JP7048737B2 - Nrにおけるtaオフセットのシグナリング - Google Patents

Nrにおけるtaオフセットのシグナリング Download PDF

Info

Publication number
JP7048737B2
JP7048737B2 JP2020526520A JP2020526520A JP7048737B2 JP 7048737 B2 JP7048737 B2 JP 7048737B2 JP 2020526520 A JP2020526520 A JP 2020526520A JP 2020526520 A JP2020526520 A JP 2020526520A JP 7048737 B2 JP7048737 B2 JP 7048737B2
Authority
JP
Japan
Prior art keywords
network
offset
lte
tdd
carrier frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020526520A
Other languages
English (en)
Other versions
JP2021503773A (ja
Inventor
トールニー パレニウス,
ロベルト バルデメイレ,
ムハマド カズミ,
マグヌス ラーション,
マグヌス サンドグレン,
ヘニング ヴィーマン,
Original Assignee
テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エルエム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Publication of JP2021503773A publication Critical patent/JP2021503773A/ja
Priority to JP2022047937A priority Critical patent/JP7410996B2/ja
Application granted granted Critical
Publication of JP7048737B2 publication Critical patent/JP7048737B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

関連出願
本出願は、参照により本明細書に援用される、2017年11月17日に出願された、「SIGNALINGTA-OFFSET IN NR」と題する米国仮特許出願第62/588037号の利益を主張する。
本開示は、包括的には無線通信に関し、より詳細には、アップリンク通信とダウンリンク通信との間で変更する適切なタイミングを確保するためのシステムおよび方法に関する。
ロングタームエボリューション(LTE)において、ユーザ機器(UE)からの送信タイミングは、2つのパラメータ、すなわち、動的NTAおよび固定NTA,offsetに基づく。これは、ダウンリンクタイミングとアップリンクタイミングとの間の時間オフセットを定義する。これについては、LTEに関して36.211 v14.4.0セクション8に記載されている。NRのためのダウンリンクフレームタイミングの1つの例は、無線フレームにおけるスロットのサブセットのみが送信されるTDDに類似している。
図1に示すように、UEからのアップリンク無線フレーム番号iの送信は、UEにおける対応するダウンリンク無線フレームの開始の(NTA+NTA offset)×T秒前に開始する。ここで、UEがSSGを用いて設定される場合、0≦NTA≦4096であり、そうでない場合、0≦NTA≦20512である。別段の指示がない限り、フレーム構造タイプ1の場合、NTA offset=0であり、フレーム構造タイプ2の場合、NTA offset=624である。無線フレーム内の全てのスロットを送信することができるわけではないことに留意されたい。
基地局における、セル内でアップリンク専用信号を送信する全てのUEからの受信アップリンクタイミングは、基地局に対する距離と無関係に、基地局が全てのUEからの信号を同じ受信機FFTプロセスにおいて変調するために概ね同じ時間で基地局に達するべきである。したがって、UEからのアップリンクタイミングは、パラメータNTAをUEにシグナリングするTA(時間調節)コマンドを用いて基地局により制御される。パラメータは、接続モードでMACコマンドにおいてUEにシグナリングされ、ステップあたり約0.5μsの粒度を有する(例えば、各ステップは16Tsであり、ここで、1Ts=1/(15000*2048)秒=32.55nsである)。15kHzよりも広いサブキャリア間隔が用いられる場合、サイズに関して、NRは、類似しているが、より細かい粒度のオプションを有する。
1つの一般的な態様は、ネットワークが時分割複信(TDD)ネットワークであるか否か、ネットワークのキャリア周波数、およびネットワークがロングタームエボリューション(LTE)ネットワークと共存しているか否かの指示を取得するステップを含む方法を含む。方法はまた、ネットワークがTDDネットワークであるか否か、ネットワークのキャリア周波数、およびネットワークがLTEネットワークと共存しているか否かに基づいて、アップリンク送信のためのTAオフセットを決定することを含む。方法はまた、決定されたTAオフセットを用いてアップリンク送信を送信することを含む。
実施は以下の特徴のうちの1つまたは複数を含むことができる。NRネットワークがLTEネットワークと共存しているか否かの指示を取得することは、ネットワークノードからシグナリングを受信することを含む、方法。ユーザデータを提供することと、ユーザデータを、基地局への送信を介してホストコンピュータに転送することとを更に含む、前述の請求項のいずれか一項に記載の方法。ユーザデータを提供することと、ユーザデータを、ホストコンピュータまたは無線デバイスに転送することを更に含む、上記の特徴のうちのいずれかの方法。ネットワークがTDDネットワークであるか否か、ネットワークのキャリア周波数、およびネットワークがLTEネットワークと共存しているか否かを取得することは、ネットワークノードからシグナリングを受信することを含み、シグナリングは明示的なTAオフセット値を含む、方法。方法はまた、TAオフセットを決定することが、受信した明示的なTAオフセット値を用いることを含むことを含むことができる。NRネットワークはTDDネットワークではなく、TAオフセットはゼロに等しい、方法。NRネットワークはTDDネットワークであり、ネットワークのキャリア周波数は閾値未満であり、ネットワークはLTEネットワークと共存しておらず、TAオフセットは、0よりも大きい第1の値に等しい、方法。閾値は6GHzであり、TAオフセットは6μsである、方法。ネットワークはTDDネットワークであり、ネットワークのキャリア周波数は閾値を上回っており、ネットワークはLTEネットワークと共存しておらず、TAオフセットは、0よりも大きい第2の値に等しい、方法。閾値は6GHzであり、TAオフセットは13μsである、方法。ネットワークはTDDネットワークであり、ネットワークのキャリア周波数は閾値を上回っており、ネットワークはLTEネットワークと共存しており、TAオフセットは、0よりも大きい第3の値に等しい、方法。閾値は6GHzであり、TAオフセットは20μsである、方法。記載した技術の実施は、ハードウェア、方法もしくはプロセス、またはコンピュータアクセス可能媒体上のコンピュータソフトウェアを含むことができる。
別の一般的な態様は、新無線(NR)ネットワークにおいて無線デバイスにタイミングアドバンス(TA)オフセットをシグナリングするために基地局によって実行される方法を含み、方法は、タイミングオフセットの指示を無線デバイスに送信することと、指示されたタイミングオフセットを用いてアップリンク送信を受信することとを含む。
実施は、以下の特徴のうちの1つまたは複数を含むことができる。タイミングオフセットの指示は、時間量の明示的な指示を含む、方法。ネットワークはTDDネットワークではなく、TAオフセットはゼロに等しい、方法。ネットワークはTDDネットワークであり、ネットワークのキャリア周波数は閾値未満であり、ネットワークはLTEネットワークと共存しておらず、TAオフセットは、0よりも大きい第1の値に等しい、方法。閾値は6GHzであり、TAオフセットは6μsである、方法。ネットワークはTDDネットワークであり、ネットワークのキャリア周波数は閾値を上回っており、ネットワークはLTEネットワークと共存しておらず、TAオフセットは、0よりも大きい第2の値に等しい、方法。閾値は6GHzであり、TAオフセットは13μsである、方法。ネットワークはTDDネットワークであり、ネットワークのキャリア周波数は閾値を上回っており、ネットワークはLTEネットワークと共存しており、TAオフセットは、0よりも大きい第3の値に等しい、方法。閾値は6GHzであり、TAオフセットは20μsである、方法。タイミングオフセットの指示は、ネットワークがLTEネットワークと共存しているか否かの指示を含む、方法。記載した技術の実施は、ハードウェア、方法もしくはプロセス、またはコンピュータアクセス可能媒体上のコンピュータソフトウェアを含むことができる。
別の一般的な態様は、新無線(NR)ネットワークにおいてタイミングアドバンス(TA)オフセットを決定するための無線デバイスを含み、無線デバイスは、上記の方法のうちの任意のもののステップのうちの任意のものを実行するように設定された処理回路と、無線デバイスに電力を供給するように設定された電力供給回路とを備える。この態様の他の実施形態は、各々が方法の動作を実行するように設定された、対応するコンピュータシステム、装置、および1つまたは複数のコンピュータストレージデバイス上に記録されたコンピュータプログラムを含む。
別の一般的な態様は、新無線(NR)ネットワークにおいて無線デバイスにタイミングアドバンス(TA)オフセットをシグナリングするための基地局を含み、基地局は、上記の方法のうちの任意のもののステップのうちの任意のものを実行するように設定された処理回路と、無線デバイスに電力を供給するように設定された電力供給回路とを備える。この態様の他の実施形態は、各々が方法の動作を実行するように設定された、対応するコンピュータシステム、装置、および1つまたは複数のコンピュータストレージデバイス上に記録されたコンピュータプログラムを含む。
更に別の一般的な態様は、新無線(NR)ネットワークにおいてタイミングアドバンス(TA)オフセットを決定するためのユーザ機器(UE)を含む。
本明細書に組み込まれ、その一部を成す添付の図面は、本開示のいくつかの態様を示しており、この記載と共に、本開示の原理を説明する役割を果たす。
(TS36.211 v14.4.0に基づく)アップリンク-ダウンリンクタイミング関係。 LTE TDDフレーム。 LTE TDDフレーム構造。 NR展開例:(図4A)分散型、(図4B)同位置型、(図4C)集中型、(図4D)共有型。 展開および複信モードに基づく異なるTA_offset値の例。 TAオフセットを決定するための、UEにおける例示的な方法を示す流れ図。 TAオフセットを決定するための、UEにおける別の例示的な方法を示す流れ図。 いくつかの実施形態による無線ネットワーク。 いくつかの実施形態によるユーザ機器。 いくつかの実施形態による仮想化環境。 いくつかの実施形態による、中間ネットワークを介してホストコンピュータに接続された通信ネットワーク。 いくつかの実施形態による、部分的無線通信を通じてユーザ機器と基地局を介して通信するホストコンピュータ。 いくつかの実施形態による、ホストコンピュータ、基地局およびユーザ機器を含む通信システムにおいて実施される方法。 いくつかの実施形態による、ホストコンピュータ、基地局およびユーザ機器を含む通信システムにおいて実施される方法。 いくつかの実施形態による、ホストコンピュータ、基地局およびユーザ機器を含む通信システムにおいて実施される方法。 いくつかの実施形態による、ホストコンピュータ、基地局およびユーザ機器を含む通信システムにおいて実施される方法。 いくつかの実施形態による方法。 いくつかの実施形態による仮想化装置。
これらの図は、以下の詳細な説明を参照することによって、より良好に理解されるであろう。
一般に、本明細書で使用される全ての用語は、異なる意味が明瞭に与えられていない限り、および/または異なる意味が用いられる文脈において暗に意味されていない限り、関連技術分野でのその通常の意味に従って解釈されるべきである。要素、装置、構成要素、手段、ステップ等への全ての言及は、別段の記載が明示的にない限り、この要素、装置、構成部品、手段、ステップ等の少なくとも1つのインスタンスに言及するものとして非限定的に解釈すべきである。本明細書に開示される任意の方法のステップは、ステップが別のステップに後続もしくは先行することが明示的に記載されない限り、および/またはステップが別のステップに後続もしくは先行しなくてはならないことが暗黙的である場合を除いて、開示された厳密な順序で実行されなくてもよい。本明細書に開示される実施形態のうちの任意のものの任意の特徴は、任意の他の実施形態に適宜適用することができる。同様に、実施形態のうちの任意のものの任意の利点は任意の他の実施形態に適用することができ、逆もまた同様である。同封の実施形態の他の目的、特徴および利点は以下の説明から明らかとなろう。
LTEにおいて、パラメータNTA,offsetは、FDDモードまたはTDDモードに基づいて固定される。フレーム構造1が用いられるFDDでは、NTA,offset=0である。フレーム構造2が用いられるTDDでは、NTA,offset=624である。したがって、TDDアップリンク送信のためのNTA,offsetは、624*32.55ns=20.3μsである。
TDDにおいて追加のタイムアライメントオフセットが必要とされる理由は、TDDにおいて、基地局が受信および送信を同時に行わないためである。以下で図2に示すように、LTE TDDでは、特殊サブフレームのダウンリンク部分(DwPTS)および特殊サブフレームのアップリンク部分(UpPTS)は、ガード期間(GP)によって分離される。アップリンクサブフレームとダウンリンクサブフレームとの間での切り替えが行われるとき、フレーム構造においてギャップが定義されない。図3に見られるように、ダウンリンクサブフレームに先行して、TA,Offsetだけオフセットしてアップリンクの送信を開始することによって、ULからDLへの切り替えのために割り当てられたガード期間を表す長さTA,Offsetのギャップが作成される。
TA_offsetは、共に3GPP規格において定義されるTX遷移時間およびセル位相同期誤差から直接導出することができる。
図3にはUE側のギャップが示されていることに留意されたい。基地局側では、ダウンリンクがT_prop早く送信され、アップリンクがT_prop遅く受信される。ここで、T_propは、基地局とUEとの間の伝播時間である。これは、MACシグナリングによって受信され、図1に示される、基地局における適切なギャップを与えるタイミングアライメントコマンドNTAによって補償される。
ガード期間の残りの部分(DL対ULの切り替えのために割り当てられたガード期間)(図3におけるTDL-UL)は、基地局におけるTxから基地局におけるRxに切り替え、近傍基地局から実際の(例えば、サービング)基地局への干渉を低減するために用いられる。近傍セルからの送信は、基地局間の距離に等しい伝播遅延だけ遅延され、また、基地局間の潜在的な同期誤差だけオフセットされる。したがって、基地局は、他の基地局からの干渉レベルが減少するまでこのガード期間にわたって待機しなくてはならない。
DLからULへのガードおよびULからDLへのガードの双方のための総ガード期間の長さ(以下においてTGUARD)は、LTEにおいて、依然として効率的なスペクトル利用を可能にするようにオーバヘッドを最小限にしながら、セルサイズおよび干渉状況に関して異なる展開シナリオを可能にするように、1シンボルから最大で10シンボルまでの間で設定可能である(依然としてTAオフセット部分は固定である)。
表1:LTE TDD設定
Figure 0007048737000001
UEは、初回は、ランダムアクセスプリアンブルを送信することによって基地局にアクセスする。プリアンブルは、基地局において、指定されたULサブフレーム中に受信される。UEは、様々な手順中、例えば初期アクセス中、セル変更中、セルに対する同期を失った後等にセルへのランダムアクセス送信を実行する。初期アクセスは、セル選択のために実行される。セル変更の例は、ハンドオーバ、セル再選択、RRC再確立、リダイレクトを伴うRRC接続解放等である。
NRおよびLTEは共存することができる。NR展開シナリオの例が図4A~図4Dに示されている。これらの図に示されているように、NR基地局(例えば、gNB)は、LTE BS(例えば、eNB)と地理的に同位置にあってもよく、または異なる場所に位置してもよい。双方の場合に、NRおよびLTEは、同じキャリア周波数上または近傍周波数上に共存することができる。同じ周波数または近傍周波数におけるTDDシステムにおいてNRおよびLTEの共存が用いられるとき(例えば、同位置のNR BSおよびLTE BS等の、同じエリア内のLTEおよびNR)、これらは、干渉を最小限にするためのTAオフセットを含む、同じTDD設定を用いることができる。
1つの例は、LTEキャリア内の未使用リソースを、送信されるNR信号のために用いることができるというものである。これは、特に、アップリンクキャリアにおいて用いられる。アップリンクにはこのNR-LTE共存の2つの事例、すなわちUEトランスペアレントおよびUE非トランスペアレントがある。前者の場合、同じアップリンクキャリアが、2つの異なるUEによってLTEおよびNR間で共有される(例えば、UE1は、LTEを用いて送信する一方で、UE2はNRを用いて送信する)。後者の場合、同じアップリンクキャリアが、同じUEによってLTE信号およびNR信号の双方を送信するために用いられる(例えば、アップリンクキャリアアグリゲーションに類似している)。
現在、いくつかの課題が存在している。今日、LTEにおいて、NTA,Offsetは2つの値のうちの1つを有することができ、36.211、セクション8において述べられているように、FDDの場合、0であり、TDDの場合、624*Ts(20μs)である。オフセットはFDDが用いられるかまたはTDDが用いられるかのみに基づいているため、オフセット値はUEによって知られている。このため、UEは、シグナリングを伴うことなくオフセットをセットすることができる。
NRにおける状況はより複雑である。オフセットは、複信方法(FDDまたはTDD)、LTEと共存しているか否か、および周波数帯域に依拠する。複信方法および周波数帯域はUEによって知られているが、LTEおよびNR間の共存については知られていない。
既存の解決策では、FDDについて1つの値、TDDについて1つの値のみが可能である。したがって、既存の解決策を用いることは、全ての事例において可能な限り最も長いオフセットが必要とされることを意味する。
TA,Offsetは、TDD設定における総ガード期間GPの一部を用いる。総ガード期間の総長は、2つの部分に基づく。第1の部分は、基地局においてアップリンクサブフレームとダウンリンクサブフレームとの間のガード期間として用いられるTA,Offsetである。第2の部分は、基地局におけるダウンリンクサブフレームと次のアップリンクサブフレームとの間のガード期間である。後者は、基地局とUEとの間のラウンドトリップ時間RTTに適応する必要もある。固定伝播遅延の場合、より短いTA,offsetを用いると、ダウンリンクとアップリンクとの間のガード期間が増大し、同じ長さの総ガード期間について、より大きいセルをサポートすることができる。
ダウンリンクサブフレームとアップリンクサブフレームとの間のガード期間は、ダウンリンク送信信号をランプダウンし、基地局間の同期誤差に起因して生じ得る近傍セルのダウンリンクTDD送信からの受信ダウンリンク信号を減らすための時間、および伝播遅延の時間を見込むことも必要である。固定総ガード期間の場合、TAオフセットを大きくすると、ダウンリンクからアップリンクへの切り替えにおける分離が小さくなり、そして遠隔基地局からの干渉が相対的に高くなる。
TDDフレーム構造における総ガード期間を最小限にすることによって、ガード期間に起因したオーバヘッドが少なくなり、容量が改善する。これは、NRが低レイテンシを目標とし、これはTDDの場合には、より頻繁なTRX切り替えを暗に意味するため、NRにとって特に重要である。したがって、容量および干渉の観点から、可能な場合に最適で低いTA,Offsetを用いることが重要である。
基地局にアクセスするとき、基地局におけるアップリンクサブフレームのタイミングは、ダウンリンクサブフレームとアップリンクサブフレームとの間の時間オフセットTA_offsetによって定義される。したがって、UEがランダムアクセスプリアンブルの送信を開始するとき、時間オフセットがUEによって知られている必要がある。そうでない場合、送信されたランダムアクセスチャネル(RACH)プリアンブルは、基地局において、定義されたアップリンクサブフレーム外で受信される場合があり、これは検出されないか、あるいは性能が劣化する。
本開示のいくつかの態様およびそれらの実施形態は、これらの課題または他の課題に対し解決策を提供することができる。TDDフレーム構造における総ガード期間(GP)を最小限にすることは、TA_offsetを最小限にすることを含む。時間オフセットを選択するための全てのパラメータがUEにおいて利用可能なわけではないため、特定の実施形態において、基地局はTA,offset値(またはTA_offset値の所定の識別子)をUEにシグナリングする。いくつかの実施形態は、共存問題が存在するか否かを意味する、1つまたは複数のセルにおけるLTEおよびNR共存のステータスに関する情報をシグナリングすることができる。いくつかの実施形態では、タイミングアドバンスに類似した粒度を有する実際のオフセットをUEに送信し、これによって、セルのサイズ等の他のパラメータに基づいてTA_offsetを調整することができる。
UEが初回にセルに入る際にRACHプリアンブルが送信されるとき、オフセットが必要とされるため、パラメータは、基地局(例えば、eNB)にアクセスする前にUEによって知られる必要がある。したがって、特定の実施形態において、オフセットは、NR基地局(例えば、gNB)からのブロードキャスト情報において(例えば、SIBにおいて)送信される。例として、TA,offset値は所定とすることができる。
1つの例示的な実施形態において、基地局は、UEに、LTEとの共存状況が存在するか否かを通知する所定の識別子(例えば、1ビット)をシグナリングすることができる。TA_offsetは、シナリオに基づいてNR規格において指定される。例えば、LTEおよびNRが同じTDDキャリア上に共存していない場合、基地局は、TA_offset=N2を用いてUEを設定するが、LTEおよびNRが同じTDDキャリア上に共存している場合、基地局は、TA_offset=N3を用いてUEを設定する。ここで、N2<N3である(例えば、N2=13μsおよびN3=20μs(すなわち、624Ts))。
他の実施形態において、UEによって用いられる実際のTA_offsetは、接続モードにおいて用いられるタイミングアドバンスコマンドの粒度、またはその倍数を用いてUEに送信される。TA_offsetは、異なる複数のシナリオおよび実施について調整することができる。
UEがNRおよびLTEの共存に関する情報を有していない場合、LTE帯域内で動作している全てのNRの場所が共存を前提としなくてはならない。これは、より小さなTA_Offsetおよびより小さなGPと比較して、この事例では、より長いGPが必要となることに起因して、全てのNRセル内のより大きなNR TA_Offsetおよび更なるNRオーバヘッドを意味する。LTE-NR共存動作のためにTA_offsetをシグナリングすることにより、TA_offsetは、同じ帯域内のLTEと同位置にあるNRの場所について、より長いTA_offsetを用い、同位置にないNRの場所について、より短いTA_offsetおよびより短いオーバヘッドを用いて、同位置状況に適合させることができる。
本明細書に開示される問題のうちの1つまたは複数に対処する様々な実施形態が本明細書において提案される。いくつかの実施形態によれば、新無線(NR)ネットワークにおけるタイミングアドバンス(TA)オフセットを決定するために無線デバイスによって実行される方法は、ネットワークが時分割複信(TDD)ネットワークであるか否か、ネットワークのキャリア周波数、およびネットワークがロングタームエボリューション(LTE)ネットワークと共存しているか否かの指示を取得することと、ネットワークがTDDネットワークであるか否か、ネットワークのキャリア周波数、およびネットワークがLTEネットワークと共存しているか否に基づいて、アップリンク送信のためのTAオフセットを決定することと、決定されたTAオフセットを用いてアップリンク送信を送信することとを含む。
特定の実施形態において、ネットワークがLTEネットワークと共存しているか否かの指示を取得することは、ネットワークノードからシグナリングを受信することを含む。シグナリングは、明示的なTAオフセット値を含むことができ、TAオフセットを決定することは、受信した明示的なTAオフセット値を用いることを含む。
特定の実施形態において、ネットワークはTDDネットワークではなく、TAオフセットはゼロに等しい。ネットワークはTDDネットワークである場合があり、ネットワークのキャリア周波数は閾値(例えば、6GHz)未満である場合があり、ネットワークはLTEと共存していない場合があり、TAオフセットは第1の値(例えば、6μs)に等しい。ネットワークはTDDネットワークである場合があり、ネットワークのキャリア周波数は、閾値(例えば、6μs)を上回っている場合があり、ネットワークはLTEネットワークと共存していない場合があり、TAオフセットは第2の値(例えば、13μs)に等しい場合がある。ネットワークはTDDネットワークである場合があり、ネットワークのキャリア周波数は、閾値(例えば、6GHz)を上回っている場合があり、ネットワークはLTEネットワークと共存している場合があり、TAオフセットは第3の値(例えば、20μs)に等しい場合がある。
特定の実施形態は、以下の技術的利点のうちの1つまたは複数を提供することができる。特定の実施形態の利点は、UEが、送信を開始する前に、アップリンクスロット構造のための最良の時間オフセットに関して通知されることである。時間オフセットは、TDDにおいて、基地局におけるアップリンクサブフレームとダウンリンクサブフレームとの間のギャップを生成するのに用いられる。このギャップは、基地局が、アップリンク受信機無線を停止し、ダウンリンク送信機電力をランプすることを可能にする。
TA_offsetを最小限にするとき、TDDフレーム構造における総ガード期間を最小限にすることができる。LTEにおいて、ガード期間の長さは、1シンボル~10シンボルで変動させることができる。RACHプリアンブルの正しいアップリンクタイミングでは、基地局におけるダウンリンクサブフレームとアップリンクサブフレームとの間のランプは、受信ランダムアクセスプリアンブルと干渉していない。
ブロードキャストシグナリングにおいてTA_offsetを送信する実施形態の場合、セルにおける干渉状況および容量は、ガード期間のサイズを実際のシナリオに対し最小限にすることで向上させることができる。これは、NRが、TDDシステムにおけるより頻繁なTRX切り替えを意味する低レイテンシを目標としているため、有利である。
UEが情報を有していない場合、LTE帯域内で動作している全てのNRの場所が共存を前提としなくてはならない。これは、より小さなTA_Offsetおよびより小さなGPと比較して、この事例では、より長いGPが必要となることに起因して、全てのNRセル内のより大きなNR TA_Offsetおよび更なるNRオーバヘッドを意味する。
ここで、本明細書において検討される実施形態のうちのいくつかを、添付の図面を参照してより詳細に説明する。しかしながら、他の実施形態も本明細書に開示される主題の範囲内に含まれ、開示される主題は、本明細書に示される実施形態のみに限定されるとみなされるべきではなく、むしろ、これらの実施形態は、当業者に主題の範囲を伝えるために例として提供される。追加の情報は付録において得ることもできる。
いくつかの実施形態では、非限定的な用語「UE」が使用される。本明細書でのUEは、無線信号を介してネットワークノードまたは別のUEと通信することが可能な、任意のタイプの無線デバイスであり得る。UEはまた、無線通信デバイス、ターゲットデバイス、デバイスツーデバイス(D2D)UE、マシン型UEまたはマシンツーマシン通信(M2M)が可能なUE、ターゲットデバイス、UEを装備したセンサ、iPAD、タブレット、モバイル端末、スマートフォン、ラップトップ埋込み機器(LEE)、ラップトップ搭載機器(LME)、USBドングル、顧客構内機器(CPE:Customer Premises Equipment)等であり得る。
また、いくつかの実施形態では、一般用語「ネットワークノード」が使用される。ネットワークノードは、基地局、無線基地局、基地トランシーバ局、基地局コントローラ、ネットワークコントローラ、gNB、en-gNB、nr-eNB、NR BS、エボルブドノードB(eNB)、ノードB、マルチセル/マルチキャスト協調エンティティ(MCE)、リレーノード、アクセスポイント、無線アクセスポイント、リモートラジオユニット(RRU)、リモート無線ヘッド(RRH)、マルチスタンダードBS(別名MSR BS)、コアネットワークノード(例えば、MME、SONノード、協調ノード、測位ノード(例えば、ロケーションサーバ、SMLC、E-SMLC等)、MDTノード等)、または更には外部ノード(例えば、サードパーティノード、現在のネットワークの外部のノード)等の無線ネットワークノードを含み得る任意の種類のネットワークノードであり得る。ネットワークノードは試験機器を含む場合もある。本明細書において用いられる用語「無線ノード」は、UEまたは無線ネットワークノードを示すのに用いることができる。
実施形態は、UEのシングルキャリアおよびマルチキャリア動作に適用可能である。マルチキャリア動作の例は、キャリアアグリゲーション(CA)、マルチ接続性(MC)等である。CA動作において、UEは、2つ以上のサービングセルに対しデータを送信および/または受信することができる。MCにおいて、UEは、2つの異なるネットワークノードによって動作する少なくとも2つのサービングセル(例えば、PCellおよびPSCell)によってサービングされる。MCの特殊な例は、複信接続性(DC)、例えば、LTE-NR DCである。用語「キャリアアグリゲーション」(CA)は、「マルチキャリアシステム」、「マルチセル動作」、「マルチキャリア動作」、「マルチキャリア」送信および/または受信とも呼ばれる(例えば、置き換え可能に呼ばれる)。CAにおいて、コンポーネントキャリア(CC)のうちの1つは、プライマリコンポーネントキャリア(PCC)または単にプライマリキャリア、または更にはアンカーキャリアである。残りのキャリアは、セカンダリコンポーネントキャリア(SCC)、または単にセカンダリキャリア、または更には補助キャリアと呼ばれる。サービングセルは、プライマリセル(PCell)またはプライマリサービングセル(PSC)と置き換え可能に呼ばれる。同様に、セカンダリサービングセルは、セカンダリセル(SCell)またはセカンダリサービングセル(SSC)と置き換え可能に呼ばれる。
本明細書において用いられる用語「シグナリング」は、(例えば、RRC、NASメッセージ等を介した)上位レイヤシグナリング、(例えば、MAC、物理制御チャネル等を介した)下位レイヤシグナリング、またはこれらの組み合わせのいずれかを含むことができる。シグナリングは、暗示的であっても明示的であってもよい。シグナリングは、更に、ユニキャスト、マルチキャスト、またはブロードキャストであってもよい。シグナリングはまた、別のノードに直接的に、または第3のノードを介して行われてもよい。
特定の実施形態は、ユーザ機器(UE)およびネットワークノード双方における方法を含む。実施形態は、以下で更に詳細に説明される。
導入部において記載したように、基地局において、LTEにおけるアップリンクサブフレームは、NTA,offsetだけダウンリンクサブフレームからオフセットされているため、UEは、ネットワークにアクセスするとき(例えば、セルへのランダムアクセスを行うとき)、オフセットも知る必要がある。このとき、UEは、ランダムアクセスプリアンブルが送信されるときを知る。したがって、UEが、アップリンクにおける送信を開始する前にTA,offsetを知る場合、有利である。
NRおよびLTEの共存がTDDシステムにおいて用いられているとき(例えば、同位置のNR BSおよびLTE BS等、同じエリア内のLTEおよびNR)、これらは同じTDD設定を用いることができる。これにはTAオフセットが含まれるが、これ以外は必須ではない。上述したように、TAオフセットを定義する送信遷移時間は、LTEとNRとで異なり、また、異なるNR周波数範囲内でも異なる。NRでは、遷移時間はキャリア周波数範囲に依拠するが、セルのフレームタイミング間のセル位相同期は同じである(例えば、周波数にかかわらず3μs)。
UEは、接続されたgNBのフレームタイミング変化を辿る能力を有する。アップリンクフレーム送信は、基準セルからの対応するダウンリンクフレームの(時間において)最初に検出された経路の受信の(NTA+NTA offset)×T前に行われる。UE初期送信タイミング精度、1つの調節におけるタイミング変更の最大量、最小および最大調節レートが以下の要件において定義される。NTA offsetの値は、アップリンク送信が行われるセルの複信モード、周波数範囲(FR)、およびセルにおいてLTE-NR共存が設定されているか否かに依拠する。NTA offsetは、表2に定義されている。
表2:NTA offsetの値
Figure 0007048737000002
UE初期送信タイミング誤差は、±T以下であり、ここで、タイミング誤差制限値Tは、表において指定されている。この要件は、(a)これがPUCCH、PUSCHおよびSRSのためのDRXサイクルにおける第1の送信であるか、またはPRACH送信であるとき、および(b)これがDRXにおける第1の送信ではないか、またはDRXがないとき、かつ、節7.3におけるタイミングアドバンスが適用されるときを除く、PUCCH、PUSCHおよびSRSのための送信であるとき、に適用される。
UE初期送信タイミング制御要件のための基準点は、基準セルのダウンリンクタイミングから(NTA+NTA offset)×Tを減算したものとなる。ダウンリンクタイミングは、対応するダウンリンクフレームの(時間において)最初に検出された経路が基準セルから受信される時点として定義される。PRACHのためのNTAは、0として定義される。
他のチャネルについての(NTA+NTA offset)×T(T単位)は、UE送信タイミングと、節7.3における最後のタイミングアドバンスが適用された直後のダウンリンクタイミングとの間の差である。他のチャネルのためのNTAは、次のタイミングアドバンスが受信されるまで変更されない。
UEと基準タイミングとの間の送信タイミング誤差が±Teを超えるとき、UEは、基準セルの受信ダウンリンクフレームに従って送信タイミングを変更することが可能であり、そのタイミングを±Te以内に調節するように要求される。基準タイミングは、基準セルのダウンリンクタイミングの(NTA+NTA offset)×T前となる。UEアップリンクタイミングに対し行われる全ての調節は以下の規則に従う。
1)1つの調節におけるタイミング変更の大きさの最大量は、T秒である。
2)最大総調節レートは、毎秒[TBD]*Tである。
3)最大総調節レートは、[200]msあたりTである。
ここで、最大自律時間調節ステップTは表3に指定される。
表3:T最大自律時間調節ステップ
Figure 0007048737000003
例えば、より高い帯域幅を有する、より高い周波数(例えば、24GHz以上)において、TXおよびRX間の遷移に起因した信号のランプアップまたはランプダウンは、より低い周波数(例えば、最大6GHz)と比較して短縮される。したがって、指定された送信遷移時間に基づいて、そしてNR-LTE共存が用いられるか否かに基づいて、TAoffsetの異なるオプションが必要とされる。これは、以下の例を用いて説明され、図5にも示される。
NRにおけるFDDについて、TA,offsetはいずれのFDD周波数においても必要とされないため、任意のFDDキャリアにおける動作のためのTA,offsetは0μsとなる。NR FR2におけるTDDの場合、TA,offsetは、動作周波数が周波数範囲2(FR2)内にあることを仮定して、N1である。N1の例は、N1=6μsである。FR2の例は、24GHz以上の周波数である。FR2における例として、NR-LTE共存展開は行われない。したがって、FR2内の任意のキャリアがNRのためにのみ用いられる。
FR1におけるTDDの事例の場合、2つの主要な事例がある。NR-LTE共存なしでは、NRにおけるTDDについて、動作周波数が周波数範囲1(FR1)内にあること、および動作のTDDキャリアにおいてLTE-NR共存が用いられないことを仮定して、TA,offsetはN2である。したがって、TDDキャリアは、NRのためにのみ用いられる。N2の例は、N2=13μsである。FR1の例は、最大6GHzの周波数である。NR-LTE共存ありでは、NRにおけるTDDについて、動作周波数が周波数範囲1(FR1)内にあること、および動作のTDDキャリアにおいてLTE-NR共存が用いられることを仮定して、TA,offsetはN3である。ここで、N2<N3である。したがって、同じTDDキャリアがLTE動作およびNR動作のために用いられる(例えば、同じキャリアがLTEおよびNR間で共有される)。N3の例は、N3=20μsである。FR1の例は、最大で6GHzの周波数である。
低レイテンシは、NRにおける主要な特徴である。TDDシステムの場合、これは、TXおよびRX間のより頻繁な切り替えを意味する。オーバヘッドを最小限にし、スペクトル利用を、可能な限り短い総GPとなるように最大化することが望ましく、これは、TAオフセットが可能な限り短く保持されるべきであることも意味する。これは、NRのみの動作において用いられるN2(例えば、13μs)を、LTEにおいて用いられるN3(例えば、20μs)よりも小さく保持する(すなわちN2<N3)1つの動機づけである。
いくつかの実施形態によれば、ネットワークノードは、UEによって用いられるTA_offsetを、TDD設定におけるアップリンクサブフレームとダウンリンクサブフレームとの間の時間オフセットとしてシグナリングする。このため、ダウンリンクとアップリンクとの間の総ガード期間を最小限にすることができる。
シグナリングは、UEがネットワーク(例えば、基地局)にアクセスするとき、またはアクセスすることを予期されるときに必要とされる。例えば、UEがセル内で(例えば、初期アクセス中またはセル変更手順中に)ランダムアクセスプリアンブルを送信しているかまたは送信することを予期されているときである。
いくつかの実施形態では、ネットワークノードは、そのキャリア上でNRセルがLTEと共存しているか否かをUEに知らせる情報(例えば、ブロードキャストチャネルにおけるNRブロードキャスト情報における1ビット)を送信する。ブロードキャストチャネルの例は、PBCHを介して送信されるMIB、(SIB1等の)SIB送信等である。(図6のフローチャートに示すように)ネットワークノードから受信した指示に基づいて、UEは、UEによってこのセル内で信号を送信するためにどのNTA,offset値が用いられるかの決定を行うことができる。このとき、これは、TDDのために用いられる帯域にあるか、6GHzよりも下または上であるか、および最終的に、ブロードキャスト情報内のビットが、キャリアがLTEセルと共存していることを示すか否かに基づく。例として、指示されたビット0およびビット1は、それぞれ、NR-LTE共存のあるキャリア上のNR動作およびNR-LTE共存のないキャリア上のNR動作を表すことができる。例えば、受信情報が、UEが信号を送信するTDDキャリアがLTE-NR共存のために用いられることを示す場合(例えば、指示されたビット=1)、UEはNTA,offsetをN3として選択し、そうでない場合(例えば、指示されたビット=0)、NTA,offsetをN2として選択する。N1、N2およびN3の値は、規格において所定とすることができる。
ネットワークノードによって送信される情報は、各キャリアに、またはキャリアのグループに関連付けることができる。ネットワークは、必要に応じて、LTE-NR共存のためにキャリアを設定または設定解除(deconfigure)することができる。したがって、ネットワークノードは、UEがセルにアクセスするときにTA_offsetの最新の正しい値を適用することを可能にするために、シグナリングされる情報を更新することができる。
シグナリングメッセージは、ネットワークノードによって、セル変更コマンド(例えば、HOメッセージ)において、例えば、UE固有のメッセージまたは専用シグナリングにおいて送信することもできる。これにより、UEが、セル変更を行うためのターゲットセルにおいて信号を送信するためにUEによって用いられることになるNTA,offsetを決定することが可能になる。
特定の実施形態において、UEにおけるダウンリンクおよびアップリンク間のTA,offsetは、シナリオごとの典型的な値としてセットすることができる。この事例における実際のオフセットは、規格において定義することができ、したがって、シナリオによって確定される。6GHz未満でLTEセルと共存するTDDの事例では、NTA,offsetは、LTEにおいて定義されたオフセットと等しくなるようにセットされ、すなわちN3=20μsである。6GHz未満でLTEとの共存のないNR TDDの事例では、オフセットは、より小さな値、例えばN2=13μsまで低減することができる。しかし、TDDが用いられ、周波数帯域が6GHzよりも高い場合、オフセットは更に、例えばN1=6μsまで低減することができる。
第1の実施形態のためのSIB1における指示をどのように指定することができるかに関する1つの例がここで与えられる。第1の例は、38.331におけるServingCellConfigCommon内に、3つ全ての可能なオフセットを示すTimingAdvanceOffsetを追加することである。
1timingAdvanceOffset ENUMERATED{x0,x39936,x25560,x11776}
このコストは2ビットである。別のオプションは、パラメータLTE-NR-Coexistenceを追加することである。存在する場合、このフィールドは、FR1におけるTDDサービングセルがLTE-NR共存下にあり、UEが39936のN_TAオフセットを適用することを示す。代替的に、実際のオフセットの指定が38.133において行われる場合、LTE-NR-Coexistenceは、存在する場合、FR1におけるTDDサービングセルがLTE-NR共存下にあり、UEがTS38.133のセクション7.1.1に指定されるようにN_TAオフセットを適用することを示す。パラメータは以下のように示すことができる。
LTE-NR-Coexistence ENUMERATED{true}OPTIONAL,--CondTDD-FR1
パラメータLTE-NR-Coexistenceは、FR1におけるTDDセルについてのみ有効であり、したがって、以下が追加される必要がある。
TDD-FR1:このフィールドは、オプションで、周波数範囲(FR)1において動作しているペアにされていないスペクトルにおけるサービングセルのために存在する。そうでない場合、このフィールドはない。
いくつかの実施形態では、ネットワークノードは、ブロードキャスト情報において実際のNTA,offset(例えば、13μs、15μs等)をUEに送信する。NTA,offsetは、タイミング位置合わせがLTE接続モードにおいてシグナリングされるのと同様の方式でシグナリングされる。この提案は、実施形態1よりもシグナリングコストが高いが、この提案に伴う利点は、ガード期間を、セルサイズ、基地局実施の双方等に基づいて最小にすることができることである。これによって、容量を更に最適化することができる。これにより、ネットワークの順応性が高まる。例が図7に示される。
いくつかの実施形態では、ネットワークノードは、ネットワーク内のgNBおよびeNBに接続された異なるUEから性能統計を収集する。干渉条件が検出される場合、かつ閾値との比較により、干渉条件が時間において持続性があることが示される場合、オペレータは、O&M管理システムを通じて、LTEおよびNR間に潜在的な共存問題が存在することを通知され得る。この情報は、サイトまたはサイトグループのTA_offset設定を変更し、次に、干渉条件が止んだか否かをチェックするために、SONの意味で自動的に用いることもできる。干渉が止んだ場合、TA_offsetに対する変更が永久的に行われ、オペレータはO&M管理システムを通じて通知される。
本明細書に記載の主題は、任意の適切なコンポーネントを用いて任意の適切なタイプのシステムにおいて実施することができるが、本明細書において開示される実施形態は、図8に示す例示的な無線ネットワーク等の無線ネットワークとの関連で説明される。簡単にするために、図8の無線ネットワークは、ネットワーク806、ネットワークノード860および860b、ならびにWD 810、810b、および810cのみを示す。実際には、無線ネットワークは、固定電話、サービスプロバイダ、または任意の他のネットワークノードもしくはエンドデバイス等の、無線デバイス間または無線デバイスと別の通信デバイスとの間の通信をサポートするのに適した任意の追加の要素を更に含むことができる。示されるコンポーネントのうち、ネットワークノード860および無線デバイス(WD)810は、更なる詳細を有して示される。無線ネットワークは、1つまたは複数の無線デバイスに通信および他のタイプのサービスを提供し、無線デバイスによる、無線ネットワークによってまたは無線ネットワークを介して提供されるサービスへのアクセスおよび/またはその使用を容易にすることができる。
無線ネットワークは、任意のタイプの通信、遠距離通信、データ、セルラおよび/もしくは無線ネットワーク、もしくは他の類似のタイプのシステムを含み、かつ/またはこれらとインターフェースすることができる。いくつかの実施形態では、無線ネットワークは、特定の規格または他のタイプの所定の規則もしくは手順に従って動作するように設定することができる。このため、無線ネットワークの特定の実施形態は、モバイル通信のためのグローバルシステム(GSM)、ユニバーサルモバイルテレコミュニケーションシステム(UMTS)、ロングタームエボリューション(LTE)および/もしくは他の適切な2G、3G、4Gもしくは5G規格、IEEE802.11規格等の無線ローカルエリアネットワーク(WLAN)規格、ならびに/または、マイクロ波アクセスのための世界的相互運用性(WiMAX)、Bluetooth、Z-Waveおよび/またはZigBee規格等の任意の他の適切な無線通信規格等の通信規格を実施することができる。
ネットワーク806は、1つまたは複数のバックホールネットワーク、コアネットワーク、IPネットワーク、公衆交換電話ネットワーク(PSTN)、パケットデータネットワーク、光ネットワーク、広域ネットワーク(WAN)、ローカルエリアネットワーク(LAN)、無線ローカルエリアネットワーク(WLAN)、有線ネットワーク、無線ネットワーク、メトロポリタンエリアネットワーク、およびデバイス間の通信を可能にする他のネットワークを含むことができる。
ネットワークノード860およびWD810は、以下でより詳細に説明される様々なコンポーネントを含む。これらのコンポーネントは、無線ネットワークにおける無線接続の提供等、ネットワークノードおよび/または無線デバイスの機能を提供するために協働する。異なる実施形態において、無線ネットワークは、任意の数の有線または無線ネットワーク、ネットワークノード、基地局、コントローラ、無線デバイス、中継局、ならびに/または、有線接続を介したものであっても、もしくは無線接続を介したものであっても、データおよび/もしくは信号の通信を容易にし、もしくはその通信に参加することができる任意の他のコンポーネントもしくはシステムを含むことができる。
本明細書において用いられるとき、ネットワークノードとは、無線デバイスおよび/または無線ネットワークにおける他のネットワークノードもしくは機器と直接または間接的に通信して、無線デバイスへの無線アクセスを可能にしかつ/もしくは提供し、かつ/または無線ネットワークにおける他の機能(例えば管理)を行うことが可能であり、そのように設定され、調整され、かつ/または動作可能な機器ケーブルを指す。ネットワークノードの例は、限定ではないが、アクセスポイント(AP)(例えば、無線アクセスポイント)、基地局(BS)(例えば、無線基地局、ノードB、エボルブドノードB(eNB)、およびNRノードB(gNB)を含む。)基地局は、提供するカバレッジの量(または言い換えれば送信電力レベル)に基づいてカテゴライズすることができ、その場合、フェムト基地局、ピコ基地局、マイクロ基地局またはマクロ基地局と呼ばれる場合もある。基地局は、中継ノード、または中継を制御する中継ドナーノードとすることができる。ネットワークノードは、場合によってはリモート無線ヘッド(RRH)と呼ばれる集中型デジタルユニットおよび/またはリモート無線ユニット(RRU)等の分散無線基地局の1つまたは複数の(または全ての)部分も含むことができる。そのようなリモート無線ユニットは、アンテナ一体型無線としてアンテナと一体化されている場合も、一体化されていない場合もある。分散無線基地局の一部分は、分散アンテナシステム(DAS)においてノードと呼ばれる場合もある。ネットワークノードのまた更なる例は、マルチスタンダード無線(MSR)BS等のMSR機器、無線ネットワークコントローラ(RNC)または基地局コントローラ(BSC)等のネットワークコントローラ、送受信機基地局(BTS)、送信ポイント、送信ノード、マルチセル/マルチキャスト協調エンティティ(MCE)、コアネットワークノード(例えば、MSC、MME)、O&Mノード、OSSノード、SONノード、測位ノード(例えば、E-SMLC)、および/またはMDTを含む。別の例として、ネットワークノードは、以下でより詳細に説明するような仮想ネットワークノードとすることができる。しかしながら、より一般的には、ネットワークノードは、無線デバイスに無線ネットワークへのアクセスを可能にし、かつ/もしくは提供するか、または無線ネットワークにアクセスした無線デバイスに何らかのサービスを提供することが可能であり、そのように設定され、調整され、かつ/または動作可能な任意の適切なデバイス(またはデバイスのグループ)を表すことができる。
図8において、ネットワークノード860は、処理回路870と、デバイス可読媒体880と、インターフェース890と、補助機器884と、電源886と、電力回路887と、アンテナ862とを含む。図8の例示的な無線ネットワークにおいて示されるネットワークノード860は、ハードウェアコンポーネントの示される組み合わせを含むデバイスを表す場合があるが、他の実施形態は、コンポーネントの異なる組み合わせを有するネットワークノードを含んでもよい。ネットワークノードが、本明細書に開示されるタスク、特徴、機能および方法を実行するのに必要なハードウェアおよび/またはソフトウェアの任意の適切な組み合わせを含むことが理解されよう。更に、ネットワークノード860のコンポーネントは、大きなボックス内に位置するか、または複数のボックス内に入れ子になった単一のボックスとして示されているが、実際には、ネットワークノードは、単一の示されるコンポーネントを構成する複数の異なる物理的コンポーネントを含んでもよい(例えば、デバイス可読媒体880は、複数の別個のハードドライブおよび複数のRAMモジュールを含んでもよい)。
同様に、ネットワークノード860は、複数の物理的に別個のコンポーネント(例えば、NodeBコンポーネントおよびRNCコンポーネント、またはBTSコンポーネントおよびBSCコンポーネント等)から構成することができ、これらのコンポーネントは各々、独自のそれぞれのコンポーネントを有することができる。ネットワークノード860が複数の別個のコンポーネント(例えば、BTSおよびBSCコンポーネント)を含む特定のシナリオにおいて、別個のコンポーネントのうちの1つまたは複数をいくつかのネットワークノード間で共有することができる。例えば、単一のRNCが、複数のNodeBを制御することができる。そのようなシナリオでは、各固有のNodeBおよびRNCのペアが、いくつかの例では、単一の別個のネットワークノードとみなされる場合がある。いくつかの実施形態では、ネットワークノード860は、複数の無線アクセス技術(RAT)をサポートするように設定することができる。そのような実施形態において、いくつかのコンポーネントを複製することができ(例えば、異なるRATに別個のデバイス可読媒体880)、いくつかのコンポーネントを再利用することができる(例えば、同じアンテナ862を複数のRATによって共有することができる)。ネットワークノード860は、例えば、GSM、WCDMA、LTE、NR、WiFi、またはBluetooth無線技術等の、ネットワークノード860に一体化される異なる無線技術のための様々な示されるコンポーネントの複数のセットも含むことができる。これらの無線技術は、同じまたは異なるチップまたはチップセット、およびネットワークノード860内の他のコンポーネントに一体化され得る。
処理回路870は、ネットワークノードによって提供されるものとして本明細書に説明された任意の決定、計算または類似の動作(例えば、特定の取得動作)を行うように設定される。処理回路870によって実行されるこれらの動作は、例えば、取得された情報を他の情報に変換し、取得された情報もしくは変換された情報をネットワークノードに記憶された情報と比較し、かつ/または取得された情報もしくは変換された情報に基づいて1つまたは複数の動作を実行し、前記処理の結果として決定を行うことによって、処理回路870によって取得される処理情報を含むことができる。
処理回路870は、マイクロプロセッサ、コントローラ、マイクロコントローラ、中央処理ユニット、デジタル信号プロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、または任意の他の適切なコンピューティングデバイス、リソース、または、単独でもしくはデバイス可読媒体880等の他のネットワークノード860コンポーネントと併せてネットワークノード860機能を提供するように動作可能なハードウェア、ソフトウェア、および/もしくは符号化されたロジックの組み合わせのうちの1つまたは複数の組み合わせを含むことができる。例えば、処理回路870は、デバイス可読媒体880にまたは処理回路870内のメモリに記憶された命令を実行することができる。そのような機能は、本明細書に論考される様々な無線特徴、機能または利点のうちの任意のものを提供することを含むことができる。いくつかの実施形態では、処理回路870は、システムオンチップ(SOC)を含むことができる。
いくつかの実施形態では、処理回路870は、無線周波数(RF)送受信機回路872およびベースバンド処理回路874のうちの1つまたは複数を含むことができる。いくつかの実施形態では、無線周波数(RF)送受信機回路872およびベースバンド処理回路874は、別個のチップ(またはチップセット)、基板、または無線ユニットおよびデジタルユニット等のユニット上に存在することができる。代替的な実施形態では、RF送受信機回路872およびベースバンド処理回路874の一部または全てが同じチップもしくはチップセット、ボード、またはユニット上に存在することができる。
特定の実施形態では、ネットワークノード、基地局、eNBまたは他のそのようなネットワークデバイスによって提供されるものとして本明細書に記載される機能のうちのいくつかまたは全ては、デバイス可読媒体880、または処理回路870内のメモリに記憶された命令を実行する処理回路870によって実行することができる。代替的な実施形態では、有線接続方式等で別個のまたは離散したデバイス可読媒体に記憶された命令を実行することなく、機能のうちのいくつかまたは全てが処理回路870によって提供されてもよい。これらの実施形態のうちの任意のものにおいて、デバイス可読ストレージ媒体上に記憶された命令を実行するか否かにかかわらず、処理回路870は、説明された機能を実行するように設定することができる。そのような機能によって提供される利点は、処理回路870単独に、またはネットワークノード860の他のコンポーネントに限定されるものではなく、ネットワークノード860によって全体として享受され、ならびに/またはエンドユーザおよび無線ネットワークによって全般に享受される。
デバイス可読媒体880は、限定ではないが、永続ストレージ、ソリッドステートメモリ、遠隔設置メモリ、磁気媒体、光媒体、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、マスストレージ媒体(例えば、ハードディスク)、リムーバブルストレージ媒体(例えば、フラッシュドライブ、コンパクトディスク(CD)またはデジタルビデオディスク(DVD))、ならびに/または、処理回路870によって用いることができる情報、データおよび/もしくは命令を記憶する任意の他の揮発性もしくは不揮発性の非一時的デバイス可読および/もしくはコンピュータ実行可能メモリデバイスを含む、任意の形態の揮発性または不揮発性のコンピュータ可読メモリを含むことができる。デバイス可読媒体880は、ロジック、ルール、コード、テーブル等のうちの1つまたは複数を含むコンピュータプログラム、ソフトウェア、アプリケーションを含む任意の適切な命令、データもしくは情報、および/または処理回路870によって実行し、ネットワークノード860によって利用することが可能な他の命令を記憶することができる。デバイス可読媒体880を用いて、処理回路870によって行われる任意の計算および/またはインターフェース890を介して受信される任意のデータを記憶することができる。いくつかの実施形態では、処理回路870およびデバイス可読媒体880は、一体化されているとみなすことができる。
インターフェース890は、ネットワークノード860、ネットワーク806、および/またはWD810間のシグナリングおよび/またはデータの有線または無線通信において用いられる。示されるように、インターフェース890は、例えば有線接続を通じてネットワーク806へおよびネットワーク806からデータを送受信するポート/端子194を含む。インターフェース890は、アンテナ862に、または特定の実施形態ではアンテナ862の一部に結合することができる無線フロントエンド回路892も含む。無線フロントエンド回路892は、フィルタ198および増幅器196を含む。無線フロントエンド回路892は、フィルタ198および増幅器196を含む。無線フロントエンド回路892は、アンテナ862および処理回路870に接続することができる。無線フロントエンド回路は、アンテナ862と処理回路870との間で通信される信号を調整するように設定することができる。無線フロントエンド回路892はデジタルデータを受信することができ、このデジタルデータは、他のネットワークノードまたはWDに無線接続を介して送出されることになる。無線フロントエンド回路892は、フィルタ198および/または増幅器196の組み合わせを用いて、デジタルデータを、適切なチャネルおよび帯域幅パラメータを有する無線信号に変換することができる。次に、無線信号は、アンテナ862を介して送信することができる。同様に、データを受信するとき、アンテナ862は無線信号を収集することができ、次に、これらの無線信号は、無線フロントエンド回路892によってデジタルデータに変換される。デジタルデータは処理回路870に渡すことができる。他の実施形態では、インターフェースは、異なる複数のコンポーネントおよび/またはコンポーネントの異なる組み合わせを含むことができる。
特定の代替的な実施形態では、ネットワークノード860は、別個の無線フロントエンド回路892を含まない場合があり、代わりに、処理回路870は無線フロントエンド回路を含んでもよく、別個の無線フロントエンド回路892を有することなくアンテナ862に接続されてもよい。同様に、いくつかの実施形態では、RF送受信機回路872のうちの全てまたはいくつかは、インターフェース890の一部とみなすことができる。更に他の実施形態では、インターフェース890は、無線ユニット(図示せず)の一部として、1つまたは複数のポートまたは端子194、無線フロントエンド回路892、およびRF送受信機回路872を含むことができ、インターフェース890は、デジタルユニット(図示せず)の一部であるベースバンド処理回路874と通信することができる。
アンテナ862は、無線信号を送信および/または受信するように設定された、1つまたは複数のアンテナまたはアンテナアレイを含むことができる。アンテナ862は無線フロントエンド回路892に結合することができ、データおよび/または信号を無線で送信および受信することが可能な任意のタイプのアンテナとすることができる。いくつかの実施形態では、アンテナ862は、例えば、2GHz~66GHzの無線信号を送信/受信するように動作可能な1つまたは複数の無指向性アンテナ、セクタアンテナまたはパネルアンテナを含むことができる。無指向性アンテナは、任意の方向において無線信号を送信/受信するのに用いることができ、セクタアンテナは、特定のエリア内のデバイスから無線信号を送信/受信するのに用いることができ、パネルアンテナは、比較的直線状の線において無線信号を送信/受信するのに用いられる見通し線アンテナとすることができる。いくつかの事例では、2つ以上のアンテナの使用は、MIMOと呼ぶことができる。特定の実施形態では、アンテナ862は、ネットワークノード860と別個とすることができ、インターフェースまたはポートを通じてネットワークノード860に接続可能とすることができる。
アンテナ862、インターフェース890および/または処理回路870は、ネットワークノードによって実行されるものとして本明細書に記載される任意の受信動作および/または特定の取得動作を行うように設定することができる。任意の情報、データおよび/または信号は、無線デバイス、別のネットワークノードおよび/または任意の他のネットワーク機器から受信することができる。同様に、アンテナ862、インターフェース890および/または処理回路870は、ネットワークノードによって実行されるものとして本明細書に記載される任意の送信動作を行うように設定することができる。任意の情報、データおよび/または信号は、無線デバイス、別のネットワークノードおよび/または任意の他のネットワーク機器に送信することができる。
電力回路887は、電力管理回路を含むかまたはこれに結合することができ、ネットワークノード860のコンポーネントに、本明細書に記載の機能を実行するための電力を供給するように設定される。電力回路887は、電源886から電力を受信することができる。電源886および/または電力回路887は、それぞれのコンポーネントに適した形態で(例えば、各それぞれのコンポーネントに必要な電圧および電流レベルで)ネットワークノード860の様々なコンポーネントに電力を提供するように設定することができる。電源886は、電力回路887および/またはネットワークノード860に含まれてもよく、またはこれらの外部にあってもよい。例えば、ネットワークノード860は、入力回路、または電気ケーブル等のインターフェースを介して外部電源(例えば、電気アウトレット)に接続可能とすることができ、これによって外部電源は電力回路887に電源を供給する。更なる例として、電源886は、電力回路887に接続されるかまたは一体化されたバッテリまたはバッテリパックの形態の電源を含むことができる。バッテリは、外部電源が故障した場合のバックアップ電力を提供することができる。光起電デバイス等の他のタイプの電源も使用することができる。
ネットワークノード860の代替的な実施形態は、本明細書に記載の機能のうちの任意のものおよび/または本明細書に記載の主題をサポートするのに必要な任意の機能を含む、ネットワークノードの機能の特定の態様を提供する役割を果たすことができる、図8に示すもの以外の追加のコンポーネントを含んでもよい。例えば、ネットワークノード860は、ネットワークノード860への情報の入力を可能にし、ネットワークノード860からの情報の出力を可能にするユーザインターフェース機器を含むことができる。これは、ユーザが、ネットワークノード860のための診断、維持、修理および他の管理機能を実行することを可能にすることができる。
本明細書において用いられるとき、無線デバイス(WD)は、ネットワークノードおよび/または他の無線デバイスと無線で通信することが可能であり、そのように設定され、調整され、かつ/または動作可能なデバイスを指す。別段の記載がない限り、WDという用語は、本明細書において、ユーザ機器(UE)と交換可能に用いることができる。無線で通信することは、電磁波、電波、赤外線波、および/または空中で情報を伝達するのに適した他のタイプの信号を用いて無線信号を送信および/または受信することを含むことができる。いくつかの実施形態では、WDは、直接的な人間の対話を行うことなく情報を送信および/または受信するように設定することができる。例えば、WDは、内部もしくは外部イベントによってトリガされたとき、またはネットワークからの要求に応じて、所定のスケジュールで情報をネットワークに送信するように設計することができる。WDの例は、限定ではないが、スマートフォン、モバイルフォン、携帯電話、ボイスオーバーIP(VoIP)電話、無線ローカルループフォン、デスクトップコンピュータ、携帯情報端末(PDA)、無線カメラ、ゲームコンソールまたはデバイス、音楽ストレージデバイス、再生機器、ウェアラブル端末デバイス、無線エンドポイント、移動局、タブレット、ラップトップ、ラップトップ埋込み型機器(LEE)、ラップトップ搭載型機器(LME)、スマートデバイス、無線顧客構内機器(CPE)、車両搭載型無線端末デバイス等を含む。WDは、例えば、サイドリンク通信、車両間(V2V)、車両対インフラストラクチャ(V2I)、車両対あらゆるもの(vehicle-to-everything)(V2X)のための3GPP規格を実施することによって、デバイスツーデバイス(D2D)通信をサポートすることができ、この場合、D2D通信デバイスと呼ぶことができる。更に別の特定の例として、モノのインターネット(IoT)のシナリオにおいて、WDは、監視および/または測定を行い、そのような監視および/または測定の結果を別のWDおよび/またはネットワークノードに送信するマシンまたは他のデバイスを表すことができる。WDは、この場合、マシンツーマシン(M2M)デバイスである場合があり、3GPPとの関連において、MTCデバイスと呼ばれる場合もある。1つの特定の例として、WDは、3GPP狭帯域のモノのインターネット(NB-IoT)規格を実施するUEとすることができる。そのようなマシンまたはデバイスの特定の例は、センサ、電力メータ等の計量デバイス、産業機械、または家庭用もしくは個人用電気機器(例えば、冷蔵庫、テレビ等)、個人用ウェアラブル(例えば、腕時計、フィットネストラッカ等)である。他のシナリオでは、WDは、その動作ステータス、またはその動作に関連付けられた他の機能に関して監視および/または報告することが可能な車両または他の機器を表すことができる。上記で説明したWDは、無線接続のエンドポイントを表すことができ、この場合、デバイスは無線端末と呼ぶことができる。更に、上記で説明したようなWDはモバイルとすることができ、この場合、モバイルデバイスまたはモバイル端末と呼ばれる場合もある。
示すように、無線デバイス810は、アンテナ811と、インターフェース814と、処理回路820と、デバイス可読媒体830と、ユーザインターフェース機器832と、補助機器834と、電源836と、電力回路837とを含むことができる。WD810は、いくつか例を挙げると、例えば、GSM、WCDMA、LTE、NR、WiFi、WiMAXまたはBluetooth無線技術等の、WD810によってサポートされる様々な無線技術について、示されるコンポーネントのうちの1つまたは複数の、複数のセットを含むことができる。これらの無線技術は、WD810内のコンポーネントと同じまたは異なるチップまたはチップセットに一体化することができる。
アンテナ811は、無線信号を送信および/または受信するように設定され、インターフェース814に接続された、1つまたは複数のアンテナまたはアンテナアレイを含むことができる。特定の代替的な実施形態において、アンテナ811は、WD810と別個にすることができ、インターフェースまたはポートを通じてWD810に接続可能とすることができる。アンテナ811、インターフェース814および/または処理回路820は、本明細書においてWDによって実行されるものとして説明される任意の受信または送信動作を行うように設定することができる。任意の情報、データおよび/または信号を、ネットワークノードおよび/または別のWDから受信することができる。いくつかの実施形態では、無線フロントエンド回路および/またはアンテナ811はインターフェースとみなすことができる。
示されるように、インターフェース814は、無線フロントエンド回路812およびアンテナ811を含む。無線フロントエンド回路812は、1つまたは複数のフィルタ818および増幅器816を含む。無線フロントエンド回路812は、アンテナ811および処理回路820に接続され、アンテナ811と処理回路820との間で通信される信号を調整するように設定される。無線フロントエンド回路812は、アンテナ811に結合されてもよく、またはアンテナ811の一部であってもよい。いくつかの実施形態では、WD810は、別個の無線フロントエンド回路812を含まない場合があり、むしろ、処理回路820が無線フロントエンド回路を含む場合があり、アンテナ811に接続される場合がある。同様に、いくつかの実施形態では、RF送受信機回路822のうちのいくつかまたは全てをインターフェース814の一部とみなすことができる。無線フロントエンド回路812は、デジタルデータを受信することができ、このデジタルデータは、無線接続を介して他のネットワークノードまたはWDに送出されることになる。無線フロントエンド回路812は、フィルタ818および/または増幅器816の組み合わせを用いて、デジタルデータを、適切なチャネルおよび帯域幅パラメータを有する無線信号に変換することができる。次に、無線信号は、アンテナ811を介して送信することができる。同様に、データを受信するとき、アンテナ811は無線信号を収集することができ、次に、これらの無線信号は、無線フロントエンド回路812によってデジタルデータに変換される。デジタルデータは処理回路820に渡すことができる。他の実施形態では、インターフェースは、異なるコンポーネントおよび/またはコンポーネントの異なる組み合わせを含むことができる。
処理回路820は、マイクロプロセッサ、コントローラ、マイクロコントローラ、中央処理ユニット、デジタル信号プロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、もしくは任意の他の適切なコンピューティングデバイス、リソースのうちの1つまたは複数の組み合わせ、または、単独でもしくはデバイス可読媒体830等の他のWD810コンポーネントと併せてWD810機能を提供するように動作可能な、ハードウェア、ソフトウェアおよび/もしくは符号化ロジックの組み合わせを含むことができる。そのような機能は、本明細書に論考される様々な無線特徴または利点のうちの任意のものを提供することを含むことができる。例えば、処理回路820は、本明細書に開示される機能を提供するためにデバイス可読媒体830にまたは処理回路820内のメモリに記憶された命令を実行することができる。
示されるように、処理回路820は、RF送受信機回路822、ベースバンド処理回路824およびアプリケーション処理回路826のうちの1つまたは複数を含むことができる。他の実施形態では、処理回路は、異なる複数のコンポーネントおよび/またはコンポーネントの異なる組み合わせを含むことができる。特定の実施形態では、WD810の処理回路820は、SOCを含むことができる。いくつかの実施形態では、RF送受信機回路822、ベースバンド処理回路824およびアプリケーション処理回路826は、別個のチップまたはチップセット上にあってもよい。代替的な実施形態では、ベースバンド処理回路824およびアプリケーション処理回路826の一部または全てを組み合わせて1つのチップまたはチップセットにしてもよく、RF送受信機回路822は、別個のチップまたはチップセット上にあってもよい。更に代替的な実施形態では、RF送受信機回路822およびベースバンド処理回路824の一部または全てが同じチップまたはチップセット上にあってもよく、アプリケーション処理回路826は、別個のチップまたはチップセット上にあってもよい。更に他の代替的な実施形態では、RF送受信機回路822、ベースバンド処理回路824およびアプリケーション処理回路826の一部または全てが、同じチップまたはチップセットにおいて組み合わされていてもよい。いくつかの実施形態では、RF送受信機回路822は、インターフェース814の一部分とすることができる。RF送受信機回路822は、処理回路820のためのRF信号を調整することができる。
特定の実施形態において、WDによって実行されるものとして本明細書において記載されている機能のうちのいくつかまたは全ては、デバイス可読媒体830上に記憶された命令を実行する処理回路820によって提供することができ、このデバイス可読媒体830は、特定の実施形態では、コンピュータ可読ストレージ媒体とすることができる。代替的な実施形態では、有線方式等で別個のまたは離散したデバイス可読ストレージ媒体上に記憶された命令を実行することなく、機能のうちのいくつかまたは全てが処理回路820によって提供されてもよい。これらの特定の実施形態のうちの任意のものにおいて、デバイス可読ストレージ媒体上に記憶された命令を実行するか否かにかかわらず、処理回路820は、説明された機能を実行するように設定することができる。そのような機能によって提供される利点は、処理回路820単独に、またはWD810の他のコンポーネントに限定されるものではなく、WD810によって全体として享受され、ならびに/またはエンドユーザおよび無線ネットワークによって全般に享受される。
処理回路820は、本明細書においてWDによって実行されるものとして記載された任意の決定、計算または類似の動作(例えば、特定の取得動作)を行うように設定することができる。処理回路820によって実行されるときのこれらの動作は、例えば、取得された情報を他の情報に変換し、取得された情報または変換された情報をWD810によって記憶された情報と比較し、かつ/または取得された情報もしくは変換された情報に基づいて1つまたは複数の動作を実行し、前記処理の結果として決定を行うことによって、処理回路820によって取得される処理情報を含むことができる。
デバイス可読媒体830は、ロジック、ルール、コード、テーブル等のうちの1つまたは複数を含むコンピュータプログラム、ソフトウェア、アプリケーション、および/または処理回路820によって実行することが可能な他の命令を記憶するように動作可能とことができる。デバイス可読媒体830は、コンピュータメモリ(例えば、ランダムアクセスメモリ(RAM)またはリードオンリーメモリ(ROM))、マスストレージ媒体(例えば、ハードディスク)、リムーバブルストレージ媒体(例えば、コンパクトディスク(CD)またはデジタルビデオディスク(DVD))、ならびに/または、処理回路820によって用いることができる情報、データおよび/もしくは命令を記憶する任意の他の揮発性もしくは不揮発性の非一時的デバイス可読および/もしくはコンピュータ実行可能メモリデバイスを含むことができる。いくつかの実施形態では、処理回路820およびデバイス可読媒体830は、一体化されているとみなすことができる。
ユーザインターフェース機器832は、人間のユーザがWD810とインタラクトすることを可能にするコンポーネントを提供することができる。そのようなインタラクションは、視覚、聴覚、触覚等の多くの形態をとることができる。ユーザインターフェース機器832は、ユーザへの出力を生成し、ユーザがWD810に入力を提供することを可能にするように動作可能であり得る。インタラクションのタイプは、WD810に設置されたユーザインターフェース機器832のタイプに依拠して変動する場合がある。例えば、WD810がスマートフォンである場合、インタラクションはタッチスクリーンを介したものであり得、WD810がスマートメータである場合、インタラクションは、使用量(例えば使用ガロン数)を提供するスクリーン、または可聴アラート(例えば煙が検出される場合)を提供するスピーカを通じたものであり得る。ユーザインターフェース機器832は、入力インターフェース、デバイスおよび回路と、出力インターフェース、デバイスおよび回路とを含むことができる。ユーザインターフェース機器832は、WD810への情報の入力を可能にするように設定され、処理回路820が入力情報を処理することを可能にするために処理回路820に接続される。ユーザインターフェース機器832は、例えば、マイクロフォン、近接性または他のセンサ、キー/ボタン、タッチディスプレイ、1つまたは複数のカメラ、USBポートまたは他の入力回路を含むことができる。ユーザインターフェース機器832は、WD810からの情報の出力を可能にし、処理回路820がWD810からの情報を出力することを可能にするようにも設定される。ユーザインターフェース機器832は、例えば、スピーカ、ディスプレイ、振動回路、USBポート、ヘッドフォンインターフェースまたは他の出力回路を含むことができる。ユーザインターフェース機器832の1つまたは複数の入力および出力インターフェース、デバイスおよび回路を用いて、WD810は、エンドユーザおよび/または無線ネットワークと通信し、これらが本明細書に記載の機能から利益を受けることを可能にすることができる。
補助機器834は、通常、WDによって実行されない場合がある、より特殊な機能を提供するように動作可能である。これは、様々な目的で測定を行うための専用センサ、有線通信等の更なるタイプの通信のためのインターフェース等を含むことができる。補助機器834のコンポーネントを含めることおよびこのコンポーネントのタイプは、実施形態および/またはシナリオに依拠して変動し得る。
電源836は、いくつかの実施形態では、バッテリまたはバッテリパックの形態をとる場合がある。外部電源(例えば、電気アウトレット)、光起電デバイス、または電池等の他のタイプの電源も用いることができる。WD810は、本明細書に記載されるかまたは示される任意の機能を実行するために電源836からの電力を必要とするWD810の様々な部分に、電源836から電力を送達するための電力回路837も更に備えることができる。特定の実施形態では、電力回路837は、電力管理回路を含むことができる。電力回路837は、更にまたは代替的に、外部電源から電力を受け取るように動作可能とすることができ、その場合、WD810は、入力回路、または電力ケーブル等のインターフェースを介して外部電源(電気アウトレット等)に接続可能とすることができる。電力回路837は、特定の実施形態では、外部電源から電源836に電力を送達するように動作可能でもあり得る。これは、例えば、電源836の充電のためであり得る。電力回路837は、電源836からの電力に対し任意のフォーマット設定、変換または他の変更を行い、電力が供給されるWD810のそれぞれのコンポーネントに適した電力を生成することができる。
図9は、本明細書に記載の様々な態様によるUEの1つの実施形態を示す。本明細書において用いられるとき、ユーザ機器またはUEは、必ずしも、関連デバイスを所有および/または操作する人間のユーザの意味でのユーザを有しない場合がある。代わりに、UEは、人間のユーザへの販売または人間のユーザによる動作が意図されているが、特定の人間のユーザに関連付けられていない場合があるか、または最初は関連付けられていないデバイス(例えば、スマートスプリンクラーコントローラ)を表す場合がある。代替的に、UEは、エンドユーザへの販売またはエンドユーザによる動作が意図されていないが、ユーザの利益に関連し得るかまたはそのために動作し得るデバイス(例えば、スマートパワーメータ)を表す場合がある。UE9200は、NB-IoT UE、マシンタイプ通信(MTC)UE、および/または拡張型MTC(eMTC)UEを含む、第3世代パートナーシッププロジェクト(3GPP)によって識別される任意のUEとすることができる。UE900は、図9に示されているように、第3世代パートナーシッププロジェクト(3GPP)のGSM、UMTS、LTEおよび/または5G規格等の、3GPPによって公布された1つまたは複数の通信規格に従う通信のために設定されたWDの1つの例である。上述したように、WDおよびUEという用語は、交換可能に用いることができる。したがって、図9はUEであるが、本明細書において論考されるコンポーネントはWDに等しく適用可能であり、逆もまた同様である。
図9において、UE900は、入出力インターフェース905、無線周波数(RF)インターフェース909、ネットワーク接続インターフェース911、ランダムアクセスメモリ(RAM)917、リードオンリーメモリ(ROM)919およびストレージ媒体921等を含むメモリ915、通信サブシステム931、電源913および/もしくは任意の他のコンポーネント、またはこれらの任意の組み合わせに作動的に連結される処理回路901を含む。ストレージ媒体921は、オペレーティングシステム923、アプリケーションプログラム925およびデータ927を含む。他の実施形態において、ストレージ媒体921は、他の類似のタイプの情報を含むことができる。特定のUEは、図9に示すコンポーネントの全て、またはコンポーネントのサブセットのみを利用することができる。コンポーネント間の統合レベルは、UE間で変動する場合がある。更に、特定のUEは、複数のプロセッサ、メモリ、送受信機、送信機、受信機等のコンポーネントの複数のインスタンスを含むことができる。
図9において、処理回路901は、コンピュータ命令およびデータを処理するように設定することができる。処理回路901は、(例えば、ディスクリートロジック、FPGA、ASIC等における)1つまたは複数のハードウェア実施状態マシン等の、メモリ内のマシン可読コンピュータプログラムとして記憶されたマシン命令を実行するように動作可能な任意の連続状態マシン;適切なファームウェアと共にプログラマブルロジック;適切なソフトウェアと共に、マイクロプロセッサまたはデジタル信号プロセッサ(DSP)等の1つまたは複数のプログラム内蔵方式汎用プロセッサ;または上記の任意の組み合わせを実施するように設定することができる。例えば、処理回路901は、2つの中央処理ユニット(CPU)を含むことができる。データは、コンピュータによる使用に適した形態の情報とすることができる。
示される実施形態において、入出力インターフェース905は、入力デバイス、出力デバイス、または入力および出力デバイスへの通信インターフェースを提供するように設定することができる。UE900は、入出力インターフェース905を介して出力デバイスを用いるように設定することができる。出力デバイスは、入力デバイスと同じタイプのインターフェースポートを用いることができる。例えば、USBポートを用いて、UE900への入力およびUE900への出力を提供することができる。出力デバイスは、スピーカ、サウンドカード、ビデオカード、ディスプレイ、モニタ、プリンタ、アクチュエータ、エミッタ、スマートカード、別の出力デバイス、またはこれらの任意の組み合わせとすることができる。UE900は、入力デバイスを用いて、入出力インターフェース905を介してユーザがUE900内に情報を捕捉することを可能にするように設定することができる。入力デバイスは、タッチセンシティブまたはプレゼンスセンシティブディスプレイ、カメラ(例えば、デジタルカメラ、デジタルビデオカメラ、ウェブカメラ等)、マイクロフォン、センサ、マウス、トラックボール、方向パッド、トラックパッド、スクロールホイール、スマートカード等を含むことができる。プレゼンスセンシティブディスプレイは、ユーザからの入力を検知する容量性または抵抗性タッチセンサを含むことができる。センサは、例えば、加速度計、ジャイロスコープ、傾きセンサ、力センサ、磁力計、光センサ、近接センサ、別の類似のセンサ、またはこれらの任意の組み合わせを含むことができる。例えば、入力デバイスは、加速度計、磁力計、デジタルカメラ、マイクロフォンおよび光センサを含むことができる。
図9において、RFインターフェース909は、送信機、受信機およびアンテナ等のRFコンポーネントへの通信インターフェースを提供するように設定することができる。ネットワーク接続インターフェース911は、ネットワーク943aへの通信インターフェースを提供するように設定することができる。ネットワーク943aは、ローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)、コンピュータネットワーク、無線ネットワーク、電気通信ネットワーク、別の類似のネットワークまたはこれらの任意の組み合わせ等の有線および/または無線ネットワークを包含することができる。例えば、ネットワーク943aはWi-Fiネットワークを含むことができる。ネットワーク接続インターフェース911は、Ethernet、TCP/IP、SONET、ATM等の1つまたは複数の通信プロトコルに従って通信ネットワークを介して1つまたは複数の他のデバイスと通信するのに用いられる受信機および送信機インターフェースを含むように設定することができる。ネットワーク接続インターフェース911は、通信ネットワークリンク(例えば、光、電気等)に適切な受信機および送信機機能を実施することができる。送信機および受信機機能は、回路コンポーネント、ソフトウェアもしくはファームウェアを共有することができるか、または代替的に別個に実施されてもよい。
RAM917は、バス902を介して処理回路901とインターフェースし、オペレーティングシステム、アプリケーションプログラムおよびデバイスドライバ等のソフトウェアプログラムの実行中にデータまたはコンピュータ命令のストレージまたはキャッシュを提供するように設定することができる。ROM919は、コンピュータ命令またはデータを処理回路901に提供するように設定することができる。例えば、ROM919は、基本入力および出力(I/O)、スタートアップ、または不揮発性メモリに記憶されたキーボードからのキーストロークの受信等の基本システム機能のための不変低レベルシステムコードまたはデータを記憶するように設定することができる。ストレージ媒体921は、RAM、ROM、プログラマブルリードオンリーメモリ(PROM)、消去可能プログラマブルリードオンリーメモリ(EPROM)、電気的消去可能プログラマブルリードオンリーメモリ(EEPROM)、磁気ディスク、光ディスク、フロッピーディスク、ハードディスク、リムーバブルカートリッジまたはフラッシュドライブ等のメモリを含むように設定することができる。1つの例では、ストレージ媒体921は、オペレーティングシステム923、ウェブブラウザアプリケーション等のアプリケーションプログラム925、ウィジェットもしくはガジェットエンジンまたは別のアプリケーション、およびデータファイル927を含むように設定することができる。ストレージ媒体921は、UE900による使用のために、多岐にわたる様々なオペレーティングシステム、またはオペレーティングシステムの組み合わせのうちの任意のものを記憶することができる。
ストレージ媒体921は、独立ディスクの冗長アレイ(RAID)、フロッピーディスク、フラッシュメモリ、USBフラッシュドライブ、外部ハードディスクドライブ、サムドライブ、ペンドライブ、キードライブ、高密度デジタル多用途ディスク(HD-DVD)光ディスクドライブ、内部ハードディスクドライブ、ブルーレイ光ディスクドライブ、ホログラフィックデジタルデータストレージ(HDDS)光ディスクドライブ、外部ミニデュアルインラインメモリモジュール(DIMM)、同期ダイナミックランダムアクセスメモリ(SDRAM)、外部マイクロDIMM SDRAM、加入者アイデンティティモジュールまたはリムーバブルユーザアイデンティティ(SIM/RU)モジュール等のスマートカードメモリ、他のメモリ、またはこれらの任意の組み合わせ等の複数の物理ドライブユニットを含むように設定することができる。ストレージ媒体921は、データをオフロードまたはアップロードするために、UE900が、一時的メモリ媒体または非一時的メモリ媒体に記憶された、コンピュータ実行可能命令、アプリケーションプログラム等にアクセスすることを許可することができる。通信システムを利用するもの等の製造品を、ストレージ媒体921に有形に埋め込むことができる。ストレージ媒体は、デバイス可読媒体を含むことができる。
図9において、処理回路901は、通信サブシステム931を用いてネットワーク943bと通信するように設定することができる。ネットワーク943aおよびネットワーク943bは、1つまたは複数の同じネットワークまたは異なるネットワークとすることができる。通信サブシステム931は、ネットワーク943bと通信するのに用いられる1つまたは複数の送受信機を含むように設定することができる。例えば、通信サブシステム931は、IEEE802.2、CDMA、WCDMA、GSM、LTE、UTRAN、WiMax等のような1つまたは複数の通信プロトコルに従って、無線アクセスネットワーク(RAN)の別のWD、UEまたは基地局等の、無線通信が可能な別のデバイスの1つまたは複数のリモート送受信機と通信するのに用いられる1つまたは複数の送受信機を含むように設定することができる。各送受信機は、それぞれ、RANリンクに適した送信機機能または受信機機能(例えば周波数配分等)を実施するための送信機933および/または受信機935を含むことができる。更に、各送受信機の送信機933および受信機935は、回路コンポーネント、ソフトウェアもしくはファームウェアを共有してもよく、または代替的に、別個に実施されてもよい。
示される実施形態では、通信サブシステム931の通信機能は、データ通信、ボイス通信、マルチメディア通信、Bluetooth等の短距離通信、近距離通信、位置を特定するためのグローバルポジショニングシステム(GPS)の使用等の位置ベースの通信、別の同様の通信機能、またはこれらの任意の組み合わせを含むことができる。例えば、通信サブシステム931は、セルラ通信、Wi-Fi通信、Bluetooth通信およびGPS通信を含むことができる。ネットワーク943bは、ローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)、コンピュータネットワーク、無線ネットワーク、電気通信ネットワーク、別の同様のネットワーク、またはこれらの任意の組み合わせ等の有線および/または無線ネットワークを包含することができる。例えば、ネットワーク943bは、セルラネットワーク、Wi-Fiネットワークおよび/または近距離場ネットワークとすることができる。電源913は、UE900のコンポーネントに交流(AC)または直流(DC)電力を提供するように設定することができる。
本明細書に記載の特徴、利点および/または機能は、UE900のコンポーネントのうちの1つにおいて実施されてもよく、またはUE900の複数のコンポーネントにわたって分割されてもよい。更に、本明細書に記載の特徴、利点および/または機能は、ハードウェア、ソフトウェアまたはファームウェアの任意の組み合わせで実施することができる。1つの例では、通信サブシステム931は、本明細書に記載のコンポーネントのうちの任意のものを含むように設定することができる。更に、処理回路901は、バス902を通じて、そのようなコンポーネントのうちの任意のものと通信するように設定することができる。別の例では、そのようなコンポーネントのうちの任意のものは、処理回路901によって実行されると、本明細書に記載の対応する機能を実行するメモリに記憶されたプログラム命令によって表すことができる。別の例では、そのようなコンポーネントのうちの任意のものの機能は、処理回路901と通信サブシステム931との間で分割することができる。別の例では、そのようなコンポーネントのうちの任意のものの計算集約的でない機能をソフトウェアまたはファームウェアで実施し、計算集約的機能をハードウェアで実施することができる。
図10は、いくつかの実施形態によって実施される機能を仮想化することができる仮想化環境1000を示す概略ブロック図である。この関連において、仮想化とは、ハードウェアプラットフォーム、ストレージデバイスおよびネットワーキングリソースを仮想化することを含むことができる装置またはデバイスの仮想バージョンの作成を意味する。本明細書において用いられるとき、仮想化は、ノード(例えば、仮想化された基地局または仮想化された無線アクセスノード)、またはデバイス(例えば、UE、無線デバイスまたは任意の他のタイプの通信デバイス)もしくはそのコンポーネントに適用することができ、機能のうちの少なくとも一部分が1つまたは複数の仮想コンポーネントとして(例えば、1つもしくは複数のネットワークにおいて1つもしくは複数の物理的処理ノード上で実行される、1つまたは複数のアプリケーション、コンポーネント、機能、仮想マシンまたはコンテナを介して)実施される実施態様に関する。
いくつかの実施形態では、本明細書に記載の機能のうちのいくつかまたは全ては、ハードウェアノード1030のうちの1つまたは複数によってホストされる1つまたは複数の仮想環境1000において実施される1つまたは複数の仮想マシンによって実行される仮想コンポーネントとして実施することができる。更に、仮想ノードが無線アクセスノードでないか、または無線接続性(例えばコアネットワークノード)を必要としない実施形態では、このとき、ネットワークノードは完全に仮想化することができる。
機能は、本明細書に開示される実施形態のうちのいくつかの特徴、機能および/または利点のうちのいくつかを実施するように動作可能な1つまたは複数のアプリケーション1020(代替的に、ソフトウェアインスタンス、仮想機器、ネットワーク機能、仮想ノード、仮想ネットワーク機能等と呼ばれ得る)によって実施することができる。アプリケーション1020は、処理回路1060およびメモリ1090を含むハードウェア1030を提供する仮想化環境1000において実行される。メモリ1090は、処理回路1060によって実行可能な命令1095を含み、これによって、アプリケーション1020は、本明細書に開示される特徴、利点および/または機能のうちの1つまたは複数を提供するように動作可能である。
仮想化環境1000は、民生(COTS)プロセッサ、専用の特定用途向け集積回路(ASIC)、またはデジタルもしくはアナログハードウェアコンポーネントもしくは専用プロセッサを含む任意の他のタイプの処理回路とすることができる、1つまたは複数のプロセッサまたは処理回路1060のセットを含む汎用または専用ネットワークハードウェアデバイス1030を含む。各ハードウェアデバイスは、処理回路1060によって実行される命令1095またはソフトウェアを一時的に記憶するための非持続性メモリとすることができるメモリ1090-1を含むことができる。各ハードウェアデバイスは、物理的ネットワークインターフェース1080を含む、ネットワークインターフェースカードとしても知られる1つまたは複数のネットワークインターフェースコントローラ(NIC)1070を含むことができる。各ハードウェアデバイスは、処理回路1060によって実行可能なソフトウェア1095および/または命令が記憶された非一時的持続性マシン可読ストレージ媒体1090-2も含むことができる。ソフトウェア1095は、1つまたは複数の仮想化層1050(ハイパーバイザとも呼ばれる)をインスタンス化するためのソフトウェア、仮想マシン1040を実行するためのソフトウェア、および本明細書に記載のいくつかの実施形態に関係して説明した機能、特徴および/または利点を実行することを可能にするソフトウェアを含む、任意のタイプのソフトウェアを含むことができる。
仮想マシン1040は、仮想処理、仮想メモリ、仮想ネットワーキングまたはインターフェース、および仮想ストレージを含み、対応する仮想化層1050またはハイパーバイザによって実行することができる。仮想機器1020のインスタンスの異なる実施形態は、仮想マシン1040のうちの1つまたは複数において実施することができ、実施は、様々な方式で行うことができる。
動作中、処理回路1060は、ハイパーバイザまたは仮想化層1050をインスタンス化するためのソフトウェア1095を実行し、これは場合によっては、仮想マシンモニタ(VMM)と呼ばれる場合がある。仮想化層1050は、仮想マシン1040に対しネットワーキングハードウェアのように見える仮想オペレーティングプラットフォームを提示することができる。
図10に示すように、ハードウェア1030は、汎用または専用コンポーネントを有するスタンドアロンネットワークノードとすることができる。ハードウェア1030は、アンテナ10225を含むことができ、仮想化を介していくつかの機能を実施することができる。代替的に、ハードウェア1030は、(例えば、データセンタまたは顧客構内機器(CPE)におけるような)ハードウェアのより大きなクラスタの一部とすることができ、ここで、多くのハードウェアノードは協働し、管理およびオーケストレーション(MANO)10100を介して管理される。MANOは、中でも、アプリケーション1020のライフサイクル管理を監督する。
ハードウェアの仮想化は、いくつかの状況では、ネットワーク機能仮想化(NFV)と呼ばれる。NFVを用いて、多くのネットワーク機器タイプを、業界標準の高容量サーバハードウェア、物理的スイッチおよび物理的ストレージに統合することができる。これは、データセンタおよび顧客構内機器内に配置することができる。
NFVとの関連において、仮想マシン1040は、プログラムを、これらが物理的非仮想化マシン上で実行されているかのように実行する、物理的マシンのソフトウェア実施とすることができる。仮想マシン1040の各々、およびその仮想マシンを実行するハードウェア1030の一部は、その仮想マシンに専用のハードウェアであれ、かつ/またはこの仮想マシンによって、複数の仮想マシン1040のうちの他のものと共有されるハードウェアであれ、別個の仮想ネットワーク要素(VNE)を形成する。
更に、NFVとの関連において、仮想ネットワーク機能(VNF)は、ハードウェアネットワーキングインフラストラクチャ1030の上位にある1つまたは複数の仮想マシン1040において実行される特定のネットワーク機能を扱う役割を果たし、図10におけるアプリケーション1020に対応する。
いくつかの実施形態では、各々が1つまたは複数の送信機10220および1つまたは複数の受信機10210を含む1つまたは複数の無線ユニット10200を、1つまたは複数のアンテナ10225に結合することができる。無線ユニット10200は、1つまたは複数の適切なネットワークインターフェースを介してハードウェアノード1030と直接通信することができ、これを仮想コンポーネントと組み合わせて用いて、仮想ノードに、無線アクセスノードまたは基地局等の無線機能を提供することができる。
いくつかの実施形態では、いくつかのシグナリングは、ハードウェアノード1030と無線ユニット10200との間の通信に代替的に用いられ得る制御システム10230の使用により行うことができる。
図11を参照すると、一実施形態によれば、通信システムは、3GPPタイプのセルラネットワーク等の通信ネットワーク1110を含み、これは、無線アクセスネットワーク等のアクセスネットワーク1111と、コアネットワーク1114とを含む。アクセスネットワーク1111は、各々が対応するカバレッジエリア1113a、1113b、1113cを定義する、NB、eNB、gNBまたは他のタイプの無線アクセスポイント等の複数の基地局1112a、1112b、1112cを含む。各基地局1112a、1112b、1112cは、有線または無線接続1115を通じてコアネットワーク1114に接続可能である。カバレッジエリア1113c内に位置する第1のUE1191は、対応する基地局1112cに無線で接続されるか、またはこの基地局によってページングされるように設定される。カバレッジエリア1113a内の第2のUE1192は、対応する基地局1112aに無線で接続可能である。この例には複数のUE1191、1192が示されているが、開示される実施形態は、単一のUEがカバレッジエリア内にある状況、または単一のUEが対応する基地局1112に接続している状況にも等しく適用可能である。
通信ネットワーク1110自体がホストコンピュータ1130に接続される。これは、スタンドアロンサーバのハードウェアおよび/もしくはソフトウェア、クラウド実施サーバ、分散サーバにおいて、またはサーバファーム内の処理リソースとして具現化することができる。ホストコンピュータ1130は、サービスプロバイダの所有もしくは制御下にあってもよく、またはサービスプロバイダによってもしくはサービスプロバイダの代わりに動作してもよい。通信ネットワーク1110とホストコンピュータ1130との間の接続1121および1122は、コアネットワーク1114からホストコンピュータ1130に直接延びてもよく、またはオプションの中間ネットワーク1120を介してもよい。中間ネットワーク1120は、パブリックネットワーク、プライベートネットワーク、またはホストされたネットワークのうちの1つ、または2つ以上の組み合わせとすることができ、中間ネットワーク1120は、存在する場合、バックボーンネットワークまたはインターネットとすることができ、特に、中間ネットワーク1120は、2つ以上のサブネットワーク(図示せず)を含むことができる。
図11の通信システムは、全体として、接続されたUE1191、1192とホストコンピュータ1130との間の接続性を可能にする。接続性は、オーバーザトップ(OTT)接続1150として記載することができる。ホストコンピュータ1130および接続されたUE1191、1192は、アクセスネットワーク1111、コアネットワーク1114、任意の中間ネットワーク1120、および可能な更なるインフラストラクチャ(図示せず)を仲介として用いて、OTT接続1150を介してデータおよび/またはシグナリングを通信するように設定される。OTT接続1150は、OTT接続1150が通過する、参加している通信デバイスが、アップリンク通信およびダウンリンク通信のルーティングに気づかないという意味で、トランスペアレントであり得る。例えば、基地局1112は、ホストコンピュータ1130から発信されたデータが、接続されたUE1191に転送される(例えば、ハンドオーバされる)、到来するダウンリンク通信の過去のルーティングに関して通知されないか、または通知される必要がない場合がある。同様に、基地局1112は、UE1191からホストコンピュータ1130に向けて発信される出力アップリンク通信の未来のルーティングを知る必要がない。
ここで、一実施形態による、前の段落で検討された、UE、基地局およびホストコンピュータの例示的な実施態様が図12を参照して説明される。通信システム1200において、ホストコンピュータ1210は、通信システム1200の異なる通信のインターフェースとの有線接続または無線接続をセットアップし維持するように設定された通信インターフェース1216を含むハードウェア1215を備える。ホストコンピュータ1210は、記憶および/または処理機能を有することができる処理回路1218を更に含む。特に、処理回路1218は、命令を実行するように適合された、1つまたは複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイまたはこれらの組み合わせ(図示せず)を含むことができる。ホストコンピュータ1210は、ホストコンピュータ1210に記憶されるかまたはホストコンピュータ1210によってアクセス可能であり、処理回路1218によって実行可能なソフトウェア1211を更に含む。ソフトウェア1211は、ホストアプリケーション1212を含む。ホストアプリケーション1212は、UE1230およびホストコンピュータ1210において終端するOTT接続1250を介して接続するUE1230等のリモートユーザにサービスを提供するように動作可能であり得る。リモートユーザにサービスを提供する際、ホストアプリケーション1212は、OTT接続1250を用いて送信されるユーザデータを提供することができる。
通信システム1200は、通信システムにおいて提供される基地局1220を更に含み、基地局1220は、この基地局がホストコンピュータ1210およびUE1230と通信することを可能にするハードウェア1225を備える。ハードウェア1225は、通信システム1200の異なる通信デバイスのインターフェースとの有線または無線接続をセットアップし、維持するための通信インターフェース1226と、基地局1220によってサービングされているカバレッジエリア(図12に示さず)内に位置するUE1230との少なくとも無線接続1270をセットアップし、維持するための無線インターフェース1227とを含むことができる。通信インターフェース1226は、ホストコンピュータ1210への接続1260を容易にするように設定することができる。接続1260は、直接であってもよく、または、通信システムのコアネットワーク(図12に示さず)および/もしくは通信システム外の1つもしくは複数の中間ネットワークを通過してもよい。示される実施形態では、基地局1220のハードウェア1225は、処理回路1228を更に含み、処理回路1228は、命令を実行するように適合された、1つまたは複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイまたはこれらの組み合わせ(図示せず)を含むことができる。基地局1220は、内部に記憶されるか、または外部接続を介してアクセス可能なソフトウェア1221を更に有する。
通信システム1200は、既に参照したUE1230を更に含む。そのハードウェア1235は、UE1230が現在位置しているカバレッジエリアをサービングする基地局との無線接続1270をセットアップし、維持するように設定された無線インターフェース1237を含むことができる。UE1230のハードウェア1235は、命令を実行するように適応された、1つまたは複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイまたはこれらの組み合わせ(図示せず)を含むことができる処理回路1238を更に含む。UE1230は、UE1230に記憶されるかまたはUE1230によってアクセス可能であり、処理回路1238によって実行可能なソフトウェア1231を更に含む。ソフトウェア1231は、クライアントアプリケーション1232を含む。クライアントアプリケーション1232は、ホストコンピュータ1210のサポートにより、UE1230を介して人間または非人間ユーザにサービスを提供するように動作可能とすることができる。ホストコンピュータ1210において、実行中のホストアプリケーション1212は、UE1230およびホストコンピュータ1210において終端するOTT接続1250を介して実行中のクライアントアプリケーション1232と通信することができる。サービスをユーザに提供する際、クライアントアプリケーション1232は、ホストアプリケーション1212からの要求データを受信し、要求データに応答してユーザデータを提供することができる。OTT接続1250は、要求データおよびユーザデータの双方を転送することができる。クライアントアプリケーション1232は、ユーザとインタラクトして、提供するユーザデータを生成することができる。
図12に示すホストコンピュータ1210、基地局1220およびUE1230は、それぞれ、図11のホストコンピュータ1130、基地局1112a、1112b、1112cのうちの1つ、およびUE1191、1192のうちの1つと類似しているかまたは同一である場合があることに留意されたい。すなわち、これらのエンティティの内部の機能は、図12に示すとおりとすることができ、これと独立して、周囲のネットワークトポロジは図11に示すものとすることができる。
図12において、OTT接続1250は、任意の中間デバイスおよびこれらのデバイスを介したメッセージの厳密なルーティングへの明確な言及をすることなく、基地局1220を介したホストコンピュータ1210とUE1230との間の通信を示すように抽象的に描かれている。ネットワークインフラストラクチャはルーティングを決定することができ、このルーティングは、UE1230から、もしくはホストコンピュータ1210を運用しているサービスプロバイダから、または双方から隠れるように設定することができる。OTT接続1250がアクティブである間、ネットワークインフラストラクチャは、(例えば、負荷平衡の検討またはネットワークの再設定に基づいて)ルーティングを動的に変更する判定を更に行うことができる。
UE1230と基地局1220との間の無線接続1270は、本開示全体を通じて説明される実施形態の教示に従う。様々な実施形態のうちの1つまたは複数が、OTT接続1250を用いてUE1230に提供されるOTTサービスの性能を改善する。OTT接続1250において、無線接続1270は最後のセグメントを形成する。より厳密には、これらの実施形態の教示は、データレートおよび/またはレイテンシを改善することができ、それによって、ユーザ待ち時間の低減、およびより良好な応答性等の利益を提供することができる。
1つまたは複数の実施形態が改善するデータレート、レイテンシおよび他の要素を監視する目的で、測定手順が提供され得る。更に、測定結果の変動に応答して、ホストコンピュータ1210とUE1230との間のOTT接続1250を再設定するためのオプションのネットワーク機能が存在してもよい。OTT接続1250を再設定するための測定手順および/またはネットワーク機能は、ホストコンピュータ1210のソフトウェア1211およびハードウェア1215において、もしくはUE1230のソフトウェア1231およびハードウェア1235において、または双方において実施することができる。実施形態において、センサ(図示せず)は、OTT接続1250が通過する通信デバイスにおいて、またはこの通信デバイスと関連付けて展開することができ、センサは、上記で例示した監視量の値を供給することによって、またはソフトウェア1211、1231が監視量を計算もしくは推定することができる他の物理的量の値を供給することによって、測定手順に参加することができる。OTT接続1250の再設定は、メッセージフォーマット、再送信設定、好ましいルーティング等を含むことができ、再設定は基地局1220に影響を与える必要がなく、基地局1220にとって未知または知覚不可能なものであってもよい。そのような手順および機能性は、当該技術分野において、既知であり得、実施することができる。特定の実施形態において、測定は、ホストコンピュータ1210による、スループット、伝播時間、レイテンシ等の測定を容易にする専有UEシグナリングを含むことができる。測定は、ソフトウェア1211および1231が、伝播時間、エラー等を監視しながら、OTT接続1250を用いて、メッセージ、特に空のまたは「ダミー」メッセージが送信されるようにすることで実施することができる。
図13は、1つの実施形態による、通信システムにおいて実施される方法を示すフローチャートである。通信システムは、図11および図12を参照して説明したものとすることができる、ホストコンピュータ、基地局およびUEを含む。本開示を単純にするために、このセクションには、図13への図面参照のみが含まれる。ステップ1310において、ホストコンピュータはユーザデータを提供する。ステップ1310のサブステップ1311(オプションとすることができる)において、ホストコンピュータは、ホストアプリケーションを実行することによってユーザデータを提供する。ステップ1320において、ホストコンピュータは、ユーザデータをUEに搬送する送信を開始する。ステップ1330(オプションとすることができる)において、基地局は、本開示全体を通じて説明される実施形態に教示に従って、ホストコンピュータが開始した送信において搬送されたユーザデータをUEに送信する。ステップ1340(これもオプションとすることができる)において、UEは、ホストコンピュータによって実行されるホストアプリケーションに従ってクライアントアプリケーションを実行する。
図14は、1つの実施形態による、通信システムにおいて実施される方法を示すフローチャートである。通信システムは、図11および図12を参照して説明したものであり得るホストコンピュータ、基地局およびUEを含む。本開示を単純にするために、図14への図面参照のみがこのセクションに含まれる。本方法のステップ1410において、ホストコンピュータはユーザデータを提供する。オプションのサブステップ(図示せず)において、ホストコンピュータは、ホストアプリケーションを実行することによってユーザデータを提供する。ステップ1420において、ホストコンピュータは、ユーザデータをUEに搬送する送信を開始する。送信は、本開示全体を通じて説明される実施形態に教示に従って、基地局を通過することができる。ステップ1430(オプションとすることができる)において、UEは、送信において搬送されたユーザデータを受信する。
図15は、1つの実施形態による、通信システムにおいて実施される方法を示すフローチャートである。通信システムは、図11および図12を参照して説明したものであり得るホストコンピュータ、基地局およびUEを含む。本開示を単純にするために、図15への図面参照のみがこのセクションに含まれる。ステップ1510(オプションとすることができる)において、UEは、ホストコンピュータによって提供された入力データを受信する。更にまたは代替的に、ステップ1520において、UEはユーザデータを提供する。ステップ1520のサブステップ1521(オプションとすることができる)において、UEは、クライアントアプリケーションを実行することによってユーザデータを提供する。ステップ1510のサブステップ1511(オプションとすることができる)において、UEは、ホストコンピュータによって提供された受信した入力データに応答してユーザデータを提供するクライアントアプリケーションを実行する。ユーザデータを提供する際、実行されるクライアントアプリケーションは、ユーザから受信されるユーザ入力を更に検討することができる。ユーザデータが提供された特定の方式と無関係に、UEは、サブステップ1530(オプションとすることができる)において、ホストコンピュータへのユーザデータの送信を開始する。方法のステップ1540において、ホストコンピュータは、本開示全体を通じて説明された実施形態の教示に従って、UEから送信されたユーザデータを受信する。
図16は、1つの実施形態による、通信システムにおいて実施される方法を示すフローチャートである。通信システムは、図11および図12を参照して説明したものであり得るホストコンピュータ、基地局およびUEを含む。本開示を単純にするために、図16への図面参照のみがこのセクションに含まれる。ステップ1610(オプションとすることができる)において、本開示全体を通じて説明された実施形態の教示に従って、基地局はUEからユーザデータを受信する。ステップ1620(オプションとすることができる)において、基地局は、受信したユーザデータのホストコンピュータへの送信を開始する。ステップ1630(オプションとすることができる)において、ホストコンピュータは、基地局によって開始された送信において搬送されるユーザデータを受信する。
図17は、特定の実施形態による方法を示し、上記の実施形態および例のうちの任意のものによれば、方法は、ステップ1702において、無線デバイス(例えば、無線デバイス810)が、ネットワークが時分割複信(TDD)ネットワークであるか否か、ネットワークのキャリア周波数、およびネットワークがロングタームエボリューション(LTE)ネットワークと共存しているか否かの指示を取得することにより開始する。
上記の実施形態および例のうちの任意のものによれば、ステップ1704において、無線デバイスは、前のステップから取得された情報に基づいてTAオフセットを決定する。
ステップ1706において、無線デバイスは、決定されたTAオフセットを用いてアップリンク送信を送信する。
図18は、無線ネットワーク(例えば、図8に示す無線ネットワーク)における装置1800の概略ブロック図を示す。装置は、無線デバイスまたはネットワークノード(例えば、図8に示す無線デバイス810またはネットワークノード860)において実施することができる。装置1800は、図17を参照して説明した例示的な方法、および場合によっては本明細書に開示された任意の他のプロセスまたは方法を実行するように動作可能である。図17の方法は、必ずしも装置1800のみによって実行される必要がないことも理解されたい。本方法の少なくともいくつかの動作は、1つまたは複数の他のエンティティによって実行され得る。
仮想装置1800は、1つまたは複数のプロセッサまたはマイクロコントローラ、およびデジタル信号プロセッサ(DSP)、デディケーテッドデジタルロジック等を含むことができる他のデジタルハードウェアを含むことができる処理回路部を備えることができる。処理回路部は、メモリに記憶されたプログラムコードを実行するように設定することができ、メモリは、リードオンリーメモリ(ROM)、ランダムアクセスメモリ、キャッシュメモリ、フラッシュメモリデバイス、光ストレージデバイス等のような1つまたはいくつかのタイプのメモリを含むことができる。いくつかの実施形態では、メモリに記憶されるプログラムコードは、1つまたは複数の通信および/またはデータ通信プロトコル、ならびに本明細書に記載の技法のうちの1つまたは複数を実行するためのプログラム命令を含む。いくつかの実施態様では、処理回路部を用いて、受信ユニット1802、決定ユニット1804、および装置1800の任意の他の適切なユニットに、本開示の1つまたは複数の実施形態による対応する機能を実行させることができる。
図18に示すように、装置1800は、受信ユニット1802および決定ユニット1804を含む。上記の実施形態および例のうちの任意のものによれば、受信ユニットは、TAオフセットに関してネットワークノードからシグナリングを受信するように設定される。上記の実施形態および例のうちの任意のものによれば、決定ユニット1804は、TAオフセットを決定するように設定される。
ユニットという用語は、エレクトロニクス、電気デバイスおよび/または電子デバイスの分野における従来の意味を有することができ、例えば、本明細書に記載されるような、電気および/または電子回路部、デバイス、モジュール、プロセッサ、メモリ、ソリッドステートロジックおよび/またはディスクリートデバイス、それぞれのタスク、プロシージャ、計算、出力および/または表示機能等を実行するためのコンピュータプログラムまたは命令、等を含むことができる。
略記
以下の略記のうちの少なくともいくつかが本開示において用いられる場合がある。略記間に不一致がある場合、上記で用いられたものが優先されるべきである。以下に複数回列挙されている場合、最初のリスト化が任意の後続のリスト化に優先されるべきである。
1xRTT CDMA2000 1x無線送信技術
3GPP 第3世代パートナーシッププロジェクト
5G 第5世代
ABS オールモストブランクサブフレーム
ARQ 自動再送要求
AWGN 加算性白色ガウス雑音
BCCH ブロードキャスト制御チャネル
BCH ブロードキャストチャネル
CA キャリアアグリゲーション
CC キャリアコンポーネント
CCCH SDU 共通制御チャネルSDU
CDMA 符号分割多元接続
CGI セルグローバル識別子
CIR チャネルインパルス応答
CP サイクリックプレフィックス
CPICH 共通パイロットチャネル
CPICH Ec/No 帯域内の電力密度で除算した、チップあたりのCPICH受信エネルギー
CQI チャネル品質情報
C-RNTI セルRNTI
CSI チャネル状態情報
DCCH デディケーテッド制御チャネル
DL ダウンリンク
DM 復調
DMRS 復調参照信号
DRX 不連続受信
DTX 不連続送信
DTCH デディケーテッドトラフィックチャネル
DUT 被試験デバイス
E-CID 拡張セルID(測位方法)
E-SMLC エボルブド-サービングモバイルロケーションセンタ
ECGI エボルブドCGI
eNB E-UTRAN NodeB
ePDCCH 拡張物理ダウンリンク制御チャネル
E-SMLC エボルブドサービングモバイルロケーションセンタ
E-UTRA エボルブドUTRA
E-UTRAN エボルブドUTRAN
FDD 周波数分割複信(FDD)
FFS 今後の研究対象(For Further Study)
GERAN GSM EDGE無線アクセスネットワーク
gNB NRにおける基地局
GNSS グローバルナビゲーション衛星システム
GSM モバイル通信のためのグローバルシステム
HARQ ハイブリッド自動再送要求
HO ハンドオーバ
HSPA 高速パケットアクセス
HRPD 高速パケットデータ
LOS 視線
LPP LTE測位プロトコル
LTE ロングタームエボリューション
MAC 媒体アクセス制御
MBMS マルチメディアブロードキャストマルチキャストサービス
MBSFN マルチメディアブロードキャストマルチキャストサービス単一周波数ネットワーク
MBSFN ABS MBSFNオールモストブランクサブフレーム
MDT ドライブテストの最小化
MIB マスタ情報ブロック
MME モビリティ管理エンティティ
MSC 移動交換局
NPDCCH 狭帯域物理ダウンリンク制御チャネル
NR 新無線
OCNG OFDMAチャネルノイズ発生器
OFDM 直交周波数分割多重
OFDMA 直交周波数分割多元接続
OSS オペレーションサポートシステム
OTDOA 観測された到達時間差
O&M 運用および整備
PBCH 物理ブロードキャストチャネル
P-CCPCH プライマリ共通制御物理チャネル
PCell プライマリセル
PCFICH 物理制御フォーマットインジケータチャネル
PDCCH 物理ダウンリンク制御チャネル
PDP プロファイル遅延プロファイル
PDSCH 物理ダウンリンク共有チャネル
PGW パケットゲートウェイ
PHICH 物理ハイブリッド-ARQインジケータチャネル
PLMN 公衆陸上モバイルネットワーク
PMI プリコーダマトリクスインジケータ
PRACH 物理ランダムアクセスチャネル
PRS 測位参照信号
PSS プライマリ同期信号
PUCCH 物理アップリンク制御チャネル
PUSCH 物理アップリンク共有チャネル
RACH ランダムアクセスチャネル
QAM 直角位相振幅変調
RAN 無線アクセスネットワーク
RAT 無線アクセス技術
RLM 無線リンク管理
RNC 無線ネットワークコントローラ
RNL 無線ネットワーク層
RNTI 無線ネットワーク一時識別子
RRC 無線リソース制御
RRM 無線リソース管理
RS 参照信号
RSCP 受信信号コード電力
RSRP 参照シンボル受信電力、または、参照信号受信電力
RSRQ 参照信号受信品質、または、参照シンボル受信品質
RSSI 受信信号強度インジケータ
RSTD 参照信号時間差
SCH 同期チャネル
SCell セカンダリセル
SDU サービスデータユニット
SFN システムフレーム番号
SGW サービングゲートウェイ
SI システム情報
SIB システム情報ブロック
SNR 信号対雑音比
SON 自己最適化ネットワーク
SS 同期信号
SSS セカンダリ同期信号
TDD 時分割複信
TDOA 到達時間差
TOA 到達時間
TSS 3次同期信号
TTI 送信時間間隔
UE ユーザ機器
UL アップリンク
UMTS ユニバーサルモバイル通信システム
USIM ユニバーサル加入者アイデンティティモジュール
UTDOA アップリンク到達時間差
UTRA ユニバーサル陸上無線アクセス
UTRAN ユニバーサル陸上無線アクセスネットワーク
WCDMA ワイドCDMA
WLAN ワイドローカルエリアネットワーク

Claims (22)

  1. 新無線(NR)ネットワークにおいてタイミングアドバンス(TA)オフセットを決定するために無線デバイスによって実行される方法であって、前記方法は、
    ネットワークノードからのシグナリングによって、前記NRネットワークのキャリア周波数がロングタームエボリューション(LTE)ネットワークのキャリア周波数と共存しているか否かの指示を取得することと、
    前記NRネットワークの前記キャリア周波数が前記LTEネットワークのキャリア周波数と共存しているか否かに基づいて、アップリンク送信のためのTAオフセットを決定することと、
    前記決定されたTAオフセットを用いてアップリンク送信を送信することと、
    を含む、方法。
  2. 前記TAオフセットは、前記LTEネットワークの前記キャリア周波数と共存する前記NRネットワークの前記キャリア周波数の周波数帯域の複信モードに依拠する、請求項1に記載の方法。
  3. 前記複信モードは、周波数分割複信(FDD)または時分割複信(TDD)のうちの一方である、請求項2に記載の方法。
  4. 前記シグナリングは、明示的なTAオフセット値を含み、
    前記TAオフセットを決定することは、受信した明示的なTAオフセット値を用いることを含む、請求項1に記載の方法。
  5. 前記NRネットワークの前記キャリア周波数はTDDネットワークではなく、前記TAオフセットはゼロに等しい、請求項1に記載の方法。
  6. 前記NRネットワークはTDDネットワークであり、前記NRネットワークの前記キャリア周波数は閾値未満であり、前記NRネットワークはLTEネットワークと共存しておらず、前記TAオフセットは、0よりも大きい第1の値に等しい、請求項1に記載の方法。
  7. 前記閾値は6GHzであり、前記TAオフセットは13μsである、請求項6に記載の方法。
  8. 前記NRネットワークはTDDネットワークであり、前記NRネットワークの前記キャリア周波数は閾値を上回っており、前記NRネットワークはLTEネットワークと共存しておらず、前記TAオフセットは、0よりも大きい第2の値に等しい、請求項1に記載の方法。
  9. 前記NRネットワークはTDDネットワークであり、前記NRネットワークの前記キャリア周波数は閾値未満であり、前記NRネットワークはLTEネットワークと共存しており、前記TAオフセットは、0よりも大きい第3の値に等しい、請求項1に記載の方法。
  10. 前記閾値は6GHzであり、前記TAオフセットは20μsである、請求項9に記載の方法。
  11. 前記アップリンク送信は、前記NRネットワークの前記キャリア周波数上でのセルへのランダムアクセスである、請求項1から10のいずれか一項に記載の方法。
  12. TAオフセットは、アップリンク送信タイミングを、前記NRネットワークの前記キャリア周波数に属するセルにおけるダウンリンク送信タイミングと関係付ける、請求項1から10のいずれか一項に記載の方法。
  13. 新無線(NR)ネットワークにおいてタイミングアドバンス(TA)オフセットを決定するための無線デバイスであって、前記無線デバイスは、
    処理回路であって、
    ネットワークノードからのシグナリングを介して、前記NRネットワークが時分割複信(TDD)ネットワークであるか否か、前記NRネットワークのキャリア周波数、および前記NRネットワークがロングタームエボリューション(LTE)ネットワークと共存しているか否かの指示を取得することと、
    前記NRネットワークがTDDネットワークであるか否か、前記NRネットワークの前記キャリア周波数、および前記NRネットワークがLTEネットワークと共存しているか否かに基づいて、アップリンク送信のためのTAオフセットを決定することと、
    前記決定されたTAオフセットを用いてアップリンク送信を送信することと、
    を含む動作を実行するように設定される、処理回路と、
    前記無線デバイスに電力を供給するように設定された電力供給回路と、
    を備える、無線デバイス。
  14. 前記シグナリングは明示的なTAオフセット値を含み、
    前記TAオフセットを決定することは、受信した明示的なTAオフセット値を用いることを含む、請求項13に記載の無線デバイス。
  15. 前記NRネットワークはTDDネットワークではなく、前記TAオフセットはゼロに等しい、請求項13に記載の無線デバイス。
  16. 前記NRネットワークはTDDネットワークであり、前記NRネットワークの前記キャリア周波数は閾値未満であり、前記NRネットワークはLTEネットワークと共存しておらず、前記TAオフセットは、0よりも大きい第1の値に等しい、請求項13に記載の無線デバイス。
  17. 前記閾値は6GHzであり、前記TAオフセットは6μsである、請求項16に記載の無線デバイス。
  18. 前記NRネットワークはTDDネットワークであり、前記NRネットワークの前記キャリア周波数は閾値を上回っており、前記NRネットワークはLTEネットワークと共存しておらず、前記TAオフセットは、0よりも大きい第2の値に等しい、請求項13に記載の無線デバイス。
  19. 前記閾値は6GHzであり、前記TAオフセットは13μsである、請求項18に記載の無線デバイス。
  20. 前記NRネットワークはTDDネットワークであり、前記NRネットワークの前記キャリア周波数は閾値未満であり、前記NRネットワークはLTEネットワークと共存しており、前記TAオフセットは、0よりも大きい第3の値に等しい、請求項13に記載の無線デバイス。
  21. 前記閾値は6GHzであり、前記TAオフセットは20μsである、請求項20に記載の無線デバイス。
  22. 前記動作は、
    ユーザデータを、基地局を介してホストコンピュータに提供することを更に含む、請求項13から21のいずれか一項に記載の無線デバイス。
JP2020526520A 2017-11-17 2018-11-13 Nrにおけるtaオフセットのシグナリング Active JP7048737B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022047937A JP7410996B2 (ja) 2017-11-17 2022-03-24 Nrにおけるtaオフセットのシグナリング

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762588037P 2017-11-17 2017-11-17
US62/588,037 2017-11-17
PCT/IB2018/058934 WO2019097406A1 (en) 2017-11-17 2018-11-13 Signaling ta-offset in nr

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022047937A Division JP7410996B2 (ja) 2017-11-17 2022-03-24 Nrにおけるtaオフセットのシグナリング

Publications (2)

Publication Number Publication Date
JP2021503773A JP2021503773A (ja) 2021-02-12
JP7048737B2 true JP7048737B2 (ja) 2022-04-05

Family

ID=64650440

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020526520A Active JP7048737B2 (ja) 2017-11-17 2018-11-13 Nrにおけるtaオフセットのシグナリング
JP2022047937A Active JP7410996B2 (ja) 2017-11-17 2022-03-24 Nrにおけるtaオフセットのシグナリング

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022047937A Active JP7410996B2 (ja) 2017-11-17 2022-03-24 Nrにおけるtaオフセットのシグナリング

Country Status (8)

Country Link
US (1) US11979842B2 (ja)
EP (1) EP3711387A1 (ja)
JP (2) JP7048737B2 (ja)
CN (2) CN111630908B (ja)
AR (1) AR113576A1 (ja)
MX (1) MX2020005014A (ja)
RU (1) RU2741569C1 (ja)
WO (1) WO2019097406A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3739974A4 (en) * 2018-01-10 2021-01-06 Fujitsu Limited PROCEDURE AND DEVICE FOR OBTAINING A TIME ADVANCE QUANTITY OF TRANSMISSION IN UPLOAD LINK AND COMMUNICATION SYSTEM
US11570762B2 (en) * 2018-01-12 2023-01-31 Ntt Docomo, Inc. User equipment, and uplink transmission timing adjustment method
WO2019232726A1 (en) * 2018-06-06 2019-12-12 Nokia Shanghai Bell Co., Ltd. Methods, device and computer-readable medium for determining timing advance
US20230228837A1 (en) * 2020-05-15 2023-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Positioning timing measurement procedure under timing offset change
CN112789880B (zh) * 2020-12-31 2024-02-13 北京小米移动软件有限公司 上行定时提前量更新、更新配置确定方法和装置
EP4272364A1 (en) * 2020-12-31 2023-11-08 Lenovo (Beijing) Limited Ntn ta report
CN117561756A (zh) * 2021-09-16 2024-02-13 Oppo广东移动通信有限公司 Sr触发方法、随机接入方法、装置、设备及存储介质
WO2023159541A1 (en) * 2022-02-28 2023-08-31 Qualcomm Incorporated Timing advance offset configuration
US11722980B1 (en) * 2022-12-12 2023-08-08 Ultralogic 6G, Llc Guard-space timestamp point for precision synchronization in 5G and 6G

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092959A1 (ja) 2014-12-12 2016-06-16 ソニー株式会社 装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200729990A (en) * 2005-12-22 2007-08-01 Interdigital Tech Corp Method and system for adjusting uplink transmission timing immediately for long term evolution handover
WO2011137561A1 (en) * 2010-05-06 2011-11-10 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a wireless communication system
CN103209459B (zh) * 2012-01-11 2016-08-10 华为技术有限公司 数据的传输方法及装置
EP2947792B1 (en) 2013-01-16 2022-12-28 LG Electronics Inc. Method for performing communication between terminals and apparatus therefor
US10200137B2 (en) * 2013-12-27 2019-02-05 Huawei Technologies Co., Ltd. System and method for adaptive TTI coexistence with LTE
US9860914B2 (en) * 2014-02-10 2018-01-02 Qualcomm Incorporated Handling FDD and TDD timing offset in FDD and TDD CA in LTE
US20150245307A1 (en) * 2014-02-21 2015-08-27 Qualcomm Incorporated Ul out-of-synchronization for a secondary cell carrying pucch
WO2016021954A1 (ko) * 2014-08-06 2016-02-11 엘지전자 주식회사 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
US9871568B2 (en) * 2014-08-11 2018-01-16 Intel Corporation System detection in a high frequency band radio access technology architecture
JP6925979B2 (ja) * 2015-07-27 2021-08-25 アップル インコーポレイテッドApple Inc. セルラーIoTのためのナローバンドLTEのためのシステム動作のシステムおよび方法
EP3157282A1 (en) * 2015-10-16 2017-04-19 Panasonic Intellectual Property Corporation of America Improved uplink transmissions in unlicensed cells with additional transmission timing offsets
JPWO2017135347A1 (ja) * 2016-02-04 2018-11-29 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10462675B2 (en) * 2016-03-06 2019-10-29 At&T Intellectual Property I, L.P. Dynamic spectrum partitioning between LTE and 5G systems
US10652894B2 (en) * 2016-11-11 2020-05-12 Qualcomm Incorporated Timing advance reporting for latency reduction
US10939393B2 (en) * 2017-02-10 2021-03-02 Qualcomm Incorporated Handling time indexing in LTE-NR co-existence
US10165565B2 (en) * 2017-03-24 2018-12-25 Qualcomm Incorporated Legacy and new radio coexistence frame and control design
US20180343697A1 (en) * 2017-05-26 2018-11-29 Mediatek Inc. UE Category and Capability Indication for Co-existed LTE and NR Devices
EP3644993B1 (en) * 2017-06-30 2023-08-02 Bristol-Myers Squibb Company Amorphous and crystalline forms of ido inhibitors
US11102777B2 (en) * 2017-11-10 2021-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Timing advance offset for uplink-downlink switching in new radio
EP3739974A4 (en) * 2018-01-10 2021-01-06 Fujitsu Limited PROCEDURE AND DEVICE FOR OBTAINING A TIME ADVANCE QUANTITY OF TRANSMISSION IN UPLOAD LINK AND COMMUNICATION SYSTEM
US10572410B2 (en) * 2018-01-23 2020-02-25 Qualcomm Incorporated Function-specific communication on a multi-drop bus for coexistence management
CN113424631B (zh) * 2019-02-15 2023-09-22 Lg 电子株式会社 执行上行链路传输的方法、用户设备、设备和存储介质以及执行上行链路接收的方法和基站
US11622365B1 (en) * 2021-11-11 2023-04-04 Qualcomm Incorporated On-off transient power time mask at a UE supporting full-duplex GNB operation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092959A1 (ja) 2014-12-12 2016-06-16 ソニー株式会社 装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
3GPP TS 36.211 V14.4.0(2017-09),2017年09月26日
Ericsson,Even Further Analysis of UE Initial Transmit Timing Requirement,3GPP TSG RAN WG4 #85 R4-1713648,2017年11月17日
Ericsson,TP to TS 38.133 v0.3.0: UE Timing Offset Requirements,3GPP TSG RAN WG4 #85 R4-1713649,2017年11月17日
Huawei, HiSilicon,Considerations of NR UL operation for LTE-NR coexistence,3GPP TSG RAN WG1 #88b R1-1704199,2017年03月25日
MediaTek Inc.,Measurement Gap Design for EN-DC,3GPP TSG RAN WG2 #100 R2- 1712886,2017年11月16日
RAN4,Signalling of TA_Offset,3GPP TSG RAN WG4 #85 R4-1713613,2017年11月17日
Samsung,RRC signalling to support LTE+NR Co-existence,3GPP TSG RAN WG2 #99b R2-1711819,2017年09月29日

Also Published As

Publication number Publication date
AR113576A1 (es) 2020-05-20
CN115278855A (zh) 2022-11-01
US11979842B2 (en) 2024-05-07
EP3711387A1 (en) 2020-09-23
CN111630908B (zh) 2022-08-09
WO2019097406A1 (en) 2019-05-23
RU2741569C1 (ru) 2021-01-27
CN111630908A (zh) 2020-09-04
JP2021503773A (ja) 2021-02-12
JP2022095717A (ja) 2022-06-28
MX2020005014A (es) 2020-08-27
JP7410996B2 (ja) 2024-01-10
US20200367187A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP7048737B2 (ja) Nrにおけるtaオフセットのシグナリング
CN111713169B (zh) 随机接入过程
JP2022163045A (ja) Nsa/sa nrインジケータのレポート
US11696278B2 (en) Methods, apparatus and computer-readable media related to semi-persistent scheduling configuration
CN111727620A (zh) Rlm和波束监视参数的优化的重新配置
CA3091559A1 (en) Method for enabling new radio (nr) integrated access and backhaul (iab) nodes to operate in non-standalone (nsa) cells
US11974320B2 (en) Methods providing control signaling and related wireless devices and network nodes
CN112956230A (zh) Nr-dc中的测量配置
US11564152B2 (en) Determination of SSB/RMSI periodicity for IAB node
TW202127942A (zh) 用於頻寬限制之無線裝置之控制資源
CN115066860A (zh) 支持跨载波的快速切换上行链路传输的方法
EP3925369B1 (en) Two-step random access procedure
US20230189338A1 (en) COT/FFP Scheduling in Unlicensed Spectrum
CN113170505B (zh) 免许可频谱中的随机接入和pucch的增强的信道占用共享机制
JP7360555B2 (ja) 低複雑度ユーザ機器のためのランダムアクセス
EP3909349B1 (en) Integrated access and backhaul distributed unit soft resources
JP2024054127A (ja) 低遅延通信のためのharqコードブック決定方法
JP2021523628A (ja) マルチセルidシナリオにおけるセルid選択
CN115552990A (zh) 用于时间敏感联网的用户设备能力
CN112956279A (zh) 用于提早数据传输的nas-as交互
JP7404375B2 (ja) NB-IoTベースバンド信号のための位相補償
EP3925291B1 (en) Aligned configuration for random access channel-less handover/secondary cell group change
CN116076112A (zh) 用于新无线电(nr)的用户设备定位
CN117203921A (zh) 用于多播和单播的harq反馈码本

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20200714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150