JP7051423B2 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP7051423B2
JP7051423B2 JP2017246509A JP2017246509A JP7051423B2 JP 7051423 B2 JP7051423 B2 JP 7051423B2 JP 2017246509 A JP2017246509 A JP 2017246509A JP 2017246509 A JP2017246509 A JP 2017246509A JP 7051423 B2 JP7051423 B2 JP 7051423B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
mixture layer
current collector
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017246509A
Other languages
Japanese (ja)
Other versions
JP2019114399A (en
Inventor
識十 小野田
之規 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2017246509A priority Critical patent/JP7051423B2/en
Publication of JP2019114399A publication Critical patent/JP2019114399A/en
Application granted granted Critical
Publication of JP7051423B2 publication Critical patent/JP7051423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は、蓄電デバイスに関する。 The present invention relates to a power storage device.

蓄電デバイスにおいて出力密度を向上させるための手法として、リチウムイオン電池における正極、及び電気二重層キャパシタに用いられる正極による2種類の正極と、リチウムイオン電池における負極とを組み合わせた蓄電デバイス(ハイブリッドキャパシタ)が知られている。例えば、特許文献1には、キャパシタ正極集電箔の一方の面に活性炭の微粒子を含むキャパシタ正極電極層が形成されたキャパシタ正極と、貫通孔を有する負極集電箔の一方の面に負極電極層が形成された共通負極と、キャパシタ正極電極層と負極電極層とで挟持された第一のセパレータと、電池正極集電箔の一方の面にリチウム含有金属化合物の粒子を含んだ電池正極電極層が形成された電池正極と、負極集電箔と電池正極電極層とで挟持された第二のセパレータと、を備えた電力貯蔵デバイスセルであって、共通負極がキャパシタ正極及び電池正極の共通の負極であり、第二のセパレータが負極集電箔の他方の面に接している電力貯蔵デバイスセルが記載されている。また、特許文献2には、集電体と正極合材層とを備える正極によって構成される正極系と、集電体と負極合材層とを備える負極によって構成される負極系とを有する蓄電デバイスであって、正極系は、第1正極合材層を備える第1正極と第2正極合材層を備える第2正極とを有し、負極系は、第1正極と第2正極との間に配置される負極を有し、第1正極合材層には遷移金属酸化物が含まれ、第2正極合材層には活性炭が含まれ、第1正極合材層と第2正極合材層との間に配置される負極の集電体に貫通孔が形成されることが記載されている。 As a method for improving the output density in a power storage device, a power storage device (hybrid capacitor) that combines two types of positive electrodes, a positive electrode in a lithium ion battery and a positive electrode used in an electric double layer capacitor, and a negative electrode in a lithium ion battery. It has been known. For example, Patent Document 1 describes a capacitor positive electrode in which a capacitor positive electrode layer containing fine particles of activated carbon is formed on one surface of a capacitor positive electrode collector foil, and a negative electrode on one surface of a negative electrode current collector foil having through holes. A battery positive electrode containing particles of a lithium-containing metal compound on one surface of a common negative electrode on which a layer is formed, a first separator sandwiched between the capacitor positive electrode layer and the negative electrode layer, and a battery positive electrode current collector foil. A power storage device cell comprising a battery positive electrode on which a layer is formed and a second separator sandwiched between a negative electrode current collecting foil and a battery positive electrode electrode layer, wherein a common negative electrode is common to a capacitor positive electrode and a battery positive electrode. Described is a power storage device cell in which the second separator is in contact with the other surface of the negative electrode current collector foil. Further, Patent Document 2 includes a positive electrode system composed of a positive electrode including a current collector and a positive electrode mixture layer, and a negative electrode system composed of a negative electrode including a current collector and a negative electrode mixture layer. In the device, the positive electrode system has a first positive electrode having a first positive electrode mixture layer and a second positive electrode having a second positive electrode mixture layer, and the negative electrode system has a first positive electrode and a second positive electrode. It has a negative electrode arranged between them, the first positive electrode mixture layer contains a transition metal oxide, the second positive electrode mixture layer contains activated carbon, and the first positive electrode mixture layer and the second positive electrode combination. It is described that a through hole is formed in the current collector of the negative electrode arranged between the material layer and the material layer.

特許第5040626号Patent No. 5040626 特許第5091573号Patent No. 5091573

特許文献1、2における蓄電デバイスでは、負極の集電体に貫通孔が形成されている。これにより、集電体の両面の負極のイオンを、貫通孔を通じて相互に移動させることで、2つの電極電位を安定させ(平衡状態にし)、蓄電デバイスの応答性を向上させることができるとされている。しかし、集電体に貫通孔を設けることは製造工程を複雑にし、また、製造コストを増加させる原因となっていた。 In the power storage device in Patent Documents 1 and 2, through holes are formed in the current collector of the negative electrode. It is said that this makes it possible to stabilize the two electrode potentials (equilibrium state) and improve the responsiveness of the power storage device by moving the ions of the negative electrodes on both sides of the current collector to each other through the through holes. ing. However, providing a through hole in the current collector complicates the manufacturing process and increases the manufacturing cost.

本発明はこのような背景に鑑みてなされたものであり、簡易な構成でエネルギー密度及び出力密度を向上させることが可能な蓄電デバイスを提供することを目的としている。 The present invention has been made in view of such a background, and an object of the present invention is to provide a power storage device capable of improving energy density and output density with a simple configuration.

上記目的を達成するための本発明の一態様は、第1正極集電体及び第1正極合剤層を備える第1正極と、第2正極集電体及び第2正極合剤層を備える第2正極とによって構成される正極系と、前記第1正極及び前記第2正極の間に配置され、負極集電体及びその両面に設けられた負極合剤層によって構成される負極系とを有する蓄電デバイスであって、前記第1正極合剤層と前記第2正極合剤層とが電気的に接続され、前記負極集電体には、自身の両面を貫通する貫通孔が設けられておらず、前記第1正極の容量と前記第2正極の容量とは異なり、前記第1正極合剤層と対面する前記負極合剤層の目付量と、前記第2正極合剤層と対面する前記負極合剤層の目付量とが均等であることを特徴とする。 One aspect of the present invention for achieving the above object is a first positive electrode including a first positive electrode current collector and a first positive electrode mixture layer, and a first positive electrode including a second positive electrode current collector and a second positive electrode mixture layer. It has a positive electrode system composed of two positive electrodes and a negative electrode system composed of a negative electrode current collector and a negative electrode mixture layer provided on both sides of the negative electrode current collector, which is arranged between the first positive electrode and the second positive electrode. In the power storage device, the first positive electrode mixture layer and the second positive electrode mixture layer are electrically connected, and the negative electrode current collector is provided with through holes penetrating both sides of the negative electrode current collector. However, unlike the capacity of the first positive electrode and the capacity of the second positive electrode, the amount of the negative electrode mixture facing the first positive electrode mixture layer and the amount of the negative electrode mixture facing the second positive electrode mixture layer are different from each other. It is characterized in that the amount of the negative electrode mixture layer is evenly distributed .

本発明者らは、負極集電体に貫通孔が設けられていなくても、第1正極合剤層と第2正極合剤層とが電気的に接続されていれば、2つの正極が短時間で平衡電位に達するという知見を得た。すなわち、本発明のように蓄電デバイスを構成することで、負極集電体に貫通孔を設けるといった従来の煩雑な構成によらずとも、蓄電デバイスにおけるエネルギー密度及び出力密度を向上させることができる。 The present inventors have short two positive electrodes if the first positive electrode mixture layer and the second positive electrode mixture layer are electrically connected even if the negative electrode current collector is not provided with a through hole. We obtained the finding that the equilibrium potential is reached in time. That is, by configuring the power storage device as in the present invention, it is possible to improve the energy density and the output density of the power storage device without the conventional complicated configuration such as providing a through hole in the negative electrode current collector.

例えば、前記第1正極合剤層の活物質は遷移金属酸化物を含み、前記第2正極合剤層の活物質は活性炭を含む。これにより、高いエネルギー密度及び出力密度を実現することができる。 For example, the active material of the first positive electrode mixture layer contains a transition metal oxide, and the active material of the second positive electrode mixture layer contains activated carbon. Thereby, high energy density and output density can be realized.

本発明によれば、簡易な構成でエネルギー密度及び出力密度を向上させることができる。なお、その他の効果については以下の記載で明らかにする。 According to the present invention, the energy density and the output density can be improved with a simple configuration. Other effects will be clarified in the following description.

図1は、本発明の一実施形態に係る蓄電デバイス100の内部構造及び蓄電デバイス100を含む回路構成の一例を概略的に示す図である。FIG. 1 is a diagram schematically showing an example of an internal structure of a power storage device 100 and a circuit configuration including a power storage device 100 according to an embodiment of the present invention. 図2は、実施例2サンプルの内部構造を概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the internal structure of the sample of Example 2. 図3は、比較例1サンプルの内部構造を概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the internal structure of the comparative example 1 sample. 図4は、評価実験2の結果を示すグラフである。FIG. 4 is a graph showing the results of evaluation experiment 2. 図5は、蓄電デバイス100と異なる他の構成例である蓄電デバイス300の内部構造を示す図である。FIG. 5 is a diagram showing an internal structure of the power storage device 300, which is another configuration example different from the power storage device 100.

以下、本発明の実施の形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(全体構成)
図1は、本発明の一実施形態に係る蓄電デバイス100の内部構造及び蓄電デバイス100を含む回路構成の一例を概略的に示す図である。同図に示すように、蓄電デバイス100は、第1正極10及び第2正極20からなる正極系と、第1正極10及び第2正極20の間に設けられた負極系50(共通負極)とを含んで構成される蓄電デバイスである。
(overall structure)
FIG. 1 is a diagram schematically showing an example of an internal structure of a power storage device 100 and a circuit configuration including a power storage device 100 according to an embodiment of the present invention. As shown in the figure, the power storage device 100 includes a positive electrode system composed of a first positive electrode 10 and a second positive electrode 20, and a negative electrode system 50 (common negative electrode) provided between the first positive electrode 10 and the second positive electrode 20. It is a power storage device configured to include.

第1正極10は、箔状の第1正極集電体12、及びこの面に塗布等されて形成された第1正極合剤層14を有する。第2正極20は、箔状の第2正極集電体22、及びこの面に塗布等されて形成された第2正極合剤層24を有する。 The first positive electrode 10 has a foil-shaped first positive electrode current collector 12 and a first positive electrode mixture layer 14 formed by coating or the like on the surface thereof. The second positive electrode 20 has a foil-shaped second positive electrode current collector 22 and a second positive electrode mixture layer 24 formed by coating or the like on this surface.

他方、負極系50は、箔状の負極集電体54、及び負極合剤層52を備える。負極合剤層52は、負極集電体54の両面にそれぞれ塗布等されることで形成されている。負極集電体54における第1正極10側の負極合剤層52aは、セパレータ30を介して第1正極合剤層14に相対し、負極集電体54における第2正極20側の負極合剤層52bは、セパレータ40を介して第2正極合剤層24に相対する。 On the other hand, the negative electrode system 50 includes a foil-shaped negative electrode current collector 54 and a negative electrode mixture layer 52. The negative electrode mixture layer 52 is formed by being applied to both sides of the negative electrode current collector 54, respectively. The negative electrode mixture layer 52a on the first positive electrode 10 side of the negative electrode current collector 54 faces the first positive electrode mixture layer 14 via the separator 30, and the negative electrode mixture on the second positive electrode 20 side of the negative electrode current collector 54. The layer 52b faces the second positive electrode mixture layer 24 via the separator 40.

第1正極10、第2正極20、及び負極系50は所定の包材70(例えば、ラミネートフィルムや金属缶)に収容され、この包材70に電解液80が注入され、封止される。 The first positive electrode 10, the second positive electrode 20, and the negative electrode system 50 are housed in a predetermined packaging material 70 (for example, a laminated film or a metal can), and the electrolytic solution 80 is injected into the packaging material 70 and sealed.

また、導線60により互いに電気的に接続されている第1正極集電体12及び第2正極集電体22は、導線60と接続された導線62を介して所定の回路200(例えば、充電器、放電器、その他電力を消費する負荷)の正極端子201と電気的に接続し、他方、回路200の負極端子202は、負極系50における負極集電体54に接続されている導線64を介して負極系50と電気的に接続される。 Further, the first positive electrode current collector 12 and the second positive electrode current collector 22 electrically connected to each other by the lead wire 60 are connected to a predetermined circuit 200 (for example, a charger) via the lead wire 62 connected to the lead wire 60. , Discharger, and other power-consuming loads) are electrically connected to the positive electrode terminal 201, while the negative electrode terminal 202 of the circuit 200 is connected to the negative electrode current collector 54 in the negative electrode system 50 via a lead wire 64. Is electrically connected to the negative electrode system 50.

第1正極合剤層14の正極活物質は、例えば、電池の正極を構成しうる活物質であり、具体的には、例えば、リチウムイオン電池に用いられる、活性炭、遷移金属酸化物等である。より具体的には、例えば、コバルト、マンガン、バナジウム、チタン、ニッケル等の遷移金属酸化物(例えば、コバルト酸リチウム(LiCoO))又は硫化物である。 The positive electrode active material of the first positive electrode mixture layer 14 is, for example, an active material that can constitute the positive electrode of the battery, and specifically, for example, activated carbon, a transition metal oxide, or the like used in a lithium ion battery. .. More specifically, it is, for example, a transition metal oxide such as cobalt, manganese, vanadium, titanium, nickel (for example, lithium cobalt oxide (LiCoO 2 )) or a sulfide.

第2正極合剤層24の正極活物質は、例えば、電気二重層キャパシタの正極を構成する正極活物質であり、具体的には、例えば、リチウムイオンキャパシタで用いられる正極活物質(例えば、活性炭)である。 The positive electrode active material of the second positive electrode mixture layer 24 is, for example, a positive electrode active material constituting the positive electrode of the electric double layer capacitor, and specifically, for example, a positive electrode active material used in a lithium ion capacitor (for example, activated carbon). ).

負極合剤層52の負極活物質は、例えば、電池の負極を構成しうる活物質であり、具体的には、例えば、リチウムイオン電池の負極に用いられる炭素系材料(例えば、黒鉛)、錫酸化物、珪素酸化物等である。 The negative electrode active material of the negative electrode mixture layer 52 is, for example, an active material that can constitute the negative electrode of the battery, and specifically, for example, a carbon-based material (for example, graphite) or tin used for the negative electrode of a lithium ion battery. Oxides, silicon oxides, etc.

第1正極集電体12、第2正極集電体22の材料は、例えば、アルミニウム、ステンレス鋼等の電極である。また、負極集電体54の材料は、例えば、ステンレス鋼、銅、ニッケル等の電極である。 The material of the first positive electrode current collector 12 and the second positive electrode current collector 22 is, for example, an electrode such as aluminum or stainless steel. The material of the negative electrode current collector 54 is, for example, an electrode made of stainless steel, copper, nickel, or the like.

セパレータ30、40は、電子伝導性を有しない不織布等であり、例えば、セルロース、ポリエチレン、又はポリプロピレンからなる繊維である。 The separators 30 and 40 are non-woven fabrics and the like having no electron conductivity, and are, for example, fibers made of cellulose, polyethylene, or polypropylene.

電解液80は、例えば、電気伝導性を有する溶液であり、例えば、リチウム塩を含む電解液である。この場合のリチウム塩は、例えば、LiClO、LiAsF、LiBF、LiPFである。この溶媒は、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートである。 The electrolytic solution 80 is, for example, a solution having electrical conductivity, for example, an electrolytic solution containing a lithium salt. The lithium salt in this case is, for example, LiClO 4 , LiAsF 6 , LiBF 4 , and LiPF 6 . The solvent is, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate.

ここで、負極集電体54には、従来の蓄電デバイスに設けられていた、第1正極合剤層14及び第2正極合剤層24により発生するイオンの相互の移動を可能とする貫通孔が設けられていない。他方で、前記のように、第1正極集電体12と第2正極集電体22との間は導線60により電気的に接続されている。 Here, the negative electrode current collector 54 has a through hole that enables mutual movement of ions generated by the first positive electrode mixture layer 14 and the second positive electrode mixture layer 24, which are provided in the conventional power storage device. Is not provided. On the other hand, as described above, the first positive electrode current collector 12 and the second positive electrode current collector 22 are electrically connected by the lead wire 60.

このように、本発明者らは、負極集電体54に貫通孔を設けなくても、第1正極合剤層14及び第2正極合剤層24の電位が素早く平衡状態に達し電池反応が安定して進行するという知見を得た。 As described above, the present inventors quickly reach the equilibrium state of the potentials of the first positive electrode mixture layer 14 and the second positive electrode mixture layer 24 without providing a through hole in the negative electrode current collector 54, and the battery reaction occurs. We obtained the finding that it progresses stably.

以下、これを実証するべく本発明者らが行った評価実験について説明する。 Hereinafter, the evaluation experiment conducted by the present inventors in order to demonstrate this will be described.

<<評価実験>>
1.サンプルの作製
まず、図1に示した蓄電デバイス100に基づき、以下に説明する3種類のリチウムイオン電池のサンプル(実施例1サンプル、実施例2サンプル、比較例1サンプル)を作製した。
<< Evaluation experiment >>
1. 1. Preparation of Samples First, based on the power storage device 100 shown in FIG. 1, three types of lithium ion battery samples (Example 1 sample, Example 2 sample, Comparative Example 1 sample) described below were prepared.

<実施例1サンプルの作製>
実施例1サンプルは、いずれの集電体にも貫通孔が設けられていない蓄電デバイスのサンプルであり、以下のようにして各構成材料を作製した。
<Preparation of Example 1 sample>
The sample of Example 1 is a sample of a power storage device having no through hole in any of the current collectors, and each constituent material was prepared as follows.

(第1正極)
第1正極10における第1正極集電体12として、貫通孔の形成されていないアルミニウムを用いた。これをプレスして得たアルミニウム箔の片面に、第1正極合剤層14の活物質としてLiFePOを含むスラリーを片面目付量115g/m2で塗布し、乾燥後、5.0cm×3.0cmの矩形部分(端子溶接部を除く)を切削することにより、第1正極10(正極電極)を得た。
(1st positive electrode)
As the first positive electrode current collector 12 in the first positive electrode 10, aluminum having no through hole was used. A slurry containing LiFePO 4 as the active material of the first positive electrode mixture layer 14 was applied to one side of the aluminum foil obtained by pressing this at a grain size of 115 g / m 2 on one side, and after drying, 5.0 cm × 3.0 cm. A first positive electrode 10 (positive electrode) was obtained by cutting a rectangular portion (excluding the terminal welded portion).

(第2正極)
第2正極20における第2正極集電体22として、貫通孔の形成されていないアルミニウムを用いた。これをプレスして得たアルミニウム箔の片面に、第2正極合剤層24の活物質として活性炭のスラリーを片面目付量45g/m2で塗布し、乾燥後、5.0cm×3.0cmの矩形部分(端子溶接部を除く)を切削することにより、第2正極20(正極電極)を得た。
(Second positive electrode)
As the second positive electrode current collector 22 in the second positive electrode 20, aluminum having no through hole was used. On one side of the aluminum foil obtained by pressing this, a slurry of activated carbon as the active material of the second positive electrode mixture layer 24 was applied at a grain size of 45 g / m 2 on one side, and after drying, a rectangular portion of 5.0 cm × 3.0 cm. A second positive electrode 20 (positive electrode) was obtained by cutting (excluding the terminal welded portion).

(共通負極)
負極系50における負極集電体54として、貫通孔の形成されていない銅箔を用いた。この銅箔の両面に、ピッチコートグラファイトを100重量部、導電材を5.5重量部、増粘剤を2.0重量部、及びバインダを5.0重量部混合したスラリーを負極合剤層52として、片面目付量39.5g/m2で塗布し、乾燥後、5.2cm×3.2cmの矩形部分(端子溶接部を除く)を切削することにより、負極系50(共通負極)を得た。
(Common negative electrode)
As the negative electrode current collector 54 in the negative electrode system 50, a copper foil having no through hole was used. A slurry obtained by mixing 100 parts by weight of pitch-coated graphite, 5.5 parts by weight of a conductive material, 2.0 parts by weight of a thickener, and 5.0 parts by weight of a binder on both sides of this copper foil is used as a negative electrode mixture layer 52, and has a single-sided amount. A negative electrode system 50 (common negative electrode) was obtained by applying at 39.5 g / m 2 and drying, and then cutting a 5.2 cm × 3.2 cm rectangular portion (excluding the terminal welded portion).

(セパレータ)
セパレータ30、40として、厚さ35μmのセルロース製の不織布を使用した。
(Separator)
As the separators 30 and 40, a non-woven fabric made of cellulose having a thickness of 35 μm was used.

以上の構成材料を、第1正極10、セパレータ30、負極系50、セパレータ40、第2正極20の順に積層することで積層体を作製した。得られた積層体を外装材であるラミネートフィルムに挿入し、セルを組み立てた。そしてこのセルの内部に、電解液(エチレンカーボネート及びジエチルカーボネートを重量比1:2で混合した溶媒にLiPFを1モル/Lの濃度となるように溶解した溶液)を注入し、減圧含浸後、真空封止した。 A laminated body was produced by laminating the above constituent materials in the order of the first positive electrode 10, the separator 30, the negative electrode system 50, the separator 40, and the second positive electrode 20. The obtained laminated body was inserted into a laminated film as an exterior material, and a cell was assembled. Then, an electrolytic solution (a solution in which LiPF 6 is dissolved in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a weight ratio of 1: 2 so as to have a concentration of 1 mol / L) is injected into this cell, and after impregnation under reduced pressure. , Vacuum sealed.

<実施例2サンプルの作製>
実施例2サンプルは、実施例1サンプルと同様にいずれの集電体にも貫通孔が設けられておらず、さらに、共通負極における第1正極10側の第1負極合剤層52aの厚みが第2正極20側の第2負極合剤層52bの厚みよりも大きくなっている。
<Preparation of Example 2 sample>
In the second example sample, as in the first sample, no through hole is provided in any of the current collectors, and further, the thickness of the first negative electrode mixture layer 52a on the first positive electrode 10 side in the common negative electrode is large. It is larger than the thickness of the second negative electrode mixture layer 52b on the second positive electrode 20 side.

図2は、実施例2サンプルの内部構造を概略的に示す断面図である。まず、実施例2サンプルの構成材料は、以下に説明するように作製した。 FIG. 2 is a cross-sectional view schematically showing the internal structure of the sample of Example 2. First, the constituent materials of the Example 2 sample were prepared as described below.

(第1正極)
実施例1サンプルと同様の第1正極10を作製した。
(1st positive electrode)
The same first positive electrode 10 as in Example 1 sample was prepared.

(第2正極)
実施例1サンプルと同様の第2正極20を作製した。
(Second positive electrode)
A second positive electrode 20 similar to that of Example 1 sample was prepared.

(共通負極)
銅箔(負極集電体54)の一方の面(以下、第1面という)にスラリーを片面目付量59g/m2で塗布して負極合剤層52aを作製し、銅箔の他方の面(以下、第2面という)にスラリーを片面目付量21g/m2で塗布して負極合剤層52bを作製した以外は、実施例1サンプルと同様の負極系50(共通負極)を作製した。
(Common negative electrode)
The slurry is applied to one surface (hereinafter referred to as the first surface) of the copper foil (negative electrode current collector 54) with a one-sided grain amount of 59 g / m 2 to prepare a negative electrode mixture layer 52a, and the other surface of the copper foil is prepared. A negative electrode system 50 (common negative electrode) similar to that of Example 1 sample was prepared except that the slurry was applied to (hereinafter referred to as the second surface) at a grain size of 21 g / m 2 on one side to prepare a negative electrode mixture layer 52b. ..

(セパレータ)
実施例1サンプルと同様のセパレータ30、40を作製した。
(Separator)
Separator 30 and 40 similar to those of Example 1 sample were prepared.

以上の構成材料を、第1正極10、セパレータ30、負極系50、セパレータ40、第2正極20の順に積層することで積層体の実施例2サンプルを作製した。なお、この場合、第1正極10の塗布面と共通負極(負極系50)の第1面とを相対させ、第2正極20の塗布面と共通負極(負極系50)の第2面と相対させた。 Example 2 sample of the laminated body was prepared by laminating the above-mentioned constituent materials in the order of the first positive electrode 10, the separator 30, the negative electrode system 50, the separator 40, and the second positive electrode 20. In this case, the coated surface of the first positive electrode 10 and the first surface of the common negative electrode (negative electrode system 50) are made to face each other, and the coated surface of the second positive electrode 20 and the second surface of the common negative electrode (negative electrode system 50) are relative to each other. I let you.

<比較例1サンプルの作製>
比較例1サンプルは、負極集電体54に貫通孔56を設けた、従来の蓄電デバイスのサンプルである。
<Preparation of Comparative Example 1 sample>
Comparative Example 1 sample is a sample of a conventional power storage device in which a through hole 56 is provided in a negative electrode current collector 54.

図3は、比較例1サンプルの内部構造を概略的に示す断面図である。まず、以下に説明するように比較例1サンプルの構成材料を作製した。 FIG. 3 is a cross-sectional view schematically showing the internal structure of the comparative example 1 sample. First, as described below, the constituent materials of the comparative example 1 sample were prepared.

(第1正極)
実施例1サンプルと同様の第1正極10を作製した。
(1st positive electrode)
The same first positive electrode 10 as in Example 1 sample was prepared.

(第2正極)
実施例1サンプルと同様の第2正極20を作製した。
(Second positive electrode)
A second positive electrode 20 similar to that of Example 1 sample was prepared.

(共通負極)
負極集電体54として貫通孔56の形成されている銅集電体を使用した以外は、実施例1サンプルと同様の共通負極(負極系50)を作製した。
(Common negative electrode)
A common negative electrode (negative electrode system 50) similar to that of the sample in Example 1 was produced except that a copper current collector having a through hole 56 formed was used as the negative electrode current collector 54.

(セパレータ)
実施例1サンプルと同様のセパレータ30、40を作製した。
(Separator)
Separator 30 and 40 similar to those of Example 1 sample were prepared.

以上の構成材料を、第1正極10、セパレータ30、負極系50、セパレータ40、第2正極20の順に積層することで積層体の比較例1サンプルを作製した。 By laminating the above constituent materials in the order of the first positive electrode 10, the separator 30, the negative electrode system 50, the separator 40, and the second positive electrode 20, a sample of Comparative Example 1 of the laminated body was prepared.

2.特性評価実験
以上のようにして作製した実施例1サンプル、実施例2サンプル、及び比較例1サンプルに対して、以下に説明する評価実験を行った。
2. 2. Characteristic evaluation experiment The evaluation experiment described below was performed on the Example 1 sample, Example 2 sample, and Comparative Example 1 sample prepared as described above.

(評価実験1)
対象サンプル(セル)を、mAの定電流でセル電圧が3.8Vになるまで充電しその後3.8Vの定電圧を印加する定電流-定電圧充電を、収束電流が1.5mAになるまで行った。続いて、3mAの定電流でセル電圧が2.2Vになるまで放電した。このような3.8V-2.2Vの充放電試験を、前記の放電電流(mA)だけでなく、300mA、450mA、600mA、及び900mAの場合のそれぞれについて行い、セルの放電容量を適宜測定した。なお、この評価実験は、実施例1サンプル、実施例2サンプル、及び比較例1サンプルのそれぞれについて行った。
(Evaluation experiment 1)
The target sample (cell) is charged with a constant current of 3 mA until the cell voltage reaches 3.8 V, and then a constant current-constant voltage charge of 3.8 V is applied, and the convergent current becomes 1.5 mA. Went up to. Then, it was discharged with a constant current of 3 mA until the cell voltage became 2.2 V. Such a 3.8V-2.2V charge / discharge test is performed not only for the above-mentioned discharge current ( 3 mA) but also for each of the cases of 300 mA, 450 mA, 600 mA, and 900 mA, and the discharge capacity of the cell is appropriately measured. bottom. In addition, this evaluation experiment was carried out for each of Example 1 sample, Example 2 sample, and Comparative Example 1 sample.

(評価実験2)
図2に示しているように、まず、導線62における第1正極10側の所定位置60a(図中のA)と、導線60における第2正極20側の所定位置60b(図中のB)と、導線62の所定位置60c(図中のC)とのそれぞれにカレントセンサを接続した。そして、対象サンプル(セル)に対して、28mAの定電流でセル電圧が3.8Vになるまで充電した後10分間休止し、続いて28mAの定電流でセル電圧が2.2Vになるまで放電した後10分間休止させた。そして、この間の電流値を、前記のカレントセンサ(A、B、C)にて測定した。なお、この評価実験2は、実施例1サンプルについて行った。
(Evaluation experiment 2)
As shown in FIG. 2, first, a predetermined position 60a (A in the figure) on the first positive electrode 10 side of the conductor 62 and a predetermined position 60b (B in the figure) on the second positive electrode 20 side of the conductor 60. , A current sensor was connected to each of the predetermined positions 60c (C in the figure) of the conducting wire 62. Then, the target sample (cell) is charged with a constant current of 28 mA until the cell voltage reaches 3.8 V, then pauses for 10 minutes, and then discharged with a constant current of 28 mA until the cell voltage reaches 2.2 V. After that, it was rested for 10 minutes. Then, the current value during this period was measured by the current sensors (A, B, C). This evaluation experiment 2 was performed on the sample of Example 1.

3.実験結果及び検討
<評価実験1>
以下は、評価実験1の結果を示す表である。
3. 3. Experimental results and examination <Evaluation experiment 1>
The following is a table showing the results of evaluation experiment 1.

Figure 0007051423000001
Figure 0007051423000001

この表に示すように、実施例1においては、放電電流がmA、300mA、450mA、600mA、及び900mAと増加するに伴い、セルの放電容量は19.4mAh、16.0mAh(なお、変化率(放電電流がmAの場合の放電容量を100とした場合の、相対的な放電容量[%])は82.2)、10.9mAh(変化率は55.9)、8.0mAh(変化率は41.2)、5.5mAh(変化率は28.3)と減少した。 As shown in this table, in Example 1, as the discharge current increases to 3 mA, 300 mA, 450 mA, 600 mA, and 900 mA, the discharge capacity of the cell is 19.4 mAh, 16.0 mAh (note that the rate of change). (Relative discharge capacity [%] when the discharge capacity is 100 when the discharge current is 3 mA) is 82.2), 10.9 mAh (change rate is 55.9), 8.0 mAh (change). The rate decreased to 41.2) and 5.5 mAh (rate of change was 28.3).

実施例2においては、放電電流がmA、300mA、450mA、600mA、及び900mAと増加するに伴い、セルの放電容量は19.5mAh、13.7mAh(変化率は82.2)、8.4mAh(変化率は42.9)、6.0mAh(変化率は30.8)、3.7mAh(変化率は19.2)と減少した。 In Example 2, as the discharge current increases to 3 mA, 300 mA, 450 mA, 600 mA, and 900 mA, the discharge capacities of the cells are 19.5 mAh, 13.7 mAh (change rate is 82.2), and 8.4 mAh. (The rate of change was 42.9), 6.0 mAh (the rate of change was 30.8), and 3.7 mAh (the rate of change was 19.2 ).

比較例1においては、放電電流がmA、300mA、450mA、600mA、及び900mAと増加するに伴い、セルの放電容量は19.5mAh、15.6mAh(変化率は80.4)、9.9mAh(変化率は50.8)、7.2mAh(変化率は37.2)、4.4mAh(変化率は22.6)と減少した。 In Comparative Example 1, as the discharge current increases to 3 mA, 300 mA, 450 mA, 600 mA, and 900 mA, the discharge capacities of the cells are 19.5 mAh, 15.6 mAh (change rate is 80.4), and 9.9 mAh. (The rate of change was 50.8), 7.2 mAh (the rate of change was 37.2), and 4.4 mAh (the rate of change was 22.6 ).

実施例1サンプル及び比較例1サンプルの実験結果を比較すると、両者の放電容量にほとんど差異がなく、むしろ実施例1サンプルの方が良好であることが示された。すなわち、貫通孔が形成されていない集電体を使用しても、蓄電デバイスの特性への影響がないか、もしくは蓄電デバイスの特性がかえって向上する場合があることが確認できる。 Comparing the experimental results of Example 1 sample and Comparative Example 1 sample, it was shown that there was almost no difference in the discharge capacities between the two, and that Example 1 sample was rather better. That is, it can be confirmed that even if a current collector having no through hole is used, there is no influence on the characteristics of the power storage device, or the characteristics of the power storage device may be improved.

次に、実施例1サンプル及び実施例2サンプルの実験結果を比較すると、実施例2サンプルの方が実施例1サンプルよりも放電容量の点で優れているということはなく、むしろ実施例1サンプルの方が実施例2サンプルよりも優れている。これにより、共通負極においては、各々対面する正極の容量に対応させて各面の負極合剤の目付量を調整する必要がないことがわかる。すなわち、実施例1の集電体に貫通孔を設けない場合は、共通負極における各負極合剤の目付量を均等にするといった簡単な製造工程で、蓄電デバイスの向上を図ることができる。 Next, comparing the experimental results of Example 1 sample and Example 2 sample, Example 2 sample is not superior to Example 1 sample in terms of discharge capacity, but rather Example 1 sample. Is superior to the example 2 sample. From this, it can be seen that in the common negative electrode, it is not necessary to adjust the basis weight of the negative electrode mixture on each surface according to the capacity of the positive electrodes facing each other. That is, when the current collector of Example 1 is not provided with a through hole, the power storage device can be improved by a simple manufacturing process such as equalizing the basis weight of each negative electrode mixture in the common negative electrode.

<評価実験2>
図4は、評価実験2の結果を示すグラフである。横軸は、充電開始後の時間(秒)を表し、左側の縦軸は電流(A)を表し、右側の縦軸はセル(サンプル)の電圧(V)を表している。同図に示すように、電圧を印加して蓄電デバイス100に充電電流401(図中の粗い破線)が流れ始めると、その直後に第2正極20側の電流の電流値403(図中の実線)が上昇し、その後、第1正極10側の電流の電流値405(図中の細かい破線)が徐々に上昇する。すなわち、充電直後は応答性の高い第2正極20側の電流による充電が開始され、その後は容量の大きい第1正極10側の電流による充電がなされるようになっている。
<Evaluation experiment 2>
FIG. 4 is a graph showing the results of evaluation experiment 2. The horizontal axis represents the time (seconds) after the start of charging, the vertical axis on the left side represents the current (A), and the vertical axis on the right side represents the voltage (V) of the cell (sample). As shown in the figure, when a voltage is applied and the charging current 401 (coarse broken line in the figure) starts to flow in the power storage device 100, immediately after that, the current value 403 of the current on the second positive electrode 20 side (solid line in the figure). ) Increases, and then the current value 405 (fine broken line in the figure) of the current on the first positive electrode 10 side gradually increases. That is, immediately after charging, charging is started by the current on the second positive electrode 20 side having high responsiveness, and then charging is performed by the current on the first positive electrode 10 side having a large capacity.

充電開始から約2500秒経過後、充電電流411が停止されると、その直後には第2正極20側の電流の電流値407が低下し、その後、第1正極10側の電流の電流値409が徐々に低下する。すなわち、充電停止直後は応答性の高い第2正極20側の電流による放電が開始され、その後は容量の大きい第1正極10側の電流による放電がなされるようになっている。以降、同様の振る舞いの充電及び放電が、繰り返されている。 When the charging current 411 is stopped about 2500 seconds after the start of charging, the current value 407 of the current on the second positive electrode 20 side decreases immediately after that, and then the current value 409 of the current on the first positive electrode 10 side. Gradually decreases. That is, immediately after the charging is stopped, the discharge by the current on the second positive electrode 20 side having high responsiveness is started, and then the discharge by the current on the first positive electrode 10 side having a large capacity is performed. After that, charging and discharging of the same behavior are repeated.

この評価実験2により、充放電直後の休止の間にも第1正極10の第1正極合剤層14及び第2正極20の第2正極合剤層24の間で電流が流れていることがわかる。すなわち、共通負極(負極集電体54)に貫通孔56が形成されていない場合においても、2つの正極の間の電位差を解消できることがわかる。これにより、出力密度を損なうことなく、エネルギー密度を高くできることがわかる。 According to this evaluation experiment 2, a current is flowing between the first positive electrode mixture layer 14 of the first positive electrode 10 and the second positive electrode mixture layer 24 of the second positive electrode 20 even during the pause immediately after charging and discharging. Understand. That is, it can be seen that the potential difference between the two positive electrodes can be eliminated even when the through hole 56 is not formed in the common negative electrode (negative electrode current collector 54). From this, it can be seen that the energy density can be increased without impairing the output density.

なお、貫通孔56を設けなくても両極間の電位差が解消され、蓄電デバイス100の応答性を安定させることができる理由としては、以下の説明が可能である。 The reason why the potential difference between the two poles can be eliminated and the responsiveness of the power storage device 100 can be stabilized without providing the through hole 56 can be described below.

すなわち、従来の貫通孔を設けた蓄電デバイスでは、例えば貫通孔によりリチウムイオン等が負極集電体の両面に存在する各負極合剤の間で移動することで両正極間の電位差を解消するものとされていた。しかし、本評価実験によれば、イオンの移動が可能な貫通孔を設けずとも、例えば図1の蓄電デバイス100に示すように、第1正極合剤層14と第2正極合剤層24とが導線60等により電気的に接続されていれば、導線60を介した電子の移動により十分に電位差の解消が可能であることが判明した。すなわち、このことは、第1正極合剤層14及び第2正極合剤層24を挟んで設けられた負極集電体54においては、両負極合剤を貫通する貫通孔を設ける必要がないことを意味する。なお、蓄電デバイス100におけるイオンに係る電池反応(酸化還元反応)は活物質と電解液の間で行われるので、貫通孔を設けなくても電池反応は実質的に阻害されないと思われる。 That is, in the conventional power storage device provided with a through hole, for example, lithium ions and the like move between the negative electrode mixtures existing on both sides of the negative electrode current collector by the through hole to eliminate the potential difference between the two positive electrodes. Was supposed to be. However, according to this evaluation experiment, even if a through hole through which ions can move is not provided, for example, as shown in the power storage device 100 of FIG. 1, the first positive electrode mixture layer 14 and the second positive electrode mixture layer 24 It has been found that if the electrons are electrically connected by the conductor 60 or the like, the potential difference can be sufficiently eliminated by the movement of electrons through the conductor 60. That is, this means that in the negative electrode current collector 54 provided with the first positive electrode mixture layer 14 and the second positive electrode mixture layer 24 interposed therebetween, it is not necessary to provide a through hole through both the negative electrode mixture. Means. Since the battery reaction (oxidation-reduction reaction) related to ions in the power storage device 100 is performed between the active material and the electrolytic solution, it is considered that the battery reaction is not substantially inhibited even if the through hole is not provided.

以上に説明したように、本実施形態の蓄電デバイス100は、第1正極合剤層14と第2正極合剤層24とが電気的に接続されている一方で、負極集電体54には貫通孔が設けられていないことで、負極集電体54に貫通孔を設けるといった従来の煩雑な構成によらずとも、蓄電デバイス100におけるエネルギー密度及び出力密度を向上させることができる。 As described above, in the power storage device 100 of the present embodiment, the first positive electrode mixture layer 14 and the second positive electrode mixture layer 24 are electrically connected to each other, while the negative electrode current collector 54 is connected to the negative electrode current collector 54. Since the through hole is not provided, the energy density and the output density of the power storage device 100 can be improved without the conventional complicated configuration such as providing the through hole in the negative electrode current collector 54.

すなわち、貫通孔は、第1正極合剤層14又は第2正極合剤層24より発生するイオンを流通させる形状を備えるので、このようなイオンを流通させるような、製造工程を複雑にする貫通孔を正極に設けなくても、本実施形態の蓄電デバイス100によれば、蓄電デバイス100のエネルギー密度及び出力密度を向上させることができる。 That is, since the through hole has a shape for circulating ions generated from the first positive electrode mixture layer 14 or the second positive electrode mixture layer 24, the through hole complicates the manufacturing process such as circulating such ions. According to the power storage device 100 of the present embodiment, the energy density and the output density of the power storage device 100 can be improved even if the holes are not provided in the positive electrode.

また、実施形態の蓄電デバイス100では、第1正極合剤層14の活物質は遷移金属酸化物を含み、第2正極合剤層24の活物質は活性炭を含むとすることができる。これにより、高いエネルギー密度及び出力密度を実現することができる。 Further, in the power storage device 100 of the embodiment, the active material of the first positive electrode mixture layer 14 may contain a transition metal oxide, and the active material of the second positive electrode mixture layer 24 may contain activated carbon. Thereby, high energy density and output density can be realized.

以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。 The above description of the embodiment is for facilitating the understanding of the present invention, and does not limit the present invention. The present invention can be modified and improved without departing from the spirit thereof, and the present invention includes its equivalents.

例えば、図5は、蓄電デバイス100と異なる他の構成例である蓄電デバイス300の内部構造を示す図である。前記の蓄電デバイス100と同様の部分には同じ符号を付してある。この蓄電デバイス300は、2つの負極系350と、2つの負極系350の間に設けられた正極系310とを含んで構成される蓄電デバイスである。 For example, FIG. 5 is a diagram showing an internal structure of a power storage device 300, which is another configuration example different from the power storage device 100. The same parts as those of the power storage device 100 are designated by the same reference numerals. The power storage device 300 is a power storage device including two negative electrode systems 350 and a positive electrode system 310 provided between the two negative electrode systems 350.

2つの負極系350のそれぞれは、箔状の負極集電体54、及びこの面に塗布等されて形成された負極合剤層52を有する。 Each of the two negative electrode systems 350 has a foil-shaped negative electrode current collector 54 and a negative electrode mixture layer 52 formed by coating or the like on this surface.

他方、正極系310は、箔状の正極集電体312、正極集電体312の一方の面に塗布等されることで形成された第1正極合剤層14、及び、正極集電体312の他方の面に塗布等されることで形成された第2正極合剤層24を備える。第1正極合剤層14は、セパレータ30を介して一方の負極系350に相対し、第2正極合剤層24は、セパレータ40を介して他方の負極系350に相対する。 On the other hand, the positive electrode system 310 includes a foil-shaped positive electrode current collector 312, a first positive electrode mixture layer 14 formed by being applied to one surface of the positive electrode current collector 312, and a positive electrode current collector 312. The second positive electrode mixture layer 24 formed by being applied or the like to the other surface of the above is provided. The first positive electrode mixture layer 14 faces one negative electrode system 350 via the separator 30, and the second positive electrode mixture layer 24 faces the other negative electrode system 350 via the separator 40.

また、導線90により互いに電気的に接続されている2つの負極集電体54は、導線90と接続された導線92を介して所定の回路200の負極端子202と電気的に接続し、他方、回路200の正極端子201は、正極系310における正極集電体312に接続されている導線94を介して正極系310と電気的に接続される。 Further, the two negative electrode current collectors 54 electrically connected to each other by the conductor 90 are electrically connected to the negative electrode terminal 202 of the predetermined circuit 200 via the conductor 92 connected to the conductor 90, and the other. The positive electrode terminal 201 of the circuit 200 is electrically connected to the positive electrode system 310 via a lead wire 94 connected to the positive electrode current collector 312 in the positive electrode system 310.

そして、正極集電体312には、第1正極合剤層14及び第2正極合剤層24により発生するイオンの相互の移動を可能とする貫通孔が設けられていない。他方で、2つの負極合剤層52の間は導線90により電気的に接続されている。このように構成しても、前記の蓄電デバイス100と同様の効果が得られる。 Further, the positive electrode current collector 312 is not provided with a through hole that enables mutual movement of ions generated by the first positive electrode mixture layer 14 and the second positive electrode mixture layer 24. On the other hand, the two negative electrode mixture layers 52 are electrically connected by a lead wire 90. Even with such a configuration, the same effect as that of the power storage device 100 can be obtained.

100 蓄電デバイス、10 第1正極、12 第1正極集電体、14 第1正極合剤層、20 第2正極、22 第2正極集電体、24 第2正極合剤層、30 セパレータ、40 セパレータ、50 負極系、52 負極合剤層、52a 第1負極合剤層、52b 第2負極合剤層、54 負極集電体、56 貫通孔、60 導線、70 包材、80 電解液、90 導線、200 回路、201 正極端子、202 負極端子、300 蓄電デバイス、310 正極系、312 正極集電体、350 負極系 100 Power storage device, 10 1st positive electrode, 12 1st positive electrode current collector, 14 1st positive electrode mixture layer, 20 2nd positive electrode, 22 2nd positive electrode current collector, 24 2nd positive electrode mixture layer, 30 separator, 40 Separator, 50 Negative electrode system, 52 Negative electrode mixture layer, 52a 1st Negative electrode mixture layer, 52b 2nd Negative electrode mixture layer, 54 Negative electrode current collector, 56 Through holes, 60 conductors, 70 packaging material, 80 electrolyte, 90 Lead wire, 200 circuits, 201 positive electrode terminal, 202 negative electrode terminal, 300 storage device, 310 positive electrode system, 312 positive electrode current collector, 350 negative electrode system

Claims (2)

第1正極集電体及び第1正極合剤層を備える第1正極と、第2正極集電体及び第2正極合剤層を備える第2正極とによって構成される正極系と、前記第1正極及び前記第2正極の間に配置され、負極集電体及びその両面に設けられた負極合剤層によって構成される負極系とを有する蓄電デバイスであって、
前記第1正極合剤層と前記第2正極合剤層とが電気的に接続され、前記負極集電体には、自身の両面を貫通する貫通孔が設けられておらず、
前記第1正極の容量と前記第2正極の容量とは異なり、
前記第1正極合剤層と対面する前記負極合剤層の目付量と、前記第2正極合剤層と対面する前記負極合剤層の目付量とが均等である、
ことを特徴とする蓄電デバイス。
A positive electrode system including a first positive electrode including a first positive electrode current collector and a first positive electrode mixture layer, and a second positive electrode including a second positive electrode current collector and a second positive electrode mixture layer, and the first positive electrode. A power storage device having a negative electrode system arranged between a positive electrode and the second positive electrode and composed of a negative electrode current collector and a negative electrode mixture layer provided on both sides thereof.
The first positive electrode mixture layer and the second positive electrode mixture layer are electrically connected, and the negative electrode current collector is not provided with through holes penetrating both sides of the negative electrode current collector.
Unlike the capacity of the first positive electrode and the capacity of the second positive electrode,
The basis weight of the negative electrode mixture layer facing the first positive electrode mixture layer and the basis weight of the negative electrode mixture layer facing the second positive electrode mixture layer are equal.
A power storage device characterized by that.
前記第1正極合剤層の活物質は遷移金属酸化物を含み、前記第2正極合剤層の活物質は活性炭を含むことを特徴とする、請求項に記載の蓄電デバイス。 The power storage device according to claim 1 , wherein the active material of the first positive electrode mixture layer contains a transition metal oxide, and the active material of the second positive electrode mixture layer contains activated carbon.
JP2017246509A 2017-12-22 2017-12-22 Power storage device Active JP7051423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017246509A JP7051423B2 (en) 2017-12-22 2017-12-22 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246509A JP7051423B2 (en) 2017-12-22 2017-12-22 Power storage device

Publications (2)

Publication Number Publication Date
JP2019114399A JP2019114399A (en) 2019-07-11
JP7051423B2 true JP7051423B2 (en) 2022-04-11

Family

ID=67222692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246509A Active JP7051423B2 (en) 2017-12-22 2017-12-22 Power storage device

Country Status (1)

Country Link
JP (1) JP7051423B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118036A (en) 2000-10-10 2002-04-19 Sanshin:Kk Electricity storage electronic component and composite electrode body
JP2012244164A (en) 2011-05-16 2012-12-10 Samsung Electro-Mechanics Co Ltd Hybrid capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118036A (en) 2000-10-10 2002-04-19 Sanshin:Kk Electricity storage electronic component and composite electrode body
JP2012244164A (en) 2011-05-16 2012-12-10 Samsung Electro-Mechanics Co Ltd Hybrid capacitor

Also Published As

Publication number Publication date
JP2019114399A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
AU2018372708B2 (en) Compositions and methods for energy storage devices having improved performance
US10686212B2 (en) Coated cathode active material for a battery cell
KR101120053B1 (en) Hybrid super capacitor using composite electrode
JP2021523531A (en) Compositions and Methods of Dry Electrode Films with Reduced Binder Content
CN110556611A (en) Pre-lithiation of negative electrodes for high performance capacitor-assisted batteries
US20190198856A1 (en) Fast formation cycling for rechargeable batteries
EP3070767A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2012517660A (en) Flat electrodes for electrochemical energy storage elements with optimized power and energy density
KR101568110B1 (en) Charging control method for secondary cell and charging control device for secondary cell
JP2007522620A (en) Lithium secondary battery with fast charge / discharge performance
JP7350944B2 (en) Positive electrode for lithium secondary batteries and lithium secondary batteries containing the same
WO2019200609A1 (en) Incorporation of lithium-ion source material into an activated carbon electrode for a capacitor-assisted battery
US20200220223A1 (en) Ionic liquid electrolytes for high voltage battery application
US20210013555A1 (en) Lithium replenishing rechargeable batteries
JP2016081931A (en) Electrode integrating super capacitor and battery, and method of manufacturing the same
JP2013073705A (en) Lithium ion secondary battery
JP2023182616A (en) Non-aqueous solvent electrolyte compositions for energy storage devices
US20190036158A1 (en) Battery having a single-ion conducting layer
JP2014035963A (en) Positive electrode material, lithium ion power storage device, and method of manufacturing the same
JP2018198132A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery employing the same
JP7051423B2 (en) Power storage device
KR20180023688A (en) Secondary Battery Comprising Electrode Having Thin Electrode Active Material Layer
US10833319B2 (en) Active material for a positive electrode of a battery cell, positive electrode, and battery cell
JP2019114400A (en) Power storage device
RU2810656C1 (en) Electrochemical storage of electrical energy and method of its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220330

R150 Certificate of patent or registration of utility model

Ref document number: 7051423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150