JP7049281B2 - Electromagnetic shock absorber - Google Patents

Electromagnetic shock absorber Download PDF

Info

Publication number
JP7049281B2
JP7049281B2 JP2019017307A JP2019017307A JP7049281B2 JP 7049281 B2 JP7049281 B2 JP 7049281B2 JP 2019017307 A JP2019017307 A JP 2019017307A JP 2019017307 A JP2019017307 A JP 2019017307A JP 7049281 B2 JP7049281 B2 JP 7049281B2
Authority
JP
Japan
Prior art keywords
extension
cooling passage
compression
piston
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019017307A
Other languages
Japanese (ja)
Other versions
JP2020125781A (en
Inventor
功 黒岩
卓宏 近藤
達也 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2019017307A priority Critical patent/JP7049281B2/en
Priority to PCT/JP2020/003037 priority patent/WO2020158755A1/en
Publication of JP2020125781A publication Critical patent/JP2020125781A/en
Application granted granted Critical
Publication of JP7049281B2 publication Critical patent/JP7049281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/42Cooling arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Linear Motors (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、電磁緩衝器に関する。 The present invention relates to an electromagnetic shock absorber.

電磁緩衝器は、たとえば、電機子と界磁とでなるリニアモータを備えており、リニアモータが発生する推力を自動車の車体の振動を抑制する減衰力として、或いは、車体の姿勢を制御する制御力として利用する。 The electromagnetic shock absorber is provided with, for example, a linear motor composed of an armature and a field, and the thrust generated by the linear motor is used as a damping force for suppressing vibration of the vehicle body of an automobile, or a control for controlling the posture of the vehicle body. Use it as a force.

このような電磁緩衝器では、リニアモータの推力を減衰力或いは制御力として利用するが、リニアモータに推力を発生させるには、電機子に設けられた巻線への通電が必要であり、大きな減衰力を発生させるには巻線に供給する電流量も大きくなる。 In such an electromagnetic shock absorber, the thrust of the linear motor is used as a damping force or a control force, but in order to generate the thrust in the linear motor, it is necessary to energize the winding provided in the armature, which is large. In order to generate the damping force, the amount of current supplied to the winding is also large.

巻線に与える電流量が大きくなると巻線が発熱して高温となり、電磁緩衝器の内部の温度が高温となると、界磁側の永久磁石が熱減磁によって磁界が弱まってしまい、電磁緩衝器が発生可能な減衰力が低下してしまう恐れがある。 When the amount of current applied to the winding becomes large, the winding heats up and becomes high temperature, and when the temperature inside the electromagnetic shock absorber becomes high, the magnetic field of the permanent magnet on the field side is weakened by thermal demagnetization, and the electromagnetic shock absorber There is a risk that the damping force that can be generated will decrease.

そこで、従来の電磁緩衝器では、筒状の固定ヨークの外周に装着される界磁と、界磁の外周に設けた筒状の可動ヨークの内周に設けられた筒状の電機子と、固定ヨークに連結されるとともに可動ヨークの外周に摺接する筒状のケースとを備えており、固定ヨークに対して可動ヨークが相対移動する際に電機子の巻線の内周と外周とに通路を形成し、気体に前記通路を通過させて電機子を放熱させている(たとえば、特許文献1参照)。 Therefore, in the conventional electromagnetic shock absorber, a field magnet mounted on the outer circumference of the cylindrical fixed yoke, a tubular armature provided on the inner circumference of the tubular movable yoke provided on the outer circumference of the field magnet, and a tubular armature are used. It is equipped with a cylindrical case that is connected to the fixed yoke and slides into the outer circumference of the movable yoke, and passes through the inner and outer circumferences of the armature winding when the movable yoke moves relative to the fixed yoke. And let the gas pass through the passage to dissipate heat from the armature (see, for example, Patent Document 1).

特開2003-324934号公報Japanese Patent Application Laid-Open No. 2003-324934

従来の電磁緩衝器では、可動ヨークとケースとで閉鎖される空間内の気体が可動ヨークの固定ヨークに対する相対移動時において流動する際に、気体に電機子の巻線の内外周の通路を通過させることにより冷却効果を得ようとしているが、前記通路自体が圧力損失をもたらすものであるために、通路で熱が発生してしまうので、冷却効果が減殺してしまう。十分な冷却効果が得られなければ、巻線の電流量を小さくしなくてはならず、小さな電流でも大きな推力を得るには電磁緩衝器の大型化が避けられない。 In a conventional electromagnetic shock absorber, when the gas in the space closed by the movable yoke and the case flows during relative movement of the movable yoke with respect to the fixed yoke, the gas passes through the inner and outer peripheral passages of the armature winding. However, since the passage itself causes a pressure loss, heat is generated in the passage, so that the cooling effect is diminished. If a sufficient cooling effect cannot be obtained, the amount of current in the winding must be reduced, and in order to obtain a large thrust even with a small current, it is inevitable to increase the size of the electromagnetic shock absorber.

そこで、本発明は、大きな推力を得つつも、大型化を回避でき、重量およびコストを低減できる電磁緩衝器の提供を目的としている。 Therefore, an object of the present invention is to provide an electromagnetic shock absorber that can avoid an increase in size and reduce weight and cost while obtaining a large thrust.

上記の目的を達成するため、本発明の電磁緩衝器は、非磁性体のシリンダと、シリンダの内周に移動自在に挿入されるピストンロッドと、シリンダ内に摺動自在に挿入されるとともにピストンロッドに設けられてシリンダ内に伸側室を区画する伸側ピストンと、シリンダ内に摺動自在に挿入されるとともに伸側ピストンに対して軸方向に間隔を開けてピストンロッドに設けられてシリンダ内に圧側室を区画する圧側ピストンと、ピストンロッドの伸側ピストンと圧側ピストンとの間に装着される筒状の電機子とシリンダの外周に設けられて電機子に対向する筒状の界磁とを有するリニアモータと、伸側室と圧側室とに充填される気体と、電機子に面する冷却通路と、伸側室を冷却通路に連通するとともに伸側室から冷却通路に向かう気体の流れに抵抗を与える伸側制限部と、伸側室を冷却通路に連通するとともに冷却通路から伸側室に向かう気体の流れのみを許容する伸側整流部と、圧側室を冷却通路に連通するとともに圧側室から冷却通路に向かう気体の流れに抵抗を与える圧側制限部と、圧側室を冷却通路に連通するとともに冷却通路から圧側室に向かう気体の流れのみを許容する圧側整流部とを備えている。 In order to achieve the above object, the electromagnetic shock absorber of the present invention includes a non-magnetic cylinder, a piston rod that is movably inserted into the inner circumference of the cylinder, and a piston that is slidably inserted into the cylinder and a piston. An extension piston provided on the rod to partition the extension chamber in the cylinder, and a piston rod provided on the piston rod with a slidable insertion into the cylinder and an axial distance from the extension piston in the cylinder. A compression side piston that divides the compression side chamber, a tubular armor mounted between the extension side piston and the compression side piston of the piston rod, and a tubular field magnet provided on the outer circumference of the cylinder and facing the armature. A linear motor having a The extension side limiting part, the extension side rectifying part that communicates the extension side chamber to the cooling passage and allows only the flow of gas from the cooling passage to the extension side chamber, and the compression side chamber communicates with the cooling passage and the cooling passage from the compression side chamber. It is provided with a compression side limiting unit that resists the flow of gas toward the pressure side, and a compression side rectifying unit that communicates the compression side chamber to the cooling passage and allows only the flow of gas from the cooling passage to the compression side chamber.

このように構成された電磁緩衝器は、伸縮作動時に冷却通路を介して気体が伸側室と圧側室とを行き来する際に、冷却通路内の圧力は必ず伸側室と圧側室のうち低圧側の圧力と等しくなり、伸側室と圧側室のうち高圧側の室から冷却通路内に侵入した気体は膨張して温度が低下するため、冷却通路に面した電機子を効果的に冷却できる。 In the electromagnetic shock absorber configured in this way, when the gas moves back and forth between the extension side chamber and the compression side chamber through the cooling passage during expansion and contraction operation, the pressure in the cooling passage is always on the low pressure side of the extension side chamber and the compression side chamber. Since the gas equal to the pressure and invades into the cooling passage from the chamber on the high pressure side of the extension side chamber and the compression side chamber expands and the temperature drops, the armature facing the cooling passage can be effectively cooled.

また、電磁緩衝器は、電機子が筒状であって外周に複数の環状のスロットを有する筒状のコアと、スロットに装着される巻線とを有し、冷却通路がピストンロッドの外周とコアの内周との間の環状の空隙により形成されていてもよい。このように構成された電磁緩衝器によれば、コアの内周の全部を温度が低下した気体に暴露できるので、電機子を周方向で偏りなく満遍なく冷却できるとともにコアの構造が簡単となり冷却通路を設けるための加工が不要となる。 Further, the electromagnetic shock absorber has a cylindrical core in which the armature is cylindrical and has a plurality of annular slots on the outer circumference, and a winding wire mounted in the slots, and the cooling passage is the outer circumference of the piston rod. It may be formed by an annular gap between the inner circumference of the core. According to the electromagnetic shock absorber configured in this way, the entire inner circumference of the core can be exposed to the gas whose temperature has dropped, so that the armature can be cooled evenly and evenly in the circumferential direction, and the structure of the core is simplified and the cooling passage is simplified. No processing is required to provide the above.

さらに、電磁緩衝器は、コアが内周に筒状の放熱板を有していてもよく、このように構成されると、冷却通路を通過する気体に放熱板を暴露でき、効率よく巻線およびコアを冷却できる。 Further, the electromagnetic shock absorber may have a cylindrical heat sink on the inner circumference of the core, and when configured in this way, the heat sink can be exposed to the gas passing through the cooling passage, and the heat sink can be efficiently wound. And can cool the core.

また、電磁緩衝器は、コアに外周から開口して冷却通路に通じる通気孔が設けられていてもよく、このように構成されると、より効果的に電機子を冷却できるので大推力を得やすくなって、より一層電磁緩衝器の小型化が可能となる。 Further, the electromagnetic shock absorber may be provided with a vent hole that opens from the outer periphery to the cooling passage in the core, and if it is configured in this way, the armature can be cooled more effectively, so that a large thrust is obtained. It becomes easier and the electromagnetic shock absorber can be further miniaturized.

さらに、電磁緩衝器は、伸側制限部および伸側整流部が伸側ピストンに設けた切欠を備えた環状のチェックバルブであって、圧側制限部および圧側整流部が圧側ピストンに設けた切欠を備えた環状のチェックバルブであってもよい。このように構成された電磁緩衝器によれば、伸側制限部および伸側整流部、圧側制限部および圧側整流部がそれぞれ軸方向長さの寸法が短い環状のチェックバルブで構成されるので、電磁緩衝器のストローク長の確保が容易となる。 Further, the electromagnetic shock absorber is an annular check valve having a notch provided in the extension side piston by the extension side limiting part and the extension side rectifying part, and has a notch provided in the compression side piston by the compression side limiting part and the compression side rectifying part. It may be an annular check valve provided. According to the electromagnetic shock absorber configured in this way, the extension side limiting part and the extension side rectifying part, and the compression side limiting part and the compression side rectifying part are each composed of an annular check valve having a short axial length dimension. It becomes easy to secure the stroke length of the electromagnetic shock absorber.

本発明の電磁緩衝器によれば、大きな推力を得つつも、大型化を回避でき、重量およびコストを低減できる。 According to the electromagnetic shock absorber of the present invention, it is possible to avoid an increase in size and reduce the weight and cost while obtaining a large thrust.

一実施の形態の電磁緩衝器の縦断面図である。It is a vertical sectional view of the electromagnetic shock absorber of one Embodiment.

以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態における電磁緩衝器Dは、図1に示すように、非磁性体のシリンダ1と、シリンダ1の内周に移動自在に挿入されるピストンロッド2と、シリンダ1内に摺動自在に挿入されるとともにピストンロッド2に設けられてシリンダ1内に伸側室R1を区画する伸側ピストン3と、シリンダ1内に摺動自在に挿入されるとともに伸側ピストン3に対して軸方向に間隔を開けてピストンロッド2に設けられてシリンダ1内に圧側室R2を区画する圧側ピストン4と、ピストンロッド2の伸側ピストン3と圧側ピストン4との間に装着される筒状の電機子Eとシリンダ1の外周に設けられて電機子Eに対向する筒状の界磁Fとを有するリニアモータLMと、伸側室R1と圧側室R2とに充填される気体と、電機子Eに面する冷却通路CPと、伸側制限部ERと、伸側整流部ECと、圧側制限部CRと、圧側整流部CCとを備えている。 Hereinafter, the present invention will be described based on the embodiments shown in the figure. As shown in FIG. 1, the electromagnetic shock absorber D in one embodiment has a non-magnetic cylinder 1, a piston rod 2 movably inserted into the inner circumference of the cylinder 1, and a slidable inside the cylinder 1. The extension-side piston 3 is inserted into the piston rod 2 and is provided on the piston rod 2 to partition the extension-side chamber R1 in the cylinder 1, and is slidably inserted into the cylinder 1 and axially with respect to the extension-side piston 3. A tubular armor mounted between the compression side piston 4 provided on the piston rod 2 at intervals and partitioning the compression side chamber R2 in the cylinder 1 and the extension side piston 3 and the compression side piston 4 of the piston rod 2. A linear motor LM having an E and a tubular field F facing the armature E provided on the outer periphery of the cylinder 1, a gas filled in the extension side chamber R1 and the compression side chamber R2, and a surface on the armature E. It is provided with a cooling passage CP, an extension side limiting unit ER, an extension side rectifying unit EC, a compression side limiting unit CR, and a compression side rectifying unit CC.

以下、電磁緩衝器Dの各部について詳細に説明する。シリンダ1は、筒状であって非磁性体で形成されており、シリンダ1の外周にはシリンダ1との間に環状隙間を形成する軟磁性体で形成された筒状のバックヨーク9が設けられている。バックヨーク9の図1中上端には、シリンダ1の図1中上端に嵌合する環状のロッドガイド5が装着されており、バックヨーク9の図1中下端にはシリンダ1の図1中下端に嵌合するキャップ6が装着されている。なお、キャップ6には、車両への装着を可能とするブラケット6aが設けられている。 Hereinafter, each part of the electromagnetic shock absorber D will be described in detail. The cylinder 1 is tubular and is made of a non-magnetic material, and a tubular back yoke 9 made of a soft magnetic material that forms an annular gap with the cylinder 1 is provided on the outer periphery of the cylinder 1. Has been done. An annular rod guide 5 that fits into the middle upper end of FIG. 1 of the cylinder 1 is attached to the upper middle end of FIG. 1 of the back yoke 9, and the lower middle end of FIG. 1 of the cylinder 1 is attached to the lower middle end of FIG. A cap 6 that fits into the cylinder 6 is attached. The cap 6 is provided with a bracket 6a that can be attached to the vehicle.

ピストンロッド2は、ロッドガイド5の内周に挿通されてシリンダ1内に移動自在に挿入されており、外周には伸側ピストン3、電機子Eおよび圧側ピストン4が装着されている。なお、図示はしないが、ピストンロッド2の基端である図1中上端には、車両への装着を可能とするブラケットが設けられる。また、ロッドガイド5の内周には、シール部材5aが設けられており、シリンダ1内が気密に密封されている。 The piston rod 2 is inserted through the inner circumference of the rod guide 5 and movably inserted into the cylinder 1, and the extension side piston 3, the armature E, and the compression side piston 4 are mounted on the outer periphery thereof. Although not shown, a bracket that can be mounted on a vehicle is provided at the upper end of FIG. 1, which is the base end of the piston rod 2. Further, a sealing member 5a is provided on the inner circumference of the rod guide 5, and the inside of the cylinder 1 is airtightly sealed.

伸側ピストン3と圧側ピストン4は、ピストンロッド2の外周に軸方向に間隔を開けて取り付けられており、電機子Eは、ピストンロッド2の外周であって伸側ピストン3と圧側ピストン4との間に両者に当接した状態で取り付けられている。 The extension side piston 3 and the compression side piston 4 are attached to the outer periphery of the piston rod 2 at an axial interval, and the armature E is the outer circumference of the piston rod 2 and includes the extension side piston 3 and the compression side piston 4. It is attached in a state of being in contact with both of them.

伸側ピストン3は、環状であって、前述のようにピストンロッド2に取付けられてシリンダ1内に摺動自在に挿入されており、シリンダ1内の図1中上方に伸側室R1を区画している。また、本実施の形態では、圧側ピストン4は、環状であって、前述のようにピストンロッド2に取付けられてシリンダ1内に摺動自在に挿入されており、シリンダ1内の図1中下方に圧側室R2を区画している。伸側室R1と圧側室R2には、気体が充填されている。気体は、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボンやパーフルオロカーボン等といった冷媒として利用される気体を利用するとよいが、それ以外の気体を利用してもよい。 The extension-side piston 3 is annular and is attached to the piston rod 2 and slidably inserted into the cylinder 1 as described above, and the extension-side chamber R1 is partitioned upward in FIG. 1 in the cylinder 1. ing. Further, in the present embodiment, the compression side piston 4 has an annular shape, is attached to the piston rod 2 as described above, and is slidably inserted into the cylinder 1, and is slidably inserted into the cylinder 1 in the lower part of FIG. The compression side chamber R2 is partitioned. The extension side chamber R1 and the compression side chamber R2 are filled with gas. As the gas, a gas used as a refrigerant such as hydrochlorofluorocarbon, hydrofluorocarbon, perfluorocarbon and the like may be used, but other gases may be used.

伸側ピストン3は、外周にシリンダ1に摺接するピストンリング3aと、電機子側端に設けられた環状凸部3bと、図1中上端である伸側室側端から開口して環状凸部3bの図1中下端である電機子側端へ通じる複数の貫通孔3cと、伸側室側端に設けられて貫通孔3cの出口端を取り囲む環状弁座3dとを備えている。そして、伸側ピストン3の伸側室側端には、環状弁座3dに離着座して貫通孔3cの出口端を開閉する環状板でなるチェックバルブ7が設けられている。チェックバルブ7は、外周にオリフィスとして機能する切欠7aを備えていて内周側が固定端とされて外周側の撓みが許容されており、環状弁座3dに着座する状態では貫通孔3cを閉じて切欠7aのみで伸側室R1と貫通孔3cとを連通させ、撓んで環状弁座3dから離座すると貫通孔3cの出口端を開くようになっている。よって、チェックバルブ7は、伸側室R1から貫通孔3c側へ向かう気体の流れに対しては、切欠7aを有効にして気体の流れに抵抗を与え、貫通孔3cから伸側室R1へ向かう気体の流れに対してはほとんど抵抗を与えずにこれを許容する。よって、本実施の形態では、伸側制限部ERは、チェックバルブ7の切欠7aによって構成されており、伸側整流部ECは、チェックバルブ7によって構成されている。伸側制限部ERと伸側整流部ECの構成は、前述したところに限定されるものではないが、一つの環状板でなり軸方向寸法の短いチェックバルブ7に伸側制限部ERと伸側整流部ECを集約すれば、電磁緩衝器Dのストローク長を確保するのが容易となる利点がある。 The extension-side piston 3 has a piston ring 3a that is in sliding contact with the cylinder 1 on the outer periphery, an annular convex portion 3b provided at the armature side end, and an annular convex portion 3b that opens from the extension-side chamber side end at the upper end in FIG. 1 is provided with a plurality of through holes 3c leading to the armature side end, which is the lower end in FIG. 1, and an annular valve seat 3d provided at the extension side chamber side end and surrounding the outlet end of the through hole 3c. At the end of the extension side piston 3 on the extension side chamber side, a check valve 7 made of an annular plate that takes off and sits on the annular valve seat 3d and opens and closes the outlet end of the through hole 3c is provided. The check valve 7 has a notch 7a that functions as an orifice on the outer circumference, and the inner peripheral side is a fixed end to allow bending of the outer peripheral side. When seated on the annular valve seat 3d, the through hole 3c is closed. The extension side chamber R1 and the through hole 3c are communicated with each other only by the notch 7a, and when the valve seat 3d is bent away from the annular valve seat 3d, the outlet end of the through hole 3c is opened. Therefore, the check valve 7 makes the notch 7a effective for the gas flow from the extension side chamber R1 to the through hole 3c side to give resistance to the gas flow, and the check valve 7 makes the gas flow from the through hole 3c toward the extension side chamber R1. Allow this with little resistance to the flow. Therefore, in the present embodiment, the extension side limiting unit ER is configured by the notch 7a of the check valve 7, and the extension side rectifying unit EC is configured by the check valve 7. The configuration of the extension side limiting unit ER and the extension side rectifying unit EC is not limited to the above, but the check valve 7 is made of one annular plate and has a short axial dimension, and the extension side limiting unit ER and the extension side are extended. If the rectifying unit EC is integrated, there is an advantage that it becomes easy to secure the stroke length of the electromagnetic shock absorber D.

圧側ピストン4は、外周にシリンダ1に摺接するピストンリング4aと、電機子側端に設けられた環状凸部4bと、図1中下端である圧側室側端から開口して環状凸部4bの図1中上端である電機子側端へ通じる複数の貫通孔4cと、圧側室側端に設けられて貫通孔4cの出口端を取り囲む環状弁座4dとを備えている。そして、圧側ピストン4の圧側室側端には、環状弁座4dに離着座して貫通孔4cの出口端を開閉する環状板でなるチェックバルブ8が設けられている。チェックバルブ8は、外周にオリフィスとして機能する切欠8aを備えていて内周側が固定端とされて外周側の撓みが許容されており、環状弁座4dに着座する状態では貫通孔4cを閉じて切欠8aのみで圧側室R2と貫通孔4cとを連通させ、撓んで環状弁座4dから離座すると貫通孔4cの出口端を開くようになっている。よって、チェックバルブ8は、圧側室R2から貫通孔4c側へ向かう気体の流れに対しては、切欠8aを有効にして気体の流れに抵抗を与え、貫通孔4cから圧側室R2へ向かう気体の流れに対してはほとんど抵抗を与えずにこれを許容する。よって、本実施の形態では、圧側制限部CRは、チェックバルブ8の切欠8aによって構成されており、圧側整流部CCは、チェックバルブ8によって構成されている。圧側制限部CRと圧側整流部CCの構成は、前述したところに限定されるものではないが、一つの環状板でなり軸方向寸法の短いチェックバルブ8に圧側制限部CRと圧側整流部CCを集約すれば、電磁緩衝器Dのストローク長を確保するのが容易となる利点がある。 The compression side piston 4 has a piston ring 4a that is in sliding contact with the cylinder 1 on the outer periphery, an annular convex portion 4b provided at the armature side end, and an annular convex portion 4b that is opened from the compression side chamber side end at the lower end in FIG. It is provided with a plurality of through holes 4c leading to the armature side end, which is the upper end in FIG. 1, and an annular valve seat 4d provided at the compression side chamber side end and surrounding the outlet end of the through hole 4c. A check valve 8 made of an annular plate that takes off and sits on the annular valve seat 4d to open and close the outlet end of the through hole 4c is provided at the compression side chamber side end of the compression side piston 4. The check valve 8 has a notch 8a that functions as an orifice on the outer circumference, and the inner peripheral side is a fixed end to allow bending of the outer peripheral side. When seated on the annular valve seat 4d, the through hole 4c is closed. The compression side chamber R2 and the through hole 4c are communicated with each other only by the notch 8a, and when the valve seat 4d is bent and separated from the annular valve seat 4d, the outlet end of the through hole 4c is opened. Therefore, the check valve 8 makes the notch 8a effective for the gas flow from the compression side chamber R2 toward the through hole 4c side to give resistance to the gas flow, and the check valve 8 makes the gas flow from the through hole 4c toward the compression side chamber R2. Allow this with little resistance to the flow. Therefore, in the present embodiment, the compression side limiting unit CR is configured by the notch 8a of the check valve 8, and the compression side rectifying unit CC is configured by the check valve 8. The configuration of the compression side limiting unit CR and the compression side rectifying unit CC is not limited to the above, but the compression side limiting unit CR and the compression side rectifying unit CC are attached to the check valve 8 which is made of one annular plate and has a short axial dimension. If aggregated, there is an advantage that it becomes easy to secure the stroke length of the electromagnetic shock absorber D.

電機子Eは、ピストンロッド2の外周に配置される筒状の鉄製のコア11と、コア11の外周に軸方向に所定ピッチで並べて設けられた環状溝でなるスロット11a内に装着される巻線12とを備えて構成されている。なお、スロット11aに装着される巻線12は、U相、V相およびW相の三相巻線とされている。コア11の外周とシリンダ1の内周との間には、環状の空隙が設けられており、コア11とシリンダ1とが直接干渉しないように配慮されている。 The armature E is a winding mounted in a tubular iron core 11 arranged on the outer periphery of the piston rod 2 and a slot 11a formed of an annular groove provided on the outer periphery of the core 11 at a predetermined pitch in the axial direction. It is configured to include a wire 12. The winding 12 mounted in the slot 11a is a U-phase, V-phase, and W-phase three-phase winding. An annular gap is provided between the outer circumference of the core 11 and the inner circumference of the cylinder 1 so that the core 11 and the cylinder 1 do not directly interfere with each other.

また、コア11は、内周に銅などの熱伝導率の高い金属で形成された筒状の放熱板11bを備えている。コア11の最小内径である放熱板11bの内径は、ピストンロッド2の外径よりも大径であって、コア11の内周とピストンロッド2の外周との間には環状の空隙が形成されており、この環状の空隙で冷却通路CPが設けられている。コア11は、伸側ピストン3の環状凸部3bと圧側ピストン4の環状凸部4bに嵌合して、伸側ピストン3と圧側ピストン4とで挟持されつつ径方向に位置決めされてピストンロッド2に固定される。貫通孔3cおよび貫通孔4cは、環状凸部3b,4bの電機子側端に開口しているので、それぞれ冷却通路CPに通じており、貫通孔3c,4cおよび冷却通路CPによって伸側室R1と圧側室R2とが連通されている。 Further, the core 11 is provided with a tubular heat radiating plate 11b formed of a metal having a high thermal conductivity such as copper on the inner circumference thereof. The inner diameter of the heat sink 11b, which is the minimum inner diameter of the core 11, is larger than the outer diameter of the piston rod 2, and an annular gap is formed between the inner circumference of the core 11 and the outer circumference of the piston rod 2. A cooling passage CP is provided in this annular gap. The core 11 is fitted to the annular convex portion 3b of the extension side piston 3 and the annular convex portion 4b of the compression side piston 4, and is positioned radially while being sandwiched between the extension side piston 3 and the compression side piston 4 and the piston rod 2. Is fixed to. Since the through holes 3c and the through holes 4c are open to the armature side ends of the annular convex portions 3b and 4b, they communicate with the cooling passage CP, respectively, and the through holes 3c and 4c and the cooling passage CP provide the extension side chamber R1. It communicates with the compression side chamber R2.

また、コア11は、外周から放熱板11bの内周にまで開口する複数の通気孔11cが設けられており、冷却通路CPとシリンダ1とコア11との間の空隙とが通気孔11cによって連通されている。 Further, the core 11 is provided with a plurality of ventilation holes 11c that open from the outer periphery to the inner circumference of the heat radiating plate 11b, and the cooling passage CP and the gap between the cylinder 1 and the core 11 communicate with each other by the ventilation holes 11c. Has been done.

つづいて、シリンダ1の外周には、複数の環状の永久磁石10a,10bが積層されて装着されており、これら永久磁石10a,10bは、シリンダ1とバックヨーク9との間の環状隙間内に収容されている。そして、本実施の形態では、永久磁石10a,10bとバックヨーク9とでシリンダ1の内周側に交互にS極とN極の磁界を作用させる界磁Fを構成している。シリンダ1は非磁性体で構成されているので、界磁Fが発生する磁界は、シリンダ1を透過してシリンダ1内へ作用できる。 Subsequently, a plurality of annular permanent magnets 10a and 10b are laminated and mounted on the outer periphery of the cylinder 1, and these permanent magnets 10a and 10b are placed in the annular gap between the cylinder 1 and the back yoke 9. It is contained. In the present embodiment, the permanent magnets 10a and 10b and the back yoke 9 form a field F in which magnetic fields of S pole and N pole are alternately applied to the inner peripheral side of the cylinder 1. Since the cylinder 1 is made of a non-magnetic material, the magnetic field generated by the field F can pass through the cylinder 1 and act on the cylinder 1.

また、本実施の形態では、主磁極の永久磁石10aと副磁極の永久磁石10bは、ハルバッハ配列にてシリンダ1の内周側に軸方向でS極とN極が交互に現れるように積層されている。図1中で主磁極の永久磁石10aと副磁極の永久磁石10bに記載されている三角の印は、着磁方向を示しており、主磁極の永久磁石10aの着磁方向は径方向となっており、副磁極の永久磁石10bの着磁方向は軸方向となっている。なお、主磁極の永久磁石10aの軸方向長さは、副磁極の永久磁石10bの軸方向長さよりも長くなっており、電機子Eにおけるコア11と主磁極の永久磁石10aとの間の磁気抵抗を小さくできコア11へ作用させる磁界を大きくできるのでリニアモータLMの推力を向上できる。なお、永久磁石10a,10bは、シリンダ1の内周側に軸方向でS極とN極が交互に現れるように磁界を作用させればよいので、ハルバッハ配列で配列されていなくともよい。その場合には、永久磁石10a,10bは、ともに軸方向長さが等しく、互いに内周に異なる磁極を備えていればよく、交互に積層されればよい。 Further, in the present embodiment, the permanent magnets 10a of the main magnetic pole and the permanent magnets 10b of the sub magnetic pole are laminated so that the S pole and the N pole appear alternately on the inner peripheral side of the cylinder 1 in the Halbach array. ing. In FIG. 1, the triangular marks on the permanent magnet 10a of the main magnetic pole and the permanent magnet 10b of the secondary magnetic pole indicate the magnetizing direction, and the magnetizing direction of the permanent magnet 10a of the main magnetic pole is the radial direction. The magnetizing direction of the permanent magnet 10b of the secondary magnetic pole is the axial direction. The axial length of the permanent magnet 10a of the main magnetic pole is longer than the axial length of the permanent magnet 10b of the secondary magnetic pole, and the magnetism between the core 11 and the permanent magnet 10a of the main magnetic pole in the armature E. Since the resistance can be reduced and the magnetic field acting on the core 11 can be increased, the thrust of the linear motor LM can be improved. The permanent magnets 10a and 10b may not be arranged in a Halbach array because a magnetic field may be applied to the inner peripheral side of the cylinder 1 so that S poles and N poles appear alternately in the axial direction. In that case, the permanent magnets 10a and 10b may have the same axial length and have different magnetic poles on the inner circumferences of the permanent magnets 10a and 10b, and may be stacked alternately.

バックヨーク9は、副磁極の永久磁石10bの軸方向長さを短くしても磁気抵抗の低い磁路を確保できるため、主磁極の永久磁石10aの軸方向長さを長くする際のリニアモータLMの推力を効果的に向上できる。より詳しくは、永久磁石10a,10bの外周にバックヨーク9を設けると、磁気抵抗の低い磁路を確保できるので副磁極の永久磁石10bの軸方向長さの短縮に起因する磁気抵抗の増大が抑制される。よって、主磁極の永久磁石10aの軸方向長さを副磁極の永久磁石10bの軸方向長さよりも長くするとともに永久磁石10a,10bの外周に筒状のバックヨーク9を設けるとリニアモータLMの推力を大きく向上させ得る。バックヨーク9の肉厚は、主磁極の永久磁石10aの外部磁気抵抗の増大を抑制に適する肉厚に設定されればよい。バックヨーク9は、永久磁石10a,10bがハルバッハ配列とされていない場合でも磁気抵抗の低い磁路を確保できるのでリニアモータLMの推力を向上させ得る。 Since the back yoke 9 can secure a magnetic path having low magnetic resistance even if the axial length of the permanent magnet 10b of the secondary magnetic pole is shortened, a linear motor for increasing the axial length of the permanent magnet 10a of the main magnetic pole. The thrust of the LM can be effectively improved. More specifically, if the back yoke 9 is provided on the outer periphery of the permanent magnets 10a and 10b, a magnetic path having a low magnetic resistance can be secured, so that the magnetic resistance increases due to the shortening of the axial length of the permanent magnet 10b of the secondary magnetic pole. It is suppressed. Therefore, if the axial length of the permanent magnet 10a of the main magnetic pole is made longer than the axial length of the permanent magnet 10b of the secondary magnetic pole and the tubular back yoke 9 is provided on the outer periphery of the permanent magnets 10a and 10b, the linear motor LM The thrust can be greatly improved. The wall thickness of the back yoke 9 may be set to a wall thickness suitable for suppressing an increase in the external magnetic resistance of the permanent magnet 10a of the main magnetic pole. Since the back yoke 9 can secure a magnetic path having a low magnetic resistance even when the permanent magnets 10a and 10b are not arranged in a Halbach array, the thrust of the linear motor LM can be improved.

本実施の形態では、バックヨーク9は、電磁緩衝器Dのアウターシェルとしても機能しており、永久磁石10a,10bの保護と軸力や横力を受ける強度部材としての役割も果たしている。バックヨーク9を設けると磁気抵抗の増大を抑制できるが、バックヨーク9の省略も可能であり、バックヨーク9を省略する場合、永久磁石10a,10bの外周にバックヨークとしては機能しないが永久磁石10a,10bの保護と強度部材としての機能を発揮する筒を設けると良い。 In the present embodiment, the back yoke 9 also functions as an outer shell of the electromagnetic shock absorber D, and also serves as a protection member for the permanent magnets 10a and 10b and as a strength member that receives axial force and lateral force. If the back yoke 9 is provided, an increase in magnetic resistance can be suppressed, but the back yoke 9 can be omitted. If the back yoke 9 is omitted, the permanent magnets do not function as back yokes on the outer circumferences of the permanent magnets 10a and 10b, but are permanent magnets. It is preferable to provide a cylinder that protects 10a and 10b and functions as a strength member.

電磁緩衝器Dは、以上のように構成され、以下、その作動について説明する。電磁緩衝器Dが伸長作動する場合、ピストンロッド2がシリンダ1に対して図1中上方へ移動して、伸側ピストン3の変位によって伸側室R1が縮小されるとともに圧側ピストン4の変位によって圧側室R2が拡大される。すると、伸側整流部ECであるチェックバルブ7が閉じて伸側制限部ERである切欠7aのみを介して伸側室R1と冷却通路CPとが連通される。よって、縮小される伸側室R1から切欠7aおよび冷却通路CPを通過して気体は、圧側整流部CCであるチェックバルブ8を開いて圧側室R2へ移動する。 The electromagnetic shock absorber D is configured as described above, and its operation will be described below. When the electromagnetic shock absorber D is extended, the piston rod 2 moves upward in FIG. 1 with respect to the cylinder 1, the extension side chamber R1 is reduced by the displacement of the extension side piston 3, and the compression side is compressed by the displacement of the compression side piston 4. Room R2 is expanded. Then, the check valve 7 which is the extension side rectifying section EC closes, and the extension side chamber R1 and the cooling passage CP communicate with each other only through the notch 7a which is the extension side limiting section ER. Therefore, the gas passes from the reduced extension side chamber R1 through the notch 7a and the cooling passage CP, opens the check valve 8 which is the compression side rectifying unit CC, and moves to the compression side chamber R2.

ここで、電磁緩衝器Dの伸長作動時には、伸側室R1内の圧力は、気体が伸側制限部ERである切欠7aを通過する際に発生する圧力損失によって上昇する。ところが、冷却通路CPは、圧側整流部CCを通じて圧側室R2に連通されており、冷却通路CP内の圧力は電磁緩衝器Dの伸長作動によって拡大する圧側室R2内の圧力と殆ど同じ圧力となる。よって、電磁緩衝器Dが伸長作動する際に、伸側制限部ERである切欠7aを通過するまでの気体の圧力は高圧となっており、伸側制限部ERである切欠7aを通過して冷却通路CPに至った気体の圧力は低圧となる。このように気体が伸側制限部ERを通過して冷却通路CPへ至ると、気体の圧力が一気に低下して気体の体積が膨張するために気体温度が低下する。よって、冷却通路CP内の温度が低下し、気体の温度低下によって冷却通路CPに面する電機子Eを冷却できる。 Here, during the extension operation of the electromagnetic shock absorber D, the pressure in the extension side chamber R1 increases due to the pressure loss generated when the gas passes through the notch 7a which is the extension side limiting portion ER. However, the cooling passage CP is communicated with the compression side chamber R2 through the compression side rectifying unit CC, and the pressure in the cooling passage CP becomes almost the same as the pressure in the compression side chamber R2 expanded by the extension operation of the electromagnetic shock absorber D. .. Therefore, when the electromagnetic shock absorber D is extended, the pressure of the gas until it passes through the notch 7a which is the extension side limiting portion ER is high, and it passes through the notch 7a which is the extension side limiting portion ER. The pressure of the gas that reaches the cooling passage CP becomes low pressure. When the gas passes through the extension side limiting portion ER and reaches the cooling passage CP in this way, the pressure of the gas drops at once and the volume of the gas expands, so that the gas temperature drops. Therefore, the temperature in the cooling passage CP is lowered, and the armature E facing the cooling passage CP can be cooled by the temperature lowering of the gas.

また、電磁緩衝器が収縮作動する場合、ピストンロッド2がシリンダ1に対して図1中下方へ移動して、圧側ピストン4の変位によって圧側室R2が縮小されるとともに伸側ピストン3の変位によって伸側室R1が拡大される。すると、圧側整流部CCであるチェックバルブ8が閉じて圧側制限部CRである切欠8aのみを介して圧側室R2と冷却通路CPとが連通される。よって、縮小される圧側室R2から切欠8aおよび冷却通路CPを通過して気体は、伸側整流部ECであるチェックバルブ7を開いて伸側室R1へ移動する。ここで、電磁緩衝器Dの収縮作動時には、圧側室R2内の圧力は、気体が圧側制限部CRである切欠8aを通過する際に発生する圧力損失によって上昇する。ところが、冷却通路CPは、伸側整流部ECを通じて伸側室R1に連通されており、冷却通路CP内の圧力は電磁緩衝器Dの収縮作動によって拡大する伸側室R1内の圧力と殆ど同じ圧力となる。よって、電磁緩衝器Dが収縮作動する際に、圧側制限部CRである切欠8aを通過するまでの気体の圧力は高圧となっており、圧側制限部CRである切欠8aを通過して冷却通路CPに至った気体の圧力は低圧となる。このように気体が圧側制限部CRを通過して冷却通路CPへ至ると、気体の圧力が一気に低下して気体の体積が膨張するために気体温度が低下する。よって、冷却通路CP内の温度が低下し、気体の温度低下によって冷却通路CPに面する電機子Eを冷却できる。 Further, when the electromagnetic shock absorber contracts, the piston rod 2 moves downward in FIG. 1 with respect to the cylinder 1, the compression side chamber R2 is reduced by the displacement of the compression side piston 4, and the extension side piston 3 is displaced. The extension chamber R1 is enlarged. Then, the check valve 8 which is the compression side rectifying section CC closes, and the compression side chamber R2 and the cooling passage CP are communicated with each other only through the notch 8a which is the compression side limiting section CR. Therefore, the gas passes through the notch 8a and the cooling passage CP from the reduced compression side chamber R2, opens the check valve 7 which is the extension side rectifying unit EC, and moves to the extension side chamber R1. Here, during the contraction operation of the electromagnetic shock absorber D, the pressure in the compression side chamber R2 rises due to the pressure loss generated when the gas passes through the notch 8a which is the compression side limiting portion CR. However, the cooling passage CP is communicated to the extension chamber R1 through the extension side rectifying section EC, and the pressure in the cooling passage CP is almost the same as the pressure in the extension chamber R1 expanded by the contraction operation of the electromagnetic shock absorber D. Become. Therefore, when the electromagnetic shock absorber D contracts, the pressure of the gas until it passes through the notch 8a, which is the compression side limiting portion CR, is high, and the gas passes through the notch 8a, which is the compression side limiting portion CR, to pass through the cooling passage. The pressure of the gas that reaches CP becomes low pressure. When the gas passes through the pressure side limiting portion CR and reaches the cooling passage CP in this way, the pressure of the gas drops at once and the volume of the gas expands, so that the gas temperature drops. Therefore, the temperature in the cooling passage CP is lowered, and the armature E facing the cooling passage CP can be cooled by the temperature lowering of the gas.

なお、電磁緩衝器Dの伸縮作動によって、伸側室R1内の圧力と圧側室R2の圧力に差が生じるので、電磁緩衝器Dの伸縮作動を妨げる減衰力が発生する。また、電磁緩衝器Dは、リニアモータLMを備えているので、リニアモータLMが発生する推力を伸縮作動を抑制する減衰力として利用してダンパとして機能できるとともに、リニアモータLMの推力で積極的に伸縮してクチュエータとしても機能できる。 Since the pressure in the extension side chamber R1 and the pressure in the compression side chamber R2 are different due to the expansion / contraction operation of the electromagnetic shock absorber D, a damping force that hinders the expansion / contraction operation of the electromagnetic shock absorber D is generated. Further, since the electromagnetic shock absorber D includes the linear motor LM, the thrust generated by the linear motor LM can be used as a damping force for suppressing the expansion / contraction operation to function as a damper, and the thrust of the linear motor LM is positive. It can also be expanded and contracted to function as a couture.

このように、本発明の電磁緩衝器Dは、非磁性体のシリンダ1と、シリンダ1の内周に移動自在に挿入されるピストンロッド2と、シリンダ1内に摺動自在に挿入されるとともにピストンロッド2に設けられてシリンダ1内に伸側室R1を区画する伸側ピストン3と、シリンダ1内に摺動自在に挿入されるとともに伸側ピストン3に対して軸方向に間隔を開けてピストンロッド2に設けられてシリンダ1内に圧側室R2を区画する圧側ピストン4と、ピストンロッド2の伸側ピストン3と圧側ピストン4との間に装着される筒状の電機子Eとシリンダ1の外周に設けられて電機子Eに対向する筒状の界磁Fとを有するリニアモータLMと、伸側室R1と圧側室R2とに充填される気体と、電機子Eに面する冷却通路CPと、伸側室R1を冷却通路CPに連通するとともに伸側室R1から冷却通路CPに向かう気体の流れに抵抗を与える伸側制限部ERと、伸側室R1を冷却通路CPに連通するとともに冷却通路CPから伸側室R1に向かう気体の流れのみを許容する伸側整流部ECと、圧側室R2を冷却通路CPに連通するとともに圧側室R2から冷却通路CPに向かう気体の流れに抵抗を与える圧側制限部CRと、圧側室R2を冷却通路CPに連通するとともに冷却通路CPから圧側室R2に向かう気体の流れのみを許容する圧側整流部CCとを備えている。 As described above, the electromagnetic shock absorber D of the present invention is slidably inserted into the non-magnetic cylinder 1, the piston rod 2 movably inserted into the inner circumference of the cylinder 1, and the cylinder 1. An extension piston 3 provided on the piston rod 2 to partition the extension chamber R1 in the cylinder 1, and a piston that is slidably inserted into the cylinder 1 and is axially spaced from the extension piston 3. A tubular armor E and a cylinder 1 mounted between the compression side piston 4 provided on the rod 2 and partitioning the compression side chamber R2 in the cylinder 1 and the extension side piston 3 and the compression side piston 4 of the piston rod 2. A linear motor LM provided on the outer periphery and having a tubular field F facing the armature E, a gas filled in the extension side chamber R1 and the compression side chamber R2, and a cooling passage CP facing the armature E. The extension side limiting portion ER that communicates the extension side chamber R1 to the cooling passage CP and resists the flow of gas from the extension side chamber R1 to the cooling passage CP, and the extension side chamber R1 communicates with the cooling passage CP and from the cooling passage CP. The extension side rectifying unit EC that allows only the flow of gas toward the extension side chamber R1 and the compression side limiting unit CR that communicates the compression side chamber R2 with the cooling passage CP and gives resistance to the gas flow from the compression side chamber R2 toward the cooling passage CP. And the compression side rectifying unit CC that communicates the compression side chamber R2 to the cooling passage CP and allows only the flow of gas from the cooling passage CP to the compression side chamber R2.

このように構成された電磁緩衝器Dは、伸縮作動時に冷却通路CPを介して気体が伸側室R1と圧側室R2とを行き来する際に、冷却通路CP内の圧力は必ず伸側室R1と圧側室R2のうち低圧側の圧力と等しくなり、伸側室R1と圧側室R2のうち高圧側の室から冷却通路CP内に侵入した気体は膨張して温度が低下するため、冷却通路CPに面した電機子Eを効果的に冷却できる。 In the electromagnetic shock absorber D configured in this way, when the gas moves back and forth between the extension side chamber R1 and the compression side chamber R2 via the cooling passage CP during expansion and contraction operation, the pressure in the cooling passage CP is always the extension side chamber R1 and the compression side. The pressure on the low pressure side of the chamber R2 becomes equal, and the gas that has entered the cooling passage CP from the chamber on the high pressure side of the extension side chamber R1 and the compression side chamber R2 expands and the temperature drops, so that it faces the cooling passage CP. The armature E can be effectively cooled.

このように本発明の電磁緩衝器Dでは、伸縮作動時に電機子Eを十分に冷却できるので、巻線12に与える電流量を小さく制限する必要がなくなり、小型でも大推力を発揮できるようになる。したがって、本発明の電磁緩衝器Dによれば、大きな推力を得つつも、大型化を回避でき、重量およびコストを低減できる。 As described above, in the electromagnetic shock absorber D of the present invention, the armature E can be sufficiently cooled during the expansion / contraction operation, so that it is not necessary to limit the amount of current applied to the winding 12 to a small size, and a large thrust can be exhibited even in a small size. .. Therefore, according to the electromagnetic shock absorber D of the present invention, it is possible to avoid an increase in size and reduce the weight and cost while obtaining a large thrust.

また、本実施の形態の電磁緩衝器Dでは、電機子Eは筒状であって外周に複数の環状のスロット11aを有する筒状のコア11と、スロット11aに装着される巻線12とを有し、冷却通路CPがピストンロッド2の外周とコア11の内周との間の環状の空隙により形成されている。このように構成された電磁緩衝器Dでは、冷却通路CPがコア11の内周の環状の空隙によって形成されるので、コア11の内周の全部を温度が低下した気体に暴露できるので、電機子Eを周方向で偏りなく満遍なく冷却できる。なお、冷却通路CPは、ピストンロッド2とコア11との間の環状の空隙で形成される以外にもコア11の内部に設けられてもよいが、冷却通路CPをピストンロッド2とコア11との間の環状の空隙で形成すると、電機子Eを偏りなく冷却できるとともにコア11の構造が簡単となり冷却通路CPを設けるための加工が不要となるという利点もある。 Further, in the electromagnetic shock absorber D of the present embodiment, the armature E has a cylindrical core 11 having a plurality of annular slots 11a on the outer periphery thereof, and a winding 12 mounted on the slot 11a. The cooling passage CP is formed by an annular gap between the outer circumference of the piston rod 2 and the inner circumference of the core 11. In the electromagnetic shock absorber D configured in this way, since the cooling passage CP is formed by the annular voids on the inner circumference of the core 11, the entire inner circumference of the core 11 can be exposed to the gas whose temperature has dropped. The child E can be cooled evenly and evenly in the circumferential direction. The cooling passage CP may be provided inside the core 11 in addition to being formed by an annular gap between the piston rod 2 and the core 11, but the cooling passage CP is provided with the piston rod 2 and the core 11. If the armature E is formed with an annular gap between the two, there is an advantage that the armature E can be cooled without bias, the structure of the core 11 is simplified, and processing for providing the cooling passage CP becomes unnecessary.

さらに、本実施の形態の電磁緩衝器Dでは、コア11が内周に筒状の放熱板11bを有しているので、冷却通路CPを通過する気体に放熱板11bを暴露でき、効率よく巻線12およびコア11を冷却できる。 Further, in the electromagnetic shock absorber D of the present embodiment, since the core 11 has a cylindrical heat sink 11b on the inner circumference, the heat sink 11b can be exposed to the gas passing through the cooling passage CP, and the heat sink 11b can be wound efficiently. The wire 12 and the core 11 can be cooled.

また、本実施の形態の電磁緩衝器Dでは、コア11に外周から開口して冷却通路CPに通じる通気孔11cが設けられている。通気孔11cを介して冷却通路CPと電機子Eとシリンダ1との間の環状の空隙とが連通されるので、電機子Eの外周にも温度が低下した気体が回り込んで発熱する巻線12を直接に気体に暴露できる。よって、本実施の形態の電磁緩衝器Dによれば、より効果的に電機子Eを冷却できるので大推力を得やすくなって、より一層電磁緩衝器Dの小型化が可能となる。 Further, in the electromagnetic shock absorber D of the present embodiment, the core 11 is provided with a ventilation hole 11c that opens from the outer periphery and leads to the cooling passage CP. Since the cooling passage CP, the annular gap between the armature E and the cylinder 1 are communicated with each other through the ventilation hole 11c, the wound having a reduced temperature wraps around the outer circumference of the armature E and generates heat. 12 can be directly exposed to gas. Therefore, according to the electromagnetic shock absorber D of the present embodiment, the armature E can be cooled more effectively, so that a large thrust can be easily obtained, and the electromagnetic shock absorber D can be further miniaturized.

さらに、本実施の形態の電磁緩衝器Dでは、伸側制限部ERおよび伸側整流部ECは伸側ピストン3に設けた切欠7aを備えた環状のチェックバルブ7であって、圧側制限部CRおよび圧側整流部CCは、圧側ピストン4に設けた切欠8aを備えた環状のチェックバルブ8とされている。このように構成された電磁緩衝器Dによれば、伸側制限部ERおよび伸側整流部EC、圧側制限部CRおよび圧側整流部CCがそれぞれ軸方向長さの寸法が短い環状のチェックバルブ7,8で構成されるので、電磁緩衝器Dのストローク長の確保が容易となる。 Further, in the electromagnetic shock absorber D of the present embodiment, the extension side limiting unit ER and the extension side rectifying unit EC are an annular check valve 7 having a notch 7a provided in the extension side piston 3, and the compression side limiting unit CR. The compression side rectifying unit CC is an annular check valve 8 provided with a notch 8a provided in the compression side piston 4. According to the electromagnetic shock absorber D configured in this way, the extension side limiting unit ER, the extension side rectifying unit EC, the compression side limiting unit CR, and the compression side rectifying unit CC each have an annular check valve 7 having a short axial length. Since it is composed of, and 8, it is easy to secure the stroke length of the electromagnetic shock absorber D.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, they can be modified, modified, and modified as long as they do not deviate from the claims.

1・・・シリンダ、2・・・ピストンロッド、3・・・伸側ピストン、4・・・圧側ピストン、7・・・チェックバルブ(伸側整流部)、8・・・チェックバルブ(圧側整流部)、7a・・・切欠(伸側制限部)、8a・・・切欠(圧側制限部)、9・・・バックヨーク、10a,10b・・・永久磁石、11・・・コア、11a・・・スロット、11b・・・放熱板、11c・・・通気孔、12・・・巻線、CC・・・圧側整流部、CP・・・冷却通路、CR・・・圧側制限部、D・・・電磁緩衝器、E・・・電機子、EC・・・伸側整流部、ER・・・伸側制限部、F・・・界磁、LM・・・リニアモータ、R1・・・伸側室、R2・・・圧側室 1 ... Cylinder, 2 ... Piston rod, 3 ... Extension side piston, 4 ... Pressure side piston, 7 ... Check valve (extension side rectifying part), 8 ... Check valve (pressure side rectification) Part), 7a ... notch (extension side limiting part), 8a ... notch (compression side limiting part), 9 ... back yoke, 10a, 10b ... permanent magnet, 11 ... core, 11a ...・ ・ Slot, 11b ・ ・ ・ Heat dissipation plate, 11c ・ ・ ・ Vent hole, 12 ・ ・ ・ Winding, CC ・ ・ ・ Pressure side rectifying part, CP ・ ・ ・ Cooling passage, CR ・ ・ ・ Pressure side limiting part, D.・ ・ Electromagnetic shock absorber, E ・ ・ ・ armature, EC ・ ・ ・ extension side rectifier part, ER ・ ・ ・ extension side limit part, F ・ ・ ・ field magnet, LM ・ ・ ・ linear motor, R1 ・ ・ ・ extension Side chamber, R2 ... compression side chamber

Claims (5)

非磁性体のシリンダと、
前記シリンダの内周に移動自在に挿入されるピストンロッドと、
前記シリンダ内に摺動自在に挿入されるとともに前記ピストンロッドに設けられて前記シリンダ内に伸側室を区画する伸側ピストンと、
前記シリンダ内に摺動自在に挿入されるとともに、前記伸側ピストンに対して軸方向に間隔を開けて前記ピストンロッドに設けられて前記シリンダ内に圧側室を区画する圧側ピストンと、
前記ピストンロッドの前記伸側ピストンと前記圧側ピストンとの間に装着される筒状の電機子と、前記シリンダの外周に設けられて前記電機子に対向する筒状の界磁とを有するリニアモータと、
前記伸側室と前記圧側室とに充填される気体と、
前記電機子に面する冷却通路と、
前記伸側室を前記冷却通路に連通するとともに前記伸側室から前記冷却通路に向かう気体の流れに抵抗を与える伸側制限部と、
前記伸側室を前記冷却通路に連通するとともに前記冷却通路から前記伸側室に向かう気体の流れのみを許容する伸側整流部と、
前記圧側室を前記冷却通路に連通するとともに前記圧側室から前記冷却通路に向かう気体の流れに抵抗を与える圧側制限部と、
前記圧側室を前記冷却通路に連通するとともに前記冷却通路から前記圧側室に向かう気体の流れのみを許容する圧側整流部とを備えた
ことを特徴とする電磁緩衝器。
Non-magnetic cylinder and
A piston rod that is movably inserted into the inner circumference of the cylinder,
An extension piston that is slidably inserted into the cylinder and is provided on the piston rod to partition the extension chamber in the cylinder.
A compression-side piston that is slidably inserted into the cylinder and is provided on the piston rod at an axial distance from the extension-side piston to partition the compression-side chamber in the cylinder.
A linear motor having a tubular armature mounted between the extension-side piston and the compression-side piston of the piston rod, and a tubular field magnet provided on the outer periphery of the cylinder and facing the armature. When,
The gas filled in the extension side chamber and the compression side chamber,
The cooling passage facing the armature and
An extension side limiting portion that communicates the extension side chamber with the cooling passage and imparts resistance to the flow of gas from the extension side chamber to the cooling passage.
An extension side rectifying unit that communicates the extension side chamber with the cooling passage and allows only a gas flow from the cooling passage to the extension side chamber.
A compression side limiting portion that communicates the compression side chamber with the cooling passage and imparts resistance to the flow of gas from the compression side chamber to the cooling passage.
An electromagnetic shock absorber comprising the compression side rectifying unit that communicates the compression side chamber with the cooling passage and allows only the flow of gas from the cooling passage to the compression side chamber.
前記電機子は、筒状であって外周に複数の環状のスロットを有する筒状のコアと、前記スロットに装着される巻線とを有し、
前記冷却通路は、前記ピストンロッドの外周と前記コアの内周との間の環状の空隙により形成されている
ことを特徴とする請求項1に記載の電磁緩衝器。
The armature has a cylindrical core having a plurality of annular slots on the outer circumference thereof, and a winding wire mounted in the slots.
The electromagnetic shock absorber according to claim 1, wherein the cooling passage is formed by an annular gap between the outer circumference of the piston rod and the inner circumference of the core.
前記コアは、内周に筒状の放熱板を有する
ことを特徴とする請求項2に記載の電磁緩衝器。
The electromagnetic shock absorber according to claim 2, wherein the core has a cylindrical heat sink on the inner circumference.
前記コアは、外周から開口して前記冷却通路に通じる通気孔を有する
ことを特徴とする請求項2または3に記載の電磁緩衝器。
The electromagnetic shock absorber according to claim 2 or 3, wherein the core has a ventilation hole that opens from the outer circumference and leads to the cooling passage.
前記伸側制限部および前記伸側整流部は、前記伸側ピストンに設けた切欠を備えた環状のチェックバルブであって、
前記圧側制限部および前記圧側整流部は、前記圧側ピストンに設けた切欠を備えた環状のチェックバルブである
ことを特徴とする請求項1から4のいずれか一項に記載の電磁緩衝器。
The extension-side limiting portion and the extension-side rectifying portion are annular check valves provided with notches provided in the extension-side piston.
The electromagnetic shock absorber according to any one of claims 1 to 4, wherein the compression side limiting portion and the compression side rectifying portion are annular check valves provided with a notch provided in the compression side piston.
JP2019017307A 2019-02-01 2019-02-01 Electromagnetic shock absorber Active JP7049281B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019017307A JP7049281B2 (en) 2019-02-01 2019-02-01 Electromagnetic shock absorber
PCT/JP2020/003037 WO2020158755A1 (en) 2019-02-01 2020-01-28 Electromagnetic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019017307A JP7049281B2 (en) 2019-02-01 2019-02-01 Electromagnetic shock absorber

Publications (2)

Publication Number Publication Date
JP2020125781A JP2020125781A (en) 2020-08-20
JP7049281B2 true JP7049281B2 (en) 2022-04-06

Family

ID=71841841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019017307A Active JP7049281B2 (en) 2019-02-01 2019-02-01 Electromagnetic shock absorber

Country Status (2)

Country Link
JP (1) JP7049281B2 (en)
WO (1) WO2020158755A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257189A (en) 2001-02-28 2002-09-11 Tokico Ltd Electromagnetic suspension unit
JP2005240984A (en) 2004-02-27 2005-09-08 Hitachi Ltd Electromagnetic suspension device
JP2008062738A (en) 2006-09-06 2008-03-21 Kayaba Ind Co Ltd Electromagnetic suspension device
JP2008286362A (en) 2007-05-21 2008-11-27 Aisin Seiki Co Ltd Suspension device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287629A (en) * 1987-05-21 1988-11-24 Daihatsu Motor Co Ltd Large motion suppressing device for power unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257189A (en) 2001-02-28 2002-09-11 Tokico Ltd Electromagnetic suspension unit
JP2005240984A (en) 2004-02-27 2005-09-08 Hitachi Ltd Electromagnetic suspension device
JP2008062738A (en) 2006-09-06 2008-03-21 Kayaba Ind Co Ltd Electromagnetic suspension device
JP2008286362A (en) 2007-05-21 2008-11-27 Aisin Seiki Co Ltd Suspension device

Also Published As

Publication number Publication date
WO2020158755A1 (en) 2020-08-06
JP2020125781A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
US11193700B2 (en) Linear compressor with heat shield between discharge cover and frame
JP7079213B2 (en) Electromagnetic shock absorber
JP4653125B2 (en) Linear compressor
JP5038820B2 (en) Stirling cycle engine
JP2006200767A (en) Stirling engine
US6578359B2 (en) Stirling engine
CN105736308A (en) Control valve for variable displacement compressor
US20180233265A1 (en) Reactor having iron core unit and coils, motor driver, power conditioner and machine
JP2012070465A (en) Linear actuator
WO2020158754A1 (en) Electromagnetic shock absorber
US11255577B2 (en) Linear compressor
JP7049281B2 (en) Electromagnetic shock absorber
WO2020158753A1 (en) Electromagnetic buffer
JP2005291284A (en) Damper
JP2013024304A (en) Solenoid valve
JP2008002452A (en) Linear compressor
JP2017017787A (en) motor
JP6409706B2 (en) Reactor
CN212455739U (en) Heat radiator and electromagnetic proportional control valve
US9743193B2 (en) Self-cooling loudspeaker
EP1233645A2 (en) Loudspeaker pole piece and loudspeaker assembly
GB2542842A (en) Self-cooling loudspeaker
CN106401788B (en) Stirling cycle engine
JP4178461B2 (en) Vibration compressor
JP6519416B2 (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220325

R151 Written notification of patent or utility model registration

Ref document number: 7049281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350