JP2020125781A - Electromagnetic shock absorber - Google Patents

Electromagnetic shock absorber Download PDF

Info

Publication number
JP2020125781A
JP2020125781A JP2019017307A JP2019017307A JP2020125781A JP 2020125781 A JP2020125781 A JP 2020125781A JP 2019017307 A JP2019017307 A JP 2019017307A JP 2019017307 A JP2019017307 A JP 2019017307A JP 2020125781 A JP2020125781 A JP 2020125781A
Authority
JP
Japan
Prior art keywords
cooling passage
side chamber
piston
expansion
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019017307A
Other languages
Japanese (ja)
Other versions
JP7049281B2 (en
Inventor
功 黒岩
Isao Kuroiwa
功 黒岩
近藤 卓宏
Takahiro Kondo
卓宏 近藤
野間 達也
Tatsuya Noma
達也 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2019017307A priority Critical patent/JP7049281B2/en
Priority to PCT/JP2020/003037 priority patent/WO2020158755A1/en
Publication of JP2020125781A publication Critical patent/JP2020125781A/en
Application granted granted Critical
Publication of JP7049281B2 publication Critical patent/JP7049281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/42Cooling arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Linear Motors (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide an electromagnetic shock absorber capable of avoiding enlargement while obtaining large thrust, and reducing weights and costs.SOLUTION: An electromagnetic shock absorber D includes a non-magnetic cylinder 1, a piston rod 2, an expansion side piston 3 partitioning an expansion side chamber R1 in the cylinder 1, a pressure side piston 4 partitioning a pressure side chamber R2 in the cylinder 1, a linear motor LM that has an armature E and a field F installed between the expansion side piston 3 and the pressure side piston 4 of the piston rod 2, gas filled in the expansion side chamber R1 and the pressure side chamber R2, a cooling passage CP facing the armature E, an expansion side restricting portion ER giving resistance to a flow of the gas from the expansion side chamber R1 toward the cooling passage CP, an expansion side straightening portion EC accepting only the flow of the gas from the cooling passage CP toward the expansion side chamber R1, a pressure side restricting portion CR giving resistance to the flow of the gas from the pressure side chamber R2 toward the cooling passage CP, and a pressure side straightening portion CC accepting only the flow of the gas from the cooling passage CP toward the pressure side chamber R2.SELECTED DRAWING: Figure 1

Description

本発明は、電磁緩衝器に関する。 The present invention relates to an electromagnetic shock absorber.

電磁緩衝器は、たとえば、電機子と界磁とでなるリニアモータを備えており、リニアモータが発生する推力を自動車の車体の振動を抑制する減衰力として、或いは、車体の姿勢を制御する制御力として利用する。 The electromagnetic shock absorber includes, for example, a linear motor including an armature and a field, and the thrust generated by the linear motor is used as a damping force for suppressing the vibration of the vehicle body of the automobile or a control for controlling the attitude of the vehicle body. Use as power.

このような電磁緩衝器では、リニアモータの推力を減衰力或いは制御力として利用するが、リニアモータに推力を発生させるには、電機子に設けられた巻線への通電が必要であり、大きな減衰力を発生させるには巻線に供給する電流量も大きくなる。 In such an electromagnetic shock absorber, the thrust of the linear motor is used as a damping force or a control force. However, in order to generate the thrust in the linear motor, it is necessary to energize the windings provided in the armature, and To generate the damping force, the amount of current supplied to the winding also becomes large.

巻線に与える電流量が大きくなると巻線が発熱して高温となり、電磁緩衝器の内部の温度が高温となると、界磁側の永久磁石が熱減磁によって磁界が弱まってしまい、電磁緩衝器が発生可能な減衰力が低下してしまう恐れがある。 When the amount of current applied to the winding becomes large, the winding heats up and becomes hot, and when the temperature inside the electromagnetic buffer becomes high, the permanent magnet on the field side weakens the magnetic field due to thermal demagnetization, and the electromagnetic buffer There is a risk that the damping force that can occur will decrease.

そこで、従来の電磁緩衝器では、筒状の固定ヨークの外周に装着される界磁と、界磁の外周に設けた筒状の可動ヨークの内周に設けられた筒状の電機子と、固定ヨークに連結されるとともに可動ヨークの外周に摺接する筒状のケースとを備えており、固定ヨークに対して可動ヨークが相対移動する際に電機子の巻線の内周と外周とに通路を形成し、気体に前記通路を通過させて電機子を放熱させている(たとえば、特許文献1参照)。 Therefore, in the conventional electromagnetic shock absorber, a field magnet mounted on the outer circumference of the cylindrical fixed yoke, and a cylindrical armature provided on the inner circumference of the cylindrical movable yoke provided on the outer circumference of the field magnet, A cylindrical case that is connected to the fixed yoke and is in sliding contact with the outer circumference of the movable yoke is provided, and when the movable yoke moves relative to the fixed yoke, a passage is provided between the inner circumference and the outer circumference of the armature winding. Is formed and the gas is passed through the passage to radiate heat from the armature (for example, see Patent Document 1).

特開2003−324934号公報JP, 2003-324934, A

従来の電磁緩衝器では、可動ヨークとケースとで閉鎖される空間内の気体が可動ヨークの固定ヨークに対する相対移動時において流動する際に、気体に電機子の巻線の内外周の通路を通過させることにより冷却効果を得ようとしているが、前記通路自体が圧力損失をもたらすものであるために、通路で熱が発生してしまうので、冷却効果が減殺してしまう。十分な冷却効果が得られなければ、巻線の電流量を小さくしなくてはならず、小さな電流でも大きな推力を得るには電磁緩衝器の大型化が避けられない。 In the conventional electromagnetic shock absorber, when the gas in the space closed by the movable yoke and the case flows during relative movement of the movable yoke with respect to the fixed yoke, the gas passes through the inner and outer passages of the armature winding. Although an attempt is made to obtain a cooling effect by doing so, since the passage itself causes pressure loss, heat is generated in the passage, so that the cooling effect is diminished. If a sufficient cooling effect cannot be obtained, the amount of current in the winding must be reduced, and in order to obtain a large thrust even with a small current, the electromagnetic shock absorber must be increased in size.

そこで、本発明は、大きな推力を得つつも、大型化を回避でき、重量およびコストを低減できる電磁緩衝器の提供を目的としている。 Therefore, an object of the present invention is to provide an electromagnetic shock absorber capable of avoiding an increase in size and reducing weight and cost while obtaining a large thrust.

上記の目的を達成するため、本発明の電磁緩衝器は、非磁性体のシリンダと、シリンダの内周に移動自在に挿入されるピストンロッドと、シリンダ内に摺動自在に挿入されるとともにピストンロッドに設けられてシリンダ内に伸側室を区画する伸側ピストンと、シリンダ内に摺動自在に挿入されるとともに伸側ピストンに対して軸方向に間隔を開けてピストンロッドに設けられてシリンダ内に圧側室を区画する圧側ピストンと、ピストンロッドの伸側ピストンと圧側ピストンとの間に装着される筒状の電機子とシリンダの外周に設けられて電機子に対向する筒状の界磁とを有するリニアモータと、伸側室と圧側室とに充填される気体と、電機子に面する冷却通路と、伸側室を冷却通路に連通するとともに伸側室から冷却通路に向かう気体の流れに抵抗を与える伸側制限部と、伸側室を冷却通路に連通するとともに冷却通路から伸側室に向かう気体の流れのみを許容する伸側整流部と、圧側室を冷却通路に連通するとともに圧側室から冷却通路に向かう気体の流れに抵抗を与える圧側制限部と、圧側室を冷却通路に連通するとともに冷却通路から圧側室に向かう気体の流れのみを許容する圧側整流部とを備えている。 In order to achieve the above object, the electromagnetic shock absorber of the present invention includes a non-magnetic cylinder, a piston rod movably inserted into the inner circumference of the cylinder, and a piston rod slidably inserted into the cylinder. The expansion side piston that is provided on the rod and defines the expansion side chamber in the cylinder, and the expansion side piston that is slidably inserted into the cylinder and that is axially spaced from the expansion side piston A compression-side piston that defines a compression-side chamber, a cylindrical armature that is mounted between the expansion-side piston and the compression-side piston of the piston rod, and a cylindrical field that is provided on the outer periphery of the cylinder and faces the armature. A linear motor having, a gas filled in the expansion side chamber and the compression side chamber, a cooling passage facing the armature, and a resistance to the flow of gas from the expansion side chamber to the cooling passage while communicating the expansion side chamber with the cooling passage. An expansion-side restricting section that gives the expansion-side rectifying section that communicates the expansion-side chamber with the cooling passage and allows only a gas flow from the cooling passage to the expansion-side chamber, and a compression-side chamber that communicates with the cooling passage and a cooling passage from the compression-side chamber. And a pressure side rectifying unit that communicates the pressure side chamber with the cooling passage and allows only the gas flow from the cooling passage toward the pressure side chamber.

このように構成された電磁緩衝器は、伸縮作動時に冷却通路を介して気体が伸側室と圧側室とを行き来する際に、冷却通路内の圧力は必ず伸側室と圧側室のうち低圧側の圧力と等しくなり、伸側室と圧側室のうち高圧側の室から冷却通路内に侵入した気体は膨張して温度が低下するため、冷却通路に面した電機子を効果的に冷却できる。 In the electromagnetic shock absorber thus configured, when the gas moves back and forth between the expansion side chamber and the compression side chamber through the cooling passage during the expansion and contraction operation, the pressure in the cooling passage must be the low pressure side of the expansion side chamber and the compression side chamber. The gas becomes equal to the pressure, and the gas that has entered the cooling passage from the high-pressure side chamber of the expansion side chamber and the pressure side chamber expands and the temperature decreases, so that the armature facing the cooling passage can be effectively cooled.

また、電磁緩衝器は、電機子が筒状であって外周に複数の環状のスロットを有する筒状のコアと、スロットに装着される巻線とを有し、冷却通路がピストンロッドの外周とコアの内周との間の環状の空隙により形成されていてもよい。このように構成された電磁緩衝器によれば、コアの内周の全部を温度が低下した気体に暴露できるので、電機子を周方向で偏りなく満遍なく冷却できるとともにコアの構造が簡単となり冷却通路を設けるための加工が不要となる。 Further, the electromagnetic shock absorber has a tubular core having a tubular armature and a plurality of annular slots on the outer periphery, and a winding mounted in the slot, and the cooling passage is provided on the outer periphery of the piston rod. It may be formed by an annular void between the inner circumference of the core. According to the electromagnetic shock absorber configured as described above, the entire inner circumference of the core can be exposed to the gas having a lowered temperature, so that the armature can be evenly cooled in the circumferential direction and the structure of the core can be simplified to provide a cooling passage. The processing for providing is unnecessary.

さらに、電磁緩衝器は、コアが内周に筒状の放熱板を有していてもよく、このように構成されると、冷却通路を通過する気体に放熱板を暴露でき、効率よく巻線およびコアを冷却できる。 Further, in the electromagnetic shock absorber, the core may have a cylindrical heat radiating plate on the inner circumference. With this structure, the heat radiating plate can be exposed to the gas passing through the cooling passage, and the winding can be efficiently performed. And the core can be cooled.

また、電磁緩衝器は、コアに外周から開口して冷却通路に通じる通気孔が設けられていてもよく、このように構成されると、より効果的に電機子を冷却できるので大推力を得やすくなって、より一層電磁緩衝器の小型化が可能となる。 Further, the electromagnetic shock absorber may be provided with a vent hole that opens from the outer periphery to the cooling passage and communicates with the cooling passage. With such a structure, the armature can be cooled more effectively, and thus a large thrust force can be obtained. It becomes easier and the size of the electromagnetic shock absorber can be further reduced.

さらに、電磁緩衝器は、伸側制限部および伸側整流部が伸側ピストンに設けた切欠を備えた環状のチェックバルブであって、圧側制限部および圧側整流部が圧側ピストンに設けた切欠を備えた環状のチェックバルブであってもよい。このように構成された電磁緩衝器によれば、伸側制限部および伸側整流部、圧側制限部および圧側整流部がそれぞれ軸方向長さの寸法が短い環状のチェックバルブで構成されるので、電磁緩衝器のストローク長の確保が容易となる。 Further, the electromagnetic shock absorber is an annular check valve having a notch provided in the expansion side piston at the expansion side limiting portion and the expansion side rectifying portion, and the notch provided in the compression side piston by the compression side limiting portion and the compression side rectifying portion. It may be an annular check valve provided. According to the electromagnetic shock absorber configured in this manner, the expansion side limiting portion and the expansion side rectifying portion, the pressure side limiting portion and the pressure side rectifying portion are each configured by an annular check valve having a short axial length dimension. It is easy to secure the stroke length of the electromagnetic shock absorber.

本発明の電磁緩衝器によれば、大きな推力を得つつも、大型化を回避でき、重量およびコストを低減できる。 According to the electromagnetic shock absorber of the present invention, it is possible to avoid an increase in size and reduce weight and cost while obtaining a large thrust.

一実施の形態の電磁緩衝器の縦断面図である。It is a longitudinal section of an electromagnetic shock absorber of one embodiment.

以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態における電磁緩衝器Dは、図1に示すように、非磁性体のシリンダ1と、シリンダ1の内周に移動自在に挿入されるピストンロッド2と、シリンダ1内に摺動自在に挿入されるとともにピストンロッド2に設けられてシリンダ1内に伸側室R1を区画する伸側ピストン3と、シリンダ1内に摺動自在に挿入されるとともに伸側ピストン3に対して軸方向に間隔を開けてピストンロッド2に設けられてシリンダ1内に圧側室R2を区画する圧側ピストン4と、ピストンロッド2の伸側ピストン3と圧側ピストン4との間に装着される筒状の電機子Eとシリンダ1の外周に設けられて電機子Eに対向する筒状の界磁Fとを有するリニアモータLMと、伸側室R1と圧側室R2とに充填される気体と、電機子Eに面する冷却通路CPと、伸側制限部ERと、伸側整流部ECと、圧側制限部CRと、圧側整流部CCとを備えている。 The present invention will be described below based on the embodiments shown in the drawings. As shown in FIG. 1, an electromagnetic shock absorber D according to an embodiment includes a non-magnetic cylinder 1, a piston rod 2 movably inserted into the inner circumference of the cylinder 1, and a slidable inside the cylinder 1. The expansion side piston 3 that is inserted into the cylinder 1 and defines the expansion side chamber R1 in the cylinder 1, and is slidably inserted into the cylinder 1 and axially with respect to the expansion side piston 3. A pressure side piston 4 which is provided on the piston rod 2 at a distance to define a pressure side chamber R2 in the cylinder 1, and a tubular armature which is mounted between the extension side piston 3 of the piston rod 2 and the pressure side piston 4. E and a linear motor LM provided on the outer circumference of the cylinder 1 and having a cylindrical field F facing the armature E, the gas filled in the expansion side chamber R1 and the compression side chamber R2, and the surface of the armature E. The cooling passage CP, the expansion side restriction part ER, the expansion side rectification part EC, the compression side restriction part CR, and the compression side rectification part CC are provided.

以下、電磁緩衝器Dの各部について詳細に説明する。シリンダ1は、筒状であって非磁性体で形成されており、シリンダ1の外周にはシリンダ1との間に環状隙間を形成する軟磁性体で形成された筒状のバックヨーク9が設けられている。バックヨーク9の図1中上端には、シリンダ1の図1中上端に嵌合する環状のロッドガイド5が装着されており、バックヨーク9の図1中下端にはシリンダ1の図1中下端に嵌合するキャップ6が装着されている。なお、キャップ6には、車両への装着を可能とするブラケット6aが設けられている。 Hereinafter, each part of the electromagnetic shock absorber D will be described in detail. The cylinder 1 has a tubular shape and is made of a non-magnetic material, and a cylindrical back yoke 9 made of a soft magnetic material that forms an annular gap with the cylinder 1 is provided on the outer periphery of the cylinder 1. Has been. An annular rod guide 5 fitted to the upper end of the cylinder 1 in FIG. 1 is attached to the upper end of the back yoke 9 in FIG. 1, and the lower end of the back yoke 9 in FIG. A cap 6 that fits in is attached. The cap 6 is provided with a bracket 6a that allows the cap 6 to be mounted on a vehicle.

ピストンロッド2は、ロッドガイド5の内周に挿通されてシリンダ1内に移動自在に挿入されており、外周には伸側ピストン3、電機子Eおよび圧側ピストン4が装着されている。なお、図示はしないが、ピストンロッド2の基端である図1中上端には、車両への装着を可能とするブラケットが設けられる。また、ロッドガイド5の内周には、シール部材5aが設けられており、シリンダ1内が気密に密封されている。 The piston rod 2 is inserted through the inner circumference of the rod guide 5 and is movably inserted into the cylinder 1. The extension side piston 3, the armature E, and the pressure side piston 4 are mounted on the outer circumference. Although not shown, a bracket that can be mounted on a vehicle is provided at the upper end in FIG. 1, which is the base end of the piston rod 2. A seal member 5a is provided on the inner circumference of the rod guide 5 to hermetically seal the inside of the cylinder 1.

伸側ピストン3と圧側ピストン4は、ピストンロッド2の外周に軸方向に間隔を開けて取り付けられており、電機子Eは、ピストンロッド2の外周であって伸側ピストン3と圧側ピストン4との間に両者に当接した状態で取り付けられている。 The expansion side piston 3 and the compression side piston 4 are attached to the outer circumference of the piston rod 2 with a gap in the axial direction, and the armature E is the outer circumference of the piston rod 2 and includes the expansion side piston 3 and the compression side piston 4. It is attached so as to be in contact with both of them.

伸側ピストン3は、環状であって、前述のようにピストンロッド2に取付けられてシリンダ1内に摺動自在に挿入されており、シリンダ1内の図1中上方に伸側室R1を区画している。また、本実施の形態では、圧側ピストン4は、環状であって、前述のようにピストンロッド2に取付けられてシリンダ1内に摺動自在に挿入されており、シリンダ1内の図1中下方に圧側室R2を区画している。伸側室R1と圧側室R2には、気体が充填されている。気体は、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボンやパーフルオロカーボン等といった冷媒として利用される気体を利用するとよいが、それ以外の気体を利用してもよい。 The expansion side piston 3 is annular, is attached to the piston rod 2 and is slidably inserted into the cylinder 1 as described above, and defines the expansion side chamber R1 in the cylinder 1 at the upper side in FIG. ing. Further, in the present embodiment, the pressure side piston 4 has an annular shape and is attached to the piston rod 2 and slidably inserted into the cylinder 1 as described above. The pressure side chamber R2 is partitioned into. The expansion side chamber R1 and the compression side chamber R2 are filled with gas. As the gas, a gas used as a refrigerant such as hydrochlorofluorocarbon, hydrofluorocarbon, or perfluorocarbon may be used, but other gas may be used.

伸側ピストン3は、外周にシリンダ1に摺接するピストンリング3aと、電機子側端に設けられた環状凸部3bと、図1中上端である伸側室側端から開口して環状凸部3bの図1中下端である電機子側端へ通じる複数の貫通孔3cと、伸側室側端に設けられて貫通孔3cの出口端を取り囲む環状弁座3dとを備えている。そして、伸側ピストン3の伸側室側端には、環状弁座3dに離着座して貫通孔3cの出口端を開閉する環状板でなるチェックバルブ7が設けられている。チェックバルブ7は、外周にオリフィスとして機能する切欠7aを備えていて内周側が固定端とされて外周側の撓みが許容されており、環状弁座3dに着座する状態では貫通孔3cを閉じて切欠7aのみで伸側室R1と貫通孔3cとを連通させ、撓んで環状弁座3dから離座すると貫通孔3cの出口端を開くようになっている。よって、チェックバルブ7は、伸側室R1から貫通孔3c側へ向かう気体の流れに対しては、切欠7aを有効にして気体の流れに抵抗を与え、貫通孔3cから伸側室R1へ向かう気体の流れに対してはほとんど抵抗を与えずにこれを許容する。よって、本実施の形態では、伸側制限部ERは、チェックバルブ7の切欠7aによって構成されており、伸側整流部ECは、チェックバルブ7によって構成されている。伸側制限部ERと伸側整流部ECの構成は、前述したところに限定されるものではないが、一つの環状板でなり軸方向寸法の短いチェックバルブ7に伸側制限部ERと伸側整流部ECを集約すれば、電磁緩衝器Dのストローク長を確保するのが容易となる利点がある。 The expansion side piston 3 has a piston ring 3a which is slidably in contact with the cylinder 1 on the outer periphery, an annular convex portion 3b provided at an end on the armature side, and an annular convex portion 3b which opens from the expansion side chamber side end which is the upper end in FIG. 1, a plurality of through holes 3c communicating with the armature side end, which is the lower end in FIG. 1, and an annular valve seat 3d provided at the extension side chamber side end and surrounding the outlet end of the through hole 3c. A check valve 7 is provided at the end of the expansion side piston 3 on the expansion side chamber side. The check valve 7 is an annular plate that is seated on the annular valve seat 3d to open and close the outlet end of the through hole 3c. The check valve 7 is provided with a notch 7a that functions as an orifice on the outer circumference, the inner circumference side is a fixed end, and the outer circumference side is allowed to bend. When the check valve 7 is seated on the annular valve seat 3d, the through hole 3c is closed. The extension side chamber R1 and the through hole 3c are communicated with each other only by the notch 7a, and when they are bent and separated from the annular valve seat 3d, the outlet end of the through hole 3c is opened. Therefore, the check valve 7 enables the notch 7a to resist the flow of gas from the extension side chamber R1 toward the through hole 3c side, and provides resistance to the flow of gas, so that the gas flowing from the through hole 3c toward the extension side chamber R1 is protected. Allows this with little resistance to flow. Therefore, in the present embodiment, the extension side restriction portion ER is configured by the cutout 7a of the check valve 7, and the extension side rectification portion EC is configured by the check valve 7. The configurations of the extension side limiting portion ER and the extension side rectifying portion EC are not limited to the above-mentioned ones, but the extension side limiting portion ER and the extension side limiting portion ER are provided in the check valve 7 made of one annular plate and having a short axial dimension. If the rectification unit EC is integrated, there is an advantage that it is easy to secure the stroke length of the electromagnetic shock absorber D.

圧側ピストン4は、外周にシリンダ1に摺接するピストンリング4aと、電機子側端に設けられた環状凸部4bと、図1中下端である圧側室側端から開口して環状凸部4bの図1中上端である電機子側端へ通じる複数の貫通孔4cと、圧側室側端に設けられて貫通孔4cの出口端を取り囲む環状弁座4dとを備えている。そして、圧側ピストン4の圧側室側端には、環状弁座4dに離着座して貫通孔4cの出口端を開閉する環状板でなるチェックバルブ8が設けられている。チェックバルブ8は、外周にオリフィスとして機能する切欠8aを備えていて内周側が固定端とされて外周側の撓みが許容されており、環状弁座4dに着座する状態では貫通孔4cを閉じて切欠8aのみで圧側室R2と貫通孔4cとを連通させ、撓んで環状弁座4dから離座すると貫通孔4cの出口端を開くようになっている。よって、チェックバルブ8は、圧側室R2から貫通孔4c側へ向かう気体の流れに対しては、切欠8aを有効にして気体の流れに抵抗を与え、貫通孔4cから圧側室R2へ向かう気体の流れに対してはほとんど抵抗を与えずにこれを許容する。よって、本実施の形態では、圧側制限部CRは、チェックバルブ8の切欠8aによって構成されており、圧側整流部CCは、チェックバルブ8によって構成されている。圧側制限部CRと圧側整流部CCの構成は、前述したところに限定されるものではないが、一つの環状板でなり軸方向寸法の短いチェックバルブ8に圧側制限部CRと圧側整流部CCを集約すれば、電磁緩衝器Dのストローク長を確保するのが容易となる利点がある。 The pressure side piston 4 has a piston ring 4a slidingly contacting the cylinder 1 on the outer circumference, an annular convex portion 4b provided at an end on the armature side, and an annular convex portion 4b opening from the end on the pressure side chamber side which is the lower end in FIG. A plurality of through holes 4c communicating with the armature side end, which is the upper end in FIG. 1, and an annular valve seat 4d provided at the pressure side chamber side end and surrounding the outlet end of the through hole 4c are provided. A check valve 8 is provided at the end of the pressure side piston 4 on the pressure side chamber side. The check valve 8 is an annular plate that is seated on the annular valve seat 4d to open and close the outlet end of the through hole 4c. The check valve 8 is provided with a notch 8a that functions as an orifice on the outer circumference, has a fixed end on the inner circumference side, and is allowed to bend on the outer circumference side. When the check valve 8 is seated on the annular valve seat 4d, the through hole 4c is closed. The pressure side chamber R2 and the through hole 4c are communicated with each other only by the notch 8a, and when bent and separated from the annular valve seat 4d, the outlet end of the through hole 4c is opened. Therefore, the check valve 8 enables the notch 8a to resist the flow of gas from the pressure side chamber R2 to the side of the through hole 4c, and resists the flow of the gas, so that the gas flowing from the through hole 4c toward the pressure side chamber R2 is protected. Allows this with little resistance to flow. Therefore, in the present embodiment, the pressure side restriction portion CR is formed by the notch 8a of the check valve 8 and the pressure side rectification portion CC is formed by the check valve 8. The configurations of the pressure-side restricting portion CR and the pressure-side rectifying portion CC are not limited to those described above, but the pressure-side limiting portion CR and the pressure-side rectifying portion CC are provided in the check valve 8 that is made of one annular plate and has a short axial dimension. If they are put together, there is an advantage that it is easy to secure the stroke length of the electromagnetic shock absorber D.

電機子Eは、ピストンロッド2の外周に配置される筒状の鉄製のコア11と、コア11の外周に軸方向に所定ピッチで並べて設けられた環状溝でなるスロット11a内に装着される巻線12とを備えて構成されている。なお、スロット11aに装着される巻線12は、U相、V相およびW相の三相巻線とされている。コア11の外周とシリンダ1の内周との間には、環状の空隙が設けられており、コア11とシリンダ1とが直接干渉しないように配慮されている。 The armature E is mounted in a cylindrical iron core 11 arranged on the outer circumference of the piston rod 2 and a slot 11a formed of an annular groove provided on the outer circumference of the core 11 side by side at a predetermined pitch in the axial direction. And a line 12. The winding 12 mounted in the slot 11a is a U-phase, V-phase, and W-phase three-phase winding. An annular gap is provided between the outer circumference of the core 11 and the inner circumference of the cylinder 1 to prevent the core 11 and the cylinder 1 from directly interfering with each other.

また、コア11は、内周に銅などの熱伝導率の高い金属で形成された筒状の放熱板11bを備えている。コア11の最小内径である放熱板11bの内径は、ピストンロッド2の外径よりも大径であって、コア11の内周とピストンロッド2の外周との間には環状の空隙が形成されており、この環状の空隙で冷却通路CPが設けられている。コア11は、伸側ピストン3の環状凸部3bと圧側ピストン4の環状凸部4bに嵌合して、伸側ピストン3と圧側ピストン4とで挟持されつつ径方向に位置決めされてピストンロッド2に固定される。貫通孔3cおよび貫通孔4cは、環状凸部3b,4bの電機子側端に開口しているので、それぞれ冷却通路CPに通じており、貫通孔3c,4cおよび冷却通路CPによって伸側室R1と圧側室R2とが連通されている。 Further, the core 11 is provided with a cylindrical heat radiating plate 11b formed on the inner circumference thereof with a metal having a high thermal conductivity such as copper. The inner diameter of the heat dissipation plate 11b, which is the minimum inner diameter of the core 11, is larger than the outer diameter of the piston rod 2, and an annular gap is formed between the inner circumference of the core 11 and the outer circumference of the piston rod 2. The cooling passage CP is provided in this annular gap. The core 11 is fitted in the annular convex portion 3b of the expansion side piston 3 and the annular convex portion 4b of the compression side piston 4, and is positioned in the radial direction while being sandwiched between the expansion side piston 3 and the compression side piston 4, and the piston rod 2 Fixed to. Since the through holes 3c and 4c open at the armature-side ends of the annular protrusions 3b and 4b, they respectively communicate with the cooling passages CP, and the through holes 3c and 4c and the cooling passages CP form the expansion side chamber R1. It is connected to the pressure side chamber R2.

また、コア11は、外周から放熱板11bの内周にまで開口する複数の通気孔11cが設けられており、冷却通路CPとシリンダ1とコア11との間の空隙とが通気孔11cによって連通されている。 Further, the core 11 is provided with a plurality of ventilation holes 11c that open from the outer circumference to the inner circumference of the heat dissipation plate 11b, and the cooling passage CP and the gap between the cylinder 1 and the core 11 are communicated by the ventilation holes 11c. Has been done.

つづいて、シリンダ1の外周には、複数の環状の永久磁石10a,10bが積層されて装着されており、これら永久磁石10a,10bは、シリンダ1とバックヨーク9との間の環状隙間内に収容されている。そして、本実施の形態では、永久磁石10a,10bとバックヨーク9とでシリンダ1の内周側に交互にS極とN極の磁界を作用させる界磁Fを構成している。シリンダ1は非磁性体で構成されているので、界磁Fが発生する磁界は、シリンダ1を透過してシリンダ1内へ作用できる。 Next, a plurality of annular permanent magnets 10a and 10b are laminated and mounted on the outer periphery of the cylinder 1, and these permanent magnets 10a and 10b are provided in an annular gap between the cylinder 1 and the back yoke 9. It is housed. In the present embodiment, the permanent magnets 10a and 10b and the back yoke 9 form a field F that alternately applies magnetic fields of S poles and N poles on the inner peripheral side of the cylinder 1. Since the cylinder 1 is made of a non-magnetic material, the magnetic field generated by the field F can pass through the cylinder 1 and act inside the cylinder 1.

また、本実施の形態では、主磁極の永久磁石10aと副磁極の永久磁石10bは、ハルバッハ配列にてシリンダ1の内周側に軸方向でS極とN極が交互に現れるように積層されている。図1中で主磁極の永久磁石10aと副磁極の永久磁石10bに記載されている三角の印は、着磁方向を示しており、主磁極の永久磁石10aの着磁方向は径方向となっており、副磁極の永久磁石10bの着磁方向は軸方向となっている。なお、主磁極の永久磁石10aの軸方向長さは、副磁極の永久磁石10bの軸方向長さよりも長くなっており、電機子Eにおけるコア11と主磁極の永久磁石10aとの間の磁気抵抗を小さくできコア11へ作用させる磁界を大きくできるのでリニアモータLMの推力を向上できる。なお、永久磁石10a,10bは、シリンダ1の内周側に軸方向でS極とN極が交互に現れるように磁界を作用させればよいので、ハルバッハ配列で配列されていなくともよい。その場合には、永久磁石10a,10bは、ともに軸方向長さが等しく、互いに内周に異なる磁極を備えていればよく、交互に積層されればよい。 Further, in the present embodiment, the permanent magnets 10a of the main magnetic poles and the permanent magnets 10b of the auxiliary magnetic poles are stacked in the Halbach array so that the S poles and the N poles alternately appear on the inner peripheral side of the cylinder 1 in the axial direction. ing. In FIG. 1, the triangular marks on the permanent magnet 10a of the main magnetic pole and the permanent magnet 10b of the auxiliary magnetic pole indicate the magnetizing direction, and the magnetizing direction of the permanent magnet 10a of the main magnetic pole is the radial direction. Therefore, the permanent magnet 10b of the auxiliary magnetic pole is magnetized in the axial direction. The axial length of the permanent magnet 10a of the main magnetic pole is longer than the axial length of the permanent magnet 10b of the auxiliary magnetic pole, and the magnetic force between the core 11 of the armature E and the permanent magnet 10a of the main magnetic pole is increased. Since the resistance can be reduced and the magnetic field applied to the core 11 can be increased, the thrust of the linear motor LM can be improved. The permanent magnets 10a and 10b need not be arranged in the Halbach array, because the magnetic fields may act on the inner peripheral side of the cylinder 1 so that the S poles and the N poles alternately appear in the axial direction. In that case, the permanent magnets 10a and 10b need only have the same axial length and have different magnetic poles on their inner circumferences, and may be laminated alternately.

バックヨーク9は、副磁極の永久磁石10bの軸方向長さを短くしても磁気抵抗の低い磁路を確保できるため、主磁極の永久磁石10aの軸方向長さを長くする際のリニアモータLMの推力を効果的に向上できる。より詳しくは、永久磁石10a,10bの外周にバックヨーク9を設けると、磁気抵抗の低い磁路を確保できるので副磁極の永久磁石10bの軸方向長さの短縮に起因する磁気抵抗の増大が抑制される。よって、主磁極の永久磁石10aの軸方向長さを副磁極の永久磁石10bの軸方向長さよりも長くするとともに永久磁石10a,10bの外周に筒状のバックヨーク9を設けるとリニアモータLMの推力を大きく向上させ得る。バックヨーク9の肉厚は、主磁極の永久磁石10aの外部磁気抵抗の増大を抑制に適する肉厚に設定されればよい。バックヨーク9は、永久磁石10a,10bがハルバッハ配列とされていない場合でも磁気抵抗の低い磁路を確保できるのでリニアモータLMの推力を向上させ得る。 Since the back yoke 9 can secure a magnetic path with low magnetic resistance even if the axial length of the permanent magnet 10b of the auxiliary magnetic pole is shortened, a linear motor for increasing the axial length of the permanent magnet 10a of the main magnetic pole is provided. The thrust of the LM can be effectively improved. More specifically, when the back yoke 9 is provided on the outer circumference of the permanent magnets 10a and 10b, a magnetic path having a low magnetic resistance can be ensured, so that the magnetic resistance increases due to the reduction in the axial length of the permanent magnet 10b of the auxiliary pole. Suppressed. Therefore, if the axial length of the permanent magnet 10a of the main magnetic pole is made longer than the axial length of the permanent magnet 10b of the auxiliary magnetic pole, and the cylindrical back yoke 9 is provided on the outer circumference of the permanent magnets 10a and 10b, the linear motor LM is driven. Thrust can be greatly improved. The thickness of the back yoke 9 may be set to a thickness suitable for suppressing an increase in external magnetic resistance of the permanent magnet 10a of the main pole. Since the back yoke 9 can secure a magnetic path having a low magnetic resistance even when the permanent magnets 10a and 10b are not arranged in the Halbach array, the thrust of the linear motor LM can be improved.

本実施の形態では、バックヨーク9は、電磁緩衝器Dのアウターシェルとしても機能しており、永久磁石10a,10bの保護と軸力や横力を受ける強度部材としての役割も果たしている。バックヨーク9を設けると磁気抵抗の増大を抑制できるが、バックヨーク9の省略も可能であり、バックヨーク9を省略する場合、永久磁石10a,10bの外周にバックヨークとしては機能しないが永久磁石10a,10bの保護と強度部材としての機能を発揮する筒を設けると良い。 In the present embodiment, the back yoke 9 also functions as an outer shell of the electromagnetic shock absorber D, and also plays a role of protecting the permanent magnets 10a and 10b and as a strength member that receives axial force and lateral force. Although the increase in the magnetic resistance can be suppressed by providing the back yoke 9, the back yoke 9 can be omitted. When the back yoke 9 is omitted, the permanent magnets 10a and 10b do not function as a back yoke but are permanent magnets. It is preferable to provide a tube that protects 10a and 10b and functions as a strength member.

電磁緩衝器Dは、以上のように構成され、以下、その作動について説明する。電磁緩衝器Dが伸長作動する場合、ピストンロッド2がシリンダ1に対して図1中上方へ移動して、伸側ピストン3の変位によって伸側室R1が縮小されるとともに圧側ピストン4の変位によって圧側室R2が拡大される。すると、伸側整流部ECであるチェックバルブ7が閉じて伸側制限部ERである切欠7aのみを介して伸側室R1と冷却通路CPとが連通される。よって、縮小される伸側室R1から切欠7aおよび冷却通路CPを通過して気体は、圧側整流部CCであるチェックバルブ8を開いて圧側室R2へ移動する。 The electromagnetic shock absorber D is configured as described above, and its operation will be described below. When the electromagnetic shock absorber D is extended, the piston rod 2 moves upward in FIG. 1 with respect to the cylinder 1, the expansion side chamber 3 is reduced by the displacement of the expansion side piston 3, and the compression side is generated by the displacement of the compression side piston 4. Room R2 is enlarged. Then, the check valve 7 which is the expansion side rectifying section EC is closed, and the expansion side chamber R1 and the cooling passage CP are communicated with each other only through the notch 7a which is the expansion side restriction section ER. Therefore, the gas passes from the contracted expansion side chamber R1 through the notch 7a and the cooling passage CP, and the gas moves to the compression side chamber R2 by opening the check valve 8 that is the compression side rectification unit CC.

ここで、電磁緩衝器Dの伸長作動時には、伸側室R1内の圧力は、気体が伸側制限部ERである切欠7aを通過する際に発生する圧力損失によって上昇する。ところが、冷却通路CPは、圧側整流部CCを通じて圧側室R2に連通されており、冷却通路CP内の圧力は電磁緩衝器Dの伸長作動によって拡大する圧側室R2内の圧力と殆ど同じ圧力となる。よって、電磁緩衝器Dが伸長作動する際に、伸側制限部ERである切欠7aを通過するまでの気体の圧力は高圧となっており、伸側制限部ERである切欠7aを通過して冷却通路CPに至った気体の圧力は低圧となる。このように気体が伸側制限部ERを通過して冷却通路CPへ至ると、気体の圧力が一気に低下して気体の体積が膨張するために気体温度が低下する。よって、冷却通路CP内の温度が低下し、気体の温度低下によって冷却通路CPに面する電機子Eを冷却できる。 Here, during the expansion operation of the electromagnetic shock absorber D, the pressure in the expansion side chamber R1 rises due to the pressure loss generated when the gas passes through the notch 7a which is the expansion side restriction portion ER. However, the cooling passage CP is communicated with the pressure side chamber R2 through the pressure side rectifying portion CC, and the pressure in the cooling passage CP becomes almost the same pressure as the pressure in the pressure side chamber R2 that expands due to the expansion operation of the electromagnetic shock absorber D. .. Therefore, when the electromagnetic shock absorber D extends, the pressure of the gas until it passes through the notch 7a that is the extension side limiting portion ER is high, and passes through the notch 7a that is the extension side limiting portion ER. The pressure of the gas reaching the cooling passage CP becomes low. In this way, when the gas passes through the extension side restriction portion ER and reaches the cooling passage CP, the pressure of the gas suddenly drops and the volume of the gas expands, so that the gas temperature drops. Therefore, the temperature in the cooling passage CP decreases, and the armature E facing the cooling passage CP can be cooled due to the temperature decrease of the gas.

また、電磁緩衝器が収縮作動する場合、ピストンロッド2がシリンダ1に対して図1中下方へ移動して、圧側ピストン4の変位によって圧側室R2が縮小されるとともに伸側ピストン3の変位によって伸側室R1が拡大される。すると、圧側整流部CCであるチェックバルブ8が閉じて圧側制限部CRである切欠8aのみを介して圧側室R2と冷却通路CPとが連通される。よって、縮小される圧側室R2から切欠8aおよび冷却通路CPを通過して気体は、伸側整流部ECであるチェックバルブ7を開いて伸側室R1へ移動する。ここで、電磁緩衝器Dの収縮作動時には、圧側室R2内の圧力は、気体が圧側制限部CRである切欠8aを通過する際に発生する圧力損失によって上昇する。ところが、冷却通路CPは、伸側整流部ECを通じて伸側室R1に連通されており、冷却通路CP内の圧力は電磁緩衝器Dの収縮作動によって拡大する伸側室R1内の圧力と殆ど同じ圧力となる。よって、電磁緩衝器Dが収縮作動する際に、圧側制限部CRである切欠8aを通過するまでの気体の圧力は高圧となっており、圧側制限部CRである切欠8aを通過して冷却通路CPに至った気体の圧力は低圧となる。このように気体が圧側制限部CRを通過して冷却通路CPへ至ると、気体の圧力が一気に低下して気体の体積が膨張するために気体温度が低下する。よって、冷却通路CP内の温度が低下し、気体の温度低下によって冷却通路CPに面する電機子Eを冷却できる。 When the electromagnetic shock absorber contracts, the piston rod 2 moves downward in FIG. 1 with respect to the cylinder 1, and the displacement of the compression side piston 4 reduces the compression side chamber R2 and the displacement of the expansion side piston 3. The expansion chamber R1 is expanded. Then, the check valve 8 that is the pressure side rectifying unit CC is closed, and the pressure side chamber R2 and the cooling passage CP are communicated with each other only through the notch 8a that is the pressure side limiting unit CR. Therefore, the gas from the pressure side chamber R2 to be reduced passes through the notch 8a and the cooling passage CP, and the gas moves to the extension side chamber R1 by opening the check valve 7 that is the extension side rectifying unit EC. Here, during the contraction operation of the electromagnetic shock absorber D, the pressure in the pressure side chamber R2 rises due to the pressure loss generated when the gas passes through the notch 8a which is the pressure side limiting portion CR. However, the cooling passage CP is communicated with the expansion side chamber R1 through the expansion side rectifying section EC, and the pressure in the cooling passage CP is almost the same as the pressure in the expansion side chamber R1 which expands due to the contraction operation of the electromagnetic shock absorber D. Become. Therefore, when the electromagnetic shock absorber D contracts, the pressure of the gas until it passes through the notch 8a that is the pressure-side restriction portion CR is high, and passes through the notch 8a that is the pressure-side restriction portion CR to pass through the cooling passage. The pressure of the gas reaching CP becomes low. In this way, when the gas passes through the pressure side restriction portion CR and reaches the cooling passage CP, the pressure of the gas suddenly drops and the volume of the gas expands, so that the gas temperature drops. Therefore, the temperature in the cooling passage CP decreases, and the armature E facing the cooling passage CP can be cooled due to the temperature decrease of the gas.

なお、電磁緩衝器Dの伸縮作動によって、伸側室R1内の圧力と圧側室R2の圧力に差が生じるので、電磁緩衝器Dの伸縮作動を妨げる減衰力が発生する。また、電磁緩衝器Dは、リニアモータLMを備えているので、リニアモータLMが発生する推力を伸縮作動を抑制する減衰力として利用してダンパとして機能できるとともに、リニアモータLMの推力で積極的に伸縮してクチュエータとしても機能できる。 Since the expansion/contraction operation of the electromagnetic shock absorber D causes a difference in pressure between the expansion side chamber R1 and the pressure side chamber R2, a damping force that hinders the expansion/contraction operation of the electromagnetic shock absorber D is generated. Further, since the electromagnetic shock absorber D includes the linear motor LM, the thrust generated by the linear motor LM can be used as a damping force that suppresses the expansion and contraction operation and can function as a damper, and the thrust of the linear motor LM can be used positively. It can also be expanded and contracted to function as a quotator.

このように、本発明の電磁緩衝器Dは、非磁性体のシリンダ1と、シリンダ1の内周に移動自在に挿入されるピストンロッド2と、シリンダ1内に摺動自在に挿入されるとともにピストンロッド2に設けられてシリンダ1内に伸側室R1を区画する伸側ピストン3と、シリンダ1内に摺動自在に挿入されるとともに伸側ピストン3に対して軸方向に間隔を開けてピストンロッド2に設けられてシリンダ1内に圧側室R2を区画する圧側ピストン4と、ピストンロッド2の伸側ピストン3と圧側ピストン4との間に装着される筒状の電機子Eとシリンダ1の外周に設けられて電機子Eに対向する筒状の界磁Fとを有するリニアモータLMと、伸側室R1と圧側室R2とに充填される気体と、電機子Eに面する冷却通路CPと、伸側室R1を冷却通路CPに連通するとともに伸側室R1から冷却通路CPに向かう気体の流れに抵抗を与える伸側制限部ERと、伸側室R1を冷却通路CPに連通するとともに冷却通路CPから伸側室R1に向かう気体の流れのみを許容する伸側整流部ECと、圧側室R2を冷却通路CPに連通するとともに圧側室R2から冷却通路CPに向かう気体の流れに抵抗を与える圧側制限部CRと、圧側室R2を冷却通路CPに連通するとともに冷却通路CPから圧側室R2に向かう気体の流れのみを許容する圧側整流部CCとを備えている。 As described above, the electromagnetic shock absorber D of the present invention includes the non-magnetic cylinder 1, the piston rod 2 that is movably inserted into the inner circumference of the cylinder 1, and the piston 1 that is slidably inserted into the cylinder 1. An expansion side piston 3 that is provided on the piston rod 2 and defines an expansion side chamber R1 in the cylinder 1, and a piston that is slidably inserted into the cylinder 1 and is axially spaced from the expansion side piston 3. The compression side piston 4 provided on the rod 2 and defining the compression side chamber R2 in the cylinder 1, the cylindrical armature E mounted between the expansion side piston 3 and the compression side piston 4 of the piston rod 2, and the cylinder 1 A linear motor LM provided on the outer periphery and having a cylindrical field F facing the armature E, gas filled in the expansion side chamber R1 and the compression side chamber R2, and a cooling passage CP facing the armature E. , The expansion side chamber R1 is connected to the cooling passage CP, and the expansion side restricting portion ER that gives resistance to the flow of gas from the expansion side chamber R1 to the cooling passage CP, and the expansion side chamber R1 is connected to the cooling passage CP and from the cooling passage CP. The expansion side rectification section EC that allows only the flow of gas toward the expansion side chamber R1 and the pressure side restriction section CR that connects the compression side chamber R2 to the cooling passage CP and provides resistance to the flow of gas from the compression side chamber R2 toward the cooling passage CP. And a pressure side rectifying section CC that communicates the pressure side chamber R2 with the cooling passage CP and allows only the flow of gas from the cooling passage CP toward the pressure side chamber R2.

このように構成された電磁緩衝器Dは、伸縮作動時に冷却通路CPを介して気体が伸側室R1と圧側室R2とを行き来する際に、冷却通路CP内の圧力は必ず伸側室R1と圧側室R2のうち低圧側の圧力と等しくなり、伸側室R1と圧側室R2のうち高圧側の室から冷却通路CP内に侵入した気体は膨張して温度が低下するため、冷却通路CPに面した電機子Eを効果的に冷却できる。 In the electromagnetic shock absorber D configured in this manner, when the gas moves back and forth between the expansion side chamber R1 and the compression side chamber R2 via the cooling passage CP during the expansion and contraction operation, the pressure in the cooling passage CP is always the expansion side chamber R1 and the compression side. Since the pressure in the chamber R2 becomes equal to the pressure on the low pressure side and the gas that has entered the cooling passage CP from the high pressure side chamber of the expansion side chamber R1 and the pressure side chamber R2 expands and the temperature decreases, it faces the cooling passage CP. The armature E can be effectively cooled.

このように本発明の電磁緩衝器Dでは、伸縮作動時に電機子Eを十分に冷却できるので、巻線12に与える電流量を小さく制限する必要がなくなり、小型でも大推力を発揮できるようになる。したがって、本発明の電磁緩衝器Dによれば、大きな推力を得つつも、大型化を回避でき、重量およびコストを低減できる。 As described above, in the electromagnetic shock absorber D of the present invention, since the armature E can be sufficiently cooled during the expansion and contraction operation, it is not necessary to limit the amount of current supplied to the winding 12 to a small value, and a large thrust can be exerted even in a small size. .. Therefore, according to the electromagnetic shock absorber D of the present invention, it is possible to avoid an increase in size and reduce weight and cost while obtaining a large thrust.

また、本実施の形態の電磁緩衝器Dでは、電機子Eは筒状であって外周に複数の環状のスロット11aを有する筒状のコア11と、スロット11aに装着される巻線12とを有し、冷却通路CPがピストンロッド2の外周とコア11の内周との間の環状の空隙により形成されている。このように構成された電磁緩衝器Dでは、冷却通路CPがコア11の内周の環状の空隙によって形成されるので、コア11の内周の全部を温度が低下した気体に暴露できるので、電機子Eを周方向で偏りなく満遍なく冷却できる。なお、冷却通路CPは、ピストンロッド2とコア11との間の環状の空隙で形成される以外にもコア11の内部に設けられてもよいが、冷却通路CPをピストンロッド2とコア11との間の環状の空隙で形成すると、電機子Eを偏りなく冷却できるとともにコア11の構造が簡単となり冷却通路CPを設けるための加工が不要となるという利点もある。 In addition, in the electromagnetic shock absorber D of the present embodiment, the armature E includes a tubular core 11 having a tubular shape and a plurality of annular slots 11a on the outer periphery, and a winding wire 12 mounted in the slot 11a. The cooling passage CP is formed by an annular gap between the outer circumference of the piston rod 2 and the inner circumference of the core 11. In the electromagnetic shock absorber D configured as described above, since the cooling passage CP is formed by the annular gap in the inner circumference of the core 11, the entire inner circumference of the core 11 can be exposed to the gas whose temperature has decreased. The child E can be evenly cooled in the circumferential direction without unevenness. The cooling passage CP may be provided inside the core 11 instead of being formed by an annular gap between the piston rod 2 and the core 11, but the cooling passage CP may be formed between the piston rod 2 and the core 11. Forming with an annular gap between them also has the advantage that the armature E can be uniformly cooled, the structure of the core 11 is simplified, and the processing for providing the cooling passage CP is unnecessary.

さらに、本実施の形態の電磁緩衝器Dでは、コア11が内周に筒状の放熱板11bを有しているので、冷却通路CPを通過する気体に放熱板11bを暴露でき、効率よく巻線12およびコア11を冷却できる。 Further, in the electromagnetic shock absorber D of the present embodiment, since the core 11 has the cylindrical heat radiating plate 11b on the inner circumference, the heat radiating plate 11b can be exposed to the gas passing through the cooling passage CP and can be wound efficiently. The wire 12 and the core 11 can be cooled.

また、本実施の形態の電磁緩衝器Dでは、コア11に外周から開口して冷却通路CPに通じる通気孔11cが設けられている。通気孔11cを介して冷却通路CPと電機子Eとシリンダ1との間の環状の空隙とが連通されるので、電機子Eの外周にも温度が低下した気体が回り込んで発熱する巻線12を直接に気体に暴露できる。よって、本実施の形態の電磁緩衝器Dによれば、より効果的に電機子Eを冷却できるので大推力を得やすくなって、より一層電磁緩衝器Dの小型化が可能となる。 Further, in the electromagnetic shock absorber D of the present embodiment, the core 11 is provided with the vent hole 11c which opens from the outer periphery and communicates with the cooling passage CP. Since the cooling passage CP and the annular gap between the armature E and the cylinder 1 are communicated with each other via the ventilation hole 11c, the winding whose temperature is lowered also circulates around the armature E to generate heat. 12 can be directly exposed to gas. Therefore, according to the electromagnetic shock absorber D of the present embodiment, the armature E can be cooled more effectively, so that a large thrust can be easily obtained, and the electromagnetic shock absorber D can be further downsized.

さらに、本実施の形態の電磁緩衝器Dでは、伸側制限部ERおよび伸側整流部ECは伸側ピストン3に設けた切欠7aを備えた環状のチェックバルブ7であって、圧側制限部CRおよび圧側整流部CCは、圧側ピストン4に設けた切欠8aを備えた環状のチェックバルブ8とされている。このように構成された電磁緩衝器Dによれば、伸側制限部ERおよび伸側整流部EC、圧側制限部CRおよび圧側整流部CCがそれぞれ軸方向長さの寸法が短い環状のチェックバルブ7,8で構成されるので、電磁緩衝器Dのストローク長の確保が容易となる。 Further, in the electromagnetic shock absorber D of the present embodiment, the expansion side restriction portion ER and the expansion side rectification portion EC are the annular check valve 7 provided with the notch 7a provided in the expansion side piston 3, and the compression side restriction portion CR. The pressure side rectifying portion CC is an annular check valve 8 having a notch 8a provided in the pressure side piston 4. According to the electromagnetic shock absorber D configured in this way, the expansion side restriction portion ER and the expansion side rectification portion EC, the compression side restriction portion CR and the compression side rectification portion CC are annular check valves 7 each having a short axial length dimension. , 8, the stroke length of the electromagnetic shock absorber D can be easily secured.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, modifications, variations, and changes can be made without departing from the scope of the claims.

1・・・シリンダ、2・・・ピストンロッド、3・・・伸側ピストン、4・・・圧側ピストン、7・・・チェックバルブ(伸側整流部)、8・・・チェックバルブ(圧側整流部)、7a・・・切欠(伸側制限部)、8a・・・切欠(圧側制限部)、9・・・バックヨーク、10a,10b・・・永久磁石、11・・・コア、11a・・・スロット、11b・・・放熱板、11c・・・通気孔、12・・・巻線、CC・・・圧側整流部、CP・・・冷却通路、CR・・・圧側制限部、D・・・電磁緩衝器、E・・・電機子、EC・・・伸側整流部、ER・・・伸側制限部、F・・・界磁、LM・・・リニアモータ、R1・・・伸側室、R2・・・圧側室 1... Cylinder, 2... Piston rod, 3... Expansion side piston, 4... Compression side piston, 7... Check valve (expansion side rectification part), 8... Check valve (compression side rectification) Part), 7a... Notch (extension side restriction part), 8a... Notch (pressure side restriction part), 9... Back yoke, 10a, 10b... Permanent magnet, 11... Core, 11a. ..Slots, 11b... Heat sinks, 11c... Vents, 12... Windings, CC... Pressure side rectifying section, CP... Cooling passages, CR... Pressure side limiting section, D. ..Electromagnetic shock absorber, E... Armature, EC... Extension side rectification section, ER... Extension side restriction section, F... Field, LM... Linear motor, R1... Extension Side chamber, R2... Pressure side chamber

Claims (5)

非磁性体のシリンダと、
前記シリンダの内周に移動自在に挿入されるピストンロッドと、
前記シリンダ内に摺動自在に挿入されるとともに前記ピストンロッドに設けられて前記シリンダ内に伸側室を区画する伸側ピストンと、
前記シリンダ内に摺動自在に挿入されるとともに、前記伸側ピストンに対して軸方向に間隔を開けて前記ピストンロッドに設けられて前記シリンダ内に圧側室を区画する圧側ピストンと、
前記ピストンロッドの前記伸側ピストンと前記圧側ピストンとの間に装着される筒状の電機子と、前記シリンダの外周に設けられて前記電機子に対向する筒状の界磁とを有するリニアモータと、
前記伸側室と前記圧側室とに充填される気体と、
前記電機子に面する冷却通路と、
前記伸側室を前記冷却通路に連通するとともに前記伸側室から前記冷却通路に向かう気体の流れに抵抗を与える伸側制限部と、
前記伸側室を前記冷却通路に連通するとともに前記冷却通路から前記伸側室に向かう気体の流れのみを許容する伸側整流部と、
前記圧側室を前記冷却通路に連通するとともに前記圧側室から前記冷却通路に向かう気体の流れに抵抗を与える圧側制限部と、
前記圧側室を前記冷却通路に連通するとともに前記冷却通路から前記圧側室に向かう気体の流れのみを許容する圧側整流部とを備えた
ことを特徴とする電磁緩衝器。
A non-magnetic cylinder,
A piston rod movably inserted into the inner circumference of the cylinder;
An expansion side piston that is slidably inserted into the cylinder and is provided on the piston rod to partition an expansion side chamber in the cylinder,
A pressure side piston that is slidably inserted into the cylinder, is provided on the piston rod at a distance in the axial direction with respect to the extension side piston, and defines a pressure side chamber within the cylinder,
A linear motor having a cylindrical armature mounted between the expansion side piston and the compression side piston of the piston rod, and a cylindrical field magnet provided on the outer periphery of the cylinder and facing the armature. When,
Gas filled in the expansion side chamber and the compression side chamber,
A cooling passage facing the armature,
An expansion side limiting portion that communicates the expansion side chamber with the cooling passage and applies resistance to the flow of gas from the expansion side chamber toward the cooling passage,
An expansion side rectifying unit that allows only the flow of gas from the cooling passage to the expansion side chamber while communicating the expansion side chamber with the cooling passage,
A pressure side restricting portion which communicates the pressure side chamber with the cooling passage and gives resistance to the flow of gas from the pressure side chamber toward the cooling passage,
An electromagnetic shock absorber, comprising: a pressure side rectifying unit that communicates the pressure side chamber with the cooling passage and allows only a gas flow from the cooling passage toward the pressure side chamber.
前記電機子は、筒状であって外周に複数の環状のスロットを有する筒状のコアと、前記スロットに装着される巻線とを有し、
前記冷却通路は、前記ピストンロッドの外周と前記コアの内周との間の環状の空隙により形成されている
ことを特徴とする請求項1に記載の電磁緩衝器。
The armature has a tubular core having a tubular shape and a plurality of annular slots on the outer periphery, and a winding mounted in the slot,
The electromagnetic shock absorber according to claim 1, wherein the cooling passage is formed by an annular gap between an outer circumference of the piston rod and an inner circumference of the core.
前記コアは、内周に筒状の放熱板を有する
ことを特徴とする請求項2に記載の電磁緩衝器。
The electromagnetic shock absorber according to claim 2, wherein the core has a cylindrical heat dissipation plate on an inner circumference thereof.
前記コアは、外周から開口して前記冷却通路に通じる通気孔を有する
ことを特徴とする請求項2または3に記載の電磁緩衝器。
The electromagnetic shock absorber according to claim 2 or 3, wherein the core has a vent hole that opens from an outer periphery and communicates with the cooling passage.
前記伸側制限部および前記伸側整流部は、前記伸側ピストンに設けた切欠を備えた環状のチェックバルブであって、
前記圧側制限部および前記圧側整流部は、前記圧側ピストンに設けた切欠を備えた環状のチェックバルブである
ことを特徴とする請求項1から4のいずれか一項に記載の電磁緩衝器。
The extension side limiting portion and the extension side rectifying portion are annular check valves each having a notch provided in the extension side piston,
The electromagnetic shock absorber according to any one of claims 1 to 4, wherein the pressure-side restricting portion and the pressure-side rectifying portion are annular check valves each having a notch provided in the pressure-side piston.
JP2019017307A 2019-02-01 2019-02-01 Electromagnetic shock absorber Active JP7049281B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019017307A JP7049281B2 (en) 2019-02-01 2019-02-01 Electromagnetic shock absorber
PCT/JP2020/003037 WO2020158755A1 (en) 2019-02-01 2020-01-28 Electromagnetic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019017307A JP7049281B2 (en) 2019-02-01 2019-02-01 Electromagnetic shock absorber

Publications (2)

Publication Number Publication Date
JP2020125781A true JP2020125781A (en) 2020-08-20
JP7049281B2 JP7049281B2 (en) 2022-04-06

Family

ID=71841841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019017307A Active JP7049281B2 (en) 2019-02-01 2019-02-01 Electromagnetic shock absorber

Country Status (2)

Country Link
JP (1) JP7049281B2 (en)
WO (1) WO2020158755A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287629A (en) * 1987-05-21 1988-11-24 Daihatsu Motor Co Ltd Large motion suppressing device for power unit
JP2002257189A (en) * 2001-02-28 2002-09-11 Tokico Ltd Electromagnetic suspension unit
JP2005240984A (en) * 2004-02-27 2005-09-08 Hitachi Ltd Electromagnetic suspension device
JP2008062738A (en) * 2006-09-06 2008-03-21 Kayaba Ind Co Ltd Electromagnetic suspension device
JP2008286362A (en) * 2007-05-21 2008-11-27 Aisin Seiki Co Ltd Suspension device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287629A (en) * 1987-05-21 1988-11-24 Daihatsu Motor Co Ltd Large motion suppressing device for power unit
JP2002257189A (en) * 2001-02-28 2002-09-11 Tokico Ltd Electromagnetic suspension unit
JP2005240984A (en) * 2004-02-27 2005-09-08 Hitachi Ltd Electromagnetic suspension device
JP2008062738A (en) * 2006-09-06 2008-03-21 Kayaba Ind Co Ltd Electromagnetic suspension device
JP2008286362A (en) * 2007-05-21 2008-11-27 Aisin Seiki Co Ltd Suspension device

Also Published As

Publication number Publication date
JP7049281B2 (en) 2022-04-06
WO2020158755A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US11193700B2 (en) Linear compressor with heat shield between discharge cover and frame
JP4653125B2 (en) Linear compressor
JP7079213B2 (en) Electromagnetic shock absorber
JP6378980B2 (en) Solenoid valve
JP5603724B2 (en) Linear actuator
US20180233265A1 (en) Reactor having iron core unit and coils, motor driver, power conditioner and machine
US20020124561A1 (en) Stirling engine
CN105736308A (en) Control valve for variable displacement compressor
WO2020158755A1 (en) Electromagnetic shock absorber
US10770218B2 (en) Reactor, motor driver, power conditioner and machine
WO2020158754A1 (en) Electromagnetic shock absorber
JP2019115206A (en) Stator of rotary electric machine
WO2020158753A1 (en) Electromagnetic buffer
JP6409706B2 (en) Reactor
JP6946218B2 (en) Static inducer
EP1233645A2 (en) Loudspeaker pole piece and loudspeaker assembly
JP6184215B2 (en) Magnetic field rotating electromagnetic pump with integral channel structure
JP2017069953A (en) Self-cooling loudspeaker
US10153669B2 (en) Device for preventing vibration of stator core for power generator
CN114586116A (en) Insulation assembly, transformer assembly and dry-type transformer
JP7116661B2 (en) Cylindrical linear motor
JP2005282499A (en) Diaphragm type air pump
JP2023053911A (en) solenoid assembly
JP2023076175A (en) stationary inductor
KR20200073634A (en) Housing for motor of cooling air and water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220325

R151 Written notification of patent or utility model registration

Ref document number: 7049281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350