JP7052422B2 - Anomaly detection device - Google Patents

Anomaly detection device Download PDF

Info

Publication number
JP7052422B2
JP7052422B2 JP2018036968A JP2018036968A JP7052422B2 JP 7052422 B2 JP7052422 B2 JP 7052422B2 JP 2018036968 A JP2018036968 A JP 2018036968A JP 2018036968 A JP2018036968 A JP 2018036968A JP 7052422 B2 JP7052422 B2 JP 7052422B2
Authority
JP
Japan
Prior art keywords
pump
switching
addition valve
injection valve
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018036968A
Other languages
Japanese (ja)
Other versions
JP2019152128A (en
Inventor
貴文 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018036968A priority Critical patent/JP7052422B2/en
Priority to DE102018125890.9A priority patent/DE102018125890A1/en
Publication of JP2019152128A publication Critical patent/JP2019152128A/en
Application granted granted Critical
Publication of JP7052422B2 publication Critical patent/JP7052422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1433Pumps
    • F01N2610/144Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1822Pump parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関の排気通路に液状の還元剤を添加する排気浄化システムに適用される異常検出装置に関する。 The present invention relates to an abnormality detection device applied to an exhaust purification system that adds a liquid reducing agent to an exhaust passage of an internal combustion engine.

近年、車両等に適用されるエンジン(特にディーゼルエンジン)において、排気ガス中のNOx(窒素酸化物)を高い浄化率で浄化する排気浄化システムとして、尿素SCR(Selective Catalytic Reduction)システムが、開発・量産されている。 In recent years, the urea SCR (Selective Catalytic Reduction) system has been developed as an exhaust purification system that purifies NOx (nitrogen oxides) in exhaust gas with a high purification rate in engines applied to vehicles (especially diesel engines). It is mass-produced.

尿素SCRシステムは、タンクに貯蔵された還元剤としての尿素水(尿素水溶液)を還元剤通路に圧送するポンプと、タンクに貯蔵された還元剤としての尿素水(尿素水溶液)を、エンジンの排気通路内へ添加する添加弁を備えている。 The urea SCR system exhausts the engine from a pump that pumps urea water (urea aqueous solution) as a reducing agent stored in the tank to the reducing agent passage and urea water (urea aqueous solution) as a reducing agent stored in the tank. It is equipped with an addition valve that adds to the passage.

尿素SCRシステムでは、排気通路内のNOx浄化触媒(以下、SCR触媒という)上でNOxの還元反応によって排気ガスが浄化される。このNOxの還元に際しては、まず噴射弁から排気通路内へ噴射された尿素水が、排気熱で加水分解されることによりアンモニア(NH3)が生成され、SCR触媒にて吸着される。排気ガス中のNOxに対してSCR触媒上で、アンモニアによる還元反応が行われることによってNOxが還元、浄化されることになる。 In the urea SCR system, the exhaust gas is purified by the reduction reaction of NOx on the NOx purification catalyst (hereinafter referred to as SCR catalyst) in the exhaust passage. In the reduction of NOx, first, the urea water injected from the injection valve into the exhaust passage is hydrolyzed by the exhaust heat to generate ammonia (NH3), which is adsorbed by the SCR catalyst. NOx is reduced and purified by performing a reduction reaction with ammonia on the SCR catalyst with respect to NOx in the exhaust gas.

このような尿素SCRシステムでは、尿素の結晶化により噴射弁の作動が阻害されたり、噴射弁の噴孔を介して排気通路側から噴射弁に異物が侵入したりする際には、尿素水の噴射量に異常が発生することがある。このことに対処すべく、特許文献1には、ポンプに供給される電流を制御するためのデューティ比(以下、ポンプデューティ比という)を利用して噴射弁の異常を判定する装置が提案されている。具体的には、噴射制御の途中において、尿素水の無噴射状態におけるポンプデューティ比に基づいて、噴射弁における異常の有無を判定する装置が開示されている。 In such a urea SCR system, when the operation of the injection valve is hindered by the crystallization of urea or foreign matter invades the injection valve from the exhaust passage side through the injection hole of the injection valve, urea water is used. An abnormality may occur in the injection amount. In order to deal with this, Patent Document 1 proposes a device for determining an abnormality of an injection valve by using a duty ratio for controlling a current supplied to a pump (hereinafter referred to as a pump duty ratio). There is. Specifically, a device for determining the presence or absence of an abnormality in the injection valve based on the pump duty ratio in the non-injection state of urea water during the injection control is disclosed.

特開2013-249801号公報Japanese Unexamined Patent Publication No. 2013-249801

しかしながら、特許文献1に記載の尿素SCRシステムでは、噴射制御の途中のポンプデューティ比に基づいて、噴射弁における異常の有無を判定する。そのため、例えばSCR触媒が低温で未活性の状態など、噴射制御が行われていない状態では、異常判定するためのポンプデューティ比に差が生じにくいため、噴射弁における異常の有無を精度よく判定することができない。噴射制御などの添加制御が行われていない状態において、添加弁における異常の有無を好適に判定する技術が望まれている。なお、このような課題は、尿素水に限られず、還元剤として他の液体が用いられる場合にも共通の課題である。 However, in the urea SCR system described in Patent Document 1, the presence or absence of an abnormality in the injection valve is determined based on the pump duty ratio during injection control. Therefore, in a state where injection control is not performed, for example, when the SCR catalyst is inactive at a low temperature, it is difficult for a difference in the pump duty ratio for determining an abnormality to occur, so that the presence or absence of an abnormality in the injection valve can be accurately determined. Can't. There is a demand for a technique for suitably determining the presence or absence of an abnormality in an addition valve in a state where addition control such as injection control is not performed. It should be noted that such a problem is not limited to urea water, but is a common problem when another liquid is used as a reducing agent.

本発明は、上記実情に鑑み、添加制御が行われていない状態において、添加弁における異常の有無を好適に判定することができる異常検出装置を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide an abnormality detection device capable of suitably determining the presence or absence of an abnormality in an addition valve in a state where addition control is not performed.

本発明の噴射制御装置は、内燃機関の排気通路に設けられ、排気中のNOxを浄化するNOx浄化触媒に液状の還元剤を添加供給する添加弁と、前記還元剤を貯えるタンクと、正回転により前記タンク内の前記還元剤を吐出するとともに、逆回転により前記タンク内に前記還元剤を吸い戻すポンプと、を備える排気浄化システムに適用される異常検出装置であって、前記ポンプを逆回転させた状態で、前記添加弁を開状態と閉状態とに切り替える切替部と、前記添加弁の切り替えに伴う前記ポンプの回転速度の変動量又はその相関値を回転変動パラメータとして取得する取得部と、前記回転変動パラメータに基づいて、前記添加弁における異常の有無を判定する判定部と、を備える。 The injection control device of the present invention is provided in the exhaust passage of an internal combustion engine, and has an addition valve that adds and supplies a liquid reducing agent to a NOx purification catalyst that purifies NOx in the exhaust, a tank that stores the reducing agent, and forward rotation. An abnormality detection device applied to an exhaust purification system including a pump that discharges the reducing agent in the tank and sucks the reducing agent back into the tank by reverse rotation, wherein the pump is rotated in the reverse direction. A switching unit that switches the addition valve between an open state and a closed state in the closed state, and an acquisition unit that acquires the amount of fluctuation in the rotation speed of the pump or its correlation value as a rotation fluctuation parameter due to the switching of the addition valve. A determination unit for determining the presence or absence of an abnormality in the addition valve based on the rotation fluctuation parameter.

本発明では、添加制御が行われていないポンプの逆回転時において、添加弁を開状態と閉状態とに切り替える。添加弁が正常である場合、添加弁の開閉状態を切り替えると、ポンプ負荷が変わるため、例えばポンプ回転速度の変動量が大きくなる。一方、添加弁が異常であると、ポンプ負荷の変化量が小さくなるため、その変動量が小さくなる。つまり、ポンプ回転速度の変動量と添加弁における異常の有無とには相関がある。そのため、この変動量に基づいて、添加制御が行われていない状態において、添加弁における異常の有無を好適に判定することができる。 In the present invention, the addition valve is switched between the open state and the closed state when the pump is rotated in the reverse direction in which the addition control is not performed. When the addition valve is normal, switching the open / closed state of the addition valve changes the pump load, so that, for example, the amount of fluctuation in the pump rotation speed becomes large. On the other hand, if the addition valve is abnormal, the amount of change in the pump load becomes small, so that the amount of change becomes small. That is, there is a correlation between the amount of fluctuation in the pump rotation speed and the presence or absence of an abnormality in the addition valve. Therefore, based on this fluctuation amount, it is possible to suitably determine the presence or absence of an abnormality in the addition valve in a state where the addition control is not performed.

エンジンの排気浄化システムの概略を示す構成図。The block diagram which shows the outline of the exhaust gas purification system of an engine. 第1実施形態に係る異常判定処理を示すフローチャート。The flowchart which shows the abnormality determination processing which concerns on 1st Embodiment. 変動量取得処理を示すフローチャート。A flowchart showing a fluctuation amount acquisition process. 噴射弁制御におけるポンプの回転速度の推移を示す図。The figure which shows the transition of the rotation speed of a pump in the injection valve control. 異常判定処理における尿素水の推移を示す図。The figure which shows the transition of urea water in the abnormality determination processing. 異常判定処理におけるポンプデューティ比の推移を示す。The transition of the pump duty ratio in the abnormality judgment processing is shown. 異常判定処理におけるポンプデューティ比の推移を示す。The transition of the pump duty ratio in the abnormality judgment processing is shown. 異常判定処理におけるポンプデューティ比の推移を示す。The transition of the pump duty ratio in the abnormality judgment processing is shown. 第2実施形態に係る異常判定処理を示すフローチャート。The flowchart which shows the abnormality determination processing which concerns on 2nd Embodiment. 異常判定処理におけるポンプデューティ比の推移を示す。The transition of the pump duty ratio in the abnormality judgment processing is shown.

(第1実施形態)
以下、第1実施形態の異常検出装置に係るポンプ制御部70が適用される排気浄化システム10について、図面を参照しつつ説明する。排気浄化システム10は、選択還元型触媒(以下、SCR触媒という)を用いて排気ガス中のNOxを浄化するものであり、尿素SCRシステムとして構築されている。排気浄化システム10は、内燃機関であるディーゼルエンジン(以下、エンジンという)30が搭載された各種車両に適用できる。排気浄化システム10は、またクレーン車等の建設機械、トラクター等の農業機械等にも適用可能である。
(First Embodiment)
Hereinafter, the exhaust gas purification system 10 to which the pump control unit 70 according to the abnormality detection device of the first embodiment is applied will be described with reference to the drawings. The exhaust gas purification system 10 purifies NOx in the exhaust gas by using a selective reduction catalyst (hereinafter referred to as SCR catalyst), and is constructed as a urea SCR system. The exhaust purification system 10 can be applied to various vehicles equipped with a diesel engine (hereinafter referred to as an engine) 30 which is an internal combustion engine. The exhaust gas purification system 10 can also be applied to construction machinery such as mobile cranes, agricultural machinery such as tractors, and the like.

図1に示すように、排気浄化システム10では、エンジン排気系において、エンジン30には排気通路31aを形成する排気管31が接続されており、その排気管31に、排気上流側から順にDPF(Diesel Particulate Filter)32、SCR触媒33が配設されている。また、排気管31においてDPF32とSCR触媒33との間には、液状の還元剤としての尿素水(尿素水溶液)を排気通路31aに噴射供給する尿素水噴射弁(以下、噴射弁という)50が設けられている。噴射弁50は、高温の排気ガス(例えば600℃)から加えられる熱の影響をできるだけ避けるために、先端側のみが排気管31内に位置されるように取り付けられている。なお、本実施形態において、SCR触媒33が「NOx浄化触媒」に相当し、噴射弁50が「添加弁」に相当する。 As shown in FIG. 1, in the exhaust purification system 10, in the engine exhaust system, an exhaust pipe 31 forming an exhaust passage 31a is connected to the engine 30, and the exhaust pipe 31 is connected to the exhaust pipe 31 in order from the exhaust upstream side. A Diesel Particulate Filter) 32 and an SCR catalyst 33 are arranged. Further, in the exhaust pipe 31, between the DPF 32 and the SCR catalyst 33, there is a urea water injection valve (hereinafter referred to as an injection valve) 50 that injects and supplies urea water (urea aqueous solution) as a liquid reducing agent to the exhaust passage 31a. It is provided. The injection valve 50 is attached so that only the tip side is located in the exhaust pipe 31 in order to avoid the influence of heat applied from the high temperature exhaust gas (for example, 600 ° C.) as much as possible. In the present embodiment, the SCR catalyst 33 corresponds to the "NOx purification catalyst" and the injection valve 50 corresponds to the "additional valve".

DPF32は、排気ガス中のPM(粒子状物質)を捕集するPM除去用フィルタである。DPF32は白金系の酸化触媒を担持しており、PM成分の1つである可溶性有機成分(SOF)とともにHCやCOを除去する。このDPF32に捕集されたPMは、エンジン30におけるメイン燃料噴射後のポスト噴射等により燃焼除去でき、これによりDPF32の継続使用が可能となっている。 The DPF 32 is a PM removal filter that collects PM (particulate matter) in the exhaust gas. DPF32 carries a platinum-based oxidation catalyst and removes HC and CO together with a soluble organic component (SOF) which is one of the PM components. The PM collected in the DPF 32 can be burned and removed by post-injection or the like after the main fuel injection in the engine 30, whereby the DPF 32 can be continuously used.

SCR触媒33は、NOxの還元反応(排気浄化反応)を促進するものであり、例えば、
4NO+4NH3+O2→4N2+6H2O …(式1)
6NO2+8NH3→7N2+12H2O …(式2)
NO+NO2+2NH3→2N2+3H2O …(式3)
といった反応を促進して排気ガス中のNOxを浄化する。そして、これらの反応において、NOxの還元剤となるアンモニア(NH3)を生成するための尿素水を噴射供給するものが、同SCR触媒33の上流側に設けられた噴射弁50である。
The SCR catalyst 33 promotes a NOx reduction reaction (exhaust gas purification reaction), for example.
4NO + 4NH3 + O2 → 4N2 + 6H2O ... (Equation 1)
6NO2 + 8NH3 → 7N2 + 12H2O ... (Equation 2)
NO + NO2 + 2NH3 → 2N2 + 3H2O ... (Equation 3)
It promotes such a reaction and purifies NOx in the exhaust gas. In these reactions, the injection valve 50 provided on the upstream side of the SCR catalyst 33 jets and supplies urea water for producing ammonia (NH3) which is a reducing agent for NOx.

なお排気管31においてSCR触媒33の下流側には、アンモニア除去装置としての酸化触媒が設けられていてもよい。この酸化触媒により、SCR触媒33から排出されるアンモニア(NH3)、すなわち余剰のアンモニアが除去される。 An oxidation catalyst as an ammonia removing device may be provided on the downstream side of the SCR catalyst 33 in the exhaust pipe 31. This oxidation catalyst removes ammonia (NH3) discharged from the SCR catalyst 33, that is, excess ammonia.

次に、排気浄化システム10のうち、噴射弁50の噴射により尿素水を噴射する尿素水噴射システム20の各構成についてそれぞれ説明する。なお、以下の説明では便宜上、尿素水タンク(以下、タンクという)40から噴射弁50に対して尿素水が供給される場合を基準にして、タンク40側を上流側、噴射弁50側を下流側として記載する。 Next, each configuration of the urea water injection system 20 that injects urea water by the injection of the injection valve 50 in the exhaust purification system 10 will be described. In the following description, for convenience, the tank 40 side is on the upstream side and the injection valve 50 side is on the downstream side, based on the case where urea water is supplied to the injection valve 50 from the urea water tank (hereinafter referred to as tank) 40. Described as the side.

図1において、タンク40は、給液キャップ付きの密閉容器にて構成されており、その内部に所定の規定濃度の尿素水が貯蔵されている。本実施形態では、尿素濃度が、凍結温度(凝固点)が最も低い濃度である32.5%になっている。なお、尿素濃度が32.5%の場合、マイナス11℃以下で凍結する。 In FIG. 1, the tank 40 is composed of a closed container with a liquid supply cap, and urea water having a predetermined concentration is stored in the tank 40. In this embodiment, the urea concentration is 32.5%, which is the lowest freezing temperature (freezing point). When the urea concentration is 32.5%, it freezes at -11 ° C or lower.

タンク40と噴射弁50とは、供給配管42により接続されている。供給配管42の上流側端部は、タンク40の底面の略中央に接続されており、タンク40内に貯留された尿素水が供給配管42に流れ込む状態になっている。なお、本実施形態において、供給配管42が「還元剤通路」に相当する。 The tank 40 and the injection valve 50 are connected by a supply pipe 42. The upstream end of the supply pipe 42 is connected to substantially the center of the bottom surface of the tank 40, and the urea water stored in the tank 40 flows into the supply pipe 42. In this embodiment, the supply pipe 42 corresponds to the “reducing agent passage”.

供給配管42の途中には、尿素水ポンプ(以下、ポンプという)44が設けられている。ポンプ44は、ポンプ制御部70から供給される電流により回転駆動される電動ポンプであり、供給配管42を介してタンク40から噴射弁50に対して尿素水を加圧供給する。 A urea water pump (hereinafter referred to as a pump) 44 is provided in the middle of the supply pipe 42. The pump 44 is an electric pump that is rotationally driven by a current supplied from the pump control unit 70, and pressurizes and supplies urea water from the tank 40 to the injection valve 50 via the supply pipe 42.

ポンプ44は歯車45を有し、その歯車45の回転数に応じて尿素水を供給する。また、ポンプ44は、歯車45が正逆いずれの方向にも回転可能となっている。ポンプ44の正回転によりタンク40内の尿素水の吐出が行われ、ポンプ44の逆回転によりタンク40への尿素水の吸い戻しが行われる。 The pump 44 has a gear 45 and supplies urea water according to the rotation speed of the gear 45. Further, in the pump 44, the gear 45 can rotate in either the forward or reverse direction. The forward rotation of the pump 44 discharges the urea water in the tank 40, and the reverse rotation of the pump 44 sucks the urea water back into the tank 40.

ポンプ44には、回転検出部46が設けられている。回転検出部46は、ポンプ44の単位時間当たりの回転数である回転速度Nを検出し、例えば、ポンプ44による尿素水の吐出(圧送)速度を検出する。 The pump 44 is provided with a rotation detection unit 46. The rotation detection unit 46 detects the rotation speed N, which is the rotation speed of the pump 44 per unit time, and for example, detects the discharge (pumping) speed of urea water by the pump 44.

供給配管42には、ポンプ44の下流側に圧力検出部48が設けられている。圧力検出部48は、供給配管42内の圧力(以下、配管圧力という)Pを検出し、例えば、ポンプ44による尿素水の吐出圧力を検出する。 The supply pipe 42 is provided with a pressure detection unit 48 on the downstream side of the pump 44. The pressure detection unit 48 detects the pressure (hereinafter referred to as pipe pressure) P in the supply pipe 42, and detects, for example, the discharge pressure of urea water by the pump 44.

噴射弁50は、供給配管42の下流側端部に接続されている。噴射弁50は、既存の燃料噴射弁(インジェクタ)とほぼ同様の構成を有するものであり、公知の構成が採用できるため、ここでは構成を簡単に説明する。噴射弁50は、電磁ソレノイド等からなる駆動部と、先端噴射口を開閉するためのニードル52を有する弁体部とを備えた電磁式開閉弁として構成されており、ポンプ制御部70からの駆動信号に基づき開放又は閉鎖する。すなわち、駆動信号に基づき電磁ソレノイドが通電されると、該通電に伴いニードル52が開放方向に移動し、そのニードル52の移動によって先端噴射口が開放されて尿素水が噴射される。 The injection valve 50 is connected to the downstream end of the supply pipe 42. The injection valve 50 has almost the same configuration as the existing fuel injection valve (injector), and a known configuration can be adopted. Therefore, the configuration will be briefly described here. The injection valve 50 is configured as an electromagnetic on-off valve including a drive unit including an electromagnetic solenoid or the like and a valve body portion having a needle 52 for opening and closing the tip injection port, and is driven from the pump control unit 70. Open or close based on the signal. That is, when the electromagnetic solenoid is energized based on the drive signal, the needle 52 moves in the opening direction along with the energization, and the tip injection port is opened by the movement of the needle 52 to inject urea water.

供給配管42には分岐配管54が接続されている。分岐配管54は、供給配管42におけるポンプ44よりも下流側の分岐部Bと、タンク40と、を接続する。なお、圧力検出部48は、供給配管42のうちのポンプ44と分岐部Bとの間の部分に設けられている。 A branch pipe 54 is connected to the supply pipe 42. The branch pipe 54 connects the branch portion B on the downstream side of the pump 44 in the supply pipe 42 and the tank 40. The pressure detection unit 48 is provided in a portion of the supply pipe 42 between the pump 44 and the branch portion B.

分岐配管54の一端は、タンク40の底面に接続されており、この分岐配管54の一端に、逆止弁60が設けられている。逆止弁60は、分岐配管54内の圧力が所定圧力よりも低い場合に閉鎖し、タンク40内に貯留された尿素水が分岐配管54に流れ込むことを防止する。また、逆止弁60は、分岐配管54内の圧力が所定圧力よりも高い場合に開放し、供給配管42から分岐配管54に流れ込んだ尿素水がタンク40に戻ることを許可する。 One end of the branch pipe 54 is connected to the bottom surface of the tank 40, and a check valve 60 is provided at one end of the branch pipe 54. The check valve 60 closes when the pressure in the branch pipe 54 is lower than the predetermined pressure, and prevents the urea water stored in the tank 40 from flowing into the branch pipe 54. Further, the check valve 60 is opened when the pressure in the branch pipe 54 is higher than a predetermined pressure, and the urea water flowing from the supply pipe 42 into the branch pipe 54 is allowed to return to the tank 40.

タンク40内には、発熱体62が設けられている。例えば発熱体62は電気式のヒータであり、ポンプ制御部70からの指令信号に基づく通電によってタンク40内で凍結している尿素水を解凍する。なお発熱体62は凍結した尿素水を解凍可能な位置に設けられていればよく、供給配管42の吸込口付近に設けられていてもよい。 A heating element 62 is provided in the tank 40. For example, the heating element 62 is an electric heater, and the urea water frozen in the tank 40 is thawed by energization based on a command signal from the pump control unit 70. The heating element 62 may be provided at a position where the frozen urea water can be thawed, and may be provided near the suction port of the supply pipe 42.

供給配管42の外周には、発熱体64が設けられている。例えば発熱体64は電気式のヒータであり、ポンプ制御部70からの通電によって供給配管42内で凍結した尿素水を解凍する。 A heating element 64 is provided on the outer periphery of the supply pipe 42. For example, the heating element 64 is an electric heater, and the frozen urea water is thawed in the supply pipe 42 by energization from the pump control unit 70.

タンク40内には、温度センサ66が設けられている。例えば温度センサ66は感温ダイオードやサーミスタであり、タンク40内の尿素水の温度を測定する。また、タンク40外には、外気温センサ68が設けられている。例えば外気温センサ68は感温ダイオードやサーミスタであり、タンク40から離間して配置され、エンジン30が搭載された車両の周囲の外気の温度を測定する。 A temperature sensor 66 is provided in the tank 40. For example, the temperature sensor 66 is a temperature sensitive diode or a thermistor, and measures the temperature of urea water in the tank 40. Further, an outside air temperature sensor 68 is provided outside the tank 40. For example, the outside air temperature sensor 68 is a temperature-sensitive diode or a thermistor, which is arranged apart from the tank 40 and measures the temperature of the outside air around the vehicle on which the engine 30 is mounted.

ポンプ制御部70は、排気浄化に係る制御を行うECU(Electronic Control Unit)であり、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。ポンプ制御部70は、回転検出部46から回転速度Nを取得し、圧力検出部48から配管圧力Pを取得し、温度センサ66からタンク40内の尿素水の温度を取得し、外気温センサ68から外気温を取得する。ポンプ制御部70は、取得したこれらの値により尿素水噴射システム20の各部を制御する。本実施形態において、ポンプ制御部70が「異常検出装置」に相当する。 The pump control unit 70 is an ECU (Electronic Control Unit) that controls exhaust purification, and is composed of a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. The pump control unit 70 acquires the rotation speed N from the rotation detection unit 46, acquires the pipe pressure P from the pressure detection unit 48, acquires the temperature of the urea water in the tank 40 from the temperature sensor 66, and acquires the temperature of the urea water in the tank 40 from the temperature sensor 66, and the outside air temperature sensor 68. Get the outside temperature from. The pump control unit 70 controls each unit of the urea water injection system 20 based on these acquired values. In the present embodiment, the pump control unit 70 corresponds to the "abnormality detection device".

具体的には、噴射弁50側への尿素水圧送時には、ポンプ44に通電されることでポンプ44が正回転方向に回転駆動される。これにより、タンク40内の尿素水が吐出されて下流側に流れる。そして、ポンプ44から尿素水が圧送され、その尿素水は噴射弁50に供給される。また、余剰となった尿素水は逆止弁60を通じてタンク40に戻される。 Specifically, when urea water is pressure-fed to the injection valve 50 side, the pump 44 is rotationally driven in the forward rotation direction by energizing the pump 44. As a result, the urea water in the tank 40 is discharged and flows to the downstream side. Then, urea water is pumped from the pump 44, and the urea water is supplied to the injection valve 50. Further, the excess urea water is returned to the tank 40 through the check valve 60.

また、タンク40への尿素水の吸い戻し時には、ポンプ44が逆回転方向に回転駆動される。これにより、供給配管42内の尿素水がタンク40内に吸引される。これによりエンジン30停止後の車両放置中に尿素水が供給配管42内に残存したままになるのを回避し、尿素水の凍結・膨張による供給配管42の破損を抑制する。 Further, when the urea water is sucked back into the tank 40, the pump 44 is rotationally driven in the reverse rotation direction. As a result, the urea water in the supply pipe 42 is sucked into the tank 40. This prevents the urea water from remaining in the supply pipe 42 while the vehicle is left unattended after the engine 30 is stopped, and suppresses damage to the supply pipe 42 due to freezing and expansion of the urea water.

噴射弁50側への尿素水圧送時には、噴射弁50により排気管31内に尿素水が噴射供給される。すると、排気管31内において排気ガスと共に尿素水がSCR触媒33に供給され、SCR触媒33においてNOxの還元反応によりその排気ガスが浄化される。NOxの還元に際しては、例えば、
(NH2)2CO+H2O→2NH3+CO2 …(式4)
といった反応により、排気熱による高温下で尿素水が加水分解される。これにより、アンモニア(NH3)が生成され、そのアンモニアがSCR触媒33に吸着するとともに、そのSCR触媒33において排気ガス中のNOxがアンモニアにより選択的に還元除去される。すなわち、同SCR触媒33上でアンモニアに基づく還元反応(上記の反応式(式1)~(式3))が行われることにより、NOxが還元、浄化されることとなる。
When urea water is pressure-fed to the injection valve 50 side, urea water is injected and supplied into the exhaust pipe 31 by the injection valve 50. Then, urea water is supplied to the SCR catalyst 33 together with the exhaust gas in the exhaust pipe 31, and the exhaust gas is purified by the reduction reaction of NOx in the SCR catalyst 33. When reducing NOx, for example,
(NH2) 2CO + H2O → 2NH3 + CO2 ... (Equation 4)
Urea water is hydrolyzed under high temperature due to exhaust heat. As a result, ammonia (NH3) is generated, and the ammonia is adsorbed on the SCR catalyst 33, and NOx in the exhaust gas is selectively reduced and removed by the ammonia in the SCR catalyst 33. That is, NOx is reduced and purified by performing a reduction reaction based on ammonia (the above reaction formulas (formula 1) to (formula 3)) on the SCR catalyst 33.

ところで、ポンプ制御部70は、噴射弁50側への尿素水圧送時において、ポンプ44に供給される電流のデューティ比(ポンプデューティ比)DUを制御することによって、噴射弁50に供給される尿素水の量、つまり、噴射量Qを制御する。そのため、尿素が結晶化したり、噴射弁50の噴孔を介して排気管31側から噴射弁50に異物が侵入したりするなどして、噴射量Qに異常が発生した場合に、ポンプデューティ比DUから噴射弁50の異常を判定することができる。 By the way, the pump control unit 70 controls the duty ratio (pump duty ratio) DU of the current supplied to the pump 44 when the urea water is pumped to the injection valve 50 side, so that the urea supplied to the injection valve 50 is supplied. The amount of water, that is, the injection amount Q is controlled. Therefore, when urea crystallizes or foreign matter invades the injection valve 50 from the exhaust pipe 31 side through the injection hole of the injection valve 50 and an abnormality occurs in the injection amount Q, the pump duty ratio The abnormality of the injection valve 50 can be determined from the DU.

しかし、例えばSCR触媒33が低温で未活性の状態など、噴射弁50側への尿素水圧送が行われていない状態では、異常判定するためのポンプデューティ比DUに差が生じにくいため、噴射弁50の異常を精度よく判定することができない。 However, in a state where urea water pressure feeding to the injection valve 50 side is not performed, for example, when the SCR catalyst 33 is inactive at a low temperature, the pump duty ratio DU for determining an abnormality is unlikely to differ. The abnormality of 50 cannot be accurately determined.

本実施形態のポンプ制御部70は、上記問題を解決するために異常判定処理を実施する。異常判定処理は、ポンプ44が逆回転している状況において、噴射弁50を開放された状態(以下、開状態という)と閉鎖された状態(以下、閉状態という)とに切り替え、噴射弁50の切り替えに伴うポンプデューティ比DUの変動量ΔDUを取得し、取得された変動量ΔDUに基づいて、噴射弁50における異常の有無を判定する。これにより、噴射弁50側への尿素水圧送が行われていない状態において、噴射弁50の異常を精度よく判定することができる。 The pump control unit 70 of the present embodiment carries out an abnormality determination process in order to solve the above problem. The abnormality determination process switches the injection valve 50 between an open state (hereinafter referred to as an open state) and a closed state (hereinafter referred to as a closed state) in a situation where the pump 44 is rotating in the reverse direction, and the injection valve 50 is used. The fluctuation amount ΔDU of the pump duty ratio DU due to the switching of the pump duty ratio DU is acquired, and the presence or absence of an abnormality in the injection valve 50 is determined based on the acquired fluctuation amount ΔDU. Thereby, the abnormality of the injection valve 50 can be accurately determined in the state where the urea water pressure feeding to the injection valve 50 side is not performed.

図2に本実施形態の異常判定処理のフローチャートを示す。異常判定処理は、エンジン30の駆動中、所定時間毎に繰り返し実施される。 FIG. 2 shows a flowchart of the abnormality determination process of the present embodiment. The abnormality determination process is repeatedly performed at predetermined time intervals while the engine 30 is being driven.

異常判定処理を開始すると、まずステップS10において、エンジン30が運転中であるかを判定する。具体的には、エンジン30が搭載された車両のイグニッションスイッチがオンであるかを判定する。 When the abnormality determination process is started, first, in step S10, it is determined whether the engine 30 is in operation. Specifically, it is determined whether the ignition switch of the vehicle on which the engine 30 is mounted is on.

ステップS10で否定判定すると、異常判定処理を終了する。一方、ステップS10で肯定判定すると、ステップS12において、異常判定処理が実施可能であるかを判定する。具体的には、温度センサ66と外気温センサ68とを用いて、タンク40内の尿素水が凍結状態でないかを判定する。また、回転検出部46を用いて、噴射弁50側への尿素水圧送が開始されていないかを判定する。 If a negative determination is made in step S10, the abnormality determination process ends. On the other hand, if an affirmative determination is made in step S10, it is determined in step S12 whether the abnormality determination process can be performed. Specifically, the temperature sensor 66 and the outside air temperature sensor 68 are used to determine whether the urea water in the tank 40 is in a frozen state. Further, the rotation detection unit 46 is used to determine whether or not urea water pressure feeding to the injection valve 50 side has been started.

温度センサ66と外気温センサ68との少なくとも一方が測定する温度がマイナス11℃以下であり、尿素水が凍結状態である場合、又はポンプ44が正回転しており、噴射弁50側への尿素水圧送が開始されている場合、ステップS12で否定判定し、異常判定処理を終了する。この場合、尿素水の解凍処理など、必要な処理を実施してもよい。一方、尿素水が凍結状態でなく、かつ、噴射弁50側への尿素水圧送が開始されていない場合、ステップS12で肯定判定し、ステップS14に進む。 When the temperature measured by at least one of the temperature sensor 66 and the outside air temperature sensor 68 is -11 ° C or lower and the urea water is in a frozen state, or the pump 44 is rotating in the forward direction, urea to the injection valve 50 side. When the hydraulic feeding is started, a negative determination is made in step S12, and the abnormality determination process is terminated. In this case, necessary treatment such as thawing treatment of urea water may be carried out. On the other hand, when the urea water is not in a frozen state and the urea water pressure feeding to the injection valve 50 side has not been started, an affirmative determination is made in step S12, and the process proceeds to step S14.

ステップS14において、噴射弁50を閉状態とする。続くステップS16において、噴射弁50を閉状態とした状況において、ポンプ44の正逆回転によりポンプ44及び供給配管42内に尿素水を充填する。具体的には、ポンプ44の正回転と逆回転とを交互に、それぞれ規定回数繰り返し実施する。規定回数は、例えば50回である。これにより、ポンプ44及び供給配管42に残存していた空気が逆止弁60を介してタンク40に排出され、供給配管42内に尿素水が充填される。 In step S14, the injection valve 50 is closed. In the following step S16, when the injection valve 50 is closed, the pump 44 and the supply pipe 42 are filled with urea water by forward / reverse rotation of the pump 44. Specifically, the forward rotation and the reverse rotation of the pump 44 are alternately repeated a predetermined number of times. The specified number of times is, for example, 50 times. As a result, the air remaining in the pump 44 and the supply pipe 42 is discharged to the tank 40 via the check valve 60, and the supply pipe 42 is filled with urea water.

なお、本実施形態では、ポンプ44及び供給配管42内に尿素水が充填された結果、ポンプ44を含む範囲で供給配管42内に尿素水が充填されている状態を、供給配管42内に尿素水が充填されている、と称している。 In the present embodiment, as a result of filling the pump 44 and the supply pipe 42 with urea water, the supply pipe 42 is filled with urea water in the range including the pump 44, and the supply pipe 42 is filled with urea. It is said to be filled with water.

ステップS17において、尿素水の充填が完了したかを判定する。例えば、ポンプ44の正回転と逆回転とがそれぞれ規定回数繰り返し実施されたかを判定する。ステップS17で否定判定すると、ステップS16に戻る。一方、ステップS17で肯定判定すると、ステップS18において、ポンプ44を逆回転させる。以下、異常判定処理が終了するまで、ポンプ44は逆回転を続ける。 In step S17, it is determined whether the filling of urea water is completed. For example, it is determined whether the forward rotation and the reverse rotation of the pump 44 are repeatedly performed a predetermined number of times. If a negative determination is made in step S17, the process returns to step S16. On the other hand, if an affirmative determination is made in step S17, the pump 44 is rotated in the reverse direction in step S18. Hereinafter, the pump 44 continues to rotate in the reverse direction until the abnormality determination process is completed.

続くステップS20、S22において、ポンプデューティ比DUの変動量ΔDUをそれぞれ取得する。以下、ステップS20で取得される変動量ΔDUを第1変動量ΔDU1といい、ステップS22で取得される変動量ΔDUを第2変動量ΔDU2という。 In the following steps S20 and S22, the fluctuation amount ΔDU of the pump duty ratio DU is acquired, respectively. Hereinafter, the fluctuation amount ΔDU acquired in step S20 is referred to as a first fluctuation amount ΔDU1, and the fluctuation amount ΔDU acquired in step S22 is referred to as a second fluctuation amount ΔDU2.

第1変動量ΔDU1と第2変動量ΔDU2とは、図3に示す変動量取得処理により取得される。図3に変動量取得処理のフローチャートを示す。変動量取得処理では、まずステップS70において、噴射弁50が閉状態である場合の閉鎖デューティ比DUcを取得する。次にステップS72において、噴射弁50を閉状態から開状態に切り替える。 The first fluctuation amount ΔDU1 and the second fluctuation amount ΔDU2 are acquired by the fluctuation amount acquisition process shown in FIG. FIG. 3 shows a flowchart of the fluctuation amount acquisition process. In the fluctuation amount acquisition process, first, in step S70, the closed duty ratio DUc when the injection valve 50 is in the closed state is acquired. Next, in step S72, the injection valve 50 is switched from the closed state to the open state.

次にステップS74において、噴射弁50を閉状態に切り替えてから所定時間後に、噴射弁50が開状態である場合の開放デューティ比DUoを取得する。次にステップS76において、噴射弁50を開状態から閉状態に切り替える。最後にステップS78において、ステップS70で取得した閉鎖デューティ比DUcと、ステップS70で取得した開放デューティ比DUoとの差の絶対値である変動量ΔDUを取得し、変動量取得処理を終了する。 Next, in step S74, after a predetermined time after switching the injection valve 50 to the closed state, the open duty ratio DUo when the injection valve 50 is in the open state is acquired. Next, in step S76, the injection valve 50 is switched from the open state to the closed state. Finally, in step S78, the fluctuation amount ΔDU, which is the absolute value of the difference between the closed duty ratio DUc acquired in step S70 and the open duty ratio DUo acquired in step S70, is acquired, and the fluctuation amount acquisition process is terminated.

変動量取得処理では、ステップS72、S76において、ポンプ44を逆回転させた状態で、噴射弁50を開状態と閉状態とに切り替える。そして、ステップS78において、噴射弁50の切り替えに伴うポンプデューティ比DUの変動量ΔDUを取得する。本実施形態において、ステップS72、S76の処理が「切替部」に相当し、ステップS78の処理が「取得部」に相当し、変動量ΔDUが「相関値」及び「回転変動パラメータ」に相当する。 In the fluctuation amount acquisition process, in steps S72 and S76, the injection valve 50 is switched between the open state and the closed state while the pump 44 is rotated in the reverse direction. Then, in step S78, the fluctuation amount ΔDU of the pump duty ratio DU accompanying the switching of the injection valve 50 is acquired. In the present embodiment, the processing of steps S72 and S76 corresponds to the "switching unit", the processing of step S78 corresponds to the "acquisition unit", and the fluctuation amount ΔDU corresponds to the "correlation value" and the "rotation fluctuation parameter". ..

具体的には、ステップS20の処理では、供給配管42内に尿素水が充填された状況において、ポンプ44を逆回転させた状態で、噴射弁50を閉状態から開状態に切り替え、噴射弁50を閉状態から開状態に切り替えた場合の第1変動量ΔDU1を取得する。ステップS20の処理とステップS22の処理とが連続して実施されることで、ポンプ44を逆回転させた状態で、噴射弁50の閉状態から開状態への切り替えが複数回実施され、第1変動量ΔDU1と第2変動量ΔDU2とが取得される。 Specifically, in the process of step S20, in the situation where the supply pipe 42 is filled with urea water, the injection valve 50 is switched from the closed state to the open state while the pump 44 is rotated in the reverse direction, and the injection valve 50 is used. Acquires the first fluctuation amount ΔDU1 when switching from the closed state to the open state. By continuously executing the process of step S20 and the process of step S22, the injection valve 50 is switched from the closed state to the open state a plurality of times while the pump 44 is rotated in the reverse direction. The fluctuation amount ΔDU1 and the second fluctuation amount ΔDU2 are acquired.

第1変動量ΔDU1と第2変動量ΔDU2とが取得されると、ステップS24~S54において、第1変動量ΔDU1と第2変動量ΔDU2とに基づいて、噴射弁50における異常の有無を判定する。本実施形態において、ステップS24~S54の処理が「判定部」に相当する。 When the first fluctuation amount ΔDU1 and the second fluctuation amount ΔDU2 are acquired, in steps S24 to S54, it is determined whether or not there is an abnormality in the injection valve 50 based on the first fluctuation amount ΔDU1 and the second fluctuation amount ΔDU2. .. In the present embodiment, the processes of steps S24 to S54 correspond to the "determination unit".

具体的には、まずステップS24において、第1変動量ΔDU1が所定の第1閾値K1よりも大きいかを判定する。所定の第1閾値K1は、供給配管42に尿素水が充填された状況における変動量ΔDUに基づいて、噴射弁50の異常を判定するための閾値である。 Specifically, first, in step S24, it is determined whether the first fluctuation amount ΔDU1 is larger than the predetermined first threshold value K1. The predetermined first threshold value K1 is a threshold value for determining an abnormality of the injection valve 50 based on the fluctuation amount ΔDU in a situation where the supply pipe 42 is filled with urea water.

ステップS24で肯定判定すると、ステップS26において、第2変動量ΔDU2が所定の第2閾値K2よりも大きいかを判定する。所定の第2閾値K2は、供給配管42内に尿素水が含まれない状況における変動量ΔDUに基づいて、噴射弁50の異常を判定するための閾値である。 If an affirmative determination is made in step S24, it is determined in step S26 whether the second fluctuation amount ΔDU2 is larger than the predetermined second threshold value K2. The predetermined second threshold value K2 is a threshold value for determining an abnormality of the injection valve 50 based on the fluctuation amount ΔDU in a situation where urea water is not contained in the supply pipe 42.

噴射弁50が正常であると、ステップS20の処理において噴射弁50を閉状態から開状態に切り替える(S72)ことで、ポンプ44の逆回転によりポンプ44及び供給配管42内の尿素水がタンク40に吸い戻される。そのため、1回目の噴射弁50の切替時(S20)と、2回目の噴射弁50の切替時(S22)とでは、供給配管42内に充填されている尿素水の量(換言すれば、噴射弁50からの空気の流入量)に差異が生じている。本実施形態では、この差異を加味して、第2閾値K2を第1閾値K1と異ならせている。具体的には、第2閾値K2を第1閾値K1よりも小さい値に設定している。 When the injection valve 50 is normal, the injection valve 50 is switched from the closed state to the open state in the process of step S20 (S72), so that the urea water in the pump 44 and the supply pipe 42 is discharged to the tank 40 by the reverse rotation of the pump 44. Is sucked back to. Therefore, the amount of urea water filled in the supply pipe 42 (in other words, injection) between the first switching of the injection valve 50 (S20) and the second switching of the injection valve 50 (S22). There is a difference in the amount of air flowing in from the valve 50). In the present embodiment, the second threshold value K2 is made different from the first threshold value K1 in consideration of this difference. Specifically, the second threshold value K2 is set to a value smaller than the first threshold value K1.

ステップS26で肯定判定すると、ステップS28において、噴射弁50が正常であると判定し、異常判定処理を終了する。一方、ステップS26で否定判定すると、ステップS30において、ポンプデューティ比DUの変動量ΔDUを再度取得する。以下、ステップS26で取得される変動量ΔDUを第3変動量ΔDU3という。第3変動量ΔDU3は、図3に示す変動量取得処理により取得される。 If an affirmative determination is made in step S26, it is determined in step S28 that the injection valve 50 is normal, and the abnormality determination process is terminated. On the other hand, if a negative determination is made in step S26, the fluctuation amount ΔDU of the pump duty ratio DU is acquired again in step S30. Hereinafter, the fluctuation amount ΔDU acquired in step S26 is referred to as a third fluctuation amount ΔDU3. The third fluctuation amount ΔDU3 is acquired by the fluctuation amount acquisition process shown in FIG.

ステップS32において、第3変動量ΔDU3が第2閾値K2よりも大きいかを判定する。ステップS32で肯定判定すると、ステップS28に進み、異常判定処理を終了する。 In step S32, it is determined whether the third fluctuation amount ΔDU3 is larger than the second threshold value K2. If an affirmative determination is made in step S32, the process proceeds to step S28 and the abnormality determination process is terminated.

ステップS32で否定判定すると、ステップS34において、変動量ΔDUの差分ΔGAを取得する。ここで、差分ΔGAは、ステップS20で取得した第1変動量ΔDU1とステップS22で取得した第2変動量ΔDU2との差の絶対値と、ステップS20で取得した第1変動量ΔDU1とステップS30で取得した第3変動量ΔDU3との差の絶対値とのうち、いずれか小さい値である。 If a negative determination is made in step S32, the difference ΔGA of the fluctuation amount ΔDU is acquired in step S34. Here, the difference ΔGA is the absolute value of the difference between the first fluctuation amount ΔDU1 acquired in step S20 and the second fluctuation amount ΔDU2 acquired in step S22, and the first fluctuation amount ΔDU1 and step S30 acquired in step S20. It is the smaller of the absolute values of the difference from the acquired third fluctuation amount ΔDU3.

ステップS36において、差分ΔGAが所定の第3閾値K3よりも大きいかを判定する。所定の第3閾値K3は、供給配管42内に尿素水が充填された状況における変動量ΔDUと、供給配管42内に尿素水が含まれない状況における変動量ΔDUとの差分ΔGAに基づいて噴射弁50における異常の有無を判定するための閾値であり、第1閾値K1よりも小さく、かつ、第2閾値K2よりも大きい。なお、本実施形態では、ポンプ44を含む範囲で供給配管42内に尿素水が存在しない状態を、供給配管42内に尿素水が含まれない、と称している。 In step S36, it is determined whether the difference ΔGA is larger than the predetermined third threshold value K3. The predetermined third threshold value K3 is injected based on the difference ΔGA between the fluctuation amount ΔDU in the situation where the supply pipe 42 is filled with urea water and the fluctuation amount ΔDU in the situation where the supply pipe 42 does not contain urea water. It is a threshold value for determining the presence or absence of an abnormality in the valve 50, which is smaller than the first threshold value K1 and larger than the second threshold value K2. In this embodiment, the state in which urea water does not exist in the supply pipe 42 in the range including the pump 44 is referred to as the state in which urea water is not contained in the supply pipe 42.

ステップS36で肯定判定すると、ステップS28に進み、異常判定処理を終了する。一方、ステップS36で否定判定すると、ステップS38において、噴射弁50が異常であると判定し、異常判定処理を終了する。 If an affirmative determination is made in step S36, the process proceeds to step S28 to end the abnormality determination process. On the other hand, if a negative determination is made in step S36, it is determined in step S38 that the injection valve 50 is abnormal, and the abnormality determination process is terminated.

一方、ステップS24で否定判定すると、ステップS40において、第2変動量ΔDU2が第2閾値K2よりも大きいかを判定する。ステップS40で肯定判定すると、ステップS42において、変動量ΔDUの差分ΔGAを取得する。ステップS42における差分ΔGAは、ステップS20で取得した第1変動量ΔDU1と、ステップS22で取得した第2変動量ΔDU2との差の絶対値である。 On the other hand, if a negative determination is made in step S24, it is determined in step S40 whether the second fluctuation amount ΔDU2 is larger than the second threshold value K2. If affirmative determination is made in step S40, the difference ΔGA of the fluctuation amount ΔDU is acquired in step S42. The difference ΔGA in step S42 is an absolute value of the difference between the first fluctuation amount ΔDU1 acquired in step S20 and the second fluctuation amount ΔDU2 acquired in step S22.

続くステップS44において、差分ΔGAが第3閾値K3よりも大きいかを判定する。ステップS44で肯定判定すると、ステップS28に進み、異常判定処理を終了する。一方、ステップS44で否定判定すると、ステップS46において、噴射弁50が異常であると判定し、異常判定処理を終了する。 In the following step S44, it is determined whether the difference ΔGA is larger than the third threshold value K3. If an affirmative determination is made in step S44, the process proceeds to step S28 and the abnormality determination process is terminated. On the other hand, if a negative determination is made in step S44, it is determined in step S46 that the injection valve 50 is abnormal, and the abnormality determination process is terminated.

一方、ステップS40で否定判定すると、ステップS48において、第3変動量ΔDU3を取得する。続くステップS50において、第3変動量ΔDU3が第2閾値K2よりも大きいかを判定する。ステップS50で否定判定すると、ステップS46に進み、異常判定処理を終了する。 On the other hand, if a negative determination is made in step S40, the third fluctuation amount ΔDU3 is acquired in step S48. In the following step S50, it is determined whether the third fluctuation amount ΔDU3 is larger than the second threshold value K2. If a negative determination is made in step S50, the process proceeds to step S46 and the abnormality determination process is terminated.

ステップS50で肯定判定すると、ステップS52において、変動量ΔDUの差分ΔGAを取得する。ステップS52における差分ΔGAは、ステップS20で取得した第1変動量ΔDU1と、ステップS48で取得した第3変動量ΔDU3との差の絶対値である。 If affirmative determination is made in step S50, the difference ΔGA of the fluctuation amount ΔDU is acquired in step S52. The difference ΔGA in step S52 is an absolute value of the difference between the first fluctuation amount ΔDU1 acquired in step S20 and the third fluctuation amount ΔDU3 acquired in step S48.

続くステップS54において、差分ΔGAが第3閾値K3よりも大きいかを判定する。ステップS54で肯定判定すると、ステップS28に進み、異常判定処理を終了する。一方、ステップS54で否定判定すると、ステップS46に進み、異常判定処理を終了する。 In the following step S54, it is determined whether the difference ΔGA is larger than the third threshold value K3. If an affirmative determination is made in step S54, the process proceeds to step S28 and the abnormality determination process is terminated. On the other hand, if a negative determination is made in step S54, the process proceeds to step S46 and the abnormality determination process is terminated.

続いて、図4に、異常判定処理を含む噴射弁50の制御の一例を示す。ここで、図4は、噴射弁50の制御における回転速度Nの推移を示す。ここで、図4(a)は、配管圧力Pの推移を示し、図4(b)は、回転速度Nの推移を示し、図4(c)は、噴射弁50の開閉状態の推移を示す。なお、図4では、配管圧力P及び回転速度Nから、噴射弁50の噴射以外の外乱による脈動が除去されている。図6、7についても同様である。 Subsequently, FIG. 4 shows an example of control of the injection valve 50 including the abnormality determination process. Here, FIG. 4 shows the transition of the rotation speed N in the control of the injection valve 50. Here, FIG. 4A shows the transition of the piping pressure P, FIG. 4B shows the transition of the rotation speed N, and FIG. 4C shows the transition of the open / closed state of the injection valve 50. .. In FIG. 4, the pulsation due to the disturbance other than the injection of the injection valve 50 is removed from the piping pressure P and the rotation speed N. The same applies to FIGS. 6 and 7.

図4に示すように、時刻t1において車両のイグニッションスイッチがオンされ、エンジン30が始動する。本実施形態では、エンジン30の始動時において、タンク40内の尿素水は凍結状態となっている。そのため、発熱体62を用いて、タンク40内の尿素水を解凍する解凍処理が実施される。 As shown in FIG. 4, at time t1, the ignition switch of the vehicle is turned on and the engine 30 is started. In the present embodiment, the urea water in the tank 40 is in a frozen state when the engine 30 is started. Therefore, a thawing process for thawing the urea water in the tank 40 is performed using the heating element 62.

時刻t2において、タンク40内の尿素水が解凍されて、解凍処理が終了すると、時刻t2~t3の期間において異常判定処理が実施される。異常判定処理については、後述する。異常判定処理が終了すると、時刻t3において充填処理が開始される。充填処理では、ポンプ44を正回転させることにより、供給配管42内に尿素水が充填される。 When the urea water in the tank 40 is thawed at time t2 and the thawing process is completed, the abnormality determination process is performed during the period from time t2 to t3. The abnormality determination process will be described later. When the abnormality determination process is completed, the filling process is started at time t3. In the filling process, urea water is filled in the supply pipe 42 by rotating the pump 44 in the forward direction.

具体的には、時刻t3において、噴射弁50が開放された状態で回転速度フィードバック制御により尿素水が充填される。その後時刻t4において、配管圧力Pが基準圧力Poに到達すると、噴射弁50が閉鎖された状態で圧力フィードバック制御により尿素水が充填される。 Specifically, at time t3, urea water is filled by rotation speed feedback control with the injection valve 50 open. After that, when the pipe pressure P reaches the reference pressure Po at time t4, urea water is filled by pressure feedback control with the injection valve 50 closed.

その後時刻t5において、配管圧力Pが目標圧力Ptgに到達すると、充填処理が終了し、時刻t5から時刻t6の期間において噴射処理が実施される。噴射処理では、配管圧力Pが目標圧力Ptgに維持されるとともに、エンジン運転状況に基づいて噴射弁50が開閉され、噴射弁50から尿素水が噴射される。 After that, when the pipe pressure P reaches the target pressure Ptg at time t5, the filling process is completed, and the injection process is performed in the period from time t5 to time t6. In the injection process, the pipe pressure P is maintained at the target pressure Ptg, the injection valve 50 is opened and closed based on the engine operating condition, and urea water is injected from the injection valve 50.

時刻t6において、車両のイグニッションスイッチがオフされ、エンジン30が停止すると、噴射処理が終了し、吸戻し処理が開始される。吸戻し処理では、ポンプ44を逆回転させることにより、ポンプ44及び供給配管42内の尿素水がタンク40へ吸い戻される。その後時刻t7において、吸戻し処理が終了すると、噴射弁50の制御を終了する。 At time t6, when the ignition switch of the vehicle is turned off and the engine 30 is stopped, the injection process is terminated and the suction back process is started. In the suction back treatment, the urea water in the pump 44 and the supply pipe 42 is sucked back to the tank 40 by rotating the pump 44 in the reverse direction. After that, at time t7, when the suction back processing is completed, the control of the injection valve 50 is terminated.

次に、異常判定処理について説明する。図4に示すように、時刻t3において異常判定処理が開始されると、時刻t11においてポンプ44を正逆回転させることにより、供給配管42に尿素水が充填される。その後時刻t12において、尿素水の充填が完了すると、時刻t13において、供給配管42に尿素水が充填された状況において、ポンプ44を逆回転させる。 Next, the abnormality determination process will be described. As shown in FIG. 4, when the abnormality determination process is started at time t3, urea water is filled in the supply pipe 42 by rotating the pump 44 forward and reverse at time t11. After that, when the filling of urea water is completed at time t12, the pump 44 is rotated in the reverse direction in the situation where the supply pipe 42 is filled with urea water at time t13.

図5~8に、尿素水充填後における異常判定処理の一例を示す。詳しくは、図5は、ポンプ44を逆回転させた状態で、噴射弁50を閉状態と開状態とで切り替えた場合における供給配管42内の尿素水充填状態の変化を示している。ここで、図5(a)は、噴射弁50が閉状態である場合における尿素水充填状態を示し、図5(b)は、噴射弁50を開状態に切り替えた場合における尿素水充填状態を示し、図5(c)は、噴射弁50が閉状態である場合における尿素水充填状態であって、供給配管42内に充填される尿素水が所定の目標量よりも少ない場合における尿素水充填状態を示している。なお、図5では、尿素水噴射システム20を簡略化して示し、ポンプ制御部70等の記載を省略する。 FIGS. 5 to 8 show an example of the abnormality determination process after filling with urea water. More specifically, FIG. 5 shows a change in the urea water filling state in the supply pipe 42 when the injection valve 50 is switched between the closed state and the open state while the pump 44 is rotated in the reverse direction. Here, FIG. 5A shows a urea water filling state when the injection valve 50 is in the closed state, and FIG. 5B shows a urea water filling state when the injection valve 50 is switched to the open state. FIG. 5C shows a urea water filling state when the injection valve 50 is in the closed state, and when the urea water filled in the supply pipe 42 is less than a predetermined target amount, the urea water filling state is shown. It shows the state. In FIG. 5, the urea water injection system 20 is shown in a simplified manner, and the description of the pump control unit 70 and the like is omitted.

また、図6~8は、異常判定処理におけるポンプデューティ比DUの推移を示す。図6~8において、(a)は、ポンプデューティ比DUの推移を示し、(b)は、変動量ΔDUの推移を示し、(c)は、噴射弁50の開閉状態の推移を示す。 Further, FIGS. 6 to 8 show changes in the pump duty ratio DU in the abnormality determination process. In FIGS. 6 to 8, (a) shows the transition of the pump duty ratio DU, (b) shows the transition of the fluctuation amount ΔDU, and (c) shows the transition of the open / closed state of the injection valve 50.

図6では、時刻t13以降においてポンプ44を逆回転させるようにしており、その状態下で、噴射弁50の閉状態と開状態とを切り替えるようにしている。図6において、時刻t13~t14の期間では、噴射弁50が閉鎖された状態でポンプ44が逆回転され、かかる状態では、図5(a)に示すように、供給配管42においてポンプ44を含む範囲で尿素水が充填された状態となる。このとき、ポンプデューティ比DUは第1閉鎖デューティ比DUc1となる。 In FIG. 6, the pump 44 is rotated in the reverse direction after the time t13, and under that state, the injection valve 50 is switched between the closed state and the open state. In FIG. 6, during the period from time t13 to t14, the pump 44 is rotated in the reverse direction with the injection valve 50 closed, and in such a state, the pump 44 is included in the supply pipe 42 as shown in FIG. 5A. The area is filled with urea water. At this time, the pump duty ratio DU becomes the first closed duty ratio DUc1.

また、時刻t14~t15の期間では、噴射弁50が開放されることに伴い、噴射弁50の噴孔から空気が流入し、図5(b)に示すように、供給配管42においてポンプ44を含む範囲が空気で満たされる。これにより、ポンプ44の負荷が減少するため、ポンプデューティ比DUは開放デューティ比DUoに減少し、第1変動量ΔDU1(ΔDU1=DUc1-DUo)が取得される。 Further, during the period from time t14 to t15, as the injection valve 50 is opened, air flows in from the injection hole of the injection valve 50, and as shown in FIG. 5B, the pump 44 is installed in the supply pipe 42. The included area is filled with air. As a result, the load on the pump 44 is reduced, so that the pump duty ratio DU is reduced to the open duty ratio DUo, and the first fluctuation amount ΔDU1 (ΔDU1 = DUc1-DUo) is acquired.

一方、時刻t15~t16の期間では、噴射弁50が閉鎖されるが、ポンプ44を逆回転させていることに伴い、供給配管42内に尿素水が含まれない状態が維持される。これにより、ポンプデューティ比DUは第2閉鎖デューティ比DUc2に上昇するものの、第2閉鎖デューティ比DUc2は、第1閉鎖デューティ比DUc1よりも小さい値となる。 On the other hand, during the period from time t15 to t16, the injection valve 50 is closed, but the state in which urea water is not contained in the supply pipe 42 is maintained due to the reverse rotation of the pump 44. As a result, the pump duty ratio DU rises to the second closed duty ratio DUc2, but the second closed duty ratio DUc2 is smaller than the first closed duty ratio DUc1.

その後、時刻t16~t17の期間では、噴射弁50が再び開放されることに伴い、ポンプデューティ比DUは再び開放デューティ比DUoに減少する。これにより、第2変動量ΔDU2(ΔDU2=DUc2-DUo)が取得される。 After that, in the period from time t16 to t17, the pump duty ratio DU is reduced to the open duty ratio DUo again as the injection valve 50 is opened again. As a result, the second fluctuation amount ΔDU2 (ΔDU2 = DUc2-DUo) is acquired.

第1変動量ΔDU1と第2変動量ΔDU2とが取得されると、第1変動量ΔDU1と第2変動量ΔDU2が閾値K1、K2を用いて比較判定される。この場合に、先の切替時に取得された第1変動量ΔDU1と、後の切替時に取得された第2変動量ΔDU2とは、異なる閾値K1、K2を用いて比較判定される。具体的には、先の切替時に取得された第1変動量ΔDU1は、切り替え前に供給配管42内に充填された尿素水の量が多いため、比較的大きい第1閾値K1を用いて比較判定される。また、後の切替時に取得された第2変動量ΔDU2は、切り替え前に供給配管42内に充填された尿素水の量が少ない(供給配管42内に尿素水が含まれない)ため、第1閾値K1よりも小さい第2閾値K2を用いて比較判定される。 When the first fluctuation amount ΔDU1 and the second fluctuation amount ΔDU2 are acquired, the first fluctuation amount ΔDU1 and the second fluctuation amount ΔDU2 are compared and determined using the threshold values K1 and K2. In this case, the first fluctuation amount ΔDU1 acquired at the time of the previous switching and the second fluctuation amount ΔDU2 acquired at the time of the later switching are compared and determined using different threshold values K1 and K2. Specifically, since the first fluctuation amount ΔDU1 acquired at the time of the previous switching has a large amount of urea water filled in the supply pipe 42 before the switching, a comparative determination is made using a relatively large first threshold value K1. Will be done. Further, the second fluctuation amount ΔDU2 acquired at the time of the subsequent switching is the first because the amount of urea water filled in the supply pipe 42 before the switching is small (the urea water is not contained in the supply pipe 42). The comparison is made using the second threshold value K2, which is smaller than the threshold value K1.

図6(b)に示すように、第1変動量ΔDU1が第1閾値K1よりも大きく、かつ、第2変動量ΔDU2が第2閾値K2よりも大きい場合、噴射弁50が正常であると判定される。その後時刻t17においてポンプ44を逆回転させた状態で、噴射弁50が開状態から閉状態に切り替え、その後時刻t20においてポンプ44の逆回転が停止され、異常判定処理が終了する。 As shown in FIG. 6B, when the first fluctuation amount ΔDU1 is larger than the first threshold value K1 and the second fluctuation amount ΔDU2 is larger than the second threshold value K2, it is determined that the injection valve 50 is normal. Will be done. After that, the injection valve 50 is switched from the open state to the closed state in the state where the pump 44 is rotated in the reverse direction at the time t17, and then the reverse rotation of the pump 44 is stopped at the time t20, and the abnormality determination process is completed.

一方、噴射弁50に閉異常が発生し、噴射弁50が閉鎖された状態に維持されると、噴射弁50の切り替えに関わらず、ポンプデューティ比DUが閉鎖デューティ比DUcに維持される。そのため、第1変動量ΔDU1と第2変動量ΔDU2とがともにゼロとなり、第1閾値K1及び第2閾値K2よりも小さくなることから、噴射弁50が異常であると判定される。 On the other hand, when a closing abnormality occurs in the injection valve 50 and the injection valve 50 is maintained in the closed state, the pump duty ratio DU is maintained at the closed duty ratio DUc regardless of the switching of the injection valve 50. Therefore, both the first fluctuation amount ΔDU1 and the second fluctuation amount ΔDU2 become zero and become smaller than the first threshold value K1 and the second threshold value K2, so that it is determined that the injection valve 50 is abnormal.

また、噴射弁50に開異常が発生し、噴射弁50を閉鎖することができないと、噴射弁50の切り替えに関わらず、ポンプデューティ比DUが閉鎖デューティ比DUcまで減少しない。そのため、第1変動量ΔDU1が第1閾値K1よりも小さくなり、かつ、第2変動量ΔDU2が第2閾値K2よりも小さくなることから、噴射弁50が異常であると判定される。 Further, if an opening abnormality occurs in the injection valve 50 and the injection valve 50 cannot be closed, the pump duty ratio DU does not decrease to the closing duty ratio DUc regardless of the switching of the injection valve 50. Therefore, since the first fluctuation amount ΔDU1 is smaller than the first threshold value K1 and the second fluctuation amount ΔDU2 is smaller than the second threshold value K2, it is determined that the injection valve 50 is abnormal.

噴射弁50に異常が発生していない場合でも、例えば、供給配管42内に充填される尿素水に気泡が混入した場合には、図5(c)に示すように、供給配管42内に充填される尿素水が目標量よりも少なくなる。この場合、時刻t14~t15の期間におけるポンプデューティ比DUは、第1閉鎖デューティ比DUc1よりも小さい第3閉鎖デューティ比DUc3となり、第1変動量ΔDU1(ΔDU1=DUc3-DUo)が第1閾値K1よりも小さくなる。一方、噴射弁50は正常であるため、第2変動量ΔDU2(ΔDU2=DUc2-DUo)は第2閾値K2よりも大きくなる。 Even if no abnormality has occurred in the injection valve 50, for example, if air bubbles are mixed in the urea water filled in the supply pipe 42, the supply pipe 42 is filled as shown in FIG. 5 (c). The amount of urea water produced is less than the target amount. In this case, the pump duty ratio DU during the period from time t14 to t15 is the third closed duty ratio DUc3, which is smaller than the first closed duty ratio DUc1, and the first fluctuation amount ΔDU1 (ΔDU1 = DUc3-DUo) is the first threshold value K1. Is smaller than. On the other hand, since the injection valve 50 is normal, the second fluctuation amount ΔDU2 (ΔDU2 = DUc2-DUo) becomes larger than the second threshold value K2.

本実施形態では、第1変動量ΔDU1が第1閾値K1よりも小さく、かつ、第2変動量ΔDU2が第2閾値K2よりも大きい場合、第1変動量ΔDU1と第2変動量ΔDU2との差分ΔGAを取得する。先の切替時に取得された第1変動量ΔDU1と、後の切替時に取得された第2変動量ΔDU2とは、切り替え前に供給配管42内に充填された尿素水の量が異なる。そのため、切り替え前に供給配管42内に充填された尿素水の量の差に基づいて、差分ΔGAが発生し、この差分ΔGAに基づいて、噴射弁50における異常の有無を判定することができる。具体的には、差分ΔGAは第3閾値K3を用いて比較判定され、差分ΔGAが第3閾値K3よりも大きい場合、噴射弁50が正常であると判定される。一方、差分ΔGAが第3閾値K3よりも小さい場合、噴射弁50が異常であると判定される。 In the present embodiment, when the first fluctuation amount ΔDU1 is smaller than the first threshold value K1 and the second fluctuation amount ΔDU2 is larger than the second threshold value K2, the difference between the first fluctuation amount ΔDU1 and the second fluctuation amount ΔDU2. Obtain ΔGA. The amount of urea water filled in the supply pipe 42 before the switching is different between the first fluctuation amount ΔDU1 acquired at the time of the previous switching and the second fluctuation amount ΔDU2 acquired at the time of the subsequent switching. Therefore, a difference ΔGA is generated based on the difference in the amount of urea water filled in the supply pipe 42 before switching, and the presence or absence of an abnormality in the injection valve 50 can be determined based on this difference ΔGA. Specifically, the difference ΔGA is compared and determined using the third threshold value K3, and when the difference ΔGA is larger than the third threshold value K3, it is determined that the injection valve 50 is normal. On the other hand, when the difference ΔGA is smaller than the third threshold value K3, it is determined that the injection valve 50 is abnormal.

また、噴射弁50に異常が発生していない場合でも、例えば、供給配管42内に尿素水が含まれない状況では、切り替えによるポンプデューティ比DUの変動量ΔDUが小さい。そのため、図8(a)に示すように、ノイズなど、噴射弁50の噴射以外の外乱が大きい場合には、第2変動量ΔDU2を正確に取得することができない。この場合、図8(b)に示すように、時刻t16~t17の期間に取得される第2変動量ΔDU2が第2閾値K2よりも小さくなることがある。 Further, even when an abnormality has not occurred in the injection valve 50, for example, in a situation where urea water is not contained in the supply pipe 42, the fluctuation amount ΔDU of the pump duty ratio DU due to switching is small. Therefore, as shown in FIG. 8A, when the disturbance other than the injection of the injection valve 50 is large such as noise, the second fluctuation amount ΔDU2 cannot be accurately acquired. In this case, as shown in FIG. 8B, the second fluctuation amount ΔDU2 acquired during the period from time t16 to t17 may be smaller than the second threshold value K2.

本実施形態では、第2変動量ΔDU2が第2閾値K2よりも小さい場合、供給配管42内に尿素水が含まれない状況における変動量ΔDUである第3変動量ΔDU3を再度取得する。具体的には、時刻t17~t18の期間において、噴射弁50が閉鎖されることにより、ポンプデューティ比DUが第2閉鎖デューティ比DUc2に上昇し、時刻t18~t19の期間において、噴射弁50が開放されることにより、ポンプデューティ比DUが開放デューティ比DUoに減少する。これにより、第3変動量ΔDU3(ΔDU3=DUc2-DUo)が取得される。 In the present embodiment, when the second fluctuation amount ΔDU2 is smaller than the second threshold value K2, the third fluctuation amount ΔDU3, which is the fluctuation amount ΔDU in the situation where the supply pipe 42 does not contain urea water, is acquired again. Specifically, when the injection valve 50 is closed during the period from time t17 to t18, the pump duty ratio DU rises to the second closing duty ratio DUc2, and the injection valve 50 is increased during the period from time t18 to t19. By opening, the pump duty ratio DU is reduced to the open duty ratio DUo. As a result, the third variable amount ΔDU3 (ΔDU3 = DUc2-DUo) is acquired.

第3変動量ΔDU3が取得されると、第1変動量ΔDU1と第3変動量ΔDU3が閾値K1、K2を用いて比較判定される。具体的には、図8(b)に示すように、取得された第1変動量ΔDU1が第1閾値K1よりも大きく、かつ、取得された第3変動量ΔDU3が第2閾値K2よりも大きい場合、噴射弁50が正常であると判定される。その後時刻t19においてポンプ44を逆回転させた状態で、噴射弁50が開状態から閉状態に切り替え、その後時刻t20においてポンプ44の逆回転が停止され、異常判定処理が終了する。 When the third fluctuation amount ΔDU3 is acquired, the first fluctuation amount ΔDU1 and the third fluctuation amount ΔDU3 are compared and determined using the threshold values K1 and K2. Specifically, as shown in FIG. 8B, the acquired first fluctuation amount ΔDU1 is larger than the first threshold value K1, and the acquired third fluctuation amount ΔDU3 is larger than the second threshold value K2. If so, it is determined that the injection valve 50 is normal. After that, the injection valve 50 is switched from the open state to the closed state while the pump 44 is rotated in the reverse direction at time t19, and then the reverse rotation of the pump 44 is stopped at time t20, and the abnormality determination process is completed.

以上説明した本実施形態によれば、以下の効果を奏する。 According to the present embodiment described above, the following effects are obtained.

本実施形態では、異常判定処理が噴射処理よりも前に実施される。そのため、噴射処理の途中に異常判定処理を実施する従来技術に比べて、噴射弁50の異常を早期に検出することができる。 In the present embodiment, the abnormality determination process is performed before the injection process. Therefore, the abnormality of the injection valve 50 can be detected earlier than the conventional technique of performing the abnormality determination processing in the middle of the injection processing.

本実施形態では、異常判定処理において、ポンプ44の逆回転時に(S18)、噴射弁50を開状態と閉状態とに切り替える(S72、S76)。噴射弁50が正常である場合、噴射弁50の開閉状態を切り替えると、ポンプ44の負荷が変わるため、ポンプデューティ比DUの変動量ΔDUが大きくなる。一方、噴射弁50が異常であると、ポンプデューティ比DUの変動量ΔDUが小さくなるため、その変動量ΔDUが小さくなる。つまり、ポンプデューティ比DUの変動量ΔDUと噴射弁50における異常の有無とには相関がある。そのため、この変動量ΔDUに基づいて、噴射制御が行われていない状態において、噴射弁50における異常の有無を好適に判定することができる。 In the present embodiment, in the abnormality determination process, the injection valve 50 is switched between the open state and the closed state (S72, S76) when the pump 44 rotates in the reverse direction (S18). When the injection valve 50 is normal, when the open / closed state of the injection valve 50 is switched, the load of the pump 44 changes, so that the fluctuation amount ΔDU of the pump duty ratio DU becomes large. On the other hand, if the injection valve 50 is abnormal, the fluctuation amount ΔDU of the pump duty ratio DU becomes small, so that the fluctuation amount ΔDU becomes small. That is, there is a correlation between the fluctuation amount ΔDU of the pump duty ratio DU and the presence or absence of an abnormality in the injection valve 50. Therefore, based on this fluctuation amount ΔDU, it is possible to suitably determine the presence or absence of an abnormality in the injection valve 50 in a state where the injection control is not performed.

本実施形態では、供給配管42内に尿素水が充填された状況で(S16)、噴射弁50を閉状態から開状態に切り替える。噴射弁50が正常である場合、供給配管42内に尿素水が充填された状況におけるポンプデューティ比DUの変動量ΔDUを、供給配管42内に尿素水が含まれない状況におけるポンプデューティ比DUの変動量ΔDUよりも大きくなる。そのため、供給配管42内に尿素水が充填された状況におけるポンプデューティ比DUの変動量ΔDUに基づいて、噴射弁50における異常の有無を精度よく判定することができる。 In the present embodiment, the injection valve 50 is switched from the closed state to the open state in the state where the supply pipe 42 is filled with urea water (S16). When the injection valve 50 is normal, the fluctuation amount ΔDU of the pump duty ratio DU when the supply pipe 42 is filled with urea water, and the pump duty ratio DU when the supply pipe 42 does not contain urea water. It becomes larger than the fluctuation amount ΔDU. Therefore, it is possible to accurately determine the presence or absence of an abnormality in the injection valve 50 based on the fluctuation amount ΔDU of the pump duty ratio DU in the situation where the supply pipe 42 is filled with urea water.

本実施形態では、供給配管42内に尿素水が充填された状況で、噴射弁50の閉状態から開状態への切り替えを複数回実施する(S20、S22)。これにより、各切り替え前に供給配管42内に充填されている尿素水の量が変化し、先の切替時に取得された第1変動量ΔDU1と、後の切替時に取得された第2変動量ΔDU2とに差異を生じさせることができる。 In the present embodiment, the injection valve 50 is switched from the closed state to the open state a plurality of times in a state where the supply pipe 42 is filled with urea water (S20, S22). As a result, the amount of urea water filled in the supply pipe 42 changes before each switching, and the first fluctuation amount ΔDU1 acquired at the time of the previous switching and the second fluctuation amount ΔDU2 acquired at the time of the subsequent switching are changed. Can make a difference with.

本実施形態では、先の切替時に取得された第1変動量ΔDU1と、後の切替時に取得された第2変動量ΔDU2とで異なる閾値K1、K2を用いて比較判定する(S24、S26)。そのため、供給配管42内に充填された尿素水の量の違いを考慮して、噴射弁50における異常の有無を適正に判定することができる。 In the present embodiment, the first fluctuation amount ΔDU1 acquired at the time of the previous switching and the second fluctuation amount ΔDU2 acquired at the time of the subsequent switching are compared and determined using different threshold values K1 and K2 (S24, S26). Therefore, the presence or absence of an abnormality in the injection valve 50 can be appropriately determined in consideration of the difference in the amount of urea water filled in the supply pipe 42.

また、本実施形態では、先の切替時に取得された第1変動量ΔDU1と、後の切替時に取得された第2変動量ΔDU2との差分ΔGAに基づいて、噴射弁50における異常の有無を判定する(S36、S44,S54)。そのため、供給配管42内に充填された尿素水の量の違いに基づいて、噴射弁50における異常の有無を適正に判定することができる。 Further, in the present embodiment, it is determined whether or not there is an abnormality in the injection valve 50 based on the difference ΔGA between the first fluctuation amount ΔDU1 acquired at the time of the previous switching and the second fluctuation amount ΔDU2 acquired at the time of the subsequent switching. (S36, S44, S54). Therefore, the presence or absence of an abnormality in the injection valve 50 can be appropriately determined based on the difference in the amount of urea water filled in the supply pipe 42.

(第2実施形態)
次に第2実施形態に係るポンプ制御部70について図9、10を用いて説明する。第2実施形態に係るポンプ制御部70は、第1実施形態に係るポンプ制御部70と比べて、異常判定処理が異なる。以下では、第2実施形態に係る異常判定処理について説明する。
(Second Embodiment)
Next, the pump control unit 70 according to the second embodiment will be described with reference to FIGS. 9 and 10. The pump control unit 70 according to the second embodiment has a different abnormality determination process than the pump control unit 70 according to the first embodiment. Hereinafter, the abnormality determination process according to the second embodiment will be described.

第2実施形態の異常判定処理が、第1実施形態の異常判定処理と異なる点は、供給配管42内に尿素水が充填されない点である。なお図9において、先の図2で説明した内容と同一の内容については、説明を省略する。 The difference between the abnormality determination process of the second embodiment and the abnormality determination process of the first embodiment is that the supply pipe 42 is not filled with urea water. In FIG. 9, the same contents as those described in FIG. 2 above will be omitted.

図9に示すように、異常判定処理では、ステップS14において、噴射弁50を閉状態とすると、ステップS80において、取得回数M(M:自然数)を「1」に設定する。ここで、取得回数Mは、変動量ΔDUが取得される回数である。続くステップS82において、変動量ΔDUを取得する。変動量ΔDUは、図3に示す変動量取得処理により取得される。つまり、ステップS82の処理では、供給配管42内に尿素水が含まれない状況において、ポンプ44を逆回転させた状態で、噴射弁50を閉状態から開状態に切り替え、噴射弁50を閉状態から開状態に切り替えた場合の変動量ΔDUを取得する。 As shown in FIG. 9, in the abnormality determination process, when the injection valve 50 is closed in step S14, the acquisition number M (M: natural number) is set to "1" in step S80. Here, the acquisition frequency M is the number of acquisitions of the fluctuation amount ΔDU. In the following step S82, the fluctuation amount ΔDU is acquired. The fluctuation amount ΔDU is acquired by the fluctuation amount acquisition process shown in FIG. That is, in the process of step S82, in the situation where the supply pipe 42 does not contain urea water, the injection valve 50 is switched from the closed state to the open state while the pump 44 is rotated in the reverse direction, and the injection valve 50 is closed. The amount of fluctuation ΔDU when switching from to the open state is acquired.

ステップS84において、取得回数Mが目標回数Mtg(Mtg:2以上の自然数)に到達したかを判定する。ステップS84で否定判定すると、ステップS86において、取得回数Mを「1」増加させ、ステップS82に戻る。これにより、ステップS82の処理が複数回実施され、各切替時の変動量ΔDUが取得される。 In step S84, it is determined whether the acquisition number M has reached the target number Mtg (Mtg: a natural number of 2 or more). If a negative determination is made in step S84, the number of acquisitions M is increased by "1" in step S86, and the process returns to step S82. As a result, the process of step S82 is executed a plurality of times, and the fluctuation amount ΔDU at each switching is acquired.

一方、ステップS84で肯定判定すると、ステップS88において、ステップS82で取得されたMtg個の変動量ΔDUを合計した合計変動量ΔDUMを取得する。続くステップS90において、合計変動量ΔDUMに基づいて、噴射弁50における異常の有無を判定する。つまり、ステップS90の処理では、各切替時に取得された複数の変動量ΔDUに基づいて、噴射弁50における異常の有無を判定する。 On the other hand, if an affirmative determination is made in step S84, in step S88, the total fluctuation amount ΔDUM, which is the sum of the fluctuation amounts ΔDU of the Mtg pieces acquired in step S82, is acquired. In the following step S90, it is determined whether or not there is an abnormality in the injection valve 50 based on the total fluctuation amount ΔDUM. That is, in the process of step S90, it is determined whether or not there is an abnormality in the injection valve 50 based on the plurality of fluctuation amounts ΔDU acquired at each switching.

具体的には、合計変動量ΔDUMが所定の閾値KMよりも大きいかを判定する。所定の閾値KMは、供給配管42内に尿素水が含まれない状況における変動量ΔDUに基づいて噴射弁50の異常を判定するための閾値であり、第2閾値K2よりも大きい。ステップS90で肯定判定すると、ステップS92において、噴射弁50が正常であると判定し、異常判定処理を終了する。一方、ステップS90で否定判定すると、ステップS94おいて、噴射弁50が異常であると判定し、異常判定処理を終了する。 Specifically, it is determined whether the total fluctuation amount ΔDUM is larger than the predetermined threshold value KM. The predetermined threshold value KM is a threshold value for determining an abnormality of the injection valve 50 based on the fluctuation amount ΔDU in a situation where urea water is not contained in the supply pipe 42, and is larger than the second threshold value K2. If an affirmative determination is made in step S90, it is determined in step S92 that the injection valve 50 is normal, and the abnormality determination process is terminated. On the other hand, if a negative determination is made in step S90, it is determined in step S94 that the injection valve 50 is abnormal, and the abnormality determination process is terminated.

続いて、図10に、異常判定処理の一例を示す。図10では、目標回数Mtgが「4」の例を示す。つまり、供給配管42内に尿素水が含まれない状況において、ポンプ44を逆回転させた状態で、噴射弁50の閉状態から開状態への切り替えが連続して4回実施される例を示す。 Subsequently, FIG. 10 shows an example of the abnormality determination process. FIG. 10 shows an example in which the target number of times Mtg is “4”. That is, an example is shown in which the injection valve 50 is continuously switched from the closed state to the open state four times in a state where the pump 44 is rotated in the reverse direction in a situation where the supply pipe 42 does not contain urea water. ..

ここで、図10(a)は、ポンプデューティ比DUの推移を示し、図10(b)は、合計変動量ΔDUMの推移を示し、図10(c)は、噴射弁50の状態の推移を示す。なお、変動量ΔDUが正常とは、変動量ΔDUが第2閾値K2よりも大きいことを意味し、変動量ΔDUが異常とは、変動量ΔDUが第2閾値K2よりも小さいことを意味する。 Here, FIG. 10 (a) shows the transition of the pump duty ratio DU, FIG. 10 (b) shows the transition of the total fluctuation amount ΔDUM, and FIG. 10 (c) shows the transition of the state of the injection valve 50. show. Note that the fluctuation amount ΔDU is normal means that the fluctuation amount ΔDU is larger than the second threshold value K2, and the fluctuation amount ΔDU is abnormal means that the fluctuation amount ΔDU is smaller than the second threshold value K2.

図10では、時刻t21以降においてポンプ44を逆回転させるようにしており、その状態下で、噴射弁50の閉状態と開状態とを切り替えるようにしている。図10において、時刻t21~t22、t23~t24、t25~t26、t27~t28の各期間では、供給配管42内に尿素水が含まれない状況において、噴射弁50が閉鎖された状態でポンプ44が逆回転される。このとき、ポンプデューティ比DUは閉鎖デューティ比DUcとなる。 In FIG. 10, the pump 44 is rotated in the reverse direction after the time t21, and under that state, the injection valve 50 is switched between the closed state and the open state. In FIG. 10, in each period of time t21 to t22, t23 to t24, t25 to t26, and t27 to t28, the pump 44 is in a state where the injection valve 50 is closed in a situation where the supply pipe 42 does not contain urea water. Is rotated in the reverse direction. At this time, the pump duty ratio DU becomes the closed duty ratio DUc.

また、時刻t22~t23、t24~t25、t26~t27、t28~t29の各期間では、噴射弁50が開放されることに伴い、ポンプ44の負荷が減少し、ポンプデューティ比DUは開放デューティ比DUoに減少する。これにより、変動量ΔDU(ΔDU=DUc-DUo)が取得され、変動量ΔDUを合計した合計変動量ΔDUMが取得される。 Further, in each period of time t22 to t23, t24 to t25, t26 to t27, and t28 to t29, the load of the pump 44 decreases as the injection valve 50 is opened, and the pump duty ratio DU is the open duty ratio. It decreases to DUo. As a result, the fluctuation amount ΔDU (ΔDU = DUc-DUo) is acquired, and the total fluctuation amount ΔDUM obtained by summing the fluctuation amount ΔDU is acquired.

変動量ΔDUが4回取得され、4個の変動量ΔDUを合計した合計変動量ΔDUMが取得されると、合計変動量ΔDUMが閾値KMを用いて比較判定される。図10(b)に示すように、合計変動量ΔDUMが閾値KMよりも大きい場合、噴射弁50が正常であると判定される。その後時刻t19においてポンプ44を逆回転させた状態で、噴射弁50が開状態から閉状態に切り替え、その後時刻t30においてポンプ44の逆回転が停止され、異常判定処理が終了する。 When the fluctuation amount ΔDU is acquired four times and the total fluctuation amount ΔDUM which is the sum of the four fluctuation amounts ΔDU is acquired, the total fluctuation amount ΔDUM is compared and determined using the threshold value KM. As shown in FIG. 10B, when the total fluctuation amount ΔDUM is larger than the threshold value KM, it is determined that the injection valve 50 is normal. After that, the injection valve 50 is switched from the open state to the closed state while the pump 44 is rotated in the reverse direction at time t19, and then the reverse rotation of the pump 44 is stopped at time t30, and the abnormality determination process is completed.

以上説明したように、本実施形態では、供給配管42内に尿素水が含まれない状況で、噴射弁50の開状態と閉状態との切り替えを複数回実施する(S82)。供給配管42内に尿素水が含まれない状況では、切り替えによるポンプデューティ比DUの変動量ΔDUが小さいため、1つの変動量ΔDUのみを用いて、噴射弁50における異常の有無を精度よく判定することが難しい。 As described above, in the present embodiment, the injection valve 50 is switched between the open state and the closed state a plurality of times in a situation where the supply pipe 42 does not contain urea water (S82). When urea water is not contained in the supply pipe 42, the fluctuation amount ΔDU of the pump duty ratio DU due to switching is small, so the presence or absence of an abnormality in the injection valve 50 is accurately determined using only one fluctuation amount ΔDU. It's difficult.

本実施形態では、複数の変動量ΔDUに基づいて噴射弁50における異常の有無を判定する。具体的には、複数の変動量ΔDUを合計した合計変動量ΔDUMに基づいて噴射弁50における異常の有無を判定する。そのため、噴射弁50における異常の有無を精度よく判定することができる。 In the present embodiment, the presence or absence of an abnormality in the injection valve 50 is determined based on a plurality of fluctuation amounts ΔDU. Specifically, the presence or absence of an abnormality in the injection valve 50 is determined based on the total fluctuation amount ΔDUM which is the sum of the plurality of fluctuation amounts ΔDU. Therefore, the presence or absence of an abnormality in the injection valve 50 can be accurately determined.

特に、本実施形態では、供給配管42内に尿素水を充填しないので、異常判定処理において、尿素水を充填する処理が不要となり、異常判定処理に必要な時間を短縮することができる。また、尿素水を充填することによる外乱、例えば尿素水の充填量が目標量よりも少なくなる外乱や、車両の揺れや傾斜などにより、尿素水を充填する際に尿素水中に空気が混入する外乱の影響を抑制して、噴射弁50における異常の有無を精度よく判定することができる。 In particular, in the present embodiment, since the supply pipe 42 is not filled with urea water, the process of filling the urea water is unnecessary in the abnormality determination process, and the time required for the abnormality determination process can be shortened. In addition, disturbances caused by filling urea water, for example, disturbances in which the filling amount of urea water is less than the target amount, or disturbances in which air is mixed into urea water when filling urea water due to shaking or tilting of the vehicle, etc. It is possible to accurately determine the presence or absence of an abnormality in the injection valve 50 by suppressing the influence of.

本発明は上記実施形態の記載内容に限定されず、次のように実施されてもよい。 The present invention is not limited to the description of the above embodiment, and may be implemented as follows.

液状の還元剤は、尿素水に限定されず、例えば、尿素水以外のアンモニア由来化合物を噴射するものであってもよい。 The liquid reducing agent is not limited to urea water, and may be, for example, one that injects an ammonia-derived compound other than urea water.

尿素水が噴射により排気通路31aに供給される形態を例示したが、これに限定されず、例えば、水滴状の尿素水を排気通路31aに添加供給してもよい。 The embodiment in which urea water is supplied to the exhaust passage 31a by injection has been exemplified, but the present invention is not limited to this, and for example, water droplet-shaped urea water may be added and supplied to the exhaust passage 31a.

回転変動パラメータとして、ポンプデューティ比DUの変動量ΔDUを例示したが、これに限られない。回転変動パラメータは、ポンプ44に供給される電流の変動量でもよければ、ポンプ44の回転速度Nの変動量でもよい。さらには、配管圧力Pの変動量でもよい。 As the rotation fluctuation parameter, the fluctuation amount ΔDU of the pump duty ratio DU has been exemplified, but the present invention is not limited to this. The rotation fluctuation parameter may be the fluctuation amount of the current supplied to the pump 44 or the fluctuation amount of the rotation speed N of the pump 44. Further, the fluctuation amount of the piping pressure P may be used.

上記第1実施形態では、異常判定処理において、供給配管42内への尿素水の充填が1回のみ実施される例を示したが、これに限定されず、例えば、供給配管42内への尿素水の充填が複数回実施されてもよい。各充填において、供給配管42内へ充填する尿素水の量を異ならせることにより、各充填後に取得されたポンプデューティ比DUの差分ΔGAに基づいて、噴射弁50における異常の有無を判定することができる。 In the first embodiment, the example in which the filling of the supply pipe 42 with urea water is performed only once in the abnormality determination process is shown, but the present invention is not limited to this, and for example, the urea in the supply pipe 42 is filled with urea. Water filling may be performed multiple times. By making the amount of urea water filled in the supply pipe 42 different in each filling, it is possible to determine the presence or absence of an abnormality in the injection valve 50 based on the difference ΔGA of the pump duty ratio DU acquired after each filling. can.

上記第2実施形態では、噴射弁50の閉状態から開状態への切り替えにより、変動量ΔDUが取得される例を示したが、これに限定されず、例えば、噴射弁50の開状態から閉状態への切り替えにより、変動量ΔDUが取得されてもよい。更には、噴射弁50の閉状態から開状態への切り替えと、噴射弁50の開状態から閉状態への切り替えとの両方において、変動量ΔDUが取得されてもよい。 In the second embodiment, the variation amount ΔDU is acquired by switching the injection valve 50 from the closed state to the open state, but the present invention is not limited to this, and for example, the injection valve 50 is closed from the open state. The fluctuation amount ΔDU may be acquired by switching to the state. Further, the fluctuation amount ΔDU may be acquired in both the switching from the closed state to the open state of the injection valve 50 and the switching from the open state to the closed state of the injection valve 50.

上記第2実施形態では、複数の変動量ΔDUに基づいて噴射弁50における異常の有無を判定する方法として、合計変動量ΔDUMに基づいて噴射弁50における異常の有無を判定する例を示したが、これに限定されない。例えば、複数の変動量ΔDUの最大値に基づいて噴射弁50における異常の有無を判定してもよければ、複数の変動量ΔDUの最大値の中央値に基づいて噴射弁50における異常の有無を判定してもよい。 In the second embodiment, as a method of determining the presence or absence of an abnormality in the injection valve 50 based on a plurality of fluctuation amounts ΔDU, an example of determining the presence or absence of an abnormality in the injection valve 50 based on the total fluctuation amount ΔDUM is shown. , Not limited to this. For example, the presence or absence of an abnormality in the injection valve 50 may be determined based on the maximum value of the plurality of fluctuation amounts ΔDU, or the presence or absence of an abnormality in the injection valve 50 may be determined based on the median value of the maximum values of the plurality of fluctuation amounts ΔDU. You may judge.

ΔDU…変動量、30…エンジン、31a…排気通路、40…タンク、44…ポンプ、50…噴射弁。 ΔDU ... Fluctuation amount, 30 ... Engine, 31a ... Exhaust passage, 40 ... Tank, 44 ... Pump, 50 ... Injection valve.

Claims (4)

内燃機関(30)の排気通路(31a)に設けられ、排気中のNOxを浄化するNOx浄化触媒に液状の還元剤を添加供給する添加弁(50)と、還元剤を貯えるタンク(40)と、正回転により前記タンク内の還元剤を吐出するとともに、逆回転により前記タンク内に還元剤を吸い戻すポンプ(44)と、を備える排気浄化システムに適用され、
前記ポンプを逆回転させた状態で(S18)、前記添加弁を開状態と閉状態とに切り替える切替部(S72、S76)と、
前記添加弁の切り替えに伴う前記ポンプの回転速度の変動量又はその相関値を回転変動パラメータ(ΔDU)として取得する取得部(S78)と、
前記回転変動パラメータに基づいて、前記添加弁における異常の有無を判定する判定部(S24~S56)と、
を備え
前記切替部は、前記ポンプを逆回転させた状態で、前記添加弁の閉状態から開状態への切り替えを複数回実施し(S20、S22)、
前記判定部は、前記取得部により取得された各切替時の前記回転変動パラメータについて、先の切替時に取得された前記回転変動パラメータと、後の切替時に取得された前記回転変動パラメータとで、異なる閾値(K1、K2)を用いて比較判定する(S24、S26)異常検出装置。
An addition valve (50) provided in the exhaust passage (31a) of the internal combustion engine (30) to add and supply a liquid reducing agent to a NOx purifying catalyst for purifying NOx in the exhaust, and a tank (40) for storing the reducing agent. It is applied to an exhaust purification system including a pump (44) that discharges the reducing agent in the tank by forward rotation and sucks the reducing agent back into the tank by reverse rotation.
With the pump rotated in the reverse direction (S18), the switching unit (S72, S76) for switching the addition valve between the open state and the closed state,
An acquisition unit (S78) that acquires the amount of fluctuation in the rotation speed of the pump or its correlation value as a rotation fluctuation parameter (ΔDU) due to the switching of the addition valve.
A determination unit (S24 to S56) for determining the presence or absence of an abnormality in the addition valve based on the rotation fluctuation parameter,
Equipped with
The switching unit performs switching from the closed state to the open state of the addition valve a plurality of times with the pump rotated in the reverse direction (S20, S22).
The determination unit differs between the rotation fluctuation parameter acquired at the time of the previous switching and the rotation fluctuation parameter acquired at the later switching with respect to the rotation fluctuation parameter acquired by the acquisition unit at the time of each switching. (S24, S26) Anomaly detection device for comparison and determination using threshold values (K1, K2).
内燃機関(30)の排気通路(31a)に設けられ、排気中のNOxを浄化するNOx浄化触媒に液状の還元剤を添加供給する添加弁(50)と、還元剤を貯えるタンク(40)と、正回転により前記タンク内の還元剤を吐出するとともに、逆回転により前記タンク内に還元剤を吸い戻すポンプ(44)と、を備える排気浄化システムに適用され、
前記ポンプを逆回転させた状態で(S18)、前記添加弁を開状態と閉状態とに切り替える切替部(S72、S76)と、
前記添加弁の切り替えに伴う前記ポンプの回転速度の変動量又はその相関値を回転変動パラメータ(ΔDU)として取得する取得部(S78)と、
前記回転変動パラメータに基づいて、前記添加弁における異常の有無を判定する判定部(S24~S56)と、
を備え、
前記切替部は、前記ポンプを逆回転させた状態で、前記添加弁の閉状態から開状態への切り替えを複数回実施し(S20、S22)、
前記判定部は、前記取得部により取得された各切替時の前記回転変動パラメータについて、先の切替時に取得された前記回転変動パラメータと、後の切替時に取得された前記回転変動パラメータとの差分(ΔGA)に基づいて、前記添加弁における異常の有無を判定する(S36、S44,S54)異常検出装置。
An addition valve (50) provided in the exhaust passage (31a) of the internal combustion engine (30) to add and supply a liquid reducing agent to a NOx purifying catalyst for purifying NOx in the exhaust, and a tank (40) for storing the reducing agent. It is applied to an exhaust purification system including a pump (44) that discharges the reducing agent in the tank by forward rotation and sucks the reducing agent back into the tank by reverse rotation.
With the pump rotated in the reverse direction (S18), the switching unit (S72, S76) for switching the addition valve between the open state and the closed state,
An acquisition unit (S78) that acquires the amount of fluctuation in the rotation speed of the pump or its correlation value as a rotation fluctuation parameter (ΔDU) due to the switching of the addition valve.
A determination unit (S24 to S56) for determining the presence or absence of an abnormality in the addition valve based on the rotation fluctuation parameter,
Equipped with
The switching unit performs switching from the closed state to the open state of the addition valve a plurality of times with the pump rotated in the reverse direction (S20, S22).
The determination unit determines the difference between the rotation fluctuation parameter acquired at the time of the previous switching and the rotation fluctuation parameter acquired at the later switching with respect to the rotation fluctuation parameter acquired by the acquisition unit at each switching. ΔGA), an abnormality detection device for determining the presence or absence of an abnormality in the addition valve (S36, S44, S54) .
前記切替部は、前記ポンプと前記添加弁とを接続する還元剤通路に還元剤が充填された状況において(S16)、前記ポンプを逆回転させた状態で、前記添加弁を閉状態から開状態に切り替え、
前記判定部は、前記切替部が前記添加弁を閉状態から開状態に切り替えた場合に前記取得部により取得された前記回転変動パラメータに基づいて、前記添加弁における異常の有無を判定する請求項1または請求項2に記載の異常検出装置。
In the switching unit, in a situation where the reducing agent passage connecting the pump and the addition valve is filled with the reducing agent (S16), the addition valve is opened from the closed state while the pump is rotated in the reverse direction. Switch to,
A claim that the determination unit determines whether or not there is an abnormality in the addition valve based on the rotation fluctuation parameter acquired by the acquisition unit when the switching unit switches the addition valve from the closed state to the open state. 1 or the abnormality detection device according to claim 2 .
内燃機関(30)の排気通路(31a)に設けられ、排気中のNOxを浄化するNOx浄化触媒に液状の還元剤を添加供給する添加弁(50)と、還元剤を貯えるタンク(40)と、正回転により前記タンク内の還元剤を吐出するとともに、逆回転により前記タンク内に還元剤を吸い戻すポンプ(44)と、を備える排気浄化システムに適用され、
前記ポンプを逆回転させた状態で(S18)、前記添加弁を開状態と閉状態とに切り替える切替部(S72、S76)と、
前記添加弁の切り替えに伴う前記ポンプの回転速度の変動量又はその相関値を回転変動パラメータ(ΔDU)として取得する取得部(S78)と、
前記回転変動パラメータに基づいて、前記添加弁における異常の有無を判定する判定部(S24~S56)と、
を備え、
前記切替部は、前記ポンプと前記添加弁とを接続する還元剤通路に還元剤が含まれない状況において、前記ポンプを逆回転させた状態で、前記添加弁の開状態と閉状態との切り替えを複数回実施し(S82)、
前記判定部は、前記取得部により各切替時に取得された複数の前記回転変動パラメータ(ΔDUM)に基づいて、前記添加弁における異常の有無を判定する異常検出装置。
An addition valve (50) provided in the exhaust passage (31a) of the internal combustion engine (30) to add and supply a liquid reducing agent to a NOx purifying catalyst for purifying NOx in the exhaust, and a tank (40) for storing the reducing agent. It is applied to an exhaust purification system including a pump (44) that discharges the reducing agent in the tank by forward rotation and sucks the reducing agent back into the tank by reverse rotation.
With the pump rotated in the reverse direction (S18), the switching unit (S72, S76) for switching the addition valve between the open state and the closed state,
An acquisition unit (S78) that acquires the amount of fluctuation in the rotation speed of the pump or its correlation value as a rotation fluctuation parameter (ΔDU) due to the switching of the addition valve.
A determination unit (S24 to S56) for determining the presence or absence of an abnormality in the addition valve based on the rotation fluctuation parameter,
Equipped with
The switching unit switches between the open state and the closed state of the addition valve in a state where the pump is rotated in the reverse direction in a situation where the reducing agent passage connecting the pump and the addition valve does not contain the reducing agent. Was carried out multiple times (S82),
The determination unit is an abnormality detection device that determines the presence or absence of an abnormality in the addition valve based on a plurality of rotation fluctuation parameters (ΔDUM) acquired at each switching by the acquisition unit.
JP2018036968A 2018-03-01 2018-03-01 Anomaly detection device Active JP7052422B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018036968A JP7052422B2 (en) 2018-03-01 2018-03-01 Anomaly detection device
DE102018125890.9A DE102018125890A1 (en) 2018-03-01 2018-10-18 Anomaly detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018036968A JP7052422B2 (en) 2018-03-01 2018-03-01 Anomaly detection device

Publications (2)

Publication Number Publication Date
JP2019152128A JP2019152128A (en) 2019-09-12
JP7052422B2 true JP7052422B2 (en) 2022-04-12

Family

ID=67622753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018036968A Active JP7052422B2 (en) 2018-03-01 2018-03-01 Anomaly detection device

Country Status (2)

Country Link
JP (1) JP7052422B2 (en)
DE (1) DE102018125890A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170530A (en) 1998-12-07 2000-06-20 Honda Motor Co Ltd Abnormality detector for exhaust secondary air supply device
JP2013249801A (en) 2012-06-01 2013-12-12 Bosch Corp Abnormality detection device for reducing agent supply device and reducing agent supply device
DE102014226502A1 (en) 2014-12-18 2016-06-23 Robert Bosch Gmbh Method for monitoring a delivery system for a liquid medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477250B2 (en) * 2014-06-12 2019-03-06 トヨタ自動車株式会社 Urea water supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170530A (en) 1998-12-07 2000-06-20 Honda Motor Co Ltd Abnormality detector for exhaust secondary air supply device
JP2013249801A (en) 2012-06-01 2013-12-12 Bosch Corp Abnormality detection device for reducing agent supply device and reducing agent supply device
DE102014226502A1 (en) 2014-12-18 2016-06-23 Robert Bosch Gmbh Method for monitoring a delivery system for a liquid medium

Also Published As

Publication number Publication date
DE102018125890A1 (en) 2019-09-05
JP2019152128A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP4726926B2 (en) Exhaust gas purification device for internal combustion engine
JP4598843B2 (en) Exhaust gas purification device for internal combustion engine
JP4470987B2 (en) Reducing agent injection control device
JP4978635B2 (en) Control device for exhaust purification system
JP4706627B2 (en) Engine exhaust purification system
US8341940B2 (en) Addition-amount controller for exhaust gas purifying agent and exhaust emission control system
JP4894827B2 (en) Reducing agent supply system
US8540953B2 (en) Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
US10844768B2 (en) Abnormality determination device
JP2010065581A (en) Exhaust emission control system of internal combustion engine
JP2010053847A (en) Exhaust emission control system for internal combustion engine
JP5136450B2 (en) Abnormality diagnosis device for exhaust purification system
US20090000278A1 (en) Addition-amount controller for exhaust gas purifying agent and exhaust emission control system
US8336298B2 (en) Addition-amount controller for exhaust gas purifying agent and exhaust emission control system
JP7052422B2 (en) Anomaly detection device
JP2014218973A (en) Exhaust emission control device for internal combustion engine
JP7021558B2 (en) Addition control device
JP7010003B2 (en) Injection control device
JP2009228433A (en) Urea water supplying device and exhaust emission control system
JP7013820B2 (en) Reducing agent addition system
JP6540523B2 (en) Abnormality judgment device
JPWO2018047554A1 (en) Control device
JP7035737B2 (en) Reducing agent addition system
JP2014015856A (en) Reductant agent supply device, recovery control method of liquid reductant agent, and exhaust emission control device
JP2019124181A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R151 Written notification of patent or utility model registration

Ref document number: 7052422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151