JP7054111B2 - Lactic acid bacteria, hypoglycemic agents derived from the lactic acid bacteria, diabetes therapeutic agents, and foods and drinks - Google Patents

Lactic acid bacteria, hypoglycemic agents derived from the lactic acid bacteria, diabetes therapeutic agents, and foods and drinks Download PDF

Info

Publication number
JP7054111B2
JP7054111B2 JP2018534279A JP2018534279A JP7054111B2 JP 7054111 B2 JP7054111 B2 JP 7054111B2 JP 2018534279 A JP2018534279 A JP 2018534279A JP 2018534279 A JP2018534279 A JP 2018534279A JP 7054111 B2 JP7054111 B2 JP 7054111B2
Authority
JP
Japan
Prior art keywords
lactic acid
acid bacterium
product
strain
sucrose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018534279A
Other languages
Japanese (ja)
Other versions
JPWO2018034047A1 (en
Inventor
和久 関水
靖彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Genome Pharmaceuticals Institute Co Ltd
Original Assignee
University of Tokyo NUC
Genome Pharmaceuticals Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Genome Pharmaceuticals Institute Co Ltd filed Critical University of Tokyo NUC
Publication of JPWO2018034047A1 publication Critical patent/JPWO2018034047A1/en
Application granted granted Critical
Publication of JP7054111B2 publication Critical patent/JP7054111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/99Enzyme inactivation by chemical treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Diabetes (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Obesity (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Polymers & Plastics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

NPMD NPMD NITE BP-02309NITE BP-02309

本発明は、新規乳酸菌、該新規乳酸菌の生菌、死菌若しくは処理物を有効成分とするα-グリコシダーゼ阻害剤及び血糖低下剤、並びに、該血糖低下剤を含有する糖尿病予防治療薬及び飲食品に関する。 The present invention comprises a novel lactic acid bacterium, an α-glycosidase inhibitor and a hypoglycemic agent containing the novel lactic acid bacterium as an active ingredient, a live bacterium, a dead bacterium, or a treated product, and a diabetes preventive therapeutic agent and a food or drink containing the hypoglycemic agent. Regarding.

現在、過剰なカロリー摂取による肥満やその後に発症する糖尿病等の生活習慣病の発症が問題となっている。日頃から血糖値が上昇しないように注意することは、生活習慣病の発症を抑制する上で大変重要であるとされている。生活習慣病の予防のためには、食事療法や運動療法が効果的とされている。食事療法においては、食後の血糖値の上昇が起こらないように摂取カロリーが制限される。
しかし、そのような食事療法を継続することは、患者にとって困難である場合が少なくないので、血糖値の上昇を抑制する物質を含む食品の開発が継続的な食事療法を実施する上で有効であると考えられる。
Currently, the onset of obesity due to excessive calorie intake and lifestyle-related diseases such as diabetes that develops thereafter has become a problem. It is said that it is very important to be careful not to raise the blood sugar level on a daily basis in order to suppress the onset of lifestyle-related diseases. Diet and exercise therapy are said to be effective in preventing lifestyle-related diseases. In the diet, the calorie intake is limited so that the postprandial blood glucose level does not rise.
However, it is often difficult for patients to continue such a diet, so the development of foods containing substances that suppress the rise in blood glucose levels is effective in implementing a continuous diet. It is believed that there is.

スクロースは、様々な食品中に添加される主要な甘味料の1つである。スクロースは、腸管内でα-グリコシダーゼによりグルコースとフルクトースに分解され、それらが腸管から吸収され、血糖値の上昇を導く。α-グリコシダーゼの阻害剤であるアカルボースやボグリボースは、食後血糖値の上昇を阻害する効果があり、糖尿病治療薬として利用されている。よって、α-グリコシダーゼの阻害効果を有する物質を含む食品は、スクロースの過剰な摂食による食後血糖の上昇を抑制すると期待される。 Sucrose is one of the major sweeteners added in various foods. Sucrose is broken down into glucose and fructose by α-glycosidase in the intestinal tract, and they are absorbed from the intestinal tract, leading to an increase in blood glucose level. Acarbose and voglibose, which are inhibitors of α-glycosidase, have an effect of inhibiting an increase in postprandial blood glucose level, and are used as therapeutic agents for diabetes. Therefore, foods containing substances having an inhibitory effect on α-glycosidase are expected to suppress an increase in postprandial blood glucose due to excessive feeding of sucrose.

乳酸菌は、MRS寒天培地で生育し、乳酸を産生するグラム陽性の細菌である。ある種の乳酸菌は、牛乳中で増殖し、ヨーグルトの製造に利用される。α-グリコシダーゼ阻害剤であるアカルボースは、Actinoplanes sp. SE50/110というグラム陽性細菌が生産する(非特許文献1)。また、乳酸菌の一種であるLactobacillus rhamnosusを、スクロースを摂食させたマウスに投与すると、1時間後における血中のグルコース濃度の上昇が抑えられることが報告されている(非特許文献2)。更に、ある種の乳酸菌の熱処理菌体画分にα-グリコシダーゼ阻害活性があることも報告されている(非特許文献3)。 Lactic acid bacteria are gram-positive bacteria that grow on MRS agar and produce lactic acid. Certain lactic acid bacteria grow in milk and are used in the production of yogurt. Acarbose, an α-glycosidase inhibitor, is produced by a gram-positive bacterium called Actinoplanes sp. SE 50/110 (Non-Patent Document 1). In addition, it has been reported that when Lactobacillus rhamnosus, which is a kind of lactic acid bacterium, is administered to mice fed with sucrose, the increase in blood glucose concentration after 1 hour is suppressed (Non-Patent Document 2). Furthermore, it has been reported that the heat-treated bacterial cell fraction of a certain lactic acid bacterium has an α-glycosidase inhibitory activity (Non-Patent Document 3).

また、従来、食後高血糖を抑制する乳酸菌の評価には、マウスやラットなどの哺乳動物が用いられてきた。しかし、多数の哺乳動物を実験に供することに対しては、コストばかりでなく動物愛護の観点からの問題が指摘されている。 In addition, conventionally, mammals such as mice and rats have been used for evaluation of lactic acid bacteria that suppress postprandial hyperglycemia. However, it has been pointed out that there are problems not only in terms of cost but also in terms of animal welfare when a large number of mammals are used for experiments.

Schwientek P et al., BMC Genomics, 2012Schwientek P et al., BMC Genomics, 2012 Honda K et al., J. Clin. Biochem. Nutr., 2012Honda K et al., J. Clin. Biochem. Nutr., 2012 Panwar H et al., Eur J Nutr, 2014Panwar H et al., Eur J Nutr, 2014

本発明の課題は、高い血糖低下作用を有する新規な乳酸菌を提供することであり、更に、該乳酸菌又は該乳酸菌の死菌若しくは処理物を有効成分とする血糖低下剤や、該乳酸菌又は該乳酸菌に由来する血糖低下剤を含有する飲食品を提供することにある。
また、新規な乳酸菌に由来する物質を有効成分とする糖尿病予防治療薬を提供することにある。
An object of the present invention is to provide a novel lactic acid bacterium having a high hypoglycemic effect, and further, a hypoglycemic agent containing the lactic acid bacterium or a killed bacterium or a treated product of the lactic acid bacterium as an active ingredient, the lactic acid bacterium or the lactic acid bacterium. It is an object of the present invention to provide a food or drink containing a hypoglycemic agent derived from.
Another object of the present invention is to provide a diabetes preventive and therapeutic drug containing a substance derived from a novel lactic acid bacterium as an active ingredient.

本発明者らは、カイコを用いてα-グリコシダーゼ阻害活性を有する物質の探索法を見出した。カイコは、マウスなどの哺乳動物に比べ狭いスペースで多数の個体を飼育することが可能であり、倫理的な問題が小さいので、カイコを用いた評価系を用いることにより、スクロース摂食による高血糖を抑制する効果を有する機能性乳酸菌を探索できることを見出した。 The present inventors have found a method for searching for a substance having α-glycosidase inhibitory activity using silk moth. Since it is possible to breed a large number of individuals in a narrow space compared to mammals such as mice and there are few ethical problems, by using an evaluation system using silk moth, hyperglycemia due to sucrose feeding It was found that a functional lactic acid bacterium having an effect of suppressing sucrose can be searched for.

また、本発明者らは、カイコを用いたin vivo評価方法を用いて、スクロースの摂食による高血糖を抑制する乳酸菌を同定した。該乳酸菌株を用いて製造したヨーグルトは、ヒトのスクロース負荷試験において、血糖値の上昇を抑制する効果を示した。また、上記カイコの評価方法を用いて評価した結果、該乳酸菌は食後高血糖を抑制し、糖尿病の発症を低減させる効果を示すことを見出した。 In addition, the present inventors identified a lactic acid bacterium that suppresses hyperglycemia due to sucrose feeding by using an in vivo evaluation method using silk moth. Yogurt produced using the lactic acid bacterium strain showed an effect of suppressing an increase in blood glucose level in a human sucrose load test. In addition, as a result of evaluation using the above-mentioned evaluation method for silk moth, it was found that the lactic acid bacterium has an effect of suppressing postprandial hyperglycemia and reducing the onset of diabetes.

更に、上記の血糖低下作用を有する乳酸菌は、その性状の分析や16S rDNAの塩基配列等の解析結果、エンテロコッカス(Enterococcus)属に属する新規乳酸菌株(以下、「乳酸菌0831-07」又は「乳酸菌#Ef-1」と略記する場合がある)であることも判明し、本発明を完成するに至った。 Furthermore, the above-mentioned lactic acid bacterium having a hypoglycemic effect is a novel lactic acid bacterium strain belonging to the genus Enterococcus (hereinafter, "lactic acid bacterium 0831-07" or "lactic acid bacterium #" as a result of analysis of its properties and analysis of the base sequence of 16S rDNA. It may be abbreviated as "Ef-1"), and the present invention has been completed.

すなわち、本発明は、独立行政法人製品評価技術基盤機構(NITE)の特許微生物寄託センター(NPMD)における受託番号がNITE BP-02309であるエンテロコッカス(Enterococcus)属に属する乳酸菌、又は、その自然的若しくは人工的に変異した乳酸菌であって血糖低下作用を有する乳酸菌を提供するものである。
更に、上記乳酸菌の単離又は精製された乳酸菌を提供するものである。
That is, the present invention is a lactic acid bacterium belonging to the genus Enterococcus whose accession number is NITE BP-02309 at the Patented Microorganisms Depositary Center (NPMD) of the National Institute of Technology and Evaluation (NITE), or its natural or natural. It is an artificially mutated lactic acid bacterium and provides a lactic acid bacterium having a hypoglycemic effect.
Further, the present invention provides a lactic acid bacterium isolated or purified from the above lactic acid bacterium.

また、本発明は、前記乳酸菌であって、α-グリコシダーゼ阻害活性を有することでスクロース摂取による血糖上昇を抑制する用途に用いられる乳酸菌を提供するものである。 The present invention also provides the lactic acid bacterium, which has an α-glycosidase inhibitory activity and is used for suppressing an increase in blood glucose due to sucrose ingestion.

また、本発明は、前記乳酸菌、該乳酸菌の死菌又は該乳酸菌の処理物を有効成分とするα-グリコシダーゼ阻害剤であって、
該乳酸菌の処理物は、該乳酸菌の、培養物、濃縮物、ペースト化物、乾燥物、液状化物、希釈物、破砕物、殺菌加工物、及び、培養物からの抽出物よりなる群から選ばれる少なくとも1つの処理物であることを特徴とするα-グリコシダーゼ阻害剤を提供するものである。
Further, the present invention is an α-glycosidase inhibitor containing the lactic acid bacterium, a dead lactic acid bacterium, or a treated product of the lactic acid bacterium as an active ingredient.
The treated product of the lactic acid bacterium is selected from the group consisting of a culture, a concentrate, a paste, a dried product, a liquefied product, a diluted product, a crushed product, a sterilized processed product, and an extract from the culture of the lactic acid bacterium. It provides an α-glycosidase inhibitor characterized by being at least one treated product.

また、本発明は、前記の乳酸菌、該乳酸菌の死菌、又は、該乳酸菌の処理物を有効成分とする血糖低下剤であって、
上記乳酸菌の処理物は、乳酸菌の培養物;濃縮物;ペースト化物;噴霧乾燥物、凍結乾燥物、真空乾燥物、ドラム乾燥物等の乾燥物;液状化物;希釈物;破砕物;殺菌加工物;及び;該培養物からの抽出物よりなる群から選ばれる少なくとも1つの処理物であることを特徴とする血糖低下剤を提供するものである。
Further, the present invention is a hypoglycemic agent containing the above-mentioned lactic acid bacterium, a dead lactic acid bacterium, or a treated product of the lactic acid bacterium as an active ingredient.
The treated product of the lactic acid bacterium is a culture of lactic acid bacterium; a concentrate; a paste; a spray-dried product, a freeze-dried product, a vacuum-dried product, a dried product such as a drum-dried product; a liquid product; a diluted product; a crushed product; a sterilized processed product. ; And; To provide a hypoglycemic agent characterized by being at least one treated product selected from the group consisting of extracts from the culture.

また、本発明は、前記血糖低下剤を有効成分として含有することを特徴とする糖尿病予防治療薬を提供するものである。 The present invention also provides a diabetes preventive and therapeutic agent, which comprises the hypoglycemic agent as an active ingredient.

また、本発明は、前記の乳酸菌、又は前記の血糖低下剤を含有する飲食品を提供するものである。 The present invention also provides a food or drink containing the above-mentioned lactic acid bacterium or the above-mentioned blood glucose lowering agent.

本発明によれば、極めて高い血糖低下作用を有する新規の乳酸菌を提供することができる。特に、スクロース摂取による血糖上昇を抑制する作用を有する新規の乳酸菌を提供することができる。
また、該新規の乳酸菌、該乳酸菌の死菌、又は、該乳酸菌の処理物を有効成分とする極めて高い血糖低下作用を有する新規の血糖低下剤を提供し、該乳酸菌又は該血糖低下剤を含有する(に由来する)血糖低下作用に優れた飲食品を提供することができる。
According to the present invention, it is possible to provide a novel lactic acid bacterium having an extremely high blood glucose lowering effect. In particular, it is possible to provide a novel lactic acid bacterium having an effect of suppressing an increase in blood glucose due to ingestion of sucrose.
Further, a novel hypoglycemic agent having an extremely high hypoglycemic effect containing the novel lactic acid bacterium, the dead lactic acid bacterium, or a treated product of the lactic acid bacterium as an active ingredient is provided, and the lactic acid bacterium or the hypoglycemic agent is contained. It is possible to provide foods and drinks having an excellent blood glucose lowering effect (derived from).

更に、本発明によれば、前記血糖低下剤を有効成分として含有する糖尿病予防治療薬を提供することができ、該糖尿病予防治療薬は、経口投与で糖尿病を予防又は治療することができる。 Further, according to the present invention, it is possible to provide a diabetes preventive and therapeutic agent containing the hypoglycemic agent as an active ingredient, and the diabetes preventive and therapeutic agent can prevent or treat diabetes by oral administration.

本発明の乳酸菌は、一般飲食品、健康食品、薬剤、醗酵飲食品、プロバイオティクスの生産等に利用できるばかりでなく、血糖上昇を抑制することによる病気の予防・治療への利用がなされる。醗酵飲食品としては、醗酵乳、乳酸菌飲料、ヨーグルト、漬物、漬物製造用乳酸菌スターター等としての用途に特に好適である。また、酸に強いので、胃で分解されず小腸にまで届くという特徴もある。 The lactic acid bacterium of the present invention can be used not only for the production of general foods and drinks, health foods, drugs, fermented foods and drinks, probiotics, etc., but also for the prevention and treatment of diseases by suppressing the rise in blood glucose. .. As fermented foods and drinks, it is particularly suitable for use as fermented milk, lactic acid bacteria beverages, yogurt, pickles, lactic acid bacteria starters for pickle production, and the like. In addition, because it is resistant to acid, it does not decompose in the stomach and reaches the small intestine.

乳酸菌の添加による、スクロース含有餌の給餌によるカイコの体液中のグルコース濃度の上昇の阻害効果を示すグラフである。It is a graph which shows the inhibitory effect of the increase of glucose concentration in the body fluid of silk moth by the feeding of the sucrose-containing feed by the addition of lactic acid bacteria. 乳酸菌#Ef-1株の添加による、スクロース含有餌の給餌によるカイコの体液中のグルコース濃度の上昇の阻害効果を示すグラフである。It is a graph which shows the inhibitory effect of the addition of the lactic acid bacterium # Ef-1 strain on the increase of glucose concentration in the body fluid of silk moth by feeding a sucrose-containing feed. 乳酸菌#Ef-1株の添加による、スクロース又はグルコース含有餌の給餌によるカイコの体液中のグルコース濃度の上昇の阻害効果を示すグラフである。It is a graph which shows the inhibitory effect of the addition of the lactic acid bacterium # Ef-1 strain on the increase of the glucose concentration in the body fluid of silk moth by feeding sucrose or glucose-containing feed. 乳酸菌#Ef-1株の熱処理菌体の添加による、スクロース含有餌の給餌によるカイコの体液中のグルコース濃度の上昇の阻害効果を示すグラフである。It is a graph which shows the inhibitory effect of the increase of the glucose concentration in the body fluid of the silk moth by the feeding of the sucrose-containing feed by the addition of the heat-treated cells of the lactic acid bacterium # Ef-1 strain. 乳酸菌#Ef-1株で作製したヨーグルトの摂食によるスクロース負荷試験における、ヒトのグルコース濃度の上昇の阻害効果を示すグラフである。It is a graph which shows the inhibitory effect of the increase in the glucose concentration in humans in the sucrose load test by feeding yogurt prepared with the lactic acid bacterium # Ef-1 strain. 乳酸菌(#Ef-1株)の死菌添加による、スクロース含有餌(a)又はグルコース含有餌(b)の給餌によるカイコの体液中のグルコース濃度の上昇の阻害効果を示すグラフである。It is a graph which shows the inhibitory effect of the increase of the glucose concentration in the body fluid of the silk moth by the feeding of the sucrose-containing feed (a) or the glucose-containing feed (b) by the addition of the killed lactic acid bacterium (# Ef-1 strain). (a)in vitroでのカイコ腸管における糖移行評価系の実験スキームを示す図である。(b)アカルボースによる、摘出腸管内から腸管外へのスクロース輸送の阻害効果を示すグラフである。(A) It is a figure which shows the experimental scheme of the sugar transfer evaluation system in the silk moth intestinal tract in vitro. (B) It is a graph which shows the inhibitory effect of acarbose on the sucrose transport from the excised intestinal tract to the outside of the intestinal tract. 乳酸菌(#Ef-1株)の添加による、摘出腸管内から腸管外へのスクロース輸送の阻害効果を示すグラフである。(a)乳酸菌(#Ef-1株)添加による、カイコの腸管外液中のグルコース濃度上昇の阻害効果を示すグラフである。(b)乳酸菌(#Ef-1株)添加量による、カイコの腸管外液中のグルコース濃度上昇の阻害効果を示すグラフである。(c)乳酸菌(#Ef-1株)の熱処理菌体の添加による、カイコの腸管外液中のグルコース濃度上昇の阻害効果を示すグラフである。(d)乳酸菌(#Ef-1株)の熱処理菌体の添加量による、カイコの腸管外液中のグルコース濃度上昇の阻害効果を示すグラフである。It is a graph which shows the inhibitory effect of sucrose transport from the excised intestinal tract to the outside of the intestinal tract by the addition of lactic acid bacteria (# Ef-1 strain). (A) It is a graph which shows the inhibitory effect of the increase in glucose concentration in the extraintestinal fluid of silk moth by the addition of lactic acid bacteria (# Ef-1 strain). (B) It is a graph which shows the inhibitory effect of the increase in glucose concentration in the extraintestinal fluid of silk moth by the addition amount of lactic acid bacteria (# Ef-1 strain). (C) It is a graph which shows the inhibitory effect of the increase in glucose concentration in the extraintestinal fluid of silk moth by the addition of the heat-treated bacterium of lactic acid bacterium (# Ef-1 strain). (D) It is a graph which shows the inhibitory effect of the increase in glucose concentration in the extraintestinal fluid of silk moth by the addition amount of the heat-treated cells of lactic acid bacteria (# Ef-1 strain). 乳酸菌(#Ef-1株)の生菌添加による、グルコース輸送の阻害効果を示すグラフである。(a)乳酸菌(#Ef-1株)の生菌添加による、カイコの腸管外液中のグルコース濃度上昇の阻害効果を示すグラフである。(b)乳酸菌(#Ef-1株)の熱処理菌体の添加による、カイコの腸管外液中のグルコース濃度上昇の阻害効果を示すグラフである。It is a graph which shows the inhibitory effect of glucose transport by the addition of a viable lactic acid bacterium (# Ef-1 strain). (A) It is a graph which shows the inhibitory effect of the increase in glucose concentration in the extraintestinal fluid of silk moth by the addition of viable lactic acid bacterium (# Ef-1 strain). (B) It is a graph which shows the inhibitory effect of the increase in glucose concentration in the extraintestinal fluid of silk moth by the addition of the heat-treated bacterium of lactic acid bacterium (# Ef-1 strain). (a)乳酸菌(#Ef-1株)の添加による、カイコ腸管のα-グリコシダーゼ活性阻害効果を示すグラフである。(b)乳酸菌(#Ef-1株)の添加による、ラット腸管のα-グリコシダーゼ活性阻害効果を示すグラフである。(A) It is a graph which shows the α-glycosidase activity inhibitory effect of the silk moth intestinal tract by the addition of lactic acid bacteria (# Ef-1 strain). (B) It is a graph which shows the α-glycosidase activity inhibitory effect of a rat intestinal tract by addition of a lactic acid bacterium (# Ef-1 strain). (a)乳酸菌(#Ef-1株)の生菌を加えた、Caco-2細胞における蛍光の取り込みを測定した結果を示すグラフである。(b)乳酸菌(#Ef-1株)の生菌と熱処理菌体画分を加えてCaco-2細胞における蛍光の取り込みを測定した結果を示すグラフである。(c)乳酸菌(#Ef-1株)による食後高血糖抑制効果を示す模式図である。(A) It is a graph which shows the result of having measured the uptake of fluorescence in the Caco-2 cell which added the viable lactic acid bacterium (# Ef-1 strain). (B) It is a graph which shows the result of having measured the uptake of fluorescence in Caco-2 cells by adding the viable lactic acid bacterium (# Ef-1 strain) and the heat-treated bacterial cell fraction. (C) It is a schematic diagram which shows the postprandial hyperglycemia suppressing effect by a lactic acid bacterium (# Ef-1 strain). 乳酸菌(#Ef-1株)の摂食によるヒトでのショ糖負荷試験のスケジュールを示す模式図である。It is a schematic diagram which shows the schedule of the sucrose tolerance test in human by feeding of lactic acid bacterium (# Ef-1 strain). 生菌懸濁液摂取群、熱処理菌体懸濁液摂取群、非摂取群における血糖値をショ糖負荷後の時間ごとに示したグラフである。It is a graph which showed the blood glucose level in a viable cell suspension ingestion group, a heat-treated cell suspension ingestion group, and a non-ingestion group for each time after sucrose loading. 生菌懸濁液摂取群、熱処理菌体懸濁液摂取群、非摂取群におけるショ糖付加試験の結果を示すグラフである。It is a graph which shows the result of the sucrose addition test in a viable cell suspension ingestion group, a heat-treated cell suspension ingestion group, and a non-ingestion group.

以下、本発明について説明するが、本発明は、以下の具体的態様に限定されるものではなく、技術的思想の範囲内で任意に変形することができる。 Hereinafter, the present invention will be described, but the present invention is not limited to the following specific embodiments, and can be arbitrarily modified within the scope of the technical idea.

<乳酸菌>
本発明は、独立行政法人製品評価技術基盤機構(NITE)の特許微生物寄託センター(NPMD)における受託番号がNITE BP-02309であるエンテロコッカス(Enterococcus)属に属する乳酸菌、又は、その自然的若しくは人工的に変異した乳酸菌であって血糖低下作用を有する乳酸菌である。
<Lactic acid bacteria>
The present invention is a lactic acid bacterium belonging to the genus Enterococcus whose accession number is NITE BP-02309 at the Patented Microbial Deposit Center (NPMD) of the National Institute of Technology and Evaluation (NITE), or a natural or artificial lactic acid bacterium thereof. It is a lactic acid bacterium mutated in the above and has a hypoglycemic effect.

以下、このエンテロコッカス(Enterococcus)属に属する新規乳酸菌株エンテロコッカス・フェカリス(Enterococcus faecalis)0831-07(以下、「乳酸菌0831-07」と略記する場合がある)について詳述する。
本発明の乳酸菌0831-07は、ムカデ(Chilopod)を分離源として初めて分離された。
Hereinafter, a novel lactic acid bacterium strain Enterococcus faecalis 0831-07 (hereinafter, may be abbreviated as “lactic acid bacterium 0831-07”) belonging to the genus Enterococcus will be described in detail.
The lactic acid bacterium 0831-07 of the present invention was isolated for the first time using centipede (Chilopod) as an isolation source.

グラム染色結果:陽性
菌体の形状:球形
好気/嫌気:嫌気
乳酸生成能:あり
Gram stain result: Positive Bacterial shape: Spherical Aerobic / anaerobic: Anaerobic Lactic acid-producing ability: Yes

生理学的性質:本発明の乳酸菌0831-07の生理学的、化学分類学的性質は以下の通りである。
(1)カタラーゼ:-
(2)酸性フォスファターゼ:+
(3)アルカリフォスファターゼ:+
(4)ナフトール-AS-BI-フォスフォヒドロラーゼ:+
(5)エステラーゼ(C4):+
(6)α-ガラクトシダーゼ:-
(7)エステラーゼリパーゼ(C8):+
(8)β-ガラクトシダーゼ:-
(9)リパーゼ(C14):-
(10)β-グルクロニダーゼ:-
(11)ロイシンアリルアミダーゼ:+
(12)α-グルコシダーゼ:+
(13)バリンアリルアミダーゼ:-
(14)β-グルコシダーゼ:-
(15)シスチンアリルアミダーゼ:-
(16)N-アセチル-β-グルコサミニダーゼ:-
(17)トリプシン:-
(18)α-マンノシダーゼ:-
(19)α-キモトリプシン:+
(20)α-フコシダーゼ:-
Physiological properties: The physiological and chemical taxonomic properties of the lactic acid bacterium 0831-07 of the present invention are as follows.
(1) Catalase:-
(2) Acid phosphatase: +
(3) Alkaline phosphatase: +
(4) Naphthol-AS-BI-phosphohydrolase: +
(5) Esterase (C4): +
(6) α-galactosidase:-
(7) Esterase lipase (C8): +
(8) β-galactosidase:-
(9) Lipase (C14):-
(10) β-glucuronidase:-
(11) Leucine allyl amidase: +
(12) α-Glucosidase: +
(13) Valine allyl amidase:-
(14) β-Glucosidase:-
(15) Cystine allyl amidase:-
(16) N-Acetyl-β-Glucosaminidase:-
(17) Trypsin:-
(18) α-Mannosidase:-
(19) α-chymotrypsin: +
(20) α-fucosidase:-

(21)下記の糖類等からの酸及びガスの生成能
グリセロール(Glycerol):+
エリトリトール(Erythritol):-
D-アラビノース(D-Arabinose):-
L-アラビノース(L-Arabinose):-
D-リボース(D-Ribose):+
D-キシロース(D-Xylose):-
L-キシロース(L-Xylose):-
D-アドニトール(D-Adonitol):-
β-メチル-D-キシロピラノサイド(β-Methyl-D-xylopyranoside):-
D-ガラクトース(D-Galactose):+
D-グルコース(D-Glucose):+
D-フルクトース(D-Fructose):+
D-マンノース(D-Mannose):+
L-ソルボース(L-Sorbose):-
L-ラムノース(L-Rhamnose):-
ズルシトール(Dulcitol):-
イノシトール(Inositol):+
D-マンニトール(D-Mannitol):+
D-ソルビトール(Sorbitol):+
α-メチル-D-マンノピラノサイド(α-Methyl-D-mannopyranoside):-
α-メチル-D-グルコピラノサイド(α-Methyl-D-glucopyranoside):-
N-アセチルグルコサミン(N-Acetyl glucosamine):+
アミグダリン(Amygdalin):+
アルブチン(Arbutin):+
エスクリンクエン酸第二鉄(Esculin ferric citrate):+
サリシン(Salicin):+
D-セロビオース(D-Cellobiose):+
D-マルトース(D-Maltose):+
D-ラクトース(Lactose):-
D-メリビオース(D-Melibiose):+
D-スクロース(D-Sucrose):+
D-トレハロース(D-Trehalose):+
インスリン(Insulin):-
D-メレジトース(D-Melezitose):+
D-ラフィノース(D-Raffinose):-
スターチ(Starch):-
グリコーゲン(Glycogen):-
キシリトール(Xylitol):-
ゲンチオビオース(Gentiobiose):+
D-ツラノース(D-Turanose):+
D-リキソース(D-Lyxose):-
D-タガトース(D-Tagatose):+
D-フコース(D-Fucose):-
L-フコース(L-Fucose):-
D-アラビトール(D-Arabitol):-
L-アラビトール(L-Arabitol):-
グルコネート(Gluconate):+
2-ケト-グルコネート(2-Keto-gluconate):-
5-ケト-グルコネート(5-Keto-gluconate):-
(21) Ability to generate acid and gas from the following sugars, etc. Glycerol: +
Erythritol:-
D-Arabinose:-
L-Arabinose:-
D-Ribose: +
D-Xylose:-
L-Xylose:-
D-Adonitol:-
β-Methyl-D-xylopyranoside:-
D-Galactose: +
D-Glucose: +
D-Fructose: +
D-Mannose: +
L-Sorbose:-
L-Rhamnose:-
Dulcitol:-
Inositol: +
D-Mannitol: +
D-Sorbitol: +
α-Methyl-D-mannopyranoside:-
α-Methyl-D-glucopyranoside:-
N-Acetyl glucosamine: +
Amygdalin: +
Arbutin: +
Esculin ferric citrate: +
Salicin: +
D-Cellobiose: +
D-Maltose: +
D-Lactose:-
D-Melibiose: +
D-Sucrose: +
D-Trehalose: +
Insulin:-
D-Melezitose: +
D-Raffinose:-
Starch:-
Glycogen:-
Xylitol:-
Gentiobiose: +
D-Turanose: +
D-Lyxose:-
D-Tagatose: +
D-Fucose:-
L-Fucose:-
D-Arabitol:-
L-Arabitol:-
Gluconate: +
2-Keto-gluconate:-
5-Keto-gluconate:-

分子生物学的解析結果:分子生物学的な系統分類の指標として用いられている16SrDNAに関する乳酸菌0831-07の解析結果は、添付した配列表の通りである。
すなわち、乳酸菌0831-07のゲノムDNAから、PCRにより、16SrDNA領域の塩基配列を増幅し、シーケンサーによる解析を行った結果、16SrDNAのほぼ全長に当たる塩基配列が見出された。
この塩基配列をNCBIのBLAST解析で相同性検索を行ったところ、乳酸菌0831-07の16SrDNA領域の塩基配列は、エンテロコッカス属であるEnterococcus faecalis V583株の塩基配列(登録番号:NR_074637.1)と相同性99%を示したので、乳酸菌0831-07は、Enterococcus faecalisに属するものである。
しかしながら、16SrDNA領域だけを比較したときですら完全には一致していないので、本発明の乳酸菌0831-07は、上記の株とは異なる乳酸菌株である。
Molecular Biological Analysis Results: The analysis results of lactic acid bacterium 0831-07 regarding 16SrDNA used as an index of molecular biological phylogenetic classification are as shown in the attached sequence sheet.
That is, as a result of amplifying the base sequence of the 16SrDNA region by PCR from the genomic DNA of lactic acid bacterium 0831-07 and analyzing it with a sequencer, a base sequence corresponding to almost the entire length of 16SrDNA was found.
When this nucleotide sequence was subjected to a homology search by BLAST analysis of NCBI, the nucleotide sequence of the 16SrDNA region of lactic acid bacterium 0831-07 was homologous to the nucleotide sequence of Enterococcus faecalis V583 strain (registration number: NR_074637.1) of the genus Enterococcus. Lactic acid bacterium 0831-07 belongs to Enterococcus faecalis because it showed 99% sex.
However, the lactic acid bacterium 0831-07 of the present invention is a lactic acid bacterium strain different from the above-mentioned strain because it does not completely match even when only the 16SrDNA regions are compared.

前記の乳酸菌0831-07の生理学的・化学分類学的性質を、バージース・マニュアル・オブ・システマティックバクテリオロジー(Bergey’s Manual of Systematic Bacteriology,vol.3 1989)による分類及びその他の文献の記載内容に照らし合わせ、更に、上記16SrDNA解析の結果を考慮して判断した結果、本発明の「乳酸菌0831-07」は、エンテロコッカス(Enterococcus)属に属する新規の微生物である。
また、乳酸菌0831-07の16SrDNA領域の塩基配列に一致する16SrDNA領域の塩基配列を有する微生物が存在しないこと、エンテロコッカス属に属する既知の株等と比べて高い血糖低下作用を示すこと等を含め総合的に検討した結果、乳酸菌0831-07は単離された新規な微生物株であると判断した。
The physiological and chemical taxonomic properties of the above-mentioned lactic acid bacterium 0831-07 are compared with the classification by Bergey's Manual of Systematic Bacteriology (vol.3 1989) and the contents of other literatures. Further, as a result of determination in consideration of the result of the above 16S rDNA analysis, the "lactic acid bacterium 0831-07" of the present invention is a novel microorganism belonging to the genus Enterococcus.
In addition, there is no microorganism having a base sequence of 16SrDNA region that matches the base sequence of 16SrDNA region of lactic acid bacterium 0831-07, and it shows a higher hypoglycemic effect than known strains belonging to the genus Enterococcus. As a result of the above examination, it was determined that the lactic acid bacterium 0831-07 was a novel isolated microbial strain.

乳酸菌0831-07は、千葉県木更津市かずさ鎌足2-5-8 122号室、独立行政法人製品評価技術基盤機構(Natural Institute of Technology and Evaluation;以下、「NITE」と略記する)の特許微生物寄託センター(NPMD)に国内寄託され、受託番号:NITE P-02309(寄託日:2016年7月26日)として受託された微生物である。
乳酸菌0831-07は、その後、千葉県木更津市かずさ鎌足2-5-8 122号室、独立行政法人製品評価技術基盤機構(NITE)の特許微生物寄託センター(NPMD)に、原寄託申請書を提出して、国内寄託(原寄託日:2016年7月26日)から、ブタペスト条約に基づく寄託への移管申請を行い(移管日(国際寄託日):2017年5月16日)、生存が証明され、ブタペスト条約に基づく寄託(国際寄託)への移管申請が受領された結果、受託番号「NITE BP-02309」を受けているものである。
Lactobacillus 0831-07 is a patented microorganism deposit of the Natural Institute of Technology and Evaluation (hereinafter abbreviated as "NITE"), Room 2-5-8 122, Kazusakamatari, Kisarazu City, Chiba Prefecture. It is a microorganism that has been deposited domestically at the Center (NPMD) and has been deposited under the deposit number: NITE P-02309 (deposit date: July 26, 2016).
Lactobacillus 0831-07 subsequently submitted the original deposit application to the Patent Microorganisms Depositary Center (NPMD) of the National Institute of Technology and Evaluation (NITE), Room 2-5-8 122 Kazusakamatari, Kisarazu City, Chiba Prefecture. Then, an application for transfer from domestic deposit (original deposit date: July 26, 2016) to deposit based on the Butapest Treaty was submitted (transfer date (international deposit date): May 16, 2017), and survival was proved. As a result of receiving the transfer application to the deposit (international deposit) based on the Butapest Treaty, the deposit number "NITE BP-02309" has been received.

細菌の一般的な性状として、その菌株としての性質は変異し易いため、乳酸菌0831-07は、先に示した生理学的性状の範囲内に留まらない可能性も有している。また、かかる「変異」には、自然的な変異と人工的な変異の両方を含むことは言うまでもない。 As a general property of a bacterium, its properties as a strain are liable to change, so that lactic acid bacterium 0831-07 may not stay within the range of the physiological properties shown above. It goes without saying that such "mutations" include both natural and artificial mutations.

以下に、乳酸菌0831-07の培養方法について記載する。乳酸菌0831-07の培養方法は、エンテロコッカス属の微生物に対して行われる一般的な培養方法に準じて行えばよい。
培養は嫌気条件下で行うことが好ましい。培地中の炭素源としては、例えば、D-リボース、D-ガラクトース、D-グルコース、D-フルクトース、D-マンノース、D-マンニトール、N-アセチルグルコサミン、アミグダリン、アルブチン、エスクリン、サリシン、D-セロビオース、D-マルトース、シュクロース、D-トレハロース、ゲンチオビオース、糖蜜、水飴、油脂類等の有機炭素化合物が用いられ、窒素源としては、肉エキス、カゼイン、ペプトン、酵母エキス、乾燥酵母、胚芽、大豆粉、尿素、アミノ酸、アンモニウム塩等の有機・無機窒素化合物を用いることができる。
また、塩類は、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、リン酸塩、鉄塩、銅塩、亜鉛塩、コバルト塩等の無機塩類を必要に応じて適宜添加する。更に、ビオチン、ビタミンB1、シスチン、オレイン酸メチル、ラード油等の生育促進物質を添加することが、目的物の産生量を増加させる点で好ましい。
また、シリコン油、界面活性剤等の消泡剤を添加してもよい。調製済みの培地としては、例えば、MRS培地、GAM培地等を用いることが好ましい。
The method for culturing lactic acid bacteria 0831-07 will be described below. The method for culturing lactic acid bacteria 0831-07 may be carried out according to a general culture method for microorganisms of the genus Enterococcus.
Culturing is preferably carried out under anaerobic conditions. Examples of carbon sources in the medium include D-ribose, D-galactose, D-glucose, D-fructose, D-mannose, D-mannitol, N-acetylglucosamine, amigdalin, arbutin, esculin, salicin, and D-cellobiose. , D-maltose, schucrose, D-trehalose, gentiobiose, sugar syrup, water candy, oils and fats and other organic carbon compounds are used, and the nitrogen source is meat extract, casein, peptone, yeast extract, dried yeast, germ, soybean. Organic / inorganic nitrogen compounds such as powder, urea, amino acids, and ammonium salts can be used.
As the salts, inorganic salts such as sodium salt, potassium salt, calcium salt, magnesium salt, phosphate, iron salt, copper salt, zinc salt and cobalt salt are appropriately added as needed. Further, it is preferable to add a growth promoting substance such as biotin, vitamin B1, cystine, methyl oleate, lard oil and the like in terms of increasing the production amount of the target product.
Further, a defoaming agent such as silicone oil or a surfactant may be added. As the prepared medium, for example, MRS medium, GAM medium and the like are preferably used.

培養条件は、先に記したようにエンテロコッカス属の微生物に対して行われる一般的な培養条件に準じて行えばよい。液体培養法であれば静置培養が望ましい。小規模であれば蓋付きガラス瓶による静置培養法を用いてもよい。
培養温度は、25℃~43℃間に保つことが好ましく、30℃~42℃で行うことがより好ましい。培養pHは7付近で行うことが好ましい。培養期間は、用いた培地組成、培養温度等により変動するファクターであるが、乳酸菌0831-07の場合、好ましくは12~72時間、より好ましくは24~48時間で充分な量の目的物を確保することができる。
培養して得られたコロニーをピックアップし、再度培地上でシングルコロニー形成を行うことも好ましい。
As described above, the culture conditions may be the same as the general culture conditions performed for the microorganisms of the genus Enterococcus. If it is a liquid culture method, static culture is desirable. If the scale is small, a static culture method using a glass bottle with a lid may be used.
The culture temperature is preferably maintained between 25 ° C. and 43 ° C., and more preferably 30 ° C. to 42 ° C. The culture pH is preferably around 7. The culture period is a factor that varies depending on the medium composition used, the culture temperature, etc., but in the case of lactic acid bacteria 0831-07, a sufficient amount of the target substance is secured in preferably 12 to 72 hours, more preferably 24 to 48 hours. can do.
It is also preferable to pick up the colonies obtained by culturing and perform single colonization on the medium again.

本発明の新規乳酸菌0831-07は、α-グリコシダーゼ阻害活性を有することでスクロース摂取による血糖上昇を抑制する用途に用いられる乳酸菌であることが好ましい。 The novel lactic acid bacterium 0831-07 of the present invention is preferably a lactic acid bacterium used for suppressing an increase in blood glucose due to ingestion of sucrose by having an α-glycosidase inhibitory activity.

<α-グルコシダーゼ阻害剤>
本発明の新規乳酸菌0831-07は、該乳酸菌自身として、また、該乳酸菌の自然的若しくは人工的に変異した乳酸菌として、α-グルコシダーゼ阻害活性を有する。
<Α-Glucosidase inhibitor>
The novel lactic acid bacterium 0831-07 of the present invention has an α-glucosidase inhibitory activity as the lactic acid bacterium itself and as a naturally or artificially mutated lactic acid bacterium of the lactic acid bacterium.

「乳酸菌0831-07又はその自然的若しくは人工的に変異した乳酸菌」、「該乳酸菌の死菌」、「該乳酸菌の処理物」は、何れもα-グルコシダーゼ阻害活性を有する。
ここで、「乳酸菌の処理物」としては、乳酸菌の、培養物、濃縮物、ペースト化物、乾燥物、液状化物、希釈物、破砕物、殺菌加工物、及び、培養物からの抽出物よりなる群から選ばれる少なくとも1つの処理物が挙げられる。ここで、「乾燥物」としては、噴霧乾燥物、凍結乾燥物、真空乾燥物、ドラム乾燥物等が挙げられる。
本発明の別の態様は、「前記した本発明の乳酸菌(乳酸菌0831-07又はその自然的若しくは人工的に変異した乳酸菌)、該乳酸菌の死菌又は該乳酸菌の処理物を有効成分とするα-グルコシダーゼ阻害剤であって、該乳酸菌の処理物は、乳酸菌の、培養物、濃縮物、ペースト化物、乾燥物、液状化物、希釈物、破砕物、殺菌加工物、及び、培養物からの抽出物よりなる群から選ばれる少なくとも1つの処理物であることを特徴とするα-グルコシダーゼ阻害剤」である。
"Lactic acid bacterium 0831-07 or a naturally or artificially mutated lactic acid bacterium", "killed lactic acid bacterium", and "treated product of the lactic acid bacterium" all have α-glucosidase inhibitory activity.
Here, the "processed product of lactic acid bacteria" comprises a culture, a concentrate, a paste, a dried product, a liquefied product, a diluted product, a crushed product, a sterilized processed product, and an extract from the culture. At least one processed product selected from the group may be mentioned. Here, examples of the "dried product" include a spray-dried product, a freeze-dried product, a vacuum-dried product, a drum-dried product, and the like.
Another aspect of the present invention is "an α having the above-mentioned lactic acid bacterium of the present invention (lactic acid bacterium 0831-07 or a naturally or artificially mutated lactic acid bacterium), a killed lactic acid bacterium, or a treated product of the lactic acid bacterium as an active ingredient. -A glucosidase inhibitor, the treated product of the lactic acid bacterium is an extraction of the lactic acid bacterium from a culture, a concentrate, a paste, a dried product, a liquefied product, a diluted product, a crushed product, a sterilized processed product, and a culture. It is an α-glucosidase inhibitor characterized by being at least one treated product selected from the group consisting of products.

本発明のα-グルコシダーゼ阻害剤は、前記の本発明の乳酸菌、該乳酸菌の死菌又は該乳酸菌の処理物を種々の状態で含むことができる。例えば、懸濁液、乳酸菌体、培養上清液、培地成分を含む状態等が挙げられる。
乳酸菌としては、生菌体、湿潤菌、乾燥菌等が適宜使用可能である。また、殺菌、すなわち、加熱殺菌処理、放射線殺菌処理、破砕処理等を施した死菌であってもよい。
The α-glucosidase inhibitor of the present invention can contain the above-mentioned lactic acid bacterium of the present invention, a dead lactic acid bacterium, or a treated product of the lactic acid bacterium in various states. For example, a state containing a suspension, a lactic acid bacterium cell, a culture supernatant, a medium component, and the like can be mentioned.
As the lactic acid bacteria, live cells, wet bacteria, dried bacteria and the like can be appropriately used. Further, it may be a killed bacterium that has been sterilized, that is, has undergone heat sterilization treatment, radiation sterilization treatment, crushing treatment, or the like.

本発明のα-グルコシダーゼ阻害剤中の有効成分である、乳酸菌、該乳酸菌の死菌、該乳酸菌の処理物の、α-グルコシダーゼ阻害剤全体に対する含有量は、特に制限がなく、目的に応じて適宜選択することができるが、血糖低下剤全体を100質量部としたときに、「乳酸菌、該乳酸菌の死菌、該乳酸菌の処理物の合計量」として、0.001~100質量部で含有されることが好ましく、より好ましくは0.01~99質量部、特に好ましくは0.1~95質量部、更に好ましくは1~90質量部で含有される。 The content of lactic acid bacteria, killed bacteria of the lactic acid bacteria, and treated products of the lactic acid bacteria, which are the active ingredients in the α-glucosidase inhibitor of the present invention, with respect to the entire α-glucosidase inhibitor is not particularly limited and may be used according to the purpose. It can be appropriately selected, but when the total amount of the hypoglycemic agent is 100 parts by mass, it is contained in 0.001 to 100 parts by mass as "the total amount of lactic acid bacteria, killed bacteria of the lactic acid bacteria, and processed product of the lactic acid bacteria". It is preferably contained in an amount of 0.01 to 99 parts by mass, particularly preferably 0.1 to 95 parts by mass, and further preferably 1 to 90 parts by mass.

また、前記有効成分は、何れか1種を単独で使用してもよいし、2種以上を併用してもよい。2種以上を併用する場合の、前記α-グルコシダーゼ阻害剤中の各々の有効成分の含有比については、特に制限はなく目的に応じて適宜選択することができる。 In addition, any one of the active ingredients may be used alone, or two or more thereof may be used in combination. When two or more kinds are used in combination, the content ratio of each active ingredient in the α-glucosidase inhibitor is not particularly limited and can be appropriately selected depending on the intended purpose.

本発明のα-グルコシダーゼ阻害剤は、前記乳酸菌、前記乳酸菌の死菌又は前記乳酸菌の処理物を有効成分として含有するが、それら有効成分に加えて、「その他の成分」を含有することができる。
前記α-グルコシダーゼ阻害剤における、上記「その他の成分」としては、特に制限はなく、本発明の効果を損なわない範囲内で、目的に応じて適宜選択することができ、例えば、薬学的に許容され得る担体等が挙げられる。
かかる担体としては、特に制限はなく、例えば、後述する剤型等に応じて適宜選択される。また、α-グルコシダーゼ阻害剤中の「その他の成分」の含有量としても、特に制限はなく、目的に応じて適宜選択することができる。
The α-glucosidase inhibitor of the present invention contains the lactic acid bacterium, the killed lactic acid bacterium, or the treated product of the lactic acid bacterium as an active ingredient, and may contain "other ingredients" in addition to the active ingredient. ..
The "other components" of the α-glucosidase inhibitor are not particularly limited and can be appropriately selected depending on the intended purpose within the range not impairing the effect of the present invention, and are pharmaceutically acceptable, for example. Examples thereof include carriers that can be used.
The carrier is not particularly limited and may be appropriately selected depending on, for example, a dosage form described later. Further, the content of "other components" in the α-glucosidase inhibitor is not particularly limited and can be appropriately selected depending on the intended purpose.

<血糖低下剤>
本発明の新規乳酸菌0831-07は、該乳酸菌自身として、また、該乳酸菌の自然的若しくは人工的に変異した乳酸菌として、血糖低下作用を有する。
<Blood sugar lowering agent>
The novel lactic acid bacterium 0831-07 of the present invention has a blood glucose lowering effect as the lactic acid bacterium itself and as a naturally or artificially mutated lactic acid bacterium of the lactic acid bacterium.

「乳酸菌0831-07又はその自然的若しくは人工的に変異した乳酸菌」、「該乳酸菌の死菌」、「該乳酸菌の処理物」は、何れも血糖低下作用を有する。
ここで、「乳酸菌の処理物」としては、乳酸菌の、培養物、濃縮物、ペースト化物、乾燥物、液状化物、希釈物、破砕物、殺菌加工物、及び、培養物からの抽出物よりなる群から選ばれる少なくとも1つの処理物が挙げられる。ここで、「乾燥物」としては、噴霧乾燥物、凍結乾燥物、真空乾燥物、ドラム乾燥物等が挙げられる。
本発明の別の態様は、「前記した本発明の乳酸菌(乳酸菌0831-07又はその自然的若しくは人工的に変異した乳酸菌)、該乳酸菌の死菌又は該乳酸菌の処理物を有効成分とする血糖低下剤であって、該乳酸菌の処理物は、乳酸菌の、培養物、濃縮物、ペースト化物、乾燥物、液状化物、希釈物、破砕物、殺菌加工物、及び、培養物からの抽出物よりなる群から選ばれる少なくとも1つの処理物であることを特徴とする血糖低下剤」である。
"Lactic acid bacterium 0831-07 or a naturally or artificially mutated lactic acid bacterium", "killed lactic acid bacterium", and "treated product of the lactic acid bacterium" all have a blood glucose lowering effect.
Here, the "processed product of lactic acid bacteria" comprises a culture, a concentrate, a paste, a dried product, a liquefied product, a diluted product, a crushed product, a sterilized processed product, and an extract from the culture. At least one processed product selected from the group may be mentioned. Here, examples of the "dried product" include a spray-dried product, a freeze-dried product, a vacuum-dried product, a drum-dried product, and the like.
Another aspect of the present invention is "a blood glucose containing the above-mentioned lactic acid bacterium of the present invention (lactic acid bacterium 0831-07 or a naturally or artificially mutated lactic acid bacterium), a killed lactic acid bacterium, or a treated product of the lactic acid bacterium as an active ingredient. A lowering agent, the treated product of the lactic acid bacterium is obtained from a culture, a concentrate, a paste, a dried product, a liquefied product, a diluted product, a crushed product, a sterilized processed product, and an extract from the culture of the lactic acid bacterium. It is a hypoglycemic agent characterized by being at least one treated product selected from the group.

本発明の血糖低下剤は、前記の本発明の乳酸菌、該乳酸菌の死菌又は該乳酸菌の処理物を種々の状態で含むことができる。例えば、懸濁液、乳酸菌体、培養上清液、培地成分を含む状態等が挙げられる。
乳酸菌としては、生菌体、湿潤菌、乾燥菌等が適宜使用可能である。また、殺菌、すなわち、加熱殺菌処理、放射線殺菌処理、破砕処理等を施した死菌であってもよい。
The hypoglycemic agent of the present invention can contain the lactic acid bacterium of the present invention, a dead lactic acid bacterium, or a treated product of the lactic acid bacterium in various states. For example, a state containing a suspension, a lactic acid bacterium cell, a culture supernatant, a medium component, and the like can be mentioned.
As the lactic acid bacteria, live cells, wet bacteria, dried bacteria and the like can be appropriately used. Further, it may be a killed bacterium that has been sterilized, that is, has undergone heat sterilization treatment, radiation sterilization treatment, crushing treatment, or the like.

本発明の血糖低下剤中の有効成分である、乳酸菌、該乳酸菌の死菌、該乳酸菌の処理物の、血糖低下剤全体に対する含有量は、特に制限がなく、目的に応じて適宜選択することができるが、血糖低下剤全体を100質量部としたときに、「乳酸菌、該乳酸菌の死菌、該乳酸菌の処理物の合計量」として、0.001~100質量部で含有されることが好ましく、より好ましくは0.01~99質量部、特に好ましくは0.1~95質量部、更に好ましくは1~90質量部で含有される。 The content of lactic acid bacteria, dead bacteria of the lactic acid bacteria, and the treated product of the lactic acid bacteria, which are the active ingredients in the hypoglycemic agent of the present invention, with respect to the entire hypoglycemic agent is not particularly limited and may be appropriately selected according to the purpose. However, when the total amount of the hypoglycemic agent is 100 parts by mass, it may be contained in 0.001 to 100 parts by mass as "the total amount of lactic acid bacteria, dead bacteria of the lactic acid bacteria, and processed product of the lactic acid bacteria". It is preferably contained in an amount of 0.01 to 99 parts by mass, particularly preferably 0.1 to 95 parts by mass, and even more preferably 1 to 90 parts by mass.

また、前記有効成分は、何れか1種を単独で使用してもよいし、2種以上を併用してもよい。2種以上を併用する場合の、前記血糖低下剤中の各々の有効成分の含有比については、特に制限はなく目的に応じて適宜選択することができる。 In addition, any one of the active ingredients may be used alone, or two or more thereof may be used in combination. When two or more kinds are used in combination, the content ratio of each active ingredient in the hypoglycemic agent is not particularly limited and can be appropriately selected according to the purpose.

本発明の血糖低下剤は、前記乳酸菌、前記乳酸菌の死菌又は前記乳酸菌の処理物を有効成分として含有するが、それら有効成分に加えて、「その他の成分」を含有することができる。
前記血糖低下剤における、上記「その他の成分」としては、特に制限はなく、本発明の効果を損なわない範囲内で、目的に応じて適宜選択することができ、例えば、薬学的に許容され得る担体等が挙げられる。
かかる担体としては、特に制限はなく、例えば、後述する剤型等に応じて適宜選択される。また、血糖低下剤中の「その他の成分」の含有量としても、特に制限はなく、目的に応じて適宜選択することができる。
The hypoglycemic agent of the present invention contains the lactic acid bacterium, the killed lactic acid bacterium, or the treated product of the lactic acid bacterium as an active ingredient, and may contain "other ingredients" in addition to the active ingredient.
The "other components" in the hypoglycemic agent are not particularly limited and can be appropriately selected depending on the intended purpose within a range that does not impair the effects of the present invention, and are pharmaceutically acceptable, for example. Examples include carriers.
The carrier is not particularly limited and may be appropriately selected depending on, for example, a dosage form described later. Further, the content of "other components" in the blood glucose lowering agent is not particularly limited and can be appropriately selected depending on the purpose.

<糖尿病予防治療薬>
前記した本発明の乳酸菌、該乳酸菌の死菌、該乳酸菌の処理物は、血糖低下作用を有すると共に又は有するが故に糖尿病予防治療薬として有用であり、特に、経口投与用の糖尿病予防治療薬として有用である。
従って、本発明の他の態様は、前記の血糖低下剤を有効成分として含有することを特徴とする糖尿病予防治療薬である。
<Diabetes preventive and therapeutic drug>
The lactic acid bacterium of the present invention, the killed lactic acid bacterium, and the treated product of the lactic acid bacterium are useful as a preventive and therapeutic agent for diabetes because they have or have a hypoglycemic effect, and are particularly useful as a preventive and therapeutic agent for diabetes for oral administration. It is useful.
Therefore, another aspect of the present invention is a diabetes preventive and therapeutic agent, which comprises the above-mentioned hypoglycemic agent as an active ingredient.

<医薬品;飲食品;健康食品等>
本発明の乳酸菌や該乳酸菌に由来する本発明の血糖低下剤は、医薬品、医薬部外品、一般飲食品、健康食品、粉ミルク等の規格を有する飲食品等に配合することが可能であり、それらの形態によらず様々な医薬品、飲食品等に応用できる。
中でも、前記した本発明の乳酸菌を用いて醗酵する工程を用いて製造された飲食品、更にその中でも醗酵乳は、乳酸菌の通常の効果や、本発明に特有の前記効果を発揮し易いために好ましい。
<Pharmaceuticals; Food and drink; Health foods, etc.>
The lactic acid bacterium of the present invention and the hypoglycemic agent of the present invention derived from the lactic acid bacterium can be blended in foods and drinks having specifications such as pharmaceuticals, quasi-drugs, general foods and drinks, health foods, and powdered milk. It can be applied to various medicines, foods and drinks regardless of their forms.
Above all, foods and drinks produced by using the above-mentioned step of fermenting with the lactic acid bacterium of the present invention, and among them, fermented milk is easy to exert the usual effect of the lactic acid bacterium and the above-mentioned effect peculiar to the present invention. preferable.

本発明のα-グルコシダーゼ阻害剤、血糖低下剤や糖尿病予防治療薬の剤型としては、特に制限はなく、例えば、後述するような所望の投与方法に応じて適宜選択することができる。
具体的には、例えば、経口固形剤(錠剤、被覆錠剤、顆粒剤、散剤、ハードカプセル剤、ソフトカプセル剤等)、経口液剤(内服液剤、シロップ剤、エリキシル剤等)、注射剤(溶剤、懸濁剤等)、軟膏剤、貼付剤、ゲル剤、クリーム剤、外用散剤、スプレー剤、吸入散布剤等が挙げられる。
The dosage form of the α-glucosidase inhibitor, hypoglycemic agent, or diabetes preventive and therapeutic agent of the present invention is not particularly limited, and can be appropriately selected, for example, according to a desired administration method as described later.
Specifically, for example, oral solid preparations (tablets, coated tablets, granules, powders, hard capsules, soft capsules, etc.), oral liquid preparations (oral liquid preparations, syrups, elixirs, etc.), injections (solvents, suspensions, etc.) Agents, etc.), ointments, patches, gels, creams, external powders, sprays, inhalation sprays, etc.

前記経口固形剤としては、例えば、前記有効成分に、賦形剤、更には必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、矯味・矯臭剤等の添加剤を加え、常法により製造することができる。 As the oral solid preparation, for example, an excipient and, if necessary, an additive such as a binder, a disintegrant, a lubricant, a colorant, a flavoring / flavoring agent, etc. are added to the active ingredient, and a conventional method is used. Can be manufactured by

該賦形剤としては、例えば、乳糖、白糖、塩化ナトリウム、ブドウ糖、デンプン、炭酸カルシウム、カオリン、微結晶セルロース、珪酸等が挙げられる。
前記結合剤としては、例えば、水、エタノール、プロパノール、単シロップ、ブドウ糖液、デンプン液、ゼラチン液、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルスターチ、メチルセルロース、エチルセルロース、シェラック、リン酸カルシウム、ポリビニルピロリドン等が挙げられる。
該崩壊剤としては、例えば、乾燥デンプン、アルギン酸ナトリウム、カンテン末、炭酸水素ナトリウム、炭酸カルシウム、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、乳糖等が挙げられる。
該滑沢剤としては、例えば、精製タルク、ステアリン酸塩、ホウ砂、ポリエチレングリコール等が挙げられる。
該着色剤としては、例えば、酸化チタン、酸化鉄等が挙げられる。
前記矯味・矯臭剤としては、例えば、白糖、橙皮、クエン酸、酒石酸等が挙げられる。
Examples of the excipient include lactose, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose, silicic acid and the like.
Examples of the binder include water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl starch, methyl cellulose, ethyl cellulose, shelac, calcium phosphate, polyvinylpyrrolidone and the like. Be done.
Examples of the disintegrant include dried starch, sodium alginate, canten powder, sodium hydrogencarbonate, calcium carbonate, sodium lauryl sulfate, stearate monoglyceride, lactose and the like.
Examples of the lubricant include purified talc, stearate, borax, polyethylene glycol and the like.
Examples of the colorant include titanium oxide, iron oxide and the like.
Examples of the flavoring / flavoring agent include sucrose, orange peel, citric acid, tartaric acid and the like.

前記経口液剤としては、例えば、前記有効成分に、矯味・矯臭剤、緩衝剤、安定化剤等の添加剤を加え、常法により製造することができる。 As the oral solution, for example, it can be produced by a conventional method by adding additives such as a flavoring / flavoring agent, a buffering agent, and a stabilizer to the active ingredient.

該矯味・矯臭剤としては、例えば、白糖、橙皮、クエン酸、酒石酸等が挙げられる。前記緩衝剤としては、例えば、クエン酸ナトリウム等が挙げられる。前記安定化剤としては、例えば、トラガント、アラビアゴム、ゼラチン等が挙げられる。 Examples of the flavoring / flavoring agent include sucrose, orange peel, citric acid, tartaric acid and the like. Examples of the buffer include sodium citrate and the like. Examples of the stabilizer include tragant, gum arabic, gelatin and the like.

前記注射剤としては、例えば、前記有効成分に、pH調節剤、緩衝剤、安定化剤、等張化剤、局所麻酔剤等を添加し、常法により皮下用、筋肉内用、静脈内用等の注射剤を製造することができる。
該pH調節剤及び該緩衝剤としては、例えば、クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム等が挙げられる。前記安定化剤としては、例えば、ピロ亜硫酸ナトリウム、EDTA、チオグリコール酸、チオ乳酸等が挙げられる。前記等張化剤としては、例えば、塩化ナトリウム、ブドウ糖等が挙げられる。前記局所麻酔剤としては、例えば、塩酸プロカイン、塩酸リドカイン等が挙げられる。
As the injection, for example, a pH regulator, a buffer, a stabilizer, an tonicity agent, a local anesthetic, etc. are added to the active ingredient, and the injection is subcutaneously, intramuscularly, or intravenously used by a conventional method. Etc. can be produced.
Examples of the pH adjuster and the buffer include sodium citrate, sodium acetate, sodium phosphate and the like. Examples of the stabilizer include sodium metabisulfite, EDTA, thioglycolic acid, thiolactic acid and the like. Examples of the tonicity agent include sodium chloride, glucose and the like. Examples of the local anesthetic include procaine hydrochloride, lidocaine hydrochloride and the like.

前記軟膏剤としては、例えば、前記有効成分に、公知の基剤、安定剤、湿潤剤、保存剤等を配合し、常法により混合し、製造することができる。
該基剤としては、例えば、流動パラフィン、白色ワセリン、サラシミツロウ、オクチルドデシルアルコール、パラフィン等が挙げられる。前記保存剤としては、例えば、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル等が挙げられる。
As the ointment, for example, a known base, stabilizer, wetting agent, preservative and the like can be blended with the active ingredient and mixed by a conventional method to produce the ointment.
Examples of the base include liquid paraffin, white petrolatum, bleached beeswax, octyldodecyl alcohol, paraffin and the like. Examples of the preservative include methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate and the like.

前記貼付剤としては、例えば、公知の支持体に前記軟膏剤としてのクリーム剤、ゲル剤、ペースト剤等を、常法により塗布し、製造することができる。前記支持体としては、例えば、綿、スフ、化学繊維からなる織布、不織布、軟質塩化ビニル、ポリエチレン、ポリプロピレン、ポリウレタン等のフィルム、発泡体シート等が挙げられる。 As the patch, for example, a cream, a gel, a paste, or the like as the ointment can be applied to a known support by a conventional method to produce the patch. Examples of the support include cotton, rayon, woven fabric made of chemical fibers, non-woven fabric, soft vinyl chloride, polyethylene, polypropylene, polyurethane and other films, foam sheets and the like.

本発明のα-グルコシダーゼ阻害剤、血糖低下剤や糖尿病予防治療薬は、例えば、血糖低下を必要とする個体、細菌等に対してあたかも獲得免疫を得ようとする個体等に好適に使用できる。
具体的には、例えば、健康維持や疲労回復を必要とする個体;癌や生活習慣病の予防や治療を必要とする個体;細菌、真菌、ウイルス等に感染した個体;等に投与することにより使用することができる。
The α-glucosidase inhibitor, hypoglycemic agent, and diabetes preventive and therapeutic agent of the present invention can be suitably used, for example, for individuals who require hypoglycemic activity, individuals who seek acquired immunity against bacteria, and the like.
Specifically, for example, by administering to individuals who need to maintain their health or recover from fatigue; individuals who need prevention or treatment of cancer or lifestyle-related diseases; individuals infected with bacteria, fungi, viruses, etc. Can be used.

本発明のα-グルコシダーゼ阻害剤、血糖低下剤や糖尿病予防治療薬の投与対象動物としては、特に制限はないが、例えば、ヒト;マウス、ラット等の実験動物;サル;ウマ;ウシ、ブタ、ヤギ、ニワトリ等の家畜;ネコ、イヌ等のペット;等が挙げられる。 The target animal to which the α-glucosidase inhibitor, hypoglycemic agent, or diabetes preventive treatment agent of the present invention is administered is not particularly limited, but for example, humans; experimental animals such as mice and rats; monkeys; horses; cows, pigs, and the like. Livestock such as goats and chickens; pets such as cats and dogs; and the like.

また、前記α-グルコシダーゼ阻害剤、血糖低下剤又は前記糖尿病予防治療薬の投与方法としては、特に制限はなく、例えば、前記した剤型等に応じ、適宜選択することができ、経口投与、腹腔内投与、血液中への注射、腸内への注入等が挙げられる。中でも、経口投与が、簡便で前記効果を発揮する点から好ましい。 The method for administering the α-glucosidase inhibitor, the hypoglycemic agent or the diabetes preventive and therapeutic agent is not particularly limited, and can be appropriately selected depending on, for example, the above-mentioned dosage form, oral administration, and peritoneal administration. Examples include oral administration, injection into blood, and injection into the intestine. Of these, oral administration is preferable because it is simple and exerts the above-mentioned effects.

前記α-グルコシダーゼ阻害剤、血糖低下剤又は前記糖尿病予防治療薬の投与量としては、特に制限はなく、投与対象である個体の年齢、体重、所望の効果の程度等に応じて適宜選択することができるが、例えば、成人への1日の投与量は、有効成分の量として、1mg~30gが好ましく、10mg~10gがより好ましく、100mg~3gが特に好ましい。
また、投与時期としても、特に制限はなく、目的に応じて適宜選択することができ、例えば、予防的に投与されてもよいし、治療的に投与されてもよい。
The dose of the α-glucosidase inhibitor, the hypoglycemic agent or the diabetes preventive and therapeutic agent is not particularly limited, and may be appropriately selected according to the age, body weight, degree of desired effect, etc. of the individual to be administered. However, for example, the daily dose to an adult is preferably 1 mg to 30 g, more preferably 10 mg to 10 g, and particularly preferably 100 mg to 3 g as the amount of the active ingredient.
Further, the administration time is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it may be administered prophylactically or therapeutically.

本発明の前記乳酸菌、該乳酸菌の死菌若しくは処理物、又は血糖低下剤を含有する飲食品(以下、「本発明の飲食品」と略記する場合がある)中の、乳酸菌、血糖低下剤又は糖尿病予防治療薬の含有量は、特に制限がなく、目的や飲食品の態様(種類)に応じて、適宜選択することができるが、飲食品全体を100質量部としたときに、上記の合計量で、0.001~100質量部で含有することが好ましく、より好ましくは0.01~100質量部、特に好ましくは0.1~100質量部の含量である。 Lactic acid bacteria, hypoglycemic agents, or foods and drinks containing the lactic acid bacteria of the present invention, killed or treated products of the lactic acid bacteria, or foods and drinks containing a hypoglycemic agent (hereinafter, may be abbreviated as "food and drink of the present invention"). The content of the diabetes preventive and therapeutic agent is not particularly limited and can be appropriately selected depending on the purpose and the mode (type) of the food or drink. However, when the total amount of the food or drink is 100 parts by mass, the above total The content is preferably 0.001 to 100 parts by mass, more preferably 0.01 to 100 parts by mass, and particularly preferably 0.1 to 100 parts by mass.

また、上記の何れか1種を単独で使用してもよいし、2種以上を併用してもよい。2種以上を併用する場合の、前記飲食品中の各々の物質の含有量比には、特に制限はなく、目的に応じて適宜選択することができる。 Further, any one of the above may be used alone, or two or more thereof may be used in combination. When two or more kinds are used in combination, the content ratio of each substance in the food or drink is not particularly limited and can be appropriately selected according to the purpose.

本発明の飲食品は、血糖低下作用を有する。
本発明の飲食品は、前記した本発明の乳酸菌や血糖低下剤に加えて、更に、「その他の成分」を含有することができる。
The food and drink of the present invention has a blood glucose lowering effect.
The food or drink of the present invention may further contain "other components" in addition to the above-mentioned lactic acid bacteria and blood glucose lowering agent of the present invention.

上記「その他の成分」としては、特に制限はなく、本発明の効果を損なわない範囲内で目的に応じて適宜選択することができ、例えば、各種食品原料等が挙げられる。また、「その他の成分」の含有量は、特に制限はなく、目的に応じて適宜選択することができる。 The above-mentioned "other ingredients" are not particularly limited and may be appropriately selected depending on the intended purpose within the range not impairing the effect of the present invention, and examples thereof include various food raw materials. The content of the "other components" is not particularly limited and may be appropriately selected depending on the intended purpose.

本発明の飲食品には、ヒトが摂取する飲み物や食品が含まれる。また、本発明の飲食品には、家畜、家禽類、ペット等が摂取するための飲料も含まれる。 The food and drink of the present invention includes drinks and foods ingested by humans. The food and drink of the present invention also includes beverages for ingestion by livestock, poultry, pets and the like.

本発明の乳酸菌は、一般飲食品、健康食品、薬剤、醗酵飲食品、プロバイオティクスの生産等に利用できる。醗酵飲食品としては、醗酵乳、乳酸菌飲料、ヨーグルト、漬物、漬物製造用乳酸菌スターター等としての用途に特に好適である。 The lactic acid bacterium of the present invention can be used for the production of general foods and drinks, health foods, drugs, fermented foods and drinks, probiotics and the like. As fermented foods and drinks, it is particularly suitable for use as fermented milk, lactic acid bacteria beverages, yogurt, pickles, lactic acid bacteria starters for pickle production, and the like.

前記飲食品の種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ゼリー、キャンディー、チョコレート、ビスケット、グミ等の菓子類;緑茶、紅茶、コーヒー、清涼飲料等の嗜好飲料;醗酵乳、ヨーグルト、アイスクリーム、ラクトアイス等の乳製品;野菜飲料、果実飲料、ジャム類等の野菜・果実加工品;スープ等の液体食品;パン類、麺類等の穀物加工品;各種調味料;等が挙げられる。中でも、ヨーグルト、醗酵乳等の乳製品が好ましい。
これらの飲食品の製造方法としては、特に制限はなく、例えば、通常の各種飲食品の製造方法に応じて、適宜製造することができる。
The type of the food or drink is not particularly limited and may be appropriately selected depending on the purpose. For example, confectioneries such as jelly, candy, chocolate, biscuits, and gummy; green tea, black tea, coffee, soft drinks, etc. Favorite beverages; dairy products such as fermented milk, yogurt, ice cream, lacto ice; vegetable beverages, fruit beverages, processed vegetables and fruits such as jams; liquid foods such as soups; processed grain products such as breads and noodles; Seasoning; etc. Among them, dairy products such as yogurt and fermented milk are preferable.
The method for producing these foods and drinks is not particularly limited, and for example, they can be appropriately produced according to the usual methods for producing various foods and drinks.

また、前記飲食品は、例えば、錠剤、顆粒剤、カプセル剤等の経口固形剤や、内服液剤、シロップ剤等の経口液剤として製造されたものであってもよい。前記経口固形剤、経口液剤の製造方法は、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記した薬剤の経口固形剤、経口液剤の製造方法にならい、製造することができる。 Further, the food or drink may be manufactured as an oral solid preparation such as tablets, granules or capsules, or an oral liquid preparation such as an internal liquid preparation or a syrup preparation. The method for producing the oral solid preparation and the oral liquid preparation is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the oral solid preparation and the oral liquid preparation can be manufactured according to the above-mentioned method for producing the oral solid preparation and the oral liquid preparation. can.

本発明の飲食品は、血糖低下機構の活性化や糖尿病の予防等を目的とした、機能性食品、健康食品等として、特に有用である。
本発明の乳酸菌、該死菌若しくは処理物等を飲食品の製造に使用する場合、製造方法は当業者に周知の方法によって行うことができる。当業者であれば、本発明の乳酸菌の(死)菌体又は処理物を他の成分と混合する工程、成形工程、殺菌工程、醗酵工程、焼成工程、乾燥工程、冷却工程、造粒工程、包装工程等を適宜組み合わせ、目的の飲食品を作ることが可能である。
The food and drink of the present invention is particularly useful as a functional food, a health food, etc. for the purpose of activating the blood glucose lowering mechanism and preventing diabetes.
When the lactic acid bacterium of the present invention, the dead bacterium, the treated product, or the like is used for producing a food or drink, the production method can be carried out by a method well known to those skilled in the art. If you are a person skilled in the art, a step of mixing the (dead) cell or processed product of the lactic acid bacterium of the present invention with other components, a molding step, a sterilization step, a fermentation step, a baking step, a drying step, a cooling step, a granulation step, It is possible to make the desired food and drink by appropriately combining the packaging processes and the like.

また、本発明の乳酸菌を各種醗酵乳の製造に使用する場合、当業者に周知の方法を用いて製造することができる。例えば、本発明の乳酸菌を醗酵乳に死菌として所要量添加する工程を用いて製造された飲食品や、乳酸菌スターターとして本発明の乳酸菌を用いて醗酵する工程を用いて製造された飲食品が挙げられる。
乳酸菌スターターとして本発明の乳酸菌を用いて醗酵を行う場合、本発明の乳酸菌の培養条件と同様の条件等で行うことができる。
Further, when the lactic acid bacterium of the present invention is used for producing various fermented milks, it can be produced by a method well known to those skilled in the art. For example, foods and drinks produced by using the step of adding a required amount of the lactic acid bacterium of the present invention to fermented milk as a dead bacterium, and food and drink manufactured by using the step of fermenting the lactic acid bacterium of the present invention as a lactic acid bacterium starter. Can be mentioned.
When fermentation is carried out using the lactic acid bacterium of the present invention as the lactic acid bacterium starter, it can be carried out under the same conditions as the culture conditions of the lactic acid bacterium of the present invention.

以下、実施例及び検討例に基づき本発明を更に詳細に説明するが、本発明は以下の実施例等の具体的範囲に限定されるものではない。「%」は、特に断りのない限り「質量%」を示す。 Hereinafter, the present invention will be described in more detail based on Examples and Study Examples, but the present invention is not limited to the specific scope of the following Examples and the like. “%” Indicates “mass%” unless otherwise specified.

<材料と方法>
<<寄託>>
上述のとおり、実施例において使用する「乳酸菌0831-07」はムカデ(Chilopod)から分離されたものである。
エンテロコッカス・フェカリス(Enterococcus faecalis)に属する乳酸菌0831-07は、独立行政法人製品評価技術基盤機構(NITE)の特許微生物寄託センター(NPMD)(千葉県木更津市かずさ鎌足2-5-8 122号室)に寄託されている(受託番号:NITE P-02309、寄託日2016年7月26日)。
乳酸菌0831-07は、その後、千葉県木更津市かずさ鎌足2-5-8 122号室、独立行政法人製品評価技術基盤機構(NITE)の特許微生物寄託センター(NPMD)に、原寄託申請書を提出して、国内寄託(原寄託日:2016年7月26日)から、ブタペスト条約に基づく寄託への移管申請を行い(移管日(国際寄託日):2017年5月16日)、生存が証明され、ブタペスト条約に基づく寄託(国際寄託)への移管申請が受領された結果、受託番号「NITE BP-02309」を受けているものである。
<Materials and methods>
<< Deposit >>
As described above, the "lactic acid bacterium 0831-07" used in the examples is isolated from the centipede (Chilopod).
Lactic acid bacterium 0831-07 belonging to Enterococcus faecalis is a patented microorganism deposit center (NPMD) of the National Institute of Technology and Evaluation (NITE) (Room 2-5-8 122, Kazusakamatari, Kisarazu City, Chiba Prefecture). (Deposit number: NITE P-02309, deposit date July 26, 2016).
Lactobacillus 0831-07 subsequently submitted the original deposit application to the Patent Microorganisms Depositary Center (NPMD) of the National Institute of Technology and Evaluation (NITE), Room 2-5-8 122 Kazusakamatari, Kisarazu City, Chiba Prefecture. Then, an application for transfer from domestic deposit (original deposit date: July 26, 2016) to deposit based on the Butapest Treaty was submitted (transfer date (international deposit date): May 16, 2017), and survival was proved. As a result of receiving the transfer application to the deposit (international deposit) based on the Butapest Treaty, the deposit number "NITE BP-02309" has been received.

<<カイコの種類、飼育条件及び注射条件>>
カイコの受精卵(交雑種ふ・よう×つくば・ね)は愛媛養蚕株式会社から購入した。孵化した幼虫は室温で人工飼料シルクメイト2S(日本農産工業株式会社)を与えて5齢幼虫まで育てた。飼育容器は卵から2齢幼虫までを角型2号シャーレ(栄研器材)、それ以降をディスポーザブルのプラスチック製フードパック(フードパックFD 大深、中央化学株式会社)を用いた。飼育温度は27℃とした。特に記載しない限り、実験には4齢眠以後絶食させた5齢1日目の幼虫を用いた。
<< Types of silk moths, breeding conditions and injection conditions >>
Fertilized eggs of silkworm (hybrid fu, yo x Tsukuba, ne) were purchased from Ehime Yoseki Co., Ltd. The hatched larvae were fed with artificial feed Silkmate 2S (Nosan Corporation) at room temperature and raised to the 5th instar larvae. For the breeding container, a square type No. 2 petri dish (Eiken equipment) was used for the eggs to the second instar larvae, and a disposable plastic food pack (Food Pack FD Oofuka, Chuo Kagaku Co., Ltd.) was used for the rest. The breeding temperature was 27 ° C. Unless otherwise stated, larvae of the 5th instar and 1st day fasted after the 4th instar sleep were used in the experiment.

<<乳酸菌の培養>>
乳酸菌は、0.5%の炭酸カルシウムを含むMRS寒天培地で、嫌気条件下で培養した。MRS寒天培培地上のコロニーの周辺に透明帯を形成し、グラム陽性の菌を乳酸菌と判定した。分離された乳酸菌に対して、rRNAをコードする遺伝子のシークエンスにより種の同定を行った。乳酸菌の液体培地での増殖は、1~3日間、30℃にて静置条件で行った。
<< Culture of lactic acid bacteria >>
Lactic acid bacteria were cultured under anaerobic conditions on MRS agar medium containing 0.5% calcium carbonate. A zona pellucida was formed around the colonies on the MRS agar culture medium, and gram-positive bacteria were determined to be lactic acid bacteria. Species were identified for the isolated lactic acid bacteria by a sequence of genes encoding rRNA. The growth of lactic acid bacteria in a liquid medium was carried out at 30 ° C. for 1 to 3 days under static conditions.

<<乳酸菌の糖代謝能試験>>
乳酸菌0831-07株の糖代謝能は、Api 50 CHキット(シスメックス社)を用いて測定した。乳酸菌0831-07株のコロニーをサスペンジョンメディウム(シスメックス社)で懸濁し、マクファーランド濁度2になるように調製した。Apiプレート(シスメックス社)に調整した菌液サンプルを150μL加え、30℃で48時間培養した。培養後に各種糖に対する代謝能を、反応した色を観察して判定した。
<< Lactic acid bacteria glucose metabolism test >>
The glucose metabolism ability of the lactic acid bacterium 0831-07 strain was measured using an API 50 CH kit (Sysmex Corporation). Colonies of the lactic acid bacterium 0831-07 strain were suspended in Suspension Medium (Sysmex Corporation) and prepared to have McFarland turbidity 2. 150 μL of the prepared bacterial solution sample was added to an Api plate (Sysmex Corporation), and the cells were cultured at 30 ° C. for 48 hours. After culturing, the metabolic capacity for various sugars was determined by observing the reacted colors.

<<血糖値の定量法>>
カイコの体液は第一腹肢をはさみで切り、採取した。カイコ血液中のグルコース濃度はグルコメーター(Accu-Chek, Roche)により定量した。
<< Blood glucose quantification method >>
The body fluid of the silk moth was collected by cutting the first abdominal limb with scissors. Glucose concentration in silk moth blood was quantified by a glucometer (Accu-Chek, Roche).

<<ヨーグルトの製造>>
MRS寒天培地上で増殖させた、乳酸菌0831-07株の菌体0.1gをエーゼでかき取り、5mLの0.9%NaClに懸濁した。菌の懸濁液5mLを、牛乳(明治おいしい牛乳、カートンボックス)1Lに加え、攪拌した。43℃にて、20時間培養した。ゲル化を確認後、4℃で保存した。保存期間は3週間以内とした。
<< Manufacturing of yogurt >>
0.1 g of cells of the lactic acid bacterium 0831-07 strain grown on MRS agar medium was scraped off with Aze and suspended in 5 mL of 0.9% NaCl. 5 mL of the bacterial suspension was added to 1 L of milk (Meiji delicious milk, carton box) and stirred. The cells were cultured at 43 ° C. for 20 hours. After confirming gelation, it was stored at 4 ° C. The storage period was 3 weeks or less.

<<ヒトを用いた臨床試験>>
被験者に非摂取時とヨーグルト摂取時で、50%(w/v)ショ糖水溶液を用いた糖負荷試験を行い、それぞれの血糖値の推移データを収集した。被験者10名を2群に分け、無作為に非盲検2群2期クロスオーバー法で実施した。被験者を選んだ基準等は以下の通りである。
<< Clinical trials using humans >>
A glucose tolerance test was performed on the subjects using a 50% (w / v) sucrose aqueous solution before and after ingestion of yogurt, and transition data of each blood glucose level was collected. Ten subjects were divided into two groups and randomly performed in an open-label, two-group, two-stage crossover method. The criteria for selecting the subjects are as follows.

<<<ヒト臨床試験における健常人の選択基準>>>
以下の基準をすべて満たす者を対象とした。
(1)同意取得時の年齢が20歳以上60歳未満の者
(2)健康な成人男女
(3)試験の参加に先立ち、試験製品および試験に関して十分な説明を受け、被験者本人の自由意志による文書同意が得られた者
<<< Selection Criteria for Healthy Persons in Human Clinical Trials >>>
Those who meet all of the following criteria were targeted.
(1) Persons aged between 20 and 60 years old at the time of consent acquisition (2) Healthy adult men and women (3) Prior to participating in the test, receive sufficient explanation about the test product and test, and the subject's free will Person who obtained document consent

<<<除外基準>>>
以下に抵触する者は、試験に組み入れないこととした。
(1)糖尿病と医師から診断され、現在治療中である者
(2)乳製品に対してアレルギーを有する者
(3)血糖に影響を及ぼす可能性がある医薬品や健康食品を服用している者
(4)慢性疾患を有し、医薬品を常用している者
(5)胃や腸を切除されている者
(6)その他、試験責任(分担)者が当該試験の被験者として不適当と判断した者
<<< Exclusion Criteria >>
Those who violate the following will not be included in the test.
(1) Those who have been diagnosed with diabetes by a doctor and are currently being treated (2) Those who are allergic to dairy products (3) Those who are taking medicines or health foods that may affect blood glucose (4) Those who have chronic diseases and regularly use medicines (5) Those who have had their stomach or intestines removed (6) Others who are responsible for the study (sharing) have judged that they are not suitable as subjects for the study. person

<<<制限事項>>>
(1)検査前日の夕食は19~23時に済ませ、以降は検査終了まで絶食とする。飲水(水のみ)は可。
(2)検査前日の過剰なアルコールの摂取は禁止とする。
(3)糖負荷1時間前から検査終了までは飲水禁止とする。
(4)検査当日は、起床~検査終了までの間、禁煙とする。
(5)検査中は運動禁止とする。デイルームまたはベッド上にて安静にして過ごす。
<<< Restrictions >>>
(1) Supper on the day before the inspection will be finished from 19:00 to 23:00, and after that, fast until the end of the inspection. Drinking water (water only) is allowed.
(2) Excessive alcohol intake on the day before the test is prohibited.
(3) Drinking water is prohibited from 1 hour before the sugar load to the end of the test.
(4) On the day of the inspection, smoking is prohibited from waking up to the end of the inspection.
(5) Exercise is prohibited during the inspection. Stay calm in the day room or on the bed.

ヨーグルト有無のショ糖負荷試験を2日間以上の間を空けて実施した。各被験者でのショ糖負荷の実施時刻は、同―となるようにした。被験者の手の指先より、穿刺器具を用いて採取した。ショ糖負荷15分前に、被験者の血糖値を測定した。ヨーグルトの摂取は、ショ糖負荷10分前に行った。200mLを2分以内に摂取させた。その後、50%(w/v)ショ糖水溶液150mLを飲用させた(1分以内に全量を摂取させた)。ショ糖負荷後の15、30、45、60、90、120分において、血糖値を測定した。血糖値は、簡易血糖測定器(アキュチェックアビバ(Roche))を用いて測定した。本臨床試験の実施にあたっては、大崎病院東京ハートセンターの倫理審査委員会による承認を受けた。 A sucrose tolerance test with or without yogurt was carried out at intervals of 2 days or more. The time of sucrose loading in each subject was set to be the same. It was collected from the fingertips of the subject's hand using a piercing device. The blood glucose level of the subject was measured 15 minutes before the sucrose load. The yogurt was ingested 10 minutes before the sucrose load. 200 mL was ingested within 2 minutes. Then, 150 mL of a 50% (w / v) sucrose aqueous solution was drunk (the whole amount was ingested within 1 minute). Blood glucose levels were measured at 15, 30, 45, 60, 90 and 120 minutes after sucrose loading. The blood glucose level was measured using a simple blood glucose meter (Accucheck Aviva (Roche)). The clinical trial was approved by the Institutional Review Board of Osaki Hospital Tokyo Heart Center.

<<統計学的解析>>
数値データは、平均±標準誤差(mean ± standard error of the mean(SEM))で表示した。有意差はスチューデントのt検定(Student's t-test)を用いて評価した。
<< Statistical analysis >>
Numerical data are presented as mean ± standard error of the mean (SEM). Significant differences were assessed using Student's t-test.

実施例1
<スクロース摂食によるカイコの体液中グルコース濃度の上昇を抑制する乳酸菌の同定>
これまでの研究により、カイコにおいて、α-グリコシダーゼ阻害活性を有する乳酸菌が、ショ糖摂取による体液中のグルコース濃度上昇を抑えることがわかっている(国際出願番号PCT/JP2016/079218、Matsumoto Y et al., Sci Rep., 2016)。
そこで、発明者らが保有する乳酸菌ライブラリー(表1)の中からスクロースの摂食によるカイコの体液中グルコース濃度の上昇を著しく阻害する乳酸菌を探索した。
Example 1
<Identification of lactic acid bacteria that suppress the increase in glucose concentration in the body fluid of silk moth due to sucrose feeding>
Previous studies have shown that lactic acid bacteria with α-glycosidase inhibitory activity suppress the increase in glucose concentration in body fluids due to sucrose ingestion in silk moth (International Application No. PCT / JP2016 / 079218, Matsumoto Y et al). ., Sci Rep., 2016).
Therefore, from the lactic acid bacteria library (Table 1) possessed by the inventors, we searched for lactic acid bacteria that significantly inhibit the increase in glucose concentration in the body fluid of silk moth due to feeding of sucrose.

Figure 0007054111000001
Figure 0007054111000001

5齢1日目のカイコに、10%スクロース餌に表1の各種乳酸菌(餌全体に対して25%)を加えた餌を1時間与えた。その後カイコの体液を回収し、体液中のグルコース濃度を測定し、スチューデントのt検定(Student's t-test)を用いて有意差検定を行った。結果を図1に示す。
図1中、縦軸はグルコース濃度(mg/dL)を示す。横軸の「Control」は、乳酸菌を含有しない、10%スクロース餌をカイコに与えたときの結果を示す。* はP<0.05であり、 エラーバーは標準誤差(SEM)を示す。1群当たりn=3で行った。
The silk moths on the 1st day of the 5th instar were fed with a 10% sucrose diet containing various lactic acid bacteria (25% of the total diet) in Table 1 for 1 hour. After that, the body fluid of the silk moth was collected, the glucose concentration in the body fluid was measured, and a significant difference test was performed using Student's t-test. The results are shown in FIG.
In FIG. 1, the vertical axis shows the glucose concentration (mg / dL). “Control” on the horizontal axis shows the results when the silk moth was fed a 10% sucrose diet containing no lactic acid bacteria. * Is P <0.05, and error bars indicate standard error (SEM). It was performed at n = 3 per group.

図1の結果、Enterococcus faecalis 0831-07 (Enterococcus faecalis #Ef-1)株が、10%スクロース餌の摂食によるカイコの血糖値の上昇を顕著に抑制した。
本明細書や図面等においては、Enterococcus faecalis 0831-07を、「乳酸菌0831-07」又は「乳酸菌#Ef-1」と略記する場合がある。
As a result of FIG. 1, the Enterococcus faecalis 0831-07 (Enterococcus faecalis # Ef-1) strain markedly suppressed the increase in blood glucose level of silk moth due to feeding with a 10% sucrose diet.
In the present specification and drawings, Enterococcus faecalis 0831-07 may be abbreviated as "lactic acid bacterium 0831-07" or "lactic acid bacterium # Ef-1".

次に、5齢1日目のカイコに、10質量%スクロース餌に乳酸菌0831-07株(餌全体に対して0~50質量%)を加えた餌を1時間与えた。その後カイコの体液を回収し、体液中のグルコース濃度を測定した。結果を図2に示す。
図2中、縦軸はグルコース濃度(mg/dL)、横軸は乳酸菌0831-07株の含有量(質量%)を示す。**はP<0.01であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=5で行った。
Next, the silk moths on the first day of the 5th instar were fed a diet containing a 10 mass% sucrose diet supplemented with a lactic acid bacterium 0831-07 strain (0 to 50 mass% with respect to the total diet) for 1 hour. After that, the body fluid of the silk moth was collected, and the glucose concentration in the body fluid was measured. The results are shown in FIG.
In FIG. 2, the vertical axis shows the glucose concentration (mg / dL), and the horizontal axis shows the content (mass%) of the lactic acid bacterium 0831-07 strain. ** is P <0.01 and error bars indicate standard error (SEM). It was performed at n = 5 per group.

図2の結果、乳酸菌0831-07株による血糖上昇の抑制効果は、餌に加える菌体量依存的であった。 As a result of FIG. 2, the effect of suppressing the increase in blood glucose by the lactic acid bacterium 0831-07 strain was dependent on the amount of cells added to the diet.

次に、5齢1日目のカイコに、10質量%スクロース餌、又は、「10質量%グルコース餌に乳酸菌0831-07株(餌全体に対して25質量%)を加えた餌」を1時間与えた。カイコの体液を回収し、体液中のグルコース濃度を測定した。スチューデントのt検定(Student's t-test)を用いて有意差検定を行った。結果を図3に示す。
図3中、縦軸はグルコース濃度(mg/dL)を示す。横軸の「+Sucrose」は10質量%スクロース餌、「+Glucose」は10質量%グルコース餌を示す。***はP<0.001であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=7で行った。
Next, on the first day of the 5th instar, a 10 mass% sucrose diet or "a diet obtained by adding a lactic acid bacterium 0831-07 strain (25 mass% to the total diet) to a 10 mass% glucose diet" for 1 hour. Gave. The body fluid of the silk moth was collected and the glucose concentration in the body fluid was measured. A significant difference test was performed using Student's t-test. The results are shown in FIG.
In FIG. 3, the vertical axis shows the glucose concentration (mg / dL). “+ Sucrose” on the horizontal axis indicates a 10% by mass sucrose diet, and “+ Glucose” indicates a 10 mass% glucose diet. *** is P <0.001, and error bars indicate standard error (SEM). It was performed at n = 7 per group.

図3の結果、乳酸菌0831-07(乳酸菌#Ef-1)株は、「10質量%スクロース餌の摂食によるカイコの血糖値の上昇」を顕著に抑制した。
なお、グルコースを摂食させた場合の体液中のグルコース濃度の上昇に対しても、乳酸菌0831-07株による抑制効果が認められた。
また、乳酸菌0831-07株は、グルコース又はフルクトースが入った培地で増殖可能であった。
As a result of FIG. 3, the lactic acid bacterium 0831-07 (lactic acid bacterium # Ef-1) strain remarkably suppressed "the increase in blood glucose level of silk moth due to feeding of 10% by mass sucrose diet".
In addition, the inhibitory effect of the lactic acid bacterium 0831-07 strain was also observed on the increase in glucose concentration in the body fluid when glucose was fed.
In addition, the lactic acid bacterium 0831-07 strain was able to grow in a medium containing glucose or fructose.

次に、5齢1日目のカイコに、10質量%スクロース餌に、「乳酸菌0831-07株(餌全体に対して25質量%)」又は「オートクレーブ処理により熱処理された乳酸菌0831-07株(餌全体に対して25質量%)」を加えた餌を1時間与えた。その後、カイコの体液を回収し、体液中のグルコース濃度を測定した。スチューデントのt検定(Student's t-test)を用いて有意差検定を行った。結果を図4に示す。
図4中、縦軸はグルコース濃度(mg/dL)を示す。横軸の「Control」は、乳酸菌を含有しない、10質量%スクロース餌をカイコに与えたときの結果を示す。「-」は、熱処理を行っていない乳酸菌0831-07(#Ef-1)株、「Heat-killed」は、オートクレーブ処理により熱処理された乳酸菌0831-07株を示す。
Next, "lactic acid bacteria 0831-07 strain (25% by mass with respect to the whole feed)" or "lactic acid bacteria 0831-07 strain heat-treated by autoclave treatment" (Lactic acid bacteria 0831-07 strain) on the 5th instar 1st day silkworm, 10% by mass sucrose diet ( A diet containing 25% by mass) ”was given for 1 hour. Then, the body fluid of the silk moth was collected, and the glucose concentration in the body fluid was measured. A significant difference test was performed using Student's t-test. The results are shown in FIG.
In FIG. 4, the vertical axis shows the glucose concentration (mg / dL). “Control” on the horizontal axis shows the results when the silk moth was fed a 10% by mass sucrose diet containing no lactic acid bacteria. "-" Indicates a lactic acid bacterium 0831-07 (# Ef-1) strain that has not been heat-treated, and "Heat-killed" indicates a lactic acid bacterium 0831-07 strain that has been heat-treated by an autoclave treatment.

図4の結果、乳酸菌0831-07株の熱処理菌体画分は、未処理の生菌の場合と同様に、スクロース餌の摂食によるカイコの体液中のグルコース濃度の上昇を抑制した(図4)。
よって、乳酸菌0831-07株のスクロース摂食餌による血糖上昇の抑制効果は、乳酸菌0831-07株による熱処理耐性成分によるカイコ腸管のα-グリコシダーゼの阻害によることを示唆した。
As a result of FIG. 4, the heat-treated bacterial cell fraction of the lactic acid bacterium 0831-07 strain suppressed the increase in glucose concentration in the body fluid of the silk moth due to feeding of the sucrose feed, as in the case of the untreated live bacterium (FIG. 4). ).
Therefore, it was suggested that the inhibitory effect of the lactic acid bacterium 0831-07 strain on the increase in blood glucose by feeding sucrose was due to the inhibition of α-glycosidase in the silk moth intestinal tract by the heat treatment resistant component of the lactic acid bacterium 0831-07 strain.

実施例2
<ヒトのスクロース摂食による血糖値の上昇に対する乳酸菌0831-07株の阻害効果>
次に、乳酸菌0831-07株がヒトにおける食後高血糖を抑制するかを検証するため、乳酸菌0831-07株を用いて牛乳からヨーグルトを製造した。
被験者に対して該ヨーグルト非摂取時とヨーグルト摂取時でのクロスオーバー法で、スクロース(ショ糖)負荷試験を実施した。
ヨーグルト摂取群の被験者は、ショ糖負荷10分前に、ヨーグルト200mLを摂取した。その後、ヨーグルト非摂取群とヨーグルト摂取群の被験者共、50%(w/v)ショ糖水溶液150mLを飲用した。ショ糖負荷後、15、30、45、60、90、120分において血糖値を測定した。血糖値は、指先から微量の血液を採取し、簡易血糖測定器を用いて測定した。スチューデントのt検定(Student's t-test)を用いて有意差検定を行った。結果を図5に示す。
図5中、縦軸はグルコース濃度(mg/dL)を示す。横軸は、スクロース摂取(負荷)後の経過時間(分)を示す。* はP<0.05であり、 エラーバーは標準誤差(SEM)を示す。1群当たりn=10で行った。
Example 2
<Inhibition effect of lactic acid bacterium 0831-07 strain on increase in blood glucose level due to human sucrose feeding>
Next, in order to verify whether the lactic acid bacterium 0831-07 suppresses postprandial hyperglycemia in humans, yogurt was produced from milk using the lactic acid bacterium 0831-07 strain.
A sucrose (sucrose) loading test was performed on the subjects by a crossover method between when the yogurt was not ingested and when the yogurt was ingested.
Subjects in the yogurt intake group ingested 200 mL of yogurt 10 minutes before the sucrose load. Then, both the subjects in the yogurt non-ingestion group and the yogurt ingestion group drank 150 mL of a 50% (w / v) sucrose aqueous solution. Blood glucose levels were measured at 15, 30, 45, 60, 90 and 120 minutes after sucrose loading. The blood glucose level was measured by collecting a small amount of blood from the fingertip and using a simple blood glucose meter. A significant difference test was performed using Student's t-test. The results are shown in FIG.
In FIG. 5, the vertical axis shows the glucose concentration (mg / dL). The horizontal axis shows the elapsed time (minutes) after ingestion (loading) of sucrose. * Is P <0.05, and error bars indicate standard error (SEM). It was performed at n = 10 per group.

図5の結果、乳酸菌0831-07株を用いて製造したヨーグルトを摂食した被験者は、非摂食群と比較して、スクロース負荷後45分における血糖値が低かった(図5)。
よって、乳酸菌0831-07株の菌体成分がヒトにおけるスクロース(ショ糖)摂取による血糖値の上昇を抑制する効果を有することを示唆した。
As a result of FIG. 5, the subjects who ate the yogurt produced using the lactic acid bacterium strain 0831-07 had lower blood glucose levels 45 minutes after sucrose loading as compared with the non-feeding group (FIG. 5).
Therefore, it was suggested that the bacterial cell component of the lactic acid bacterium 0831-07 strain has an effect of suppressing an increase in blood glucose level due to ingestion of sucrose (sucrose) in humans.

実施例3
<血糖低下剤及び糖尿病予防治療薬の製造>
<<錠剤>>
培養した乳酸菌0831-07を、121℃、20分で滅菌処理後、濃縮した。該濃縮させた乳酸菌0831-07の培養液20.0mg、ラクトース40mg、デンプン20mg、及び、低置換度ヒドロキシプロピルセルロース5mgを均一に混合した後、ヒドロキシプロピルメチルセルロース8質量%水溶液を結合剤として湿式造粒法で打錠用顆粒を製造した。これに、滑沢性を与えるのに必要なステアリン酸マグネシウムを0.5mg~1mg加えてから打錠機を用いて打錠し錠剤とした。
Example 3
<Manufacturing of hypoglycemic agents and diabetes preventive and therapeutic agents>
<< Tablets >>
The cultured lactic acid bacterium 0831-07 was sterilized at 121 ° C. for 20 minutes and then concentrated. After uniformly mixing 20.0 mg of the concentrated culture solution of lactic acid bacterium 0831-07, 40 mg of lactose, 20 mg of starch, and 5 mg of low-substitution hydroxypropyl cellulose, wet preparation using an 8% by mass aqueous solution of hydroxypropylmethyl cellulose as a binder. Granules for tableting were produced by the granulation method. To this, 0.5 mg to 1 mg of magnesium stearate necessary for imparting smoothness was added, and then the tablets were tableted using a tableting machine.

<<液剤>>
上記濃縮させた乳酸菌0831-07の培養液10.0mgを、2質量%の2-ヒドロキシプロピル-β-サイクロデキストリン水溶液10mLに溶解し注射用液剤とした。
<< Liquid >>
10.0 mg of the concentrated culture solution of lactic acid bacterium 0831-07 was dissolved in 10 mL of a 2% by mass 2-hydroxypropyl-β-cyclodextrin aqueous solution to prepare an injection solution.

実施例4
<乳酸菌死菌添加による、スクロース含有餌の給餌によるカイコ体液中のグルコース濃度上昇の阻害効果>
10質量%スクロース含有餌に、乳酸菌0831-07(#Ef-1)株又はオートクレーブ処理された乳酸菌0831-07(#Ef-1)株の熱処理菌体画分(Heat-killed #Ef-1)を餌全体に対して6.3、12.5、25質量%になるように加えた餌を、5齢1日目のカイコに1時間与えた。該カイコの体液を回収し、体液中のグルコース濃度を測定した。結果を図6aに示す。
Example 4
<Inhibition effect of increasing glucose concentration in silk moth body fluid by feeding sucrose-containing food by adding lactic acid bacteria killed bacteria>
Heat-killed cell fraction of lactic acid bacterium 0831-07 (# Ef-1) strain or autoclaved lactic acid bacterium 0831-07 (# Ef-1) strain on a diet containing 10% by mass sucrose (Heat-killed # Ef-1) Was fed to silk moths on the 1st day of the 5th instar for 1 hour. The body fluid of the silk moth was collected and the glucose concentration in the body fluid was measured. The results are shown in FIG. 6a.

図6a中、縦軸はグルコース濃度(mg/dL)を示す。横軸の「No bacteria」は乳酸菌0831-07(#Ef-1)株を含有しない、10質量%スクロース含有餌(Sucrose diet)をカイコに与えたときの結果を示す。「Viable #Ef-1 content」は熱処理を行っていない乳酸菌0831-07株の含有量、「Heat-killed #Ef-1 content」は熱処理された乳酸菌0831-07株の含有量を示す。
***はP<0.001、**はp<0.01であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=11~14で行った。
In FIG. 6a, the vertical axis shows the glucose concentration (mg / dL). “No bacteria” on the horizontal axis shows the results when the silk moth was fed a 10% by mass sucrose-containing diet (Sucrose diet) containing no lactic acid bacterium 0831-07 (# Ef-1) strain. "Viable # Ef-1 content" indicates the content of the unheat-treated lactic acid bacterium 0831-07 strain, and "Heat-killed # Ef-1 content" indicates the content of the heat-treated lactic acid bacterium 0831-07 strain.
*** is P <0.001, ** is p <0.01, and error bars indicate standard error (SEM). The results were performed at n = 11 to 14 per group.

図6aの結果、乳酸菌0831-07株による血糖上昇の抑制効果は、餌に加える菌体量に依存して増強することが分かった。また、乳酸菌0831-07株の熱処理菌体画分も用量依存的に、スクロース含有餌の摂食によるカイコ体液中のグルコース濃度上昇を抑制した。 As a result of FIG. 6a, it was found that the effect of suppressing the increase in blood glucose by the lactic acid bacterium 0831-07 strain was enhanced depending on the amount of cells added to the diet. In addition, the heat-treated bacterial cell fraction of the lactic acid bacterium 0831-07 strain also suppressed the increase in glucose concentration in the silk moth body fluid due to the feeding of the sucrose-containing bait in a dose-dependent manner.

次に、10質量%グルコース餌に乳酸菌0831-07(#Ef-1)株又はオートクレーブ処理された乳酸菌0831-07(#Ef-1)株の熱処理菌体画分(Heat-killed #Ef-1)を餌全体に対して25質量%になるように加えた餌を、5齢1日目のカイコに1時間与えた。該カイコの体液を回収し、体液中のグルコース濃度を測定し、スチューデントのt検定を用いて有意差検定を行った。結果を図6bに示す。 Next, a heat-killed cell fraction (Heat-killed # Ef-1) of a lactic acid bacterium 0831-07 (# Ef-1) strain or an autoclaved lactic acid bacterium 0831-07 (# Ef-1) strain on a 10 mass% glucose diet. ) Was added so as to be 25% by mass based on the total diet, and the lactic acid bacteria on the first day of the 5th instar were fed for 1 hour. The body fluid of the silk moth was collected, the glucose concentration in the body fluid was measured, and a significant difference test was performed using Student's t-test. The results are shown in FIG. 6b.

図6b中、縦軸はグルコース濃度(mg/dL)を示す。横軸の「No bacteria」は乳酸菌0831-07(#Ef-1)株を含有しない、10質量%グルコース餌(Glucose diet)をカイコに与えたときの結果を示す。「Viable」は熱処理を行っていない乳酸菌0831-07株を加えた10質量%グルコース餌、「Heat-killed」は熱処理された乳酸菌0831-07株を加えた10質量%グルコース餌をカイコに与えたときの結果を示す。
*はP<0.05、**はP<0.01であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=6~7で行った。
In FIG. 6b, the vertical axis shows the glucose concentration (mg / dL). “No bacteria” on the horizontal axis shows the results when the silk moth was fed a 10% by mass glucose diet containing no lactic acid bacterium 0831-07 (# Ef-1) strain. "Viable" was given a 10% by mass glucose diet containing an unheat-treated lactic acid bacterium 0831-07 strain, and "Heat-killed" was given a 10% by mass glucose feed containing a heat-treated lactic acid bacterium 0831-07 strain. The result of the time is shown.
* Is P <0.05, ** is P <0.01, and error bars indicate standard error (SEM). It was performed at n = 6 to 7 per group.

図6bの結果、熱処理を行っていない乳酸菌0831-07株は、グルコース含有餌の摂食によるカイコ体液中のグルコース濃度上昇を抑制した。一方、乳酸菌0831-07株の熱処理菌体には、グルコース摂食後のカイコ体液中のグルコース濃度上昇を抑制する活性は見出されなかった。 As a result of FIG. 6b, the lactic acid bacterium strain 0831-07, which had not been heat-treated, suppressed the increase in glucose concentration in the silk moth body fluid due to the feeding of the glucose-containing food. On the other hand, no activity was found in the heat-treated cells of the lactic acid bacterium 0831-07 strain to suppress the increase in glucose concentration in the silk moth body fluid after glucose feeding.

以上の結果は、乳酸菌0831-07(#Ef-1)株の生菌が、スクロース及びグルコース摂取後のカイコ体液中のグルコース濃度上昇を抑制すること、並びに乳酸菌0831-07(#Ef-1)株の熱処理菌体には、スクロース摂取後のカイコの体液中のグルコース濃度の上昇を抑制する活性が残っていることが示唆された。 The above results show that the viable lactic acid bacterium 0831-07 (# Ef-1) suppresses the increase in glucose concentration in the silk moth body fluid after ingestion of sucrose and glucose, and that the lactic acid bacterium 0831-07 (# Ef-1) It was suggested that the heat-treated cells of the strain remained active in suppressing the increase in glucose concentration in the body fluid of silk moth after ingestion of sucrose.

実施例5
<in vitroでのカイコの腸管における糖移行評価系の実験スキームの構築>
Example 5
<Construction of experimental scheme for sugar transfer evaluation system in silk moth in vitro>

次に、乳酸菌0831-07株がスクロース摂食後のカイコの血糖上昇を抑制する機構について、解明を試みた。哺乳動物においてスクロースは、腸管内でα-グリコシダーゼによりグルコースとフルクトースに分解され、腸管から吸収されることが知られている。まず、カイコの腸管内のスクロースがα-グリコシダーゼにより分解されてグルコースが腸管外に移行する過程を解析するための実験系の構築を行った。
5齢1日目のカイコの腸管を摘出し、糸で縛って溶液を入れられる状態にした。該カイコの腸管内にスクロース溶液を加えてその溶液が漏れないように糸で縛った。そして、PBS中でインキュベーションし、腸管外に輸送されたグルコースを定量した。
「in vitroでのカイコの腸管における糖移行評価系の実験スキーム」を図7aに示す。
Next, we attempted to elucidate the mechanism by which the lactic acid bacterium strain 0831-07 suppresses the increase in blood glucose of silk moths after feeding sucrose. In mammals, sucrose is known to be decomposed into glucose and fructose by α-glycosidase in the intestinal tract and absorbed from the intestinal tract. First, an experimental system was constructed to analyze the process by which sucrose in the intestinal tract of silk moth is decomposed by α-glycosidase and glucose is transferred to the outside of the intestinal tract.
The intestinal tract of the silk moth on the first day of the 5th instar was removed and tied with a thread so that the solution could be put into it. A sucrose solution was added into the intestinal tract of the silk moth and tied with a thread so that the solution did not leak. Then, it was incubated in PBS to quantify glucose transported out of the intestinal tract.
"Experimental scheme of sugar transfer evaluation system in silk moth in vitro" is shown in FIG. 7a.

上記実験スキームを用いて、カイコの腸管内にスクロース溶液、又はスクロース溶液にアカルボース(40mg/mL)を加えたサンプルをカイコの腸管に入れ、27℃でインキュベーションし、経時的に腸管外液のグルコース濃度を測定した。結果を図7bに示す。
図7b中、縦軸はグルコース濃度(mg/dL)を示す。横軸はインキュベート時間(分)を示す。
Using the above experimental scheme, a sucrose solution in the intestinal tract of the silk moth or a sample of acarbose (40 mg / mL) added to the sucrose solution is placed in the intestinal tract of the silk moth, incubated at 27 ° C., and glucose in the extraintestinal fluid over time. The concentration was measured. The results are shown in FIG. 7b.
In FIG. 7b, the vertical axis shows the glucose concentration (mg / dL). The horizontal axis shows the incubation time (minutes).

図7bの結果、腸管外液中のグルコース濃度は、時間依存に上昇することがわかった(図7b中、黒丸)。また、該腸管外液中のグルコース濃度の上昇は、α-グリコシダーゼ阻害剤であるアカルボースを加えることにより抑制された(図7b中、白丸)。この結果から、カイコの腸管内において、スクロースがα-グリコシダーゼによりグルコースとフルクトースに分解され、さらに腸管外に輸送されることが示唆された。 As a result of FIG. 7b, it was found that the glucose concentration in the extraintestinal fluid increased in a time-dependent manner (black circles in FIG. 7b). In addition, the increase in glucose concentration in the extraintestinal fluid was suppressed by adding acarbose, which is an α-glycosidase inhibitor (white circle in FIG. 7b). This result suggests that in the intestinal tract of silkworm, sucrose is decomposed into glucose and fructose by α-glycosidase and further transported out of the intestinal tract.

実施例6
<乳酸菌0831-07株による、スクロース摂食後の食後高血糖抑制のメカニズム解析>
実施例5で構築した実験スキームを用いて、カイコの腸管内にスクロース溶液、又はスクロース溶液に乳酸菌0831-07株(250mg(湿重量)/mL)を加えたサンプルをカイコの腸管に入れ、27℃でインキュベーションし、経時的に腸管外液のグルコース濃度を測定した。結果を図8aに示す。
図8a中、縦軸はグルコース濃度(mg/dL)を示す。横軸はインキュベート時間(分)を示す。
Example 6
<Mechanical analysis of postprandial hyperglycemia suppression after eating sucrose by lactic acid bacterium 0831-07 strain>
Using the experimental scheme constructed in Example 5, a sucrose solution or a sample obtained by adding a sucrose solution to a sucrose solution with a lactic acid bacterium 0831-07 strain (250 mg (wet weight) / mL) was placed in the sucrose intestine, and 27 Incubation was carried out at ° C, and the glucose concentration of the extraintestinal fluid was measured over time. The results are shown in FIG. 8a.
In FIG. 8a, the vertical axis shows the glucose concentration (mg / dL). The horizontal axis shows the incubation time (minutes).

また、カイコの腸管内にスクロース溶液、又はスクロース溶液に乳酸菌0831-07株(31mg、63mg、125mg、250mg(湿重量)/mL)を加えたサンプルをカイコの腸管に入れ、27℃でインキュベーションし、60分後の腸管外液のグルコース濃度を測定した。結果を図8bに示す。
図8b中、縦軸はグルコース濃度(mg/dL)を示す。横軸は乳酸菌0831-07(#Ef-1)株の量(mg/mL)を示す。*はP<0.05、**はp<0.01であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=3~5で行った。
In addition, a sucrose solution in the intestinal tract of the silk moth, or a sample obtained by adding a lactic acid bacterium 0831-07 strain (31 mg, 63 mg, 125 mg, 250 mg (wet weight) / mL) to the sucrose solution is placed in the intestinal tract of the silk moth and incubated at 27 ° C. , The glucose concentration of the extraintestinal fluid after 60 minutes was measured. The results are shown in FIG. 8b.
In FIG. 8b, the vertical axis shows the glucose concentration (mg / dL). The horizontal axis shows the amount (mg / mL) of the lactic acid bacterium 0831-07 (# Ef-1) strain. * Is P <0.05, ** is p <0.01, and error bars indicate standard error (SEM). It was performed at n = 3 to 5 per group.

図8a及びbの結果、カイコの腸管内のスクロース溶液中に乳酸菌0831-07株の生菌を添加すると、腸管外液中のグルコース濃度の上昇は抑制された。また、該抑制効果は、菌体量に依存して増強することが分かった(図8b)。 As a result of FIGS. 8a and 8b, when the viable lactic acid bacterium 0831-07 strain was added to the sucrose solution in the intestinal tract of silk moth, the increase in glucose concentration in the extraintestinal fluid was suppressed. It was also found that the inhibitory effect was enhanced depending on the amount of cells (FIG. 8b).

次に、カイコの腸管内にスクロース溶液、又はスクロース溶液にオートクレーブ処理した乳酸菌0831-07株の熱処理菌体画分(Heat-killed #Ef-1)(250mg(湿重量)/mL)を加えたサンプルをカイコの腸管に入れ、27℃でインキュベーションし、経時的に腸管外液のグルコース濃度を測定した。結果を図8cに示す。
図8c中、縦軸はグルコース濃度(mg/dL)を示す。横軸はインキュベート時間(分)を示す。
Next, a sucrose solution or a heat-treated bacterial cell fraction (Heat-killed # Ef-1) (250 mg (wet weight) / mL) of an autoclaved lactic acid bacterium 0831-07 strain was added to the sucrose solution in the intestinal tract of silk moth. The sample was placed in the intestinal tract of the silk moth, incubated at 27 ° C., and the glucose concentration of the extraintestinal fluid was measured over time. The results are shown in FIG. 8c.
In FIG. 8c, the vertical axis shows the glucose concentration (mg / dL). The horizontal axis shows the incubation time (minutes).

また、カイコの腸管内にスクロース溶液、又はスクロース溶液にオートクレーブ処理した乳酸菌0831-07株の熱処理菌体画分(Heat-killed #Ef-1)(31mg、63mg、125mg、250mg(湿重量)/mL)を加えたサンプルをカイコの腸管に入れ、27℃でインキュベーションし、60分後の腸管外液のグルコース濃度を測定した。結果を図8dに示す。
図8d中、縦軸はグルコース濃度(mg/dL)を示す。横軸はオートクレーブ処理した乳酸菌0831-07株の熱処理菌体画分(Heat-killed #Ef-1)の量(mg/mL)を示す。**はp<0.01であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=3~5で行った。
In addition, a sucrose solution in the intestinal tract of silk moth, or a heat-treated bacterial cell fraction (Heat-killed # Ef-1) (31 mg, 63 mg, 125 mg, 250 mg (wet weight)) of a lactic acid bacterium 0831-07 strain autoclaved into a sucrose solution / The sample to which mL) was added was placed in the intestinal tract of silk moth, incubated at 27 ° C., and the glucose concentration of the extraintestinal solution after 60 minutes was measured. The results are shown in FIG. 8d.
In FIG. 8d, the vertical axis shows the glucose concentration (mg / dL). The horizontal axis shows the amount (mg / mL) of the heat-treated bacterial cell fraction (Heat-killed # Ef-1) of the autoclaved lactic acid bacterium 0831-07 strain. ** is p <0.01 and error bars indicate standard error (SEM). It was performed at n = 3 to 5 per group.

図8c及びdの結果、乳酸菌0831-07株の熱処理菌体画分を添加しても腸管外液中のグルコース濃度の上昇は抑制された。また、該抑制効果は、菌体量に依存して増強することが分かった(図8d)。
これらの結果から、乳酸菌0831-07株の熱耐性因子は、カイコの腸管内のスクロースが分解されて得られた分子(グルコース)が腸管外に移行する過程を阻害することが示唆された。
As a result of FIGS. 8c and 8d, the increase in glucose concentration in the extraintestinal fluid was suppressed even when the heat-treated bacterial cell fraction of the lactic acid bacterium 0831-07 strain was added. It was also found that the inhibitory effect was enhanced depending on the amount of cells (FIG. 8d).
From these results, it was suggested that the heat resistance factor of the lactic acid bacterium 0831-07 strain inhibits the process of transfer of the molecule (glucose) obtained by decomposing sucrose in the intestinal tract of silk moth to the outside of the intestinal tract.

次に、カイコの腸管内にグルコース溶液、又はグルコース溶液に乳酸菌0831-07株(250mg(湿重量)/mL)を加えたサンプルをカイコの腸管に入れ、27℃でインキュベーションし、経時的に腸管外液のグルコース濃度を測定した。結果を図9aに示す。
図9a中、縦軸はグルコース濃度(mg/dL)を示す。横軸はインキュベート時間(分)を示す。
Next, a glucose solution in the intestinal tract of the silk moth, or a sample obtained by adding a lactic acid bacterium 0831-07 strain (250 mg (wet weight) / mL) to the glucose solution, is placed in the intestinal tract of the silk moth, incubated at 27 ° C., and the intestinal tract over time. The glucose concentration of the external solution was measured. The results are shown in FIG. 9a.
In FIG. 9a, the vertical axis shows the glucose concentration (mg / dL). The horizontal axis shows the incubation time (minutes).

図9aの結果、カイコの腸管内にグルコース溶液を封入した場合にも時間経過に伴うグルコースの腸管外への透過が見られた。 As a result of FIG. 9a, even when the glucose solution was encapsulated in the intestinal tract of the silk moth, permeation of glucose out of the intestinal tract was observed with the passage of time.

また、カイコの腸管内にグルコース溶液、又はグルコース溶液にオートクレーブ処理した乳酸菌0831-07株の熱処理菌体画分(Heat-killed #Ef-1)(250mg(湿重量)/mL)を加えたサンプルをカイコの腸管に入れ、27℃でインキュベーションし、経時的に腸管外液のグルコース濃度を測定した。結果を図9bに示す。
図9b中、縦軸はグルコース濃度(mg/dL)を示す。横軸の「No bacteria」は乳酸菌0831-07(#Ef-1)株を含有しない、グルコース溶液の結果を示す。「Viable」は熱処理を行っていない乳酸菌0831-07株を加えたグルコース溶液、「Heat-killed」は熱処理された乳酸菌0831-07株を加えたグルコース溶液の結果を示す。*はp<0.05であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=3~4で行った。
In addition, a sample in which a glucose solution or a heat-treated bacterial cell fraction (Heat-killed # Ef-1) (250 mg (wet weight) / mL) of an autoclaved lactic acid bacterium strain 0831-07 was added to the glucose solution in the intestinal tract of silk moth. Was placed in the intestinal tract of silk moth and incubated at 27 ° C., and the glucose concentration of the extraintestinal fluid was measured over time. The results are shown in FIG. 9b.
In FIG. 9b, the vertical axis shows the glucose concentration (mg / dL). "No bacteria" on the horizontal axis shows the result of a glucose solution containing no lactic acid bacterium 0831-07 (# Ef-1) strain. "Viable" shows the result of the glucose solution to which the heat-treated lactic acid bacterium 0831-07 strain was added, and "Heat-killed" shows the result of the glucose solution to which the heat-treated lactic acid bacterium 0831-07 strain was added. * Is p <0.05, and error bars indicate standard error (SEM). It was performed at n = 3 to 4 per group.

乳酸菌0831-07株の生菌を腸管内に添加すると、腸管外液中のグルコース濃度の上昇が抑制されることが分かった(図9a及びb)。一方、乳酸菌0831-07株の熱処理菌体画分を添加した場合には、腸管外液中のグルコース濃度の上昇は抑制されなかった(図9b)。
これらの結果から、乳酸菌0831-07株の熱感受性因子が、カイコの腸管内から腸管外へのグルコース輸送を阻害することが示唆された。
It was found that the addition of live lactic acid bacteria 0831-07 strain into the intestinal tract suppressed the increase in glucose concentration in the extraintestinal fluid (FIGS. 9a and 9b). On the other hand, when the heat-treated bacterial cell fraction of the lactic acid bacterium 0831-07 strain was added, the increase in glucose concentration in the extraintestinal fluid was not suppressed (FIG. 9b).
These results suggest that the heat-sensitive factor of the lactic acid bacterium strain 0831-07 inhibits glucose transport from the intestinal tract to the outside of the intestinal tract of the silk moth.

実施例7
<乳酸菌0831-07株による、カイコ又はラットの腸管のα-グリコシダーゼ活性の阻害>
次に、乳酸菌0831-07株の熱処理画分がカイコ腸管のα-グリコシダーゼ活性を阻害するかを検討した。α-グリコシダーゼの測定は実施例2と同様に行った。
5齢1日目のカイコに通常餌を1日与えた。該カイコの腸管を超音波処理により破砕された細胞破砕画分と乳酸菌0831-07株の熱処理菌体画分(Heat-killed #Ef-1)を加えてα-グリコシダーゼ活性を測定した。結果を図10aに示す。
図10a中、縦軸は「Produced pNP」の濃度(nmol)を示す。「Produced pNP」の濃度(nmol)が高い程、α-グリコシダーゼ活性が高いことを示す。横軸は、乳酸菌0831-07株の熱処理菌体画分(Heat-killed #Ef-1)の量(mg/mL)を示す。
Example 7
<Inhibition of α-glycosidase activity in the intestinal tract of silk moth or rat by lactic acid bacterium 0831-07 strain>
Next, it was examined whether the heat-treated fraction of the lactic acid bacterium 0831-07 strain inhibits the α-glycosidase activity of the silk moth intestinal tract. The measurement of α-glycosidase was carried out in the same manner as in Example 2.
The silk moths on the first day of the fifth instar were fed with normal food for one day. The α-glycosidase activity was measured by adding a cell disruption fraction obtained by crushing the intestinal tract of the silk moth by ultrasonic treatment and a heat-treated bacterial cell fraction (Heat-killed # Ef-1) of the lactic acid bacterium 0831-07 strain. The results are shown in FIG. 10a.
In FIG. 10a, the vertical axis shows the concentration (nmol) of “Produced pNP”. The higher the concentration (nmol) of "Produced pNP", the higher the α-glycosidase activity. The horizontal axis shows the amount (mg / mL) of the heat-treated bacterial cell fraction (Heat-killed # Ef-1) of the lactic acid bacterium 0831-07 strain.

図10aの結果、カイコ腸管の細胞破砕画分には、α-グリコシダーゼ活性が認められ、乳酸菌0831-07株の熱処理画分は、この活性を用量依存的に阻害することがわかった。 As a result of FIG. 10a, α-glycosidase activity was observed in the cell disruption fraction of the silk moth intestinal tract, and it was found that the heat-treated fraction of the lactic acid bacterium 0831-07 strain inhibited this activity in a dose-dependent manner.

次に、ラット腸管アセトン抽出画分と乳酸菌0831-07株の熱処理菌体画分(Heat-killed #Ef-1)を加えてα-グリコシダーゼ活性を測定し、スチューデントのt検定を用いて有意差検定を行った。結果を図10bに示す。
図10b中、縦軸は「Produced pNP」の濃度(nmol)を示す。「Produced pNP」の濃度(nmol)が高い程、α-グリコシダーゼ活性が高いことを示す。横軸は、乳酸菌0831-07株の熱処理菌体画分(Heat-killed #Ef-1)の量(mg/mL)を示す。***はp<0.001であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=3で行った。
Next, the rat intestinal acetone extract fraction and the heat-treated bacterial cell fraction (Heat-killed # Ef-1) of the lactic acid bacterium 0831-07 strain were added to measure the α-glycosidase activity, and a significant difference was obtained using Student's t-test. The test was performed. The results are shown in FIG. 10b.
In FIG. 10b, the vertical axis shows the concentration (nmol) of "Produced pNP". The higher the concentration (nmol) of "Produced pNP", the higher the α-glycosidase activity. The horizontal axis shows the amount (mg / mL) of the heat-treated bacterial cell fraction (Heat-killed # Ef-1) of the lactic acid bacterium 0831-07 strain. *** is p <0.001, and error bars indicate standard error (SEM). It was performed at n = 3 per group.

図10bの結果、乳酸菌0831-07株の熱処理画分は、ラットの腸管破砕液中のα-グリコシダーゼ活性も用量依存的に阻害した。したがって、乳酸菌0831-07株の熱処理画分が、カイコ及び哺乳動物の腸管内のα-グリコシダーゼ活性を阻害し、腸管内のスクロースがグルコースとフルクトースに分解され、それらが腸管外に移行する過程を阻害されることが示唆された。 As a result of FIG. 10b, the heat-treated fraction of the lactic acid bacterium 0831-07 strain also inhibited the α-glycosidase activity in the rat intestinal lysate in a dose-dependent manner. Therefore, the heat-treated fraction of the lactic acid bacterium 0831-07 strain inhibits the α-glycosidase activity in the intestinal tract of silk moths and mammals, and the sucrose in the intestinal tract is decomposed into glucose and fructose, and they are transferred to the outside of the intestinal tract. It was suggested that it would be inhibited.

実施例8
<乳酸菌0831-07株によるグルコース取り込みに対する阻害効果>
Caco-2細胞は、ヒトの腸管由来の培養細胞であり、この細胞のグルコース取り込みを定量する方法が確立されている(Yamabe N., et al., Am J Physiol. Endocrinol. Metab., 2015)。該方法を用いて、乳酸菌0831-07株によるCaco-2細胞のグルコース取り込みに対する阻害効果を検証した。
まず、Caco-2細胞における2-NBDG(2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose)の取り込み系において、乳酸菌0831-07株の生菌を加えて、Caco-2細胞における傾向の取り込みを測定し、スチューデントのt検定を用いて有意差検定を行った。結果を図11Aに示す。
図11A中、縦軸はグルコース取り込み量を示し、対照(乳酸菌0831-07株の量が0%)を100%としたときの割合を示す。横軸は乳酸菌0831-07株の量(mg/ml)を示す。***はp<0.001であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=3で行った。
Example 8
<Inhibitory effect on glucose uptake by lactic acid bacterium 0831-07 strain>
Caco-2 cells are cultured cells derived from the human intestinal tract, and methods for quantifying glucose uptake of these cells have been established (Yamabe N., et al., Am J Physiol. Endocrinol. Metab., 2015). .. Using this method, the inhibitory effect of the lactic acid bacterium strain 0831-07 on glucose uptake of Caco-2 cells was verified.
First, in the uptake system of 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino] -D-glucose) in Caco-2 cells, lactic acid bacteria 0831- Live bacteria of 07 strain were added, the uptake of the tendency in Caco-2 cells was measured, and a significant difference test was performed using Student's t-test. The results are shown in FIG. 11A.
In FIG. 11A, the vertical axis shows the amount of glucose uptake, and the ratio when the control (the amount of the lactic acid bacterium 0831-07 strain is 0%) is 100% is shown. The horizontal axis shows the amount (mg / ml) of the lactic acid bacterium 0831-07 strain. *** is p <0.001, and error bars indicate standard error (SEM). It was performed at n = 3 per group.

図11Aの結果、乳酸菌0831-07株は、Caco-2細胞のグルコース取り込みを阻害していることが分かった。 As a result of FIG. 11A, it was found that the lactic acid bacterium strain 0831-07 inhibits glucose uptake by Caco-2 cells.

次に、Caco-2細胞における2-NBDG(2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose)の取り込み系において、乳酸菌0831-07株の生菌と熱処理(Heat-treated)菌体画分を加えて、Caco-2細胞における傾向の取り込みを測定し、スチューデントのt検定を用いて有意差検定を行った。結果を図11Bに示す。
図11B中、横軸の「No bacteria」は乳酸菌0831-07(#Ef-1)株を含有しないときの結果を示す。「Viable」は熱処理を行っていない乳酸菌0831-07株、「Heat-treated」は熱処理された乳酸菌0831-07株の結果を示す。*はP<0.05であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=3で行った。
Next, in the uptake system of 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino] -D-glucose) in Caco-2 cells, lactic acid bacteria 0831 A viable cell fraction of -07 strain and a heat-treated cell fraction were added to measure the tendency uptake in Caco-2 cells, and a significant difference test was performed using Student's t-test. The results are shown in FIG. 11B.
In FIG. 11B, "No bacteria" on the horizontal axis shows the results when the lactic acid bacterium 0831-07 (# Ef-1) strain is not contained. "Viable" shows the result of the lactic acid bacterium 0831-07 strain which has not been heat-treated, and "Heat-treated" shows the result of the lactic acid bacterium 0831-07 strain which has been heat-treated. * Is P <0.05, and error bars indicate standard error (SEM). It was performed with n = 3 per group.

図11Bの結果、乳酸菌0831-07株におけるCaco-2細胞のグルコース取り込み阻害活性は、菌体の熱処理により低下することが分かった。 As a result of FIG. 11B, it was found that the glucose uptake inhibitory activity of Caco-2 cells in the lactic acid bacterium 0831-07 strain was reduced by the heat treatment of the cells.

以上の結果から、乳酸菌0831-07株由来の熱感受性成分は、Caco-2細胞のグルコース取り込みを阻害することが示唆された。乳酸菌0831-07株による食後高血糖抑制効果を示す模式図を図11Cに示す。
図11C中、"Lumen"は「内腔」、"Degradation"は「分解」、"Transport"は「輸送」、"Outside of intestine"は「腸管外」、"Sucrose"は「スクロース」、"Glucose"は「グルコース」、"Fructose"は「フルクトース」、"E. faecalis (#Ef-1)"は「乳酸菌0831-07」を示す。
From the above results, it was suggested that the heat-sensitive component derived from the lactic acid bacterium 0831-07 strain inhibits glucose uptake by Caco-2 cells. FIG. 11C shows a schematic diagram showing the postprandial hyperglycemia suppressing effect of the lactic acid bacterium strain 0831-07.
In FIG. 11C, "Lumen" is "lumen", "Degradation" is "degradation", "Transport" is "transport", "Outside of intestine" is "outside the intestinal tract", "Sucrose" is "sucrose", and "Glucose". "Is glucose", "Fructose" is "fructose", and "E. faecalis (# Ef-1)" is "lactic acid bacterium 0831-07".

実施例9
<乳酸菌0831-07株による、ヒトのショ糖摂取による血糖値の上昇に対する抑制効果>
乳酸菌0831-07株がヒトでのショ糖摂取後の血糖値の上昇を抑制する効果があるかを検討した。健常人14人に対して、生菌懸濁液摂取群、熱処理菌体懸濁液摂取群、非摂取群において、ショ糖負荷試験を実施した。被験者は、ショ糖負荷15分前に、生理食塩水で懸濁したサンプル50mLを摂取した。その後、被験者は、50%(w/v)ショ糖水溶液150mLを飲用した。
ショ糖負荷後、0、15、30、45、60、90、120分における被験者の血糖値を各群間で比較した。血糖値は、指先から微量の血液を採取し、簡易血糖測定器を用いて測定した。
図12Aは本実施例の実験スケジュールを示す。まず、熱処理菌体懸濁液摂取群におけるショ糖負荷試験を実施した。その7日後に非摂取群におけるショ糖負荷試験を実施した。更にその7日後に生菌懸濁液摂取群におけるショ糖負荷試験を実施した。
Example 9
<Suppressive effect of lactic acid bacterium 0831-07 strain on increase in blood glucose level due to human sucrose intake>
It was investigated whether the lactic acid bacterium strain 0831-07 has an effect of suppressing an increase in blood glucose level after ingestion of sucrose in humans. A sucrose loading test was carried out on 14 healthy subjects in the live bacterial suspension ingestion group, the heat-treated bacterial cell suspension ingestion group, and the non-intake group. Subjects ingested 50 mL of sample suspended in saline 15 minutes prior to sucrose loading. Then, the subject drank 150 mL of a 50% (w / v) sucrose aqueous solution.
The blood glucose levels of the subjects at 0, 15, 30, 45, 60, 90, and 120 minutes after sucrose loading were compared between the groups. The blood glucose level was measured by collecting a small amount of blood from the fingertip and using a simple blood glucose meter.
FIG. 12A shows the experimental schedule of this example. First, a sucrose tolerance test was carried out in the heat-treated bacterial cell suspension ingestion group. Seven days later, a sucrose tolerance test was performed in the non-ingestion group. Further, 7 days later, a sucrose tolerance test was carried out in the viable cell suspension ingestion group.

図12Bは、被験者個々についての、生菌懸濁液摂取群(Viable #Ef-1)、熱処理菌体懸濁液摂取群(Heat-treated #Ef-1)、非摂取群(Control)における血糖値をショ糖負荷後の時間ごとに示したグラフである。縦軸は血糖値(mg/dL)を示す。*はp<0.05であり、1群当たりn=14である。
図12Cは、生菌懸濁液摂取群(Viable #Ef-1)、熱処理菌体懸濁液摂取群(Heat-treated #Ef-1)、非摂取群(Control)におけるショ糖負荷試験の結果を示す。縦軸は血糖値、横軸はスクロース摂取後の時間(分)を示す。*はp<0.05であり、エラーバーは標準誤差(SEM)を示す。1群当たりn=14で行った。
FIG. 12B shows blood glucose in the live bacterial suspension ingestion group (Viable # Ef-1), the heat-treated bacterial cell suspension ingestion group (Heat-treated # Ef-1), and the non-intake group (Control) for each subject. It is a graph which showed the value for each time after sucrose loading. The vertical axis shows the blood glucose level (mg / dL). * Is p <0.05, and n = 14 per group.
FIG. 12C shows the results of the sucrose loading test in the live bacterial suspension ingestion group (Viable # Ef-1), the heat-treated bacterial cell suspension ingestion group (Heat-treated # Ef-1), and the non-intake group (Control). Is shown. The vertical axis shows the blood glucose level, and the horizontal axis shows the time (minutes) after ingesting sucrose. * Is p <0.05, and error bars indicate standard error (SEM). It was performed at n = 14 per group.

図12B及びCの結果、ショ糖負荷後45、60分において乳酸菌0831-07株の生菌懸濁液摂取群の方が非摂食群と比べて血糖値が低いという結果を得た。一方、熱処理菌体懸濁液摂取群と非摂食群におけるショ糖負荷後の血糖値に差はなかった。
以上の結果から、乳酸菌0831-07株がヒトにおけるショ糖摂取後の血糖値の上昇に対して抑制作用を有すること、並びに血糖上昇抑制因子が熱感受性であることが示された。
As a result of FIGS. 12B and 12C, it was obtained that the blood glucose level of the live bacterium suspension ingested group of the lactic acid bacterium 0831-07 strain was lower than that of the non-feeding group 45 and 60 minutes after the sucrose loading. On the other hand, there was no difference in the blood glucose level after sucrose loading between the heat-treated bacterial cell suspension ingested group and the non-fed group.
From the above results, it was shown that the lactic acid bacterium strain 0831-07 has an inhibitory effect on the increase in blood glucose level after ingestion of sucrose in humans, and that the blood glucose increase inhibitor is heat-sensitive.

<実施例のまとめ>
上記実施例より、カイコの評価系を用いて乳酸菌0831-07(乳酸菌#Ef-1)株から作成したヨーグルトが、ヒトのスクロースの摂食による食後高血糖を抑制することを示した。したがって、本実施例で得られた乳酸菌0831-07株は、スクロース(ショ糖)摂取による血糖値の上昇を抑制する機能性乳酸菌である。該乳酸菌を用いて作製されたヨーグルトは、肥満や糖尿病患者やそれらの予備軍のヒトの食事療法をより効果的にすると期待される。
<Summary of Examples>
From the above examples, it was shown that yogurt prepared from the lactic acid bacterium 0831-07 (lactic acid bacterium # Ef-1) strain using the silk moth evaluation system suppresses postprandial hyperglycemia due to feeding of human sucrose. Therefore, the lactic acid bacterium 0831-07 strain obtained in this example is a functional lactic acid bacterium that suppresses an increase in blood glucose level due to ingestion of sucrose (sucrose). Yogurt made with the lactic acid bacteria is expected to be more effective in the diet of obese and diabetic patients and their reserve humans.

食品の有効性の評価をするためには、動物個体を用いた評価が必要である。従来、実験動物として用いられてきたマウスやラット等の哺乳動物は、多数の個体を用いるスクリーニングの実施に高いコストがかかる。これに対してカイコは、大きな飼育スペースを必要とせず、多数の個体を低いコストで飼育可能である。更に動物愛護の観点から、哺乳動物を用いた実験は、国際原則である3R、すなわちReplacement(代替法の開発)、Reduction(動物数の削減)、Refinement(動物の苦痛の削減)に従って実験を行わなければならない(Russell et al., 1959)。
カイコを代替動物として利用することは、3Rの中のRelative Replacementの考えと合致する。カイコを機能性食品の探索段階で使用すれば、犠牲にする哺乳動物の数を減少させ、コストや動物愛護の観点からの問題を解決できると考えられる。
In order to evaluate the effectiveness of food, it is necessary to evaluate using individual animals. Mammals such as mice and rats, which have been conventionally used as experimental animals, are expensive to carry out screening using a large number of individuals. On the other hand, silk moths do not require a large breeding space and can breed a large number of individuals at low cost. Furthermore, from the viewpoint of animal welfare, experiments using mammals are conducted in accordance with the international principles of the 3Rs, namely Replacement (development of alternative methods), Reduction (reduction of animal numbers), and Refinement (reduction of animal pain). Must be (Russell et al., 1959).
The use of silk moth as a substitute animal is consistent with the idea of Relative Replacement in the 3Rs. The use of silk moth in the search for functional foods could reduce the number of mammals sacrificed and solve problems in terms of cost and animal welfare.

また、乳酸菌0831-07株には、カイコ腸管のα-グリコシダーゼを阻害する活性、及び腸管内から腸管外へのグルコースの輸送を阻害する活性が見出された。該菌が有するこれらの活性が、スクロースを摂食したカイコの血糖値の上昇の抑制をもたらすと示唆された。 In addition, the lactic acid bacterium strain 0831-07 was found to have an activity of inhibiting α-glycosidase in the silk moth intestinal tract and an activity of inhibiting the transport of glucose from the intestinal tract to the outside of the intestinal tract. It was suggested that these activities possessed by the bacterium suppress the increase in blood glucose level of silk moths fed with sucrose.

また、乳酸菌0831-07株の熱処理菌体は、カイコのスクロース摂食による食後高血糖を抑制する活性を保持していた。この画分はカイコ腸管のスクロースを分解する酵素であるα-グリコシダーゼ活性を阻害したが、腸管のグルコース輸送は阻害しなかった。したがって、乳酸菌0831-07株の、スクロースを摂取したカイコの血糖上昇を抑える効果は、α-グリコシダーゼ活性の阻害が主な要因であると示唆された。 In addition, the heat-treated cells of the lactic acid bacterium 0831-07 strain retained the activity of suppressing postprandial hyperglycemia caused by feeding sucrose of silk moth. This fraction inhibited the activity of α-glycosidase, an enzyme that degrades sucrose in the silk moth intestine, but not glucose transport in the intestinal tract. Therefore, it was suggested that the effect of the lactic acid bacterium 0831-07 strain on suppressing the increase in blood glucose of silk moths ingested sucrose was mainly due to the inhibition of α-glycosidase activity.

本発明の新規乳酸菌や該処理物は、スクロースの摂食による食後高血糖を抑制する作用を有し、更には、糖尿病予防治療効果もある。よって、本発明の乳酸菌を利用した、血糖低下剤を含有する薬剤や飲食品を提供することができ、医薬品業界、食品業界等で広く利用可能である。 The novel lactic acid bacterium of the present invention and the treated product have an effect of suppressing postprandial hyperglycemia due to feeding of sucrose, and further have an effect of preventing and treating diabetes. Therefore, it is possible to provide a drug or food or drink containing a blood glucose lowering agent using the lactic acid bacterium of the present invention, and it can be widely used in the pharmaceutical industry, the food industry and the like.

本願は、2016年8月16日に出願した日本の特許出願である特願2016-159555に基づくものであり、それらの出願の全ての内容はここに引用し、本願発明の明細書の開示として取り込まれるものである。 This application is based on Japanese Patent Application No. 2016-159555, which is a Japanese patent application filed on August 16, 2016, and all the contents of those applications are cited herein as disclosure of the specification of the present invention. It is something that is taken in.

NITE BP-02309 NITE BP-02309

配列番号1は、エンテロコッカス(Enterococcus)属に属する未知の菌株の、16S rDNAのほぼ全長にあたる塩基配列である。 SEQ ID NO: 1 is a base sequence corresponding to almost the entire length of 16S rDNA of an unknown strain belonging to the genus Enterococcus.

Claims (9)

独立行政法人製品評価技術基盤機構(NITE)の特許微生物寄託センター(NPMD)における受託番号がNITE BP-02309であるエンテロコッカス・フェカリス(Enterococcus faecalis)に属する乳酸菌であって血糖低下作用を有する乳酸菌。 A lactic acid bacterium belonging to Enterococcus faecalis whose accession number is NITE BP-02309 at the Patented Microorganisms Depositary Center (NPMD) of the National Institute of Technology and Evaluation (NITE) and has a hypoglycemic effect. 請求項1に記載の乳酸菌であって、α-グリコシダーゼ阻害活性を有することでスクロース摂取による血糖上昇を抑制する用途に用いられる乳酸菌。 The lactic acid bacterium according to claim 1, which has an α-glycosidase inhibitory activity and is used for suppressing an increase in blood glucose due to sucrose ingestion. 配列表の配列番号1で示される16SrDNA領域の塩基配列を有する請求項1又は請求項2に記載の乳酸菌。 The lactic acid bacterium according to claim 1 or 2, which has the base sequence of the 16SrDNA region shown by SEQ ID NO: 1 in the sequence listing. 請求項1ないし請求項3の何れかの乳酸菌、該乳酸菌の死菌又は該乳酸菌の処理物を有効成分とするα-グリコシダーゼ阻害剤であって、
該乳酸菌の処理物は、該乳酸菌の、培養物、濃縮物、ペースト化物、乾燥物、液状化物、希釈物、破砕物、及び、殺菌加工物よりなる群から選ばれる少なくとも1つの処理物であることを特徴とするα-グリコシダーゼ阻害剤。
An α-glycosidase inhibitor containing the lactic acid bacterium according to any one of claims 1 to 3, a dead lactic acid bacterium, or a treated product of the lactic acid bacterium as an active ingredient.
The treated product of the lactic acid bacterium is at least one treated product selected from the group consisting of a culture, a concentrate, a paste, a dried product, a liquefied product, a diluted product, a crushed product, and a sterilized processed product of the lactic acid bacterium. An α-glycosidase inhibitor characterized by being present.
請求項1ないし請求項3の何れかの乳酸菌、該乳酸菌の死菌又は該乳酸菌の処理物を有効成分とする血糖低下剤であって、
該乳酸菌の処理物は、該乳酸菌の、培養物、濃縮物、ペースト化物、乾燥物、液状化物、希釈物、破砕物、及び、殺菌加工物よりなる群から選ばれる少なくとも1つの処理物であることを特徴とする血糖低下剤。
A hypoglycemic agent containing the lactic acid bacterium according to any one of claims 1 to 3, a dead lactic acid bacterium, or a treated product of the lactic acid bacterium as an active ingredient.
The treated product of the lactic acid bacterium is at least one treated product selected from the group consisting of a culture, a concentrate, a paste, a dried product, a liquefied product, a diluted product, a crushed product, and a sterilized processed product of the lactic acid bacterium. A hypoglycemic agent characterized by being present.
請求項5に記載の血糖低下剤を有効成分として含有することを特徴とする糖尿病予防治療薬。 A diabetes preventive and therapeutic agent comprising the hypoglycemic agent according to claim 5 as an active ingredient. 請求項1ないし請求項3の何れかの乳酸菌を含有する飲食品。 A food or drink containing the lactic acid bacterium according to any one of claims 1 to 3. 請求項5に記載の血糖低下剤を含有する飲食品。 A food or drink containing the hypoglycemic agent according to claim 5. 請求項1ないし請求項3の何れかの乳酸菌を用いて醗酵する工程を用いて製造された飲食品。
A food or drink produced by the step of fermenting with the lactic acid bacterium according to any one of claims 1 to 3.
JP2018534279A 2016-08-16 2017-06-15 Lactic acid bacteria, hypoglycemic agents derived from the lactic acid bacteria, diabetes therapeutic agents, and foods and drinks Active JP7054111B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016159555 2016-08-16
JP2016159555 2016-08-16
PCT/JP2017/022052 WO2018034047A1 (en) 2016-08-16 2017-06-15 Lactic acid bacteria, hypoglycemic agent derived from same, therapeutic agent for diabetes, and food or beverage

Publications (2)

Publication Number Publication Date
JPWO2018034047A1 JPWO2018034047A1 (en) 2019-06-13
JP7054111B2 true JP7054111B2 (en) 2022-04-13

Family

ID=61196619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534279A Active JP7054111B2 (en) 2016-08-16 2017-06-15 Lactic acid bacteria, hypoglycemic agents derived from the lactic acid bacteria, diabetes therapeutic agents, and foods and drinks

Country Status (2)

Country Link
JP (1) JP7054111B2 (en)
WO (1) WO2018034047A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020184909A (en) * 2019-05-13 2020-11-19 学校法人帝京大学 Hypoglycemic agent and food/beverage containing said hypoglycemic agent
WO2021070829A1 (en) * 2019-10-11 2021-04-15 国立大学法人静岡大学 Lactic acid bacteria that produce nicotinamide riboside, and lactic acid bacteria that produce nicotinamide mononucleotide and nicotinamide riboside
US20220313750A1 (en) * 2019-10-24 2022-10-06 Doctor Tj Co., Ltd Composition containing enterococcus faecalis as active ingredient for preventing or treating obesity or metabolic syndromes induced thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116486A (en) 2001-08-09 2003-04-22 Meiji Milk Prod Co Ltd Food composition having inhibitory action on postprandial elevation of blood glucose
JP2009058500A (en) 2007-08-06 2009-03-19 Genome Soyaku Kenkyusho:Kk Evaluating method, screening method, and manufacturing method of matter for lowering blood sugar level
WO2010004916A1 (en) 2008-07-08 2010-01-14 株式会社ゲノム創薬研究所 Hypoglycemic agent, and food or beverage for prevention of diabetes or amelioration of condition of diabetes comprising same
WO2012011174A1 (en) 2010-07-22 2012-01-26 ビオフェルミン製薬株式会社 Lipid metabolism improving agent, agent for enhancing lipid metabolism improving action, anti-obesity agent, and agent for enhancing anti-obesity action

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107577A (en) * 1996-06-17 1998-01-13 Yakult Honsha Co Ltd Hypoglycemic agent
JP6793380B2 (en) * 2015-10-08 2020-12-02 株式会社ゲノム創薬研究所 Evaluation method, screening method and manufacturing method of substances that suppress the rise in blood glucose level due to sucrose intake

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116486A (en) 2001-08-09 2003-04-22 Meiji Milk Prod Co Ltd Food composition having inhibitory action on postprandial elevation of blood glucose
JP2009058500A (en) 2007-08-06 2009-03-19 Genome Soyaku Kenkyusho:Kk Evaluating method, screening method, and manufacturing method of matter for lowering blood sugar level
WO2010004916A1 (en) 2008-07-08 2010-01-14 株式会社ゲノム創薬研究所 Hypoglycemic agent, and food or beverage for prevention of diabetes or amelioration of condition of diabetes comprising same
WO2012011174A1 (en) 2010-07-22 2012-01-26 ビオフェルミン製薬株式会社 Lipid metabolism improving agent, agent for enhancing lipid metabolism improving action, anti-obesity agent, and agent for enhancing anti-obesity action

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Scientific Reports,2016年05月19日,Vol. 6: 26354,p. 1-9

Also Published As

Publication number Publication date
WO2018034047A1 (en) 2018-02-22
JPWO2018034047A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US20210069270A1 (en) Novel lactobacillus plantarum and composition comprising same
CA2609617C (en) Feline probiotic lactobacilli
US8497114B2 (en) Anti-obesity agent, anti-obesity food or beverage, glucose tolerance-ameliorating agent, and food or beverage for amelioration of glucose tolerance
JP6505018B2 (en) Novel lactic acid bacteria, innate immunity activator comprising novel lactic acid bacteria as active ingredient, and food and drink containing novel lactic acid bacteria
US10265352B2 (en) Lactic acid bacteria, natural immunoactivator and infection preventative/therapeutic derived from said lactic acid bacteria, and food/beverage
JP7054111B2 (en) Lactic acid bacteria, hypoglycemic agents derived from the lactic acid bacteria, diabetes therapeutic agents, and foods and drinks
US8728461B2 (en) Lactic acid bacterium having high immunoglobulin-A-inducing ability
JP6793380B2 (en) Evaluation method, screening method and manufacturing method of substances that suppress the rise in blood glucose level due to sucrose intake
JP7090288B2 (en) New lactic acid bacteria, innate immune activators containing new lactic acid bacteria as active ingredients, and foods and drinks containing new lactic acid bacteria
JP7369976B2 (en) Lactic acid bacteria, natural immune activators derived from the lactic acid bacteria, infectious disease prevention/treatment drugs, and food and beverages
JP5868519B2 (en) Reuterin-producing Lactobacillus brevis
JPWO2020203792A1 (en) Composition for slowing skeletal muscle
JP6245583B2 (en) Microorganism and catecholamine-containing composition selected using catecholamine recognition as an index
JP6588509B2 (en) Antifungal agent containing lactic acid bacteria as an active ingredient
KR102495246B1 (en) Lactobacillus helveticus BCC-LH-04 having body fat-reducing activity and compositions comprising the same
WO2024090414A1 (en) Lactic acid bacterium, natural immunoactivating agent derived from said lactic acid bacterium, and food containing said lactic acid bacterium
JP2020184909A (en) Hypoglycemic agent and food/beverage containing said hypoglycemic agent
CN116656526A (en) Lactobacillus plantarum JF4 and application thereof in preparation of blood sugar and cholesterol reducing foods and medicines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7054111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150