JPH0438124A - Overload eliminating method and device for power system and low voltage eliminating method for power system - Google Patents

Overload eliminating method and device for power system and low voltage eliminating method for power system

Info

Publication number
JPH0438124A
JPH0438124A JP2143528A JP14352890A JPH0438124A JP H0438124 A JPH0438124 A JP H0438124A JP 2143528 A JP2143528 A JP 2143528A JP 14352890 A JP14352890 A JP 14352890A JP H0438124 A JPH0438124 A JP H0438124A
Authority
JP
Japan
Prior art keywords
overload
accident
amount
power
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2143528A
Other languages
Japanese (ja)
Inventor
Goo Nohara
野原 哈夫
Masuo Goto
益雄 後藤
Junji Kobayashi
小林 順治
Genichiro Yuzawa
湯沢 源一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2143528A priority Critical patent/JPH0438124A/en
Publication of JPH0438124A publication Critical patent/JPH0438124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To reduce power interruption section as small as possible and to enhance reliability in power supply by estimating power flow at each point in a system, upon removal of fault, based on data relevant to power generation amount and load amount at each point in the system immediately before occurrence of fault. CONSTITUTION:A computer is actuated by a fault detection signal such as function of a protective relay. Configuration of the system after removal of fault is recognized and power flow at each point is estimated based on collected data PGN, PLM and then overload points in the system are determined based on thus estimated power flow. If there is no overload, the process is completed. If there is any overload, power generation limit of each generator for eliminating the overload is determined through phase regulation of the generator, and one or a plurality of loads PLM corresponding to the overload are selected, as required. Power generation limit, and a generator to be limited or a load interrupting amount and a load to be interrupted are determined based on these results and a control command such as an interruption command is outputted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力系統の事故除去後に発生する系統各部の
過負荷又は低電圧を解消する過負荷解消方法および装置
又は低電圧解消方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an overload elimination method and device for eliminating overload or low voltage in various parts of a power system that occurs after an accident has been eliminated, or a low voltage elimination method.

〔従来の技術〕 従来、系統事故後の過負荷解消法として、[電カニ学ハ
ンドブック、第20編電力系統、第1060頁、送電線
の過負荷制御システム」に記載されたものが知られてい
る。これによれば、保護対象とする送電線の電流を監視
し、これが一定値以上のときに送電線を遮断し、過負荷
による送電線の溶断を防止している。
[Prior Art] Conventionally, as a method for resolving overload after a power grid accident, the method described in [Electrical Science Handbook, Volume 20 Power System, Page 1060, Overload Control System for Power Transmission Lines] has been known. There is. According to this, the current of the power transmission line to be protected is monitored, and when the current exceeds a certain value, the power transmission line is cut off, thereby preventing the power transmission line from fusing due to overload.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術は単に送電線の溶断防止のみを考
慮するものであり、溶断防止等の過負荷を解消するにあ
たって、系統全体の電力供給信頼度の低下を防止するこ
とについて配慮されていないという問題がある。
However, the above-mentioned conventional technology only considers the prevention of power line blowouts, and does not take into account the prevention of a decline in the power supply reliability of the entire system when solving overloads such as preventing blowouts. There's a problem.

すなわち、遮断する系統負荷の範囲が広すぎて、過負荷
解消に必要な量以上の負荷を切離すことがあり、これに
よって停電区間が広範囲に及び、供給信頼度が低下する
という問題がある。また、事故除去後の系統構成によっ
ては、送電ルートが長大になって低電圧区域が発生、拡
大することがある。
That is, the range of system loads to be cut off is too wide, and more loads than are necessary to eliminate the overload may be cut off, resulting in a problem that the power outage section extends over a wide range and the reliability of supply decreases. Additionally, depending on the system configuration after the fault has been removed, the power transmission route may become longer and lower voltage areas may occur or expand.

本発明の目的は、停電区間を極力低減して供給信頼度を
向上させた電力系統の過負荷解消方法および装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for eliminating overload in a power system, which improves supply reliability by reducing power outage sections as much as possible.

また、事故除去後の電圧低下を有効に防止して供給信頼
度を向上させた電力系統の電圧低下解消方法を提供する
ことにある。
Another object of the present invention is to provide a method for eliminating a voltage drop in an electric power system that effectively prevents a voltage drop after a fault has been removed and improves supply reliability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る過負荷解消方法および装置は、上記目的を
達成するため、対象とする電力系統の事故情報に基づい
て事故除去後の系新構成を認識し、該事故除去後の系統
構成についての系統各部の潮流を事故発生前における発
電量と負荷量データを用いて推定し、該推定結果に基づ
いて系統各部の過負荷の有無を判定し、過負荷と判定さ
れた系統部位の過負荷を解消するに必要な複数の発電機
の発電制限量を試算し、該試算の結果の発電制限量が最
少の発電機の発電量を制限するようにしたことにある。
In order to achieve the above-mentioned object, the overload elimination method and device according to the present invention recognizes a new system configuration after an accident is removed based on accident information of the target power system, and determines the new system configuration after the accident is removed. The power flow in each part of the system is estimated using the power generation amount and load amount data before the accident, and based on the estimation results, it is determined whether each part of the system is overloaded, and the overload of the system part determined to be overloaded is determined. The power generation limit amount of a plurality of generators necessary to solve the problem is calculated, and the power generation amount of the generator with the smallest power generation limit amount as a result of the trial calculation is limited.

また、上記発電量の制限に代えて、又は加えて、過負荷
量に見合う負荷量の1又は複数の負荷系統を選定し、該
選定された負荷系統を遮断するようにしたことにある。
Moreover, instead of or in addition to limiting the amount of power generation, one or more load systems with a load commensurate with the overload amount are selected, and the selected load systems are shut off.

また、本発明に係る低電圧解消方法は、対象とする電力
系統の事故情報に基づいて事故除去後の系統構成を認識
し、該事故除去後の系統構成についての系統各部の潮流
を事故発生前における発電量と負荷量データを用いて推
定する一方、系統各部の低電圧の有無を検出し、検出さ
れた系統部位の低電圧の解消に寄与する。送電系統の遮
断器開閉による構成変更を試行演算し、該試行演算結果
に基づいて送電系統の遮断器の開閉を行なうようにした
ことにある。
In addition, the low voltage elimination method according to the present invention recognizes the system configuration after the fault has been removed based on the fault information of the target power system, and calculates the power flow of each part of the system in the system configuration after the fault has been removed before the accident occurred. While estimating the power generation amount and load amount data in the system, it also detects the presence or absence of low voltage in each part of the system, and contributes to eliminating the low voltage in the detected system part. A trial calculation is performed to change the configuration by opening and closing the circuit breaker of the power transmission system, and the circuit breaker of the power transmission system is opened and closed based on the result of the trial calculation.

〔作用〕[Effect]

このように構成されることから、本発明によれば、次の
作用により、上記目的が達成される。
With this configuration, according to the present invention, the above object is achieved through the following actions.

まず、事故直前の系統各部の発電量と負荷量のデータを
用いて事故除去後の系統各部の潮流を推定していること
から、速やかにかつ高い確度で系統各部の過負荷又は低
電圧を推定できる。
First, the power flow in each part of the system after the fault has been removed is estimated using data on the amount of power generation and load in each part of the system immediately before the accident, so overload or undervoltage in each part of the system can be estimated quickly and with high accuracy. can.

そして、発電量制限の試算により各部の過・負荷解消を
最少の発電量制限で行なうことが可能になす、不必要な
負荷遮断を回避でき、これによって、供給信頼度が向上
する。
Then, by calculating the power generation amount limit, it is possible to eliminate overload and load on each part with the minimum power generation amount limit, and unnecessary load shedding can be avoided, thereby improving supply reliability.

また、過負荷量に見合う1又は複数の系統負荷を選択し
て遮断するようにしたものによれば、不必要な負荷遮断
を回避でき、これによって停電区間が極少化され、供給
信頼度が向上する。
In addition, by selecting and cutting off one or more system loads commensurate with the amount of overload, unnecessary load shedding can be avoided, thereby minimizing power outage sections and improving supply reliability. do.

また、上記発電量制限に選択負荷遮断を組合せたものに
よれば、発電量制限のみでは解消できない過負荷にも対
応することが可能になり、−層供給信頼度が向上される
Furthermore, by combining the power generation amount limitation with selective load shedding, it becomes possible to cope with overloads that cannot be resolved by power generation amount limitation alone, and the - layer supply reliability is improved.

一方1本発明に係る低電圧解消方法によれば、演算によ
り送電系統の遮断器開閉を行なって系統構成の変更を試
行し、これにより低電圧解消可能な系統構成を見つけ、
これに合わせて必要な遮断器の開閉が行なわれる。した
がって、速やかに低電圧解消を実現でき、低電圧に伴う
不必要な負荷遮断を予防できる。
On the other hand, according to the method for eliminating low voltage according to the present invention, a circuit breaker in the power transmission system is opened and closed by calculation to try to change the system configuration, thereby finding a system configuration that can eliminate low voltage,
The necessary circuit breakers are opened and closed accordingly. Therefore, it is possible to promptly eliminate the low voltage and prevent unnecessary load shedding due to the low voltage.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

第1図に本発明の一実施例の過負荷解消方法に係る処理
手順のフローチャートを示す。
FIG. 1 shows a flowchart of a processing procedure related to an overload elimination method according to an embodiment of the present invention.

過負荷解消装置を構成するコンピュータは、第1図(A
)に示すように、一定のサンプリング周期で、対象とす
る電力系統の各部に設けられた電力検出手段により検出
された発電量PGN、負荷量PLOを取り込んで記憶装
置に格納して収集するようになっている。ここで、添字
GNは発電機の番号を表わし、N=1.2.・・・N、
・・・からなるもとし、添字LMは遮断器により、切離
し可能に適宜区分された系統負荷の番号を表わし、M=
1.2゜・・・9M、・・からなるものとする。
The computer constituting the overload elimination device is shown in Figure 1 (A
), the power generation amount PGN and load amount PLO detected by the power detection means provided in each part of the target power system are taken in at a fixed sampling period and stored in a storage device for collection. It has become. Here, the subscript GN represents the number of the generator, and N=1.2. ...N,
..., where the subscript LM represents the number of the system load that can be appropriately separated by the circuit breaker, and M=
It shall consist of 1.2°...9M,...

次に、上記コンピュータは、保護リレー動作等の事故検
出信号により起動を第1図(B)に示すように、事故除
去後の系統構成を認識しくステップ102)、前記収集
したデータP ON 、 P LMを用いて各部の潮流
を推定演算により求め(ステップ103.104) 、
これに基づいて過負荷箇所の系統部位の有無を判定する
(ステップ1o5)。
Next, the computer is activated by an accident detection signal such as a protection relay operation, as shown in FIG. Calculate the power flow of each part by estimation calculation using LM (steps 103 and 104),
Based on this, it is determined whether there is an overloaded system part (step 1o5).

過負荷箇所がない場合は処理を終了する。過負荷箇所が
ある場合は、発電機の位相調整による発電量制限により
過負荷解消が可能な各発電機の発電制限量を求めるとと
もに、必要な場合はその過負荷量に見合う量の1又は複
数の負荷PLMを選択する(ステップ106)。これら
の結果に基づいて発電量制限および制限発電機又は負荷
遮断量および遮断負荷を決定し、遮断指令などの制御指
令を出力する(ステップ107)。
If there are no overloaded locations, the process ends. If there is an overloaded point, find the power generation limit amount of each generator that can eliminate the overload by limiting the power generation amount by adjusting the generator phase, and if necessary, calculate one or more power generation limits corresponding to the overload amount. A load PLM is selected (step 106). Based on these results, a power generation amount limit, a limited generator, a load cutoff amount, and a cutoff load are determined, and a control command such as a cutoff command is output (step 107).

ここで、上記各ステップにおける処理の詳細について説
明する。
Here, details of the processing in each of the above steps will be explained.

系統構成の認識には、系統全体の構成に関係する情報が
必要であり、また事故除去後の系統構成を認識するため
には、事故除去に関係した動作遮断器などの事故情報が
必要となる。前者の系統構成に関する情報は系統構成デ
ータとして記憶装置に予め格納されており、例えば、発
電機GN、送電線QK、負荷LM、それらの容量、許容
容量、インピーダンスなどの属性データ、遮断器の位置
および接続情報などの属性データが含まれる。また、後
者の事故情報は別途事故検出装置等から入力されるよう
になっている。しかして、系統構成認識のステップ10
2では、事故検知信号が入力されたときに起動し、系統
構成データを必要に応して読出し、事故情報に合わせて
事故除去後の系統構成を把握して設定する。
Recognizing the system configuration requires information related to the overall system configuration, and recognizing the system configuration after the accident has been removed requires accident information such as operating breakers related to the accident removal. . Information regarding the former system configuration is stored in advance in the storage device as system configuration data, and includes, for example, generator GN, transmission line QK, load LM, their capacities, attribute data such as allowable capacity, impedance, and position of circuit breakers. and attribute data such as connection information. The latter accident information is input from a separate accident detection device or the like. Therefore, step 10 of system configuration recognition
In step 2, it is activated when an accident detection signal is input, reads system configuration data as necessary, and grasps and sets the system configuration after the accident has been removed in accordance with the accident information.

次に、ステップ103においては、ステップ101で収
集された事故前の発電量などのデータP ON 、 P
 LMを取り込み、潮流推定演算に用いるデータP G
N 、 P LMを設定する。
Next, in step 103, data such as the amount of power generation before the accident collected in step 101 P ON , P
Data PG that imports LM and uses it for power flow estimation calculation
Set N, PLM.

潮流推定演算ステップ104は、設定された事故後の系
統構成について設定された事故前の発電量PGNと負荷
量PLMを用い、系統各部の潮流を計算する。
The power flow estimation calculation step 104 calculates the power flow in each part of the system using the power generation amount PGN and the load amount PLM before the accident, which are set for the set post-accident system configuration.

ステップ105は、上記により求めた各部の潮流が、当
該各部の許容容量を越えているか否かにより、過負荷箇
所の有無を判定する。各部の許容容量は前記記憶装置か
ら必要に応じて読出す。この判定の結果、過負荷箇所が
存在する場合は、次のステップ106で当該各箇所の過
負荷解消のための発電量の制限と負荷遮断の試行演算を
行なう。
In step 105, the presence or absence of an overloaded portion is determined based on whether or not the power flow of each part determined above exceeds the allowable capacity of each part. The allowable capacity of each part is read from the storage device as necessary. As a result of this determination, if an overloaded location exists, in the next step 106, trial calculations are performed to limit the amount of power generation and to cut off the load in order to eliminate the overload at each location.

この試行演算は、解消すべき過負荷量に対し最も発電制
限量又は遮断負荷量が少ない解消法を求めるものであり
、具体的には次に説明するように、各解消法についての
効果係数を算出する。そして、その結果係数が最小の方
法により発電量制限等を行なう。
This trial calculation is to find a solution method that provides the smallest amount of power generation restriction or cut-off load for the amount of overload to be eliminated. Specifically, as explained below, the effect coefficient for each solution method is calculated. calculate. Then, as a result, the power generation amount is limited by the method with the smallest coefficient.

例えば、事故除去後の系統構成が第2図に示すものとな
り、線路Qユに過負荷が生じたものとする。この場合、
発電機G、の位相を調整して等価無限大母線である発電
機G2どの位相差θを変化させることにより、発電機G
1から負荷りに供給する電力を減少させて、線路Q1の
過負荷を解消することができる。ここで、発電機G工の
出力をPa工からPcユ′に制限することにより線路Q
よの電力がPQ工からPQ工′に変化した場合に、効果
係数Cを次式で定義する。
For example, assume that the system configuration after the fault has been removed is as shown in FIG. 2, and that an overload has occurred on the line Q. in this case,
By adjusting the phase of generator G and changing the phase difference θ of generator G2, which is an equivalent infinite bus, generator G
The overload on the line Q1 can be eliminated by reducing the power supplied to the load from the line Q1. Here, by limiting the output of the generator G from Pa to Pc, the line Q
When the electric power changes from PQ to PQ', the effect coefficient C is defined by the following equation.

P(11−PQ工 そして、対象とする箇所Ω、の過負荷解消について効果
係数Cが最少の発電機の発電量を制限して過負荷を解消
する。負荷を遮断して過負荷解消を行なう場合も同様の
考え方によればよい。
P (11-PQ) And to eliminate the overload at the target location Ω, limit the power generation amount of the generator with the smallest effect coefficient C to eliminate the overload. Cut off the load and eliminate the overload. The same way of thinking can be used in this case.

なお、効果係数Cを予め対象とする系統の条件、例えば
線路の一回線又は二回線の開放状態において、発電量制
限又は負荷遮断を行なったときの発電量制限又は遮断負
荷量に対する過負荷解消量の割合(上記効果係数)を求
めておき、実際の過負荷量に効果係数を乗じて制限量等
を算出するようにすることができる。すなわち、線路Q
□の電力をP3からPlに低減して過負荷を解消する場
合には、次式により、発電制限量△Pa工を求めればよ
い。
In addition, the effect coefficient C is the overload cancellation amount for the power generation amount limitation or load shedding when power generation amount limitation or load shedding is performed under system conditions that are targeted in advance, for example, when one or two lines of the line are open. It is possible to calculate the limit amount, etc. by calculating the ratio (the above-mentioned effect coefficient) and multiplying the actual overload amount by the effect coefficient. That is, line Q
When reducing the power of □ from P3 to Pl to eliminate the overload, the power generation limit amount ΔPa may be calculated using the following equation.

Δp Gz == c x  (P 3   Pよ)発
電量等の制限箇所によって過負荷解消の度合いが異なる
ので、それぞれを制限した場合につき算出しておき、最
も効果の高い箇所を選択して制限する必要がある。また
、系統構成によっても効果は異なるため、個々の系統構
成について、前述の効果係数を求めておく必要がある。
Δp Gz == c x (P 3 P) The degree of overload cancellation differs depending on the point where power generation amount is restricted, etc., so calculate each case of restriction, and select and limit the most effective point. There is a need. Furthermore, since the effects differ depending on the system configuration, it is necessary to obtain the aforementioned effect coefficients for each system configuration.

また、発電機の発電量制限による過負荷解消を優先し、
これのみでは過負荷を解消できない場合に、負荷遮断を
するように組合せてもよい。
In addition, priority is given to eliminating overloads by limiting the amount of power generated by generators.
If this alone cannot resolve the overload, a combination may be used to perform load shedding.

次に、具体例について説明する。第3図に示す系統にお
いて、G工とG2は発電機、L工とL2は負荷、CB1
〜CB、は遮断器、Q1〜Q3は送電線、B工〜B4は
母線をそれぞれ表わしている。
Next, a specific example will be explained. In the system shown in Figure 3, G and G2 are generators, L and L2 are loads, and CB1
~CB represents a circuit breaker, Q1 to Q3 represent a power transmission line, and B to B4 represent a busbar, respectively.

第3図に示す系統において送電線Q3の地点F。Point F of transmission line Q3 in the system shown in FIG.

に事故が生じた場合には、遮断器CB3.CB、を遮断
して事故の影響を取り除くことになる。その時、送電線
Q2は過負荷となり、遮断のおそれがあるため、従来の
システムでは、負荷L1.L2を遮断していたため、供
給信頼度を低下させていた。
If an accident occurs, circuit breaker CB3. This will remove the effects of the accident by cutting off the CB. At that time, the power transmission line Q2 becomes overloaded and may be cut off, so in the conventional system, the load L1. Since L2 was being cut off, the reliability of supply was decreasing.

そこで、同図に示すように、電流変成器CT□とCT2
を介して通常時の潮流P、とP2を検出し、この検出デ
ータを通信手段C4と05を介して過負荷解消装置10
0に取り込み、事故除去により遮断器CB、とCB4が
遮断された場合には、第1図(B)に示した手順に従っ
て処理を行なう。すなわち、送電線Q2の許容容量PQ
2及び潮流P i lP2から、過負荷量△PL2=P
Q2− (P□+p2)を求め、この値を零に近づける
べく、効果係数が小さい発電機Gよ又はG2の発電量を
制限するか、その値に最も近い負荷L工又はL2を遮断
する。
Therefore, as shown in the same figure, current transformers CT□ and CT2
The normal power flows P and P2 are detected through the communication means C4 and C05, and the detected data is sent to the overload elimination device 10 through the communication means C4 and 05.
0, and if the circuit breakers CB and CB4 are shut off due to accident elimination, processing is performed according to the procedure shown in FIG. 1(B). In other words, the allowable capacity PQ of the power transmission line Q2
2 and power flow P i lP2, overload amount △PL2=P
Find Q2- (P□+p2), and in order to bring this value closer to zero, limit the amount of power generated by generator G or G2, which has a small effect coefficient, or cut off the load L or L2 that is closest to that value.

したがって、本実施例によれば、過負荷解消のための発
電機の制限量又は負荷の遮断量を最少にでき、電力供給
の信頼度を向上できる。
Therefore, according to this embodiment, it is possible to minimize the amount of generator restriction or the amount of load cutoff for overload cancellation, and the reliability of power supply can be improved.

なお、第1図ステップ104における潮流計算は、いわ
ゆる直流法によることにより、事故除去複速やかに求め
ることができる。すなわち、仮定条件として、母線電圧
がほぼ公称電圧値に維持され、隣接電気所の母線電圧間
の位相差が比較的小さく、線路の抵抗分はりアクタンス
分に比へて小さいとし、また静電容量分を無視すると、
電力潮流計算は有効電力の分布と、各母線電圧の位相角
分布をもとめることになる。
Note that the power flow calculation in step 104 in FIG. 1 is performed using the so-called direct current method, so that the power flow can be calculated in a speedy manner that eliminates accidents. In other words, the assumptions are that the bus voltage is maintained at approximately the nominal voltage value, that the phase difference between the bus voltages of adjacent electrical stations is relatively small, that the line resistance is small compared to the actance, and that the capacitance is If you ignore the minute,
Power flow calculation requires the distribution of active power and the phase angle distribution of each bus voltage.

一般に、2つの電気的間の電力Pは、 E工E2.           ・・・・・・(1)
p = −s x nθ とあられされる。ここでE工l E 2は内部電圧、X
は2点間のりアクタンス、θは2点間の位相差とする。
In general, the power P between two electrical components is E2.・・・・・・(1)
It is expressed as p = -s x nθ. Here, E 2 is the internal voltage,
is the actance between two points, and θ is the phase difference between the two points.

この式に上の仮定を入れると θ P″ニー                 ・・・・
・・(2)となる。ここで、θを電圧Vで、Xを抵抗r
でおくことにより、電力Pは電流iであられすことがで
きる。
Inserting the above assumption into this equation, θ P″ knee...
...(2) becomes. Here, θ is the voltage V, and X is the resistance r
By setting it at , the electric power P can be applied as a current i.

したがって、(2)式の考えに基づいて表わした系統に
より、直流回路として扱い、各線路電流を求め、過負荷
の有無の判定を行い、過負荷の箇所のある場合には、発
電量制限又は負荷制限を行った場合の過負荷解消に及ぼ
す効果係数を算出し、効果の最も大きい箇所を制限する
ようにする。
Therefore, the system expressed based on the idea of equation (2) is treated as a DC circuit, the current of each line is determined, the presence or absence of overload is determined, and if there is an overloaded area, the power generation amount is limited or The effect coefficient on overload elimination when load limiting is calculated is calculated, and the location where the effect is greatest is limited.

第4図に低電圧解消の場合の具体的な実施例を示す。同
図において、地点F2で事故が生ずると、遮断器CBよ
、CB2を遮断して事故の影響を取り除くことになるが
、この時、発電機G1の出力が送電線Q0.Q2を介し
て負荷L0.L2に供給される部分があり、大きなイン
ピーダンスを介して負荷に電力を供給するため、母線B
2の電圧は低下する。そこで、低電圧解消装置200は
、事故前の通常時に電圧変成器PTと通信手段C2を介
して周期的に収集していた母線B2の電圧を含む系統の
発電量と負荷量のデータに基づいて、また、通信手段C
□を介して与えられる遮断器CB工の開放動作情報を含
む事故情報に基づいて、事故除去後の系統構成を認識し
、これらに基づいて系統各部の低電圧の有無を判定する
。そして、所定の電圧に対し一定電圧以下の低電圧箇所
が有る場合は、遮断器操作による系統変更の試行演算を
実行し、当該低電圧を解消可能な送電経路の変更を検討
する。この検討の結果、遮断器CB5を開放して、負荷
L2の電力を送電線Q3を介して供給することにより、
母線B2の低電圧が解消すると判断した場合には5通信
手段C3を介して遮断器CB、に遮断指令を発し、母線
B3とB4を切り離す。これにより母線B2と送電線Q
2の負荷はL0分だけ軽減され、母線B2の電圧低下を
防止できる。
FIG. 4 shows a specific embodiment for eliminating low voltage. In the same figure, when an accident occurs at point F2, circuit breaker CB shuts off CB2 to eliminate the effects of the accident, but at this time, the output of generator G1 changes to transmission line Q0. Load L0. through Q2. There is a part supplied to L2, which supplies power to the load through a large impedance, so bus B
2 voltage decreases. Therefore, the low voltage elimination device 200 uses data on the power generation amount and load amount of the system, including the voltage of the bus B2, which was collected periodically through the voltage transformer PT and the communication means C2 during normal times before the accident. , and communication means C
Based on the accident information including the opening operation information of the circuit breaker CB provided through □, the system configuration after the accident has been removed is recognized, and based on this, the presence or absence of low voltage in each part of the system is determined. If there is a low voltage point below a certain voltage with respect to a predetermined voltage, a trial calculation of system change by operating a circuit breaker is performed, and a change in the power transmission route that can eliminate the low voltage is considered. As a result of this study, by opening circuit breaker CB5 and supplying power to load L2 via power transmission line Q3,
When it is determined that the low voltage on the bus B2 has been resolved, a disconnection command is issued to the circuit breaker CB via the communication means C3 to disconnect the buses B3 and B4. As a result, bus B2 and transmission line Q
The load on B2 is reduced by L0, and a voltage drop on bus B2 can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、事故前の発電量
と負荷量のデータを用い、事故除去後の系統構成につい
て系統各部の潮流計算を行ない、これに基づいて過負荷
箇所の有無を判定し、さらに過負荷解消に寄与する発電
制限量又は負荷遮断量を試算し、最も効果が高い制限を
選択して行なうようにしていることから、停電区間を極
力低限でき、これによって電力の供給信頼度を向上させ
ることができる。
As explained above, according to the present invention, power flow calculations for each part of the system are performed for the system configuration after the accident is removed using data on the amount of power generation and load before the accident, and based on this, the presence or absence of overloaded points is determined. The system then calculates the amount of power generation restriction or load shedding that contributes to eliminating overloads, and selects the most effective restriction, thereby minimizing power outage sections and thereby reducing power consumption. Supply reliability can be improved.

また、同様にして事故除去後の低電圧箇所の有無を判定
し、その低電圧解消に寄与する系統構成変更を試算し、
その結果に基づいて遮断器の開閉を行なうようにしてい
ることから、事故除去後の電圧低下を有効に防止でき、
電力供給の信頼度を向上させることができる。
In addition, in the same way, we will determine the presence or absence of low voltage points after the fault has been removed, and estimate the system configuration changes that will contribute to eliminating the low voltage.
Since the circuit breaker is opened and closed based on the results, it is possible to effectively prevent voltage drop after the fault has been cleared.
The reliability of power supply can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(B)は本発明の一実施例の処理手順を
示すフローチャート、第2図は発電量制限による過負荷
解消を説明する図、第3図は本発明の過負荷解消法を説
明するための一実施例を適用してなる電力系統構成図、
第4図は本発明の低電圧解消法を説明するための一実施
例を適用してなる電力系統構成図である。 100・・・過負荷解消装置、 200・・・低電圧解消装置。 第2図 第3図
Figures 1 (A) and (B) are flowcharts showing the processing procedure of an embodiment of the present invention, Figure 2 is a diagram illustrating how to eliminate overload by limiting the amount of power generated, and Figure 3 is how to eliminate overload according to the present invention. A power system configuration diagram obtained by applying an example for explaining the method,
FIG. 4 is a power system configuration diagram to which an embodiment is applied for explaining the low voltage solution method of the present invention. 100... Overload elimination device, 200... Low voltage elimination device. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、対象とする電力系統の事故情報に基づいて事故除去
後の系統構成を認識し、該事故除去後の系統構成につい
ての系統各部の潮流を事故発生前における発電量と負荷
量データを用いて推定し、該推定結果に基づいて系統各
部の過負荷の有無を判定し、過負荷と判定された系統部
位の過負荷を解消するに必要な複数の発電機の発電制限
量を試算し、該試算の結果の発電制限量が最小の発電機
の発電量を制限することを含んでなる電力系統の過負荷
解消方法。 2、対象とする電力系統の事故情報に基づいて事故除去
後の系統構成を認識し、該事故除去後の系統構成につい
ての系統各部の潮流を事故発生前における発電量と負荷
量データを用いて推定し、該推定結果に基づいて系統各
部の過負荷の有無を判定し、過負荷と判定された系統部
位の過負荷を解消するに際し、該過負荷量に見合う負荷
量の1又は複数の負荷系統を選定し、該選定された負荷
系統を遮断することを含んでなる電力系統の過負荷解消
方法。 3、対象とする電力系統の事故情報に基づいて事故除去
後の系統構成を認識し、該事故除去後の系統構成につい
ての系統各部の潮流を事故発生前における発電量と負荷
量データを用いて推定し、該推定結果に基づいて系統各
部の過負荷の有無を判定し、過負荷と判定された系統部
位の過負荷を解消するに際し、該過負荷を解消するに必
要な複数の発電機の発電制限量を試算し、該試算の結果
の発電制限量が最少の発電機の発電量を制限するものと
し、該発電量制限によっても前記過負荷を解消できない
場合は、該解消できない分に見合う負荷量の1又は複数
の負荷系統を選定し、該選定された負荷系統を遮断する
ことを含んでなる電力系統の過負荷解消方法。 4、対象とする電力系統の系統構成に関するデータが格
納されてなる系統構成データ記憶手段と、前記電力系統
の発電量と負荷量のデータを周期的に検出して記憶する
系統データ収集手段と、事故検出信号が入力されたとき
、当該事故に係る事故情報と前記系統構成に関するデー
タに基づいて、事故除去後の系統構成を設定し、該設定
された系統について各部の潮流を前記系統データ収集手
段に記憶されている事故直前の発電量と負荷量のデータ
を用いて推定する潮流推定手段と、 該推定された潮流と予め定められた系統各部の電力容量
に基づいて各部の過負荷の有無を判定し、その過負荷量
を求める過負荷判定手段と、該手段により過負荷と判定
された系統部位の過負荷を解消するに必要な複数の発電
機の発電制限量を試算し、該試算の結果に基づき発電制
限量が最小の発電機を選択する制限発電機選択手段と、 該選択された発電機の発電量を制限する制御指令を出力
する発電量制御手段と、 を含んでなる電力系統の過負荷解消装置。 5、対象とする電力系統について事故を想定し、該想定
事故の除去後の系統構成について過負荷の部位を想定し
、該想定された過負荷を解消するに必要な各発電機の発
電制限量を求め、これに基づいて各過負荷部位の過負荷
解消量に対する各発電機の発電制限量の割合を効果係数
として予め定めておき、事故発生時に対象とする電力系
統の事故情報に基づいて事故除去後の系統構成を認識し
、該事故除去後の系統構成についての系統各部の潮流を
事故発生前における発電量と負荷量データを用いて推定
し、該推定結果に基づいて系統各部の過負荷の有無を判
定し、過負荷と判定された系統部位の過負荷を解消する
に必要な前記効果係数が最小の発電機を選択し、該選択
された発電機の発電量を制限することを含んでなる電力
系統の過負荷解消方法。 6、対象とする電力系統の系統構成に関するデータが格
納されてなる系統構成データ記憶手段と、前記電力系統
の発電量と負荷量のデータを周期的に検出して記憶する
系統データ収集手段と、前記電力系統について予め各種
の事故と該事故除去後の系統構成における過負荷部位を
仮定し、該過負荷量に対する該過負荷を解消するに必要
な発電機の発電制限量の割合を効果係数として設定格納
された効果係数記憶手段と、 事故検出信号が入力されたとき、当該事故に係る事故情
報と前記系統構成に関するデータに基づいて、事故除去
後の系統構成を設定し、該設定された系統について各部
の潮流を前記系統データ収集手段に記憶されている事故
直前の発電量と負荷量のデータを用いて推定する潮流推
定手段と、 該推定された潮流と予め定められた系統各部の電力容量
に基づいて各部の過負荷の有無を判定し、その過負荷量
を求める過負荷判定手段と、該手段により過負荷と判定
された系統部位の過負荷の解消に寄与する発電機のうち
、前記効果係数が最小の発電機を前記効果係数記憶手段
から選択する制限発電機選択手段と、 該選択された発電機の発電量を制限する制御指令を出力
する発電量制御手段と、 を含んでなる電力系統の過負荷解消装置。 7、対象とする電力系統の事故情報に基づいて事故除去
後の系統構成を認識し、該事故除去後の系統構成につい
ての系統各部の潮流を事故発生前における発電量と負荷
量データを用いて推定する一方、系統各部の低電圧の有
無を検出し、検出された系統部位の低電圧の解消に寄与
する送電系統の遮断器開閉による構成変更を試行演算し
、該試行演算結果に基づいて送電系統の遮断器の開閉を
行なうことを含んでいる電力系統の低電圧解消方法。
[Claims] 1. Recognize the system configuration after the accident is removed based on the accident information of the target power system, and calculate the power flow of each part of the system in the system configuration after the accident is removed from the power generation amount before the accident occurred. Estimation is made using load amount data, the presence or absence of overload in each part of the system is determined based on the estimation result, and power generation restriction of multiple generators is necessary to eliminate the overload in the part of the system determined to be overloaded. 1. A method for eliminating overload in an electric power system, the method comprising: calculating a trial calculation amount, and limiting the power generation amount of a generator having the smallest power generation limit amount as a result of the trial calculation. 2. Recognize the system configuration after the accident is removed based on the accident information of the target power system, and calculate the power flow of each part of the system for the system configuration after the accident is removed using the power generation and load data before the accident. Based on the estimation results, the presence or absence of overload in each part of the system is determined, and when eliminating the overload of the system part determined to be overloaded, one or more loads with a load amount corresponding to the overload amount are determined. A method for overloading an electric power system, comprising selecting a system and cutting off the selected load system. 3. Recognize the system configuration after the accident is removed based on the accident information of the target power system, and calculate the power flow of each part of the system for the system configuration after the accident is removed using the power generation and load data before the accident. Based on the estimation results, the presence or absence of overload in each part of the system is determined, and when eliminating the overload in the system part determined to be overloaded, the number of generators required to eliminate the overload is determined. The power generation limit amount shall be estimated, and the power generation amount of the generator with the lowest power generation limit amount as a result of the trial calculation shall be limited, and if the above-mentioned overload cannot be eliminated even by the power generation amount limit, the amount that cannot be eliminated shall be compensated for. A method for overloading an electric power system, the method comprising selecting one or more load systems with a load amount and cutting off the selected load systems. 4. A system configuration data storage means that stores data regarding the system configuration of the target power system, and a system data collection means that periodically detects and stores data on the power generation amount and load amount of the power system; When an accident detection signal is input, the system configuration after the accident is removed is set based on the accident information related to the accident and the data regarding the system configuration, and the power flow of each part of the set system is collected by the system data collecting means. A power flow estimating means that estimates using the power generation amount and load amount data immediately before the accident stored in an overload determination means for determining the amount of overload, and a trial calculation of the limited power generation amount of multiple generators necessary to eliminate the overload of the system portion determined to be overloaded by the means, and A power system comprising: a limiting generator selection means for selecting a generator with a minimum power generation limit based on the result; and a power generation amount control means for outputting a control command to limit the amount of power generation of the selected generator. Overload release device. 5. Assuming an accident in the target power system, assuming the overloaded parts of the system configuration after the assumed accident is removed, and determining the limited amount of power generation of each generator necessary to eliminate the assumed overload. Based on this, the ratio of the power generation limit amount of each generator to the amount of overload relief at each overload site is determined in advance as an effect coefficient. Recognize the system configuration after the accident has been removed, estimate the power flow in each part of the system for the system configuration after the accident has been removed using the power generation and load data before the accident, and based on the estimation results, calculate the overload of each part of the system. determining the presence or absence of the overload, selecting a generator with the minimum effectiveness coefficient necessary to eliminate the overload of the system portion determined to be overloaded, and limiting the power generation amount of the selected generator. A method for resolving overloads in power systems. 6. A system configuration data storage means that stores data regarding the system configuration of the target power system, and a system data collection means that periodically detects and stores data on the power generation amount and load amount of the power system; Assuming in advance various types of accidents in the power system and overloaded parts in the system configuration after the accident is removed, the ratio of the amount of power generation restriction of the generator necessary to eliminate the overload to the amount of overload is used as an effect coefficient. When the set and stored effect coefficient storage means and the accident detection signal are input, the system configuration after the accident is removed is set based on the accident information related to the accident and the data regarding the system configuration, and the set system power flow estimating means for estimating the power flow in each part of the system using the power generation amount and load amount data immediately before the accident stored in the system data collection means; and the estimated power flow and the predetermined power capacity of each part of the system. Among the overload determination means that determines the presence or absence of overload in each part based on the above and calculates the amount of overload, and the generator that contributes to eliminating the overload of the system part determined to be overloaded by the means, limiting generator selection means for selecting a generator with a minimum effect coefficient from the effect coefficient storage means; and power generation amount control means for outputting a control command to limit the amount of power generation of the selected generator. Power system overload elimination device. 7. Recognize the system configuration after the accident is removed based on the accident information of the target power system, and calculate the power flow of each part of the system for the system configuration after the accident is removed using the power generation amount and load amount data before the accident. At the same time, it detects the presence or absence of low voltage in each part of the system, performs trial calculations on configuration changes by opening and closing circuit breakers in the power transmission system that contribute to eliminating the low voltage in the detected system parts, and calculates power transmission based on the results of the trial calculations. A method of resolving low voltage in an electric power system that includes opening and closing circuit breakers.
JP2143528A 1990-06-01 1990-06-01 Overload eliminating method and device for power system and low voltage eliminating method for power system Pending JPH0438124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143528A JPH0438124A (en) 1990-06-01 1990-06-01 Overload eliminating method and device for power system and low voltage eliminating method for power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143528A JPH0438124A (en) 1990-06-01 1990-06-01 Overload eliminating method and device for power system and low voltage eliminating method for power system

Publications (1)

Publication Number Publication Date
JPH0438124A true JPH0438124A (en) 1992-02-07

Family

ID=15340842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143528A Pending JPH0438124A (en) 1990-06-01 1990-06-01 Overload eliminating method and device for power system and low voltage eliminating method for power system

Country Status (1)

Country Link
JP (1) JPH0438124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704876B1 (en) * 2000-09-26 2004-03-09 Sun Microsystems, Inc. Microprocessor speed control mechanism using power dissipation estimation based on the instruction data path
JP2013102599A (en) * 2011-11-08 2013-05-23 Mitsubishi Electric Corp System stabilization system
CN104362622A (en) * 2014-11-11 2015-02-18 安顺供电局 Load model of regional power grid with small hydroelectric generating set and modeling method
CN105552895A (en) * 2015-12-30 2016-05-04 国家电网公司 Multilevel elicitation method dynamic planning based power system dynamic equivalent method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704876B1 (en) * 2000-09-26 2004-03-09 Sun Microsystems, Inc. Microprocessor speed control mechanism using power dissipation estimation based on the instruction data path
JP2013102599A (en) * 2011-11-08 2013-05-23 Mitsubishi Electric Corp System stabilization system
CN104362622A (en) * 2014-11-11 2015-02-18 安顺供电局 Load model of regional power grid with small hydroelectric generating set and modeling method
CN105552895A (en) * 2015-12-30 2016-05-04 国家电网公司 Multilevel elicitation method dynamic planning based power system dynamic equivalent method

Similar Documents

Publication Publication Date Title
Abdelaziz et al. An adaptive protection scheme for optimal coordination of overcurrent relays
Aghdam et al. Variable tripping time differential protection for microgrids considering DG stability
US6411865B1 (en) System for protection zone selection in microprocessor-based relays in an electric power system
CA2677330C (en) Fuse saving power distribution system fault protection
EP2194656A1 (en) Electrical power network management system
JP3184459B2 (en) Power receiving protection device
JP5094062B2 (en) Short-circuit current reduction system and short-circuit current reduction method for power transmission and distribution system
Bisheh et al. An adaptive fuse-saving protection scheme for active distribution networks
US6671151B2 (en) Network protector relay and method of controlling a circuit breaker employing two trip characteristics
Chandraratne et al. Smart grid protection through self-healing
JPH0438124A (en) Overload eliminating method and device for power system and low voltage eliminating method for power system
KR101063815B1 (en) Recloser-Fuse Coordination Techniques for Superconducting Current Limiters in Distribution Systems
CN206850414U (en) A kind of power distribution network feedback of earthing mode self-identifying supplies line protective devices
CN206806991U (en) A kind of power distribution network busbar protective device of earthing mode self-identifying
Naiem et al. A novel protection strategy for distribution systems with distributed generation
CN111181126A (en) Method and system for dynamically adjusting short-circuit current based on power transmission system topology
CN206806993U (en) A kind of distribution network line differential protection of earthing mode self-identifying
Kameda et al. The setting method of the specific parameters of a superconducting fault current limiter installed at the bus-tie and response of protective relays at operation of the SFCL
Shen et al. A novel algorithm incorporating system status to prevent undesirable protection operation during voltage instability
JP2020167774A (en) Protection device
KR102380874B1 (en) Malfunction prevention system of bus protective relay
CN107192919A (en) A kind of power distribution network feedback of earthing mode self-identifying supplies line protective devices and method
CN111668814B (en) Bus fault removing method and device, computer equipment and storage medium
Akila et al. Protection of active distribution systems with DGs
JP2010081764A (en) Distribution line individual compensation reactor system