respectively. The power supply routes from the power supplies 4a and 4b are all extracted for each load equipment 5a, 5b and 5c, with the power supplies 4a and 4b as the starting point and the load equipments 5a, 5b and 5c as the ending points. All route extraction process).

次いで、第1受電断路器7a,7c及び第2受電断路器7b,7dが両方同時にオン動作したときのルートと、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fが両方同時にオン動作したときのルートとを、母線切換運転時の稀なケースであるとし、これらルートを変則的ルートとして各負荷設備5a,5b,5c毎に特定する(変則的ルート特定工程)。 Next, the route when both the first power receiving disconnector 7a, 7c and the second power receiving disconnector 7b, 7d are turned on at the same time, and the first load equipment disconnector 8a, 8c, 8e and the second load equipment disconnector 8b, The route when both 8d and 8f are turned on at the same time is regarded as a rare case during the bus switching operation, and these routes are specified as irregular routes for each load equipment 5a, 5b, 5c (irregular routes). Specific process).

そして、負荷設備5a,5b,5c毎に全ルート抽出工程で抽出したルートから変則的ルートを排除して、負荷設備5a,5b,5c毎に計算対象ルートを特定するようにした(計算対象ルート特定工程)。 Then, the irregular route was excluded from the routes extracted in the all route extraction process for each load equipment 5a, 5b, 5c, and the calculation target route was specified for each load equipment 5a, 5b, 5c (calculation target route). Specific process).

これにより、計算対象ルートに沿って配置されている、第1受電断路器7a,7c、第2受電断路器7b,7d、第1負荷設備断路器8a,8c,8e、第2負荷設備断路器8b,8d,8f、及び電気機器におけるそれぞれの既知の信頼度を基に、各負荷設備5a,5b,5cの稼働率を算出することができる(算出工程)。よって、設計者は、算出された稼働率を目安に、母線連絡線3、電気機器、電源4a,4b、又は負荷設備5a,5b,5cについて二重母線構造での配置設計を行うことができる(配置設計工程)。 As a result, the first power receiving disconnector 7a, 7c, the second power receiving disconnector 7b, 7d, the first load equipment disconnector 8a, 8c, 8e, and the second load equipment disconnector arranged along the calculation target route. The operating rates of the load equipments 5a, 5b, and 5c can be calculated based on the known reliability of the 8b, 8d, 8f, and the electrical equipment (calculation step). Therefore, the designer can design the arrangement of the bus connecting line 3, the electric equipment, the power supplies 4a, 4b, or the load equipment 5a, 5b, 5c with the double bus structure, using the calculated operating rate as a guide. (Arrangement design process).

従来では、第1受電断路器7a,7c及び第2受電断路器7b,7dが両方オン動作する場合や、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fが両方オン動作する場合も含めて、起点から終点まで全てのルートを抽出して、各負荷設備5a,5b,5cの稼働率を計算していた。そのため、稼働率を算出する際は、ルート数の増加により稼働率計算が複雑(稼働率算出式の項数は2((ルート数)-1))になるため、例えばエクセル等の汎用ソフトで計算することが困難であり、特殊な演算処理装置を用いていた。 Conventionally, when both the first power receiving disconnector 7a, 7c and the second power receiving disconnector 7b, 7d are turned on, or the first load equipment disconnector 8a, 8c, 8e and the second load equipment disconnector 8b, 8d, All routes from the starting point to the ending point were extracted, including the case where both 8f were turned on, and the operating rates of the load equipments 5a, 5b, and 5c were calculated. Therefore, when calculating the operating rate, the operating rate calculation becomes complicated due to the increase in the number of routes (the number of terms in the operating rate calculation formula is 2 ((number of routes) -1) ), so for example, with general-purpose software such as Excel. It was difficult to calculate, and a special arithmetic processing device was used.

これに対して、本発明では、第1受電断路器7a,7c及び第2受電断路器7b,7dが両方同時にオン動作したときの変則的ルートと、第1負荷設備断路器8a,8c,8e及び第2負荷設備断路器8b,8d,8fが両方同時にオン動作したときの変則的ルートとを、母線切換運転時の稀なケースであるとして排除した。すなわち、通常運転時、第1受電断路器7a,7c又は第2受電断路器7b,7dのいずれかのみがオン動作し、かつ、第1負荷設備断路器8a,8c,8e又は第2負荷設備断路器8b,8d,8fのいずれかのみがオン動作する、という受配電設備の通常運転時の運用特性を利用し、各負荷設備5a,5b,5c毎に稼働率を算出する際に用いるルート数を大幅に削減可能とした。 On the other hand, in the present invention, an irregular route when both the first power receiving disconnector 7a, 7c and the second power receiving disconnector 7b, 7d are turned on at the same time and the first load equipment disconnector 8a, 8c, 8e And the irregular route when both the second load equipment disconnectors 8b, 8d, and 8f were turned on at the same time were excluded as a rare case during the bus switching operation. That is, during normal operation, only one of the first power receiving disconnector 7a, 7c or the second power receiving disconnector 7b, 7d is turned on, and the first load equipment disconnector 8a, 8c, 8e or the second load equipment is turned on. A route used to calculate the operating rate for each load equipment 5a, 5b, 5c by utilizing the operational characteristics of the power receiving and distribution equipment during normal operation that only one of the disconnectors 8b, 8d, and 8f is turned on. The number can be significantly reduced.

このように、受配電設備の通常運転時の運用特性を利用して、稼働率算出時のルート数を大幅に削減することで、エクセル等の汎用ソフトでも、各負荷設備5a,5b,5c毎に稼働率の計算が可能な範囲まで、算出式項数を大幅に減らすことができ、各負荷設備5a,5b,5cの稼働率を容易に求めることが可能となる。 In this way, by utilizing the operational characteristics of the power receiving and distribution equipment during normal operation and significantly reducing the number of routes when calculating the operating rate, even with general-purpose software such as Excel, each load equipment 5a, 5b, 5c The number of calculation formula terms can be significantly reduced to the extent that the operating rate can be calculated, and the operating rate of each load facility 5a, 5b, 5c can be easily obtained.

そして、求めた各負荷設備5a,5b,5cの稼働率を基に、電源4a,4bの位置や、負荷設備5a,5b,5cの位置、母線連絡線3の位置等を変更してゆくことで、負荷設備5a,5b,5cで停電が発生し難い受配電設備を設計できる。また、受配電設備の構成を変えて、その都度、各負荷設備5a,5b,5cの稼働率を算出してゆくことで、各負荷設備5a,5b,5cの稼働率を平均的に上げることができる構成の検討や、各負荷設備5a,5b,5cの稼働率のバラつきを無くすことができる構成の検討も行うことができる。 Then, based on the obtained operating rates of the load equipments 5a, 5b, 5c, the positions of the power supplies 4a, 4b, the positions of the load equipments 5a, 5b, 5c, the positions of the bus connecting lines 3, etc. are changed. Therefore, it is possible to design a power receiving and distributing facility in which a power failure is unlikely to occur in the load facilities 5a, 5b, and 5c. In addition, by changing the configuration of the power receiving and distribution equipment and calculating the operating rate of each load facility 5a, 5b, 5c each time, the operating rate of each load facility 5a, 5b, 5c can be increased on average. It is also possible to study a configuration that can eliminate the variation in the operating rate of each load facility 5a, 5b, 5c.

以上の構成によれば、各負荷設備5a,5b,5c毎に稼働率を計算する際、算出式項数を大幅に減らすことができるので、各負荷設備5a,5b,5cの稼働率を容易に求めることができる。このような稼働率を基に、受配電設備の構成配置を設計することで、受配電設備の電気機器、電源4a,4b及び負荷設備5a,5b,5cの配置位置を一元的に決定することができる。 According to the above configuration, when the operating rate is calculated for each load equipment 5a, 5b, 5c, the number of calculation formula terms can be significantly reduced, so that the operating rate of each load equipment 5a, 5b, 5c can be easily reduced. Can be asked for. By designing the configuration layout of the power receiving and distribution equipment based on such an operating rate, the placement positions of the electrical equipment, power supplies 4a, 4b and load equipment 5a, 5b, 5c of the power receiving and distribution equipment can be centrally determined. Can be done.

<他の実施形態>
なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、上述した実施形態においては、各負荷設備5a,5b,5cの稼働率を算出するようにした場合について述べたが、本発明はこれに限らず、各負荷設備5a,5b,5cの不稼働率を算出したり、或いは、稼働率及び不稼働率の両方を算出するようにしてもよい。なお、不稼働率は、例えば、「1-稼働率」より求めることができる。
<Other embodiments>
The present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, in the above-described embodiment, the case where the operating rate of each load facility 5a, 5b, 5c is calculated has been described, but the present invention is not limited to this, and each load facility 5a, 5b, 5c is not available. The operating rate may be calculated, or both the operating rate and the non-operating rate may be calculated. The non-operation rate can be obtained from, for example, "1-operation rate".

また、上述した実施形態においては、第1母線2a及び第2母線2bに、電源4a,4bをそれぞれ1つずつ設けた場合について述べたが、本発明はこれに限らず、第1母線2a及び第2母線2bに、電源をそれぞれ複数設けるようにしても良い。 Further, in the above-described embodiment, the case where one power supply 4a and one 4b are provided on the first bus 2a and the second bus 2b has been described, but the present invention is not limited to this, and the first bus 2a and the first bus 2a and A plurality of power supplies may be provided on the second bus 2b.

さらに、上述した実施形態においては、母線連絡線3を1つ設けた場合について述べたが、本発明はこれに限らず、母線連絡線3を2つ以上設けてもよい。 Further, in the above-described embodiment, the case where one bus connecting line 3 is provided has been described, but the present invention is not limited to this, and two or more bus connecting lines 3 may be provided.

さらに、上述した実施形態においては、変則的ルートを特定した後、全ルートから変則的ルートを排除して計算対象ルートを特定するようにした場合について述べたが、本発明はこれに限らない。例えば、変則的ルートを特定することなく、第1受電断路器又は第2受電断路器のいずれかがオン動作したときのルートと、第1負荷設備断路器及び第2負荷設備断路器のいずれかがオン動作したときのルートとを特定することで、全ルートから変則的ルートを排除した計算対象ルートを特定するようにしてもよい。 Further, in the above-described embodiment, the case where the irregular route is specified and then the irregular route is excluded from all the routes to specify the calculation target route is described, but the present invention is not limited to this. For example, the route when either the first power receiving disconnector or the second power receiving disconnector is turned on without specifying an irregular route, and either the first load equipment disconnector or the second load equipment disconnector. By specifying the route when the switch is turned on, the calculation target route excluding the irregular route from all the routes may be specified.

<ルートの削減効果例>
次に、第1受電断路器及び第2受電断路器のいずれかのみをオン動作させ、かつ、第1負荷設備断路器及び第2負荷設備断路器のいずれかのみをオン動作させた際のルートの削減効果について確認した。ここでは、図10Aに示すように、2台の電源4a,4bと、1台の負荷設備5aと、1つの母線連絡線3とを設け、第1母線2a及び第2母線2bの一方の末端を母線連絡線3で接続させた受配電設備1aを適用した。
<Example of route reduction effect>
Next, the route when only one of the first power receiving disconnector and the second power receiving disconnector is turned on and only one of the first load equipment disconnector and the second load equipment disconnector is turned on. Confirmed the reduction effect of. Here, as shown in FIG. 10A, two power supplies 4a and 4b, one load facility 5a, and one bus connecting line 3 are provided, and one end of the first bus 2a and the second bus 2b is provided. The power receiving and distributing equipment 1a connected by the bus connecting line 3 was applied.

電源4a(4b)は、第1受電断路器7a(7c)又は第2受電断路器7b(7d)を介して第1母線2a又は第2母線2bに接続した。負荷設備5aは、第1負荷設備断路器8a又は第2負荷設備断路器8bを介して第1母線2a又は第2母線2bに接続した。そして、各電源4a,4bから負荷設備5aに電力が供給可能なルート数を確認した。 The power supply 4a (4b) was connected to the first bus 2a or the second bus 2b via the first power receiving disconnector 7a (7c) or the second power receiving disconnector 7b (7d). The load equipment 5a was connected to the first bus 2a or the second bus 2b via the first load equipment disconnector 8a or the second load equipment disconnector 8b. Then, the number of routes that can supply electric power from the power sources 4a and 4b to the load equipment 5a was confirmed.

先ずは、第1受電断路器7a(7c)及び第2受電断路器7b(7d)のいずれか一方のみをオン動作させて、電源4a,4bのいずれか一方のみを第1母線2aに接続し、かつ、他方の残りの電源4a,4bを第2母線2bに接続して、通常運転時におけるルート数を確認した。通常運転時として、負荷設備5aは、第1負荷設備断路器8a又は第2負荷設備断路器8bのいずれか一方のみをオン動作させ、第1母線2a又は第2母線2bのいずれか一方にのみ接続させた。 First, only one of the first power receiving disconnector 7a (7c) and the second power receiving disconnector 7b (7d) is turned on, and only one of the power supplies 4a and 4b is connected to the first bus 2a. And, the other remaining power supplies 4a and 4b were connected to the second bus 2b, and the number of routes during normal operation was confirmed. During normal operation, the load equipment 5a turns on only one of the first load equipment disconnector 8a and the second load equipment disconnector 8b, and turns on only one of the first bus 2a and the second bus 2b. Connected.

通常運転時におけるルートは、図10A~図10D及び図11A~図11Dに示すように、ルートR~Rの8ルートとなった。また、負荷設備の台数を増やして通常運転時におけるルート数を確認したところ、負荷設備の台数が何台になっても、ルート数は常に8ルートとなった。 As shown in FIGS. 10A to 10D and FIGS. 11A to 11D, the routes during normal operation were eight routes R1 to R8. In addition, when the number of load equipment was increased and the number of routes during normal operation was confirmed, the number of routes was always 8 no matter how many load equipments were used.

次に、比較例として、同じ受配電設備1aを用いて、電源4a,4b及び負荷設備5aを第1母線2a及び第2母線2bの両方に接続し、各電源4a,4bから負荷設備5aに電力が供給可能なルート数を確認した。その結果、図12A~図12H及び図13A~図13Fに示すようなルートA~A14の14ルートが確認できた。このように、電源4a,4b及び負荷設備5aが第1母線2a及び第2母線2bの両方に接続すると、ルート数が増加してしまい、その分、算出式項数も増加してしまう。 Next, as a comparative example, using the same power receiving and distribution equipment 1a, the power supplies 4a and 4b and the load equipment 5a are connected to both the first bus 2a and the second bus 2b, and the power supplies 4a and 4b are connected to the load equipment 5a. We confirmed the number of routes that can be supplied with power. As a result, 14 routes of routes A1 to A14 as shown in FIGS. 12A to 12H and 13A to 13F were confirmed. In this way, when the power supplies 4a and 4b and the load equipment 5a are connected to both the first bus 2a and the second bus 2b, the number of routes increases, and the number of calculation formula terms also increases accordingly.

なお、負荷設備を2台、3台設けたときについても調べたところ、負荷設備が2台の場合、ルート数は24ルートとなり、負荷設備が3台の場合、ルート数は40ルートとなった。また、負荷設備がn台の場合、ルート数は、下記のルート数となった。 As a result of investigating the case where two or three load equipments were installed, the number of routes was 24 when the load equipments were two, and the number of routes was 40 when the load equipments were three. .. When the load equipment was n units, the number of routes was as follows.

3×2+4n+4 (n≧2) … (1) 3 × 2 n + 4n + 4 (n ≧ 2)… (1)

以上より、電源及び負荷設備を、第1母線又は第2母線のいずれかにのみ接続させる、受配電設備の通常運転時の運用特性を利用することで、電源が2台、母線連絡線が1つの場合の起点から終点までのルート数を8ルートにまで削減できることが確認できた。よって、負荷設備までのルート数を削減できる分、負荷設備の稼働率及び/又は不稼働率を算出する際の演算処理負担を軽減できる。なお、電源の数や、母線連絡線の数が増加しても、ルート数を削減できることが確認できた。 From the above, by using the operational characteristics of the power receiving and distribution equipment during normal operation, which connects the power supply and load equipment only to either the first bus or the second bus, two power supplies and one bus connection line are used. It was confirmed that the number of routes from the start point to the end point in one case can be reduced to eight routes. Therefore, since the number of routes to the load equipment can be reduced, the calculation processing load when calculating the operation rate and / or the non-operation rate of the load equipment can be reduced. It was confirmed that the number of routes can be reduced even if the number of power supplies and the number of bus connection lines increase.

1,1a,21,41 受配電設備
2a 第1母線
2b 第2母線
3 母線連絡線
4a,4b 電源
5a,5b,5c 負荷設備
7a,7c 第1受電断路器
7b,7d 第2受電断路器
8a,8c,8e 第1負荷設備断路器
8b,8d,8f 第2負荷設備断路器
22 調整機能付変圧器(電気機器、変圧器)
23 計器用変流器(電気機器、変流器)
24 避雷器(電気機器)
10a,10b 受電遮断器(電気機器、遮断器)
11a,11b 負荷設備遮断器(電気機器、遮断器)
12 母線連絡遮断器(電気機器、遮断器)
32a 設計情報取得部
32b 設計情報変更部
33a 全ルート抽出部
33b 変則的ルート特定部
33c 計算対象ルート特定部
33d 算出部
1,1a, 21,41 Power receiving and distributing equipment 2a 1st bus 2b 2nd bus 3 Bus connecting line 4a, 4b Power supply 5a, 5b, 5c Load equipment 7a, 7c 1st power receiving disconnector 7b, 7d 2nd power receiving disconnector 8a , 8c, 8e 1st load equipment disconnector 8b, 8d, 8f 2nd load equipment disconnector 22 Transformer with adjustment function (electrical equipment, transformer)
23 Instrument transformers (electrical equipment, current transformers)
24 Lightning arrester (electrical equipment)
10a, 10b Power receiving circuit breaker (electrical equipment, circuit breaker)
11a, 11b Load equipment circuit breaker (electrical equipment, circuit breaker)
12 Busbar connection circuit breaker (electrical equipment, circuit breaker)
32a Design information acquisition unit 32b Design information change unit 33a All route extraction unit 33b Irregular route specification unit 33c Calculation target route specification unit 33d Calculation unit

Claims (4)

第1母線と第2母線とが母線連絡線で接続された二重母線構造からなる受配電設備の構成配置設計方法において、
電気機器、第1受電断路器及び第2受電断路器を介して前記第1母線及び前記第2母線に接続可能な電源と、第1負荷設備断路器及び第2負荷設備断路器を介して前記第1母線及び前記第2母線に接続可能な負荷設備とを、前記第1母線及び前記第2母線に配置させた前記受配電設備の設計情報を取得する設計情報取得工程と、
前記第1受電断路器、前記第2受電断路器、前記第1負荷設備断路器及び前記第2負荷設備断路器をそれぞれオンオフ動作させた場合に、各前記電源から各前記負荷設備に電力が供給可能となる全てのルートを抽出する全ルート抽出工程と、
前記全ルート抽出工程で抽出された前記ルートのうち、前記第1受電断路器及び前記第2受電断路器の両方がオン動作して前記電源が前記第1母線及び前記第2母線の両方に接続されたときのルートと、前記第1負荷設備断路器及び前記第2負荷設備断路器の両方がオン動作して前記負荷設備が前記第1母線及び前記第2母線の両方に接続されたときのルートと、を変則的ルートとし、前記全ルート抽出工程で抽出した前記ルートから前記変則的ルートを排除した、計算対象ルートを特定する計算対象ルート特定工程と、
前記計算対象ルートに沿って配置されている、前記第1受電断路器、前記第2受電断路器、前記第1負荷設備断路器、前記第2負荷設備断路器及び前記電気機器におけるそれぞれの既知の信頼度を基に、各前記負荷設備毎に、少なくとも稼働率及び不稼働率のいずれか一方を算出する算出工程と、
前記稼働率又は前記不稼働率を基に、前記電気機器、前記電源、又は前記負荷設備について前記二重母線構造での配置設計を行う配置設計工程と、
を備える、受配電設備の構成配置設計方法。
In the configuration layout design method of power receiving and distribution equipment consisting of a double bus structure in which the first bus and the second bus are connected by a bus connecting line,
A power source that can be connected to the first bus and the second bus via an electric device, a first power receiving disconnector and a second power receiving disconnector, and the above via a first load equipment disconnector and a second load equipment disconnector. A design information acquisition process for acquiring design information of the power receiving and distributing equipment in which the first bus and the load equipment connectable to the second bus are arranged on the first bus and the second bus.
When the first power receiving disconnector, the second power receiving disconnector, the first load equipment disconnector, and the second load equipment disconnector are turned on and off, power is supplied from each power source to each load equipment. All route extraction process to extract all possible routes and
Of the routes extracted in the entire route extraction step, both the first power receiving disconnector and the second power receiving disconnector are turned on and the power supply is connected to both the first bus and the second bus. When both the first load equipment disconnector and the second load equipment disconnector are turned on and the load equipment is connected to both the first bus and the second bus. A calculation target route specifying process for specifying a calculation target route, in which the route is an irregular route and the irregular route is excluded from the route extracted in the all route extraction step.
Known in the first power receiving disconnector, the second power receiving disconnector, the first load equipment disconnector, the second load equipment disconnector, and the electric equipment arranged along the calculation target route. A calculation process for calculating at least one of the operating rate and the non-operating rate for each of the load facilities based on the reliability.
A layout design process for designing the layout of the electrical equipment, the power supply, or the load equipment in the double bus structure based on the operating rate or the non-operating rate.
A method for designing the configuration and layout of power receiving and distribution equipment.
前記電気機器は、変圧器、遮断器、変流器、避雷器のいずれかである、請求項1に記載の受配電設備の構成配置設計方法。 The method for designing the configuration and arrangement of power receiving and distributing equipment according to claim 1, wherein the electric device is any one of a transformer, a circuit breaker, a current transformer, and a lightning arrester. 第1母線と第2母線とが母線連絡線で接続された二重母線構造からなる受配電設備の構成配置設計装置において、
電気機器、第1受電断路器及び第2受電断路器を介して前記第1母線及び前記第2母線に接続可能な電源と、第1負荷設備断路器及び第2負荷設備断路器を介して前記第1母線及び前記第2母線に接続可能な負荷設備とを、前記第1母線及び前記第2母線に配置させた前記受配電設備の設計情報を取得する設計情報取得部と、
前記第1受電断路器、前記第2受電断路器、前記第1負荷設備断路器及び前記第2負荷設備断路器をそれぞれオンオフ動作させた場合に、各前記電源から各前記負荷設備に電力が供給可能となる全てのルートを抽出する全ルート抽出部と、
前記全ルート抽出部で抽出された前記ルートのうち、前記第1受電断路器及び前記第2受電断路器の両方がオン動作して前記電源が前記第1母線及び前記第2母線の両方に接続されたときのルートと、前記第1負荷設備断路器及び前記第2負荷設備断路器の両方がオン動作して前記負荷設備が前記第1母線及び前記第2母線の両方に接続されたときのルートと、を変則的ルートとし、前記全ルート抽出部で抽出した前記ルートから前記変則的ルートを排除した、計算対象ルートを特定する計算対象ルート特定部と、
前記計算対象ルートに沿って配置されている、前記第1受電断路器、前記第2受電断路器、前記第1負荷設備断路器、前記第2負荷設備断路器及び前記電気機器におけるそれぞれの既知の信頼度を基に、各前記負荷設備毎に、少なくとも稼働率及び不稼働率のいずれか一方を算出する算出部と、を備え、
前記稼働率又は前記不稼働率を基に、設計者に対して、前記電気機器、前記電源、又は前記負荷設備について前記二重母線構造での配置設計を行わせる、受配電設備の構成配置設計装置。
In the configuration layout design device of the power receiving and distribution equipment having a double bus structure in which the first bus and the second bus are connected by a bus connecting line.
A power source that can be connected to the first bus and the second bus via an electric device, a first power receiving disconnector and a second power receiving disconnector, and the above via a first load equipment disconnector and a second load equipment disconnector. A design information acquisition unit for acquiring design information of the power receiving and distributing equipment in which the first bus and the load equipment connectable to the second bus are arranged on the first bus and the second bus.
When the first power receiving disconnector, the second power receiving disconnector, the first load equipment disconnector, and the second load equipment disconnector are turned on and off, power is supplied from each power source to each load equipment. All route extraction unit that extracts all possible routes, and
Of the routes extracted by the all route extraction unit, both the first power receiving disconnector and the second power receiving disconnector are turned on and the power supply is connected to both the first bus and the second bus. When both the first load equipment disconnector and the second load equipment disconnector are turned on and the load equipment is connected to both the first bus and the second bus. A calculation target route specifying unit that specifies a calculation target route, in which the route is an irregular route and the irregular route is excluded from the route extracted by the all route extraction unit.
Known in the first power receiving disconnector, the second power receiving disconnector, the first load equipment disconnector, the second load equipment disconnector, and the electric equipment arranged along the calculation target route. Each of the load facilities is provided with a calculation unit that calculates at least one of the operating rate and the non-operating rate based on the reliability.
Configuration layout design of power receiving and distribution equipment that allows the designer to design the layout of the electrical equipment, the power supply, or the load equipment in the double bus structure based on the operating rate or the non-operating rate. Device.
前記算出部により算出された前記稼働率又は前記不稼働率を表示する表示部と、
前記設計者に対して、前記電気機器、前記電源、又は前記負荷設備について前記二重母線構造での配置位置を変更させる設計情報変更部と、
を備える、請求項3に記載の受配電設備の構成配置設計装置。
A display unit that displays the operating rate or the non-operating rate calculated by the calculation unit, and
A design information changing unit that causes the designer to change the arrangement position of the electric device, the power supply, or the load facility in the double bus structure.
3. The configuration / arrangement design device for power receiving / distributing equipment according to claim 3.
JP2018189493A 2018-10-04 2018-10-04 Configuration layout design method and configuration layout design equipment for power receiving and distribution equipment Active JP7056499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018189493A JP7056499B2 (en) 2018-10-04 2018-10-04 Configuration layout design method and configuration layout design equipment for power receiving and distribution equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018189493A JP7056499B2 (en) 2018-10-04 2018-10-04 Configuration layout design method and configuration layout design equipment for power receiving and distribution equipment

Publications (2)

Publication Number Publication Date
JP2020061794A JP2020061794A (en) 2020-04-16
JP7056499B2 true JP7056499B2 (en) 2022-04-19

Family

ID=70220354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018189493A Active JP7056499B2 (en) 2018-10-04 2018-10-04 Configuration layout design method and configuration layout design equipment for power receiving and distribution equipment

Country Status (1)

Country Link
JP (1) JP7056499B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644371B2 (en) * 1990-11-30 1997-08-25 株式会社東芝 Power system controller
JPH0759262A (en) * 1993-08-19 1995-03-03 Meidensha Corp Power interchange rouge combination method for distribution system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
新日鐵住金株式会社 受配電設備等調査委員会,"新日鐵住金株式会社 名古屋製鐵所 受配電設備等調査報告書", [online],日本,2015年04月07日,p.16 - p.17, 図4.6,[2022年2月24日検索], インターネット<URL:https://nipponsteel.com/news/20150407_100.html>

Also Published As

Publication number Publication date
JP2020061794A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
EP2608355B1 (en) Device for the continuous power supply of electrical consumers and method for operating the device
US9342414B1 (en) Reserve power bus ring for data center
Prabhu et al. Design of electrical system based on load flow analysis using ETAP for IEC projects
EP3291399A1 (en) Protection apparatus
Patel et al. Relay Coordination using ETAP
CN111226363A (en) Method and device for identifying fault sections in a multi-terminal hybrid line
JP2017017832A (en) Server device
JP7056499B2 (en) Configuration layout design method and configuration layout design equipment for power receiving and distribution equipment
US10871807B2 (en) Power distribution system with thermal cutoff for dielectric cooling systems
JP5480097B2 (en) Distribution line rolling load availability determination system
JP5075590B2 (en) Bus-ground fault protection relay device and sequence interruption method
JP4832600B1 (en) Interrupt control device, interrupt control program, and interrupt control method
JP2018074643A (en) Distribution board with power failure compensation device
CN106651639A (en) Method and system for determining power guaranteeing operation mode based on reliability evaluation
JP2007159188A (en) Power reception/distribution supervisory control system and its method
JP2010115006A (en) System for determining bus line accident section
Schaffer et al. Ensuring switchgear integrity in High-Power installations
JP7380377B2 (en) Power receiving and transforming equipment that can change the receiving voltage and how to change the receiving voltage
JP2011135689A (en) Selective load interrupting device
KR20150048997A (en) System for protective control of electric power system
JP7180633B2 (en) Recovery operation method from power failure and recovery operation device
JPH0438124A (en) Overload eliminating method and device for power system and low voltage eliminating method for power system
RU2761430C1 (en) DEVICE FOR RESTORING FULL-PHASE VOLTAGE IN A 4-WIRE NETWORK OF 0.4/0.23 kV
JP5631583B2 (en) Blocking sequence management device, blocking sequence management system, and blocking sequence management method
JP4137912B2 (en) Power supply method and power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R151 Written notification of patent or utility model registration

Ref document number: 7056499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151