JP7043521B2 - Polarizing plate set and liquid crystal display panel - Google Patents

Polarizing plate set and liquid crystal display panel Download PDF

Info

Publication number
JP7043521B2
JP7043521B2 JP2019563001A JP2019563001A JP7043521B2 JP 7043521 B2 JP7043521 B2 JP 7043521B2 JP 2019563001 A JP2019563001 A JP 2019563001A JP 2019563001 A JP2019563001 A JP 2019563001A JP 7043521 B2 JP7043521 B2 JP 7043521B2
Authority
JP
Japan
Prior art keywords
polarizing plate
polarizing
adhesive layer
polarizing element
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019563001A
Other languages
Japanese (ja)
Other versions
JPWO2019131220A1 (en
Inventor
聡司 三田
拓也 森
浩明 澤田
友斗 猿橋
哲朗 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of JPWO2019131220A1 publication Critical patent/JPWO2019131220A1/en
Application granted granted Critical
Publication of JP7043521B2 publication Critical patent/JP7043521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、偏光板のセットおよび液晶表示パネルに関する。 The present invention relates to a set of polarizing plates and a liquid crystal display panel.

代表的な画像表示装置である液晶表示装置には、その画像形成方式に起因して、液晶セルの両側に偏光板が配置されてなる液晶表示パネルを備えている。近年、液晶表示装置の薄型化の要望に応じて液晶セルの薄型化が試みられており、液晶セルを薄型化した場合に生じ得る高温環境下での液晶表示パネルの反りを抑制する技術が提案されている(特許文献1)。しかしながら、従来の技術では、更なる薄型の偏光子を備える偏光板を用いた場合に、加熱による液晶表示パネルの反りが生じ得、また、液晶表示パネルの薄型化に伴い、液晶表示装置の組み立て工程に置いて液晶表示パネルに割れが生じる場合がある。 A liquid crystal display device, which is a typical image display device, includes a liquid crystal display panel in which polarizing plates are arranged on both sides of the liquid crystal cell due to the image forming method. In recent years, attempts have been made to make the liquid crystal cell thinner in response to the demand for thinner liquid crystal display devices, and a technology for suppressing the warp of the liquid crystal display panel in a high temperature environment that may occur when the liquid crystal cell is made thinner has been proposed. (Patent Document 1). However, in the conventional technique, when a polarizing plate having a thinner polarizing element is used, the liquid crystal display panel may be warped due to heating, and the liquid crystal display device is assembled as the liquid crystal display panel becomes thinner. The liquid crystal display panel may crack during the process.

特開2017-83857号公報Japanese Unexamined Patent Publication No. 2017-83857

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、薄型の偏光子を備えており、液晶表示パネルの割れ、および加熱による液晶表示パネルの反りを抑制し得る偏光板のセット、および、そのような偏光板のセットを備える液晶表示パネルを提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to have a thin polarizing element, which can suppress cracking of a liquid crystal display panel and warpage of the liquid crystal display panel due to heating. It is an object of the present invention to provide a set of polarizing plates and a liquid crystal display panel including such a set of polarizing plates.

本発明の偏光板のセットは、液晶セルの視認側に貼り合わされる視認側偏光板と、液晶セルの背面側に貼り合わされる背面側偏光板とを含む偏光板のセットであって、上記視認側偏光板は、第1の偏光子と、少なくとも1つの粘着剤層と、を含み、上記背面側偏光板は、第2の偏光子と、少なくとも1つの粘着剤層と、を含み、上記第1の偏光子の厚みdpf、および上記第2の偏光子の厚みdprがいずれも7μm以下であり、かつ、0μm≦dpf-dpr≦5μmを満たし、上記背面側偏光板の厚みdr、上記視認側偏光板に含まれる全ての上記粘着剤層の厚みの合計daf、および、上記背面側偏光板に含まれる全ての上記粘着剤層の厚みの合計darが、daf≧20μm、dar≧20μm、および、dr×0.2<dar<dr×0.6を満たす。
1つの実施形態においては、上記視認側偏光板の背面と上記第1の偏光子との間の距離dcfが20μm以上であり、上記背面側偏光板の視認側の面と上記第2の偏光子との間の距離dcrが45μm未満である。
1つの実施形態においては、上記第1の偏光子の厚みdpf、および上記第2の偏光子の厚みdprが5μm以下である。
1つの実施形態においては、上記第2の偏光子の厚みdprが3μm以下である。
1つの実施形態においては、上記視認側偏光板は、視認側から、第1の保護層と、上記第1の偏光子と、第2の保護層と、第1の粘着剤層とをこの順に含む。
1つの実施形態においては、上記背面側偏光板は、視認側から、第2の粘着剤層と、上記第2の偏光子と、第3の保護層とをこの順に含む。
1つの実施形態においては、上記背面側偏光板は、視認側から、第2の粘着剤層と、上記第2の偏光子と、反射型偏光子とをこの順に含む。
本発明の別の局面によれば、液晶表示パネルが提供される。この液晶表示パネルは、上記偏光板のセットと、液晶セルとを備える。
The set of the polarizing plate of the present invention is a set of polarizing plates including a viewing-side polarizing plate bonded to the viewing side of the liquid crystal cell and a back-side polarizing plate bonded to the back surface side of the liquid crystal cell, and is described above. The side polarizing plate includes a first polarizing element and at least one pressure-sensitive adhesive layer, and the back-side polarizing plate includes a second polarizing element and at least one pressure-sensitive adhesive layer. The thickness dpf of the first polarizing element and the thickness dpr of the second polarizing element are both 7 μm or less, satisfying 0 μm ≦ dpf-dpr ≦ 5 μm, and the thickness dr of the backside polarizing plate and the visible side. The total thickness of all the pressure-sensitive adhesive layers contained in the polarizing plate is daf, and the total thickness of all the pressure-sensitive adhesive layers contained in the back-side polarizing plate is daf ≧ 20 μm, dar ≧ 20 μm, and Satisfy dr × 0.2 <dar <dr × 0.6.
In one embodiment, the distance dcf between the back surface of the viewing-side polarizing plate and the first polarizing element is 20 μm or more, and the viewing-side surface of the rear-viewing polarizing plate and the second polarizing element. The distance dcr between and is less than 45 μm.
In one embodiment, the thickness dpf of the first substituent and the thickness dpr of the second particulate are 5 μm or less.
In one embodiment, the thickness dpr of the second polarizing element is 3 μm or less.
In one embodiment, the viewing-side polarizing plate has a first protective layer, a first polarizing element, a second protective layer, and a first pressure-sensitive adhesive layer in this order from the viewing side. include.
In one embodiment, the back-side polarizing plate includes a second pressure-sensitive adhesive layer, the second polarizing element, and a third protective layer in this order from the viewing side.
In one embodiment, the back-side polarizing plate includes a second pressure-sensitive adhesive layer, the second polarizing element, and a reflective polarizing element in this order from the viewing side.
According to another aspect of the invention, a liquid crystal display panel is provided. This liquid crystal display panel includes the above-mentioned set of polarizing plates and a liquid crystal cell.

本発明の1つの実施形態による偏光板のセットの概略断面図である。FIG. 3 is a schematic cross-sectional view of a set of polarizing plates according to one embodiment of the present invention. 本発明の別の実施形態による偏光板のセットの概略断面図である。FIG. 3 is a schematic cross-sectional view of a set of polarizing plates according to another embodiment of the present invention. 本発明の偏光板のセットに用いられ得る反射型偏光子の一例の概略斜視図である。FIG. 3 is a schematic perspective view of an example of a reflective polarizing element that can be used in the set of polarizing plates of the present invention. 本発明の1つの実施形態による液晶表示パネルの概略断面図である。It is a schematic sectional drawing of the liquid crystal display panel by one Embodiment of this invention. 本発明の1つの実施形態による液晶表示パネルを有する画像表示装置の概略断面図である。It is a schematic sectional drawing of the image display apparatus which has the liquid crystal display panel by one Embodiment of this invention.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

A.偏光板のセット
図1は、本発明の1つの実施形態による偏光板のセット100の概略断面図であり、図2は、本発明の別の実施形態による偏光板のセット101の概略断面図である。偏光板のセット100は、液晶セルの視認側に貼り合わされる視認側偏光板10と、液晶セルの背面側に貼り合わされる背面側偏光板50とを含む。視認側偏光板10は、第1の偏光子20と、少なくとも1つの粘着剤層と、を含む。背面側偏光板50は、第2の偏光子60と、少なくとも1つの粘着剤層と、を含む。第1の偏光子20の厚みdpf、および第2の偏光子60の厚みdprは、いずれも7μm以下であり、かつ、0μm≦dpf-dpr≦5μmを満たす。背面側偏光板50の厚みdr、視認側偏光板10に含まれる全ての粘着剤層の厚みの合計daf、および、背面側偏光板50に含まれる全ての粘着剤層の厚みの合計darは、以下の(1)~(3)を満たす。
daf≧20μm (1)
dar≧20μm (2)
dr×0.2<dar<dr×0.6 (3)
上記の構成を有する偏光板のセット100は、視認側偏光板10および背面側偏光板50に用いられる偏光子の厚みが非常に薄いにもかかわらず、液晶表示パネルに適用した場合に液晶表示パネルの反りおよび割れを抑制し得る。
A. Set of Polarizing Plates FIG. 1 is a schematic cross-sectional view of a set of polarizing plates 100 according to one embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of a set of polarizing plates 101 according to another embodiment of the present invention. be. The set 100 of the polarizing plate includes a viewing-side polarizing plate 10 attached to the visible side of the liquid crystal cell and a back-side polarizing plate 50 attached to the back surface side of the liquid crystal cell. The viewing-side polarizing plate 10 includes a first polarizing element 20 and at least one pressure-sensitive adhesive layer. The backside polarizing plate 50 includes a second polarizing element 60 and at least one pressure-sensitive adhesive layer. The thickness dpf of the first substituent 20 and the thickness dpr of the second particulate 60 are both 7 μm or less, and satisfy 0 μm ≦ dpf-dpr ≦ 5 μm. The thickness dr of the back side polarizing plate 50, the total thickness daf of all the pressure-sensitive adhesive layers contained in the viewing-side polarizing plate 10, and the total thickness dar of all the pressure-sensitive adhesive layers contained in the back-side polarizing plate 50 are The following (1) to (3) are satisfied.
daf ≧ 20 μm (1)
dar ≧ 20 μm (2)
dr × 0.2 <dar <dr × 0.6 (3)
The set 100 of the polarizing plates having the above configuration is a liquid crystal display panel when applied to a liquid crystal display panel, although the thickness of the polarizing element used for the viewing side polarizing plate 10 and the back side polarizing plate 50 is very thin. Can suppress warpage and cracking.

好ましくは、視認側偏光板10の背面と第1の偏光子20との間の距離dcfが20μm以上であり、背面側偏光板50の視認側の面と第2の偏光子60との間の距離dcrが45μm未満である。代表的には、距離dcfは、視認側偏光板10を液晶セルの視認側に貼り合わせたときの液晶セルと第1の偏光子20との間の距離に等しく、距離dcrは、背面側偏光板50を液晶セルの背面側に貼り合わせたときの液晶セルと第2の偏光子60との間の距離に等しい。 Preferably, the distance dcf between the back surface of the viewing side polarizing plate 10 and the first polarizing element 20 is 20 μm or more, and the distance between the viewing side surface of the back surface side polarizing plate 50 and the second polarizing element 60. The distance dcr is less than 45 μm. Typically, the distance dcf is equal to the distance between the liquid crystal cell and the first polarizing element 20 when the viewing side polarizing plate 10 is attached to the viewing side of the liquid crystal cell, and the distance dcr is the backside polarization. It is equal to the distance between the liquid crystal cell and the second polarizing element 60 when the plate 50 is attached to the back surface side of the liquid crystal cell.

第1の偏光子20および第2の偏光子60の厚みは、好ましくは5μm以下である。第2の偏光子60の厚みは、より好ましくは3μm以下である。視認側偏光板10は、代表的には、視認側から、第1の保護層21と、第1の偏光子20と、第2の保護層22と、第1の粘着剤層30とをこの順に含む。1つの実施形態においては、図1に示すように、背面側偏光板50は、視認側から、第2の粘着剤層40と、第2の偏光子60と、第3の保護層61とをこの順に含む。別の実施形態においては、図2に示すように、背面側偏光板51は、視認側から、第2の粘着剤層40と、第2の偏光子60と、反射型偏光子70とをこの順に含む。 The thickness of the first polarizing element 20 and the second polarizing element 60 is preferably 5 μm or less. The thickness of the second polarizing element 60 is more preferably 3 μm or less. The viewing-side polarizing plate 10 typically includes a first protective layer 21, a first polarizing element 20, a second protective layer 22, and a first pressure-sensitive adhesive layer 30 from the visual-viewing side. Include in order. In one embodiment, as shown in FIG. 1, the back-side polarizing plate 50 has a second pressure-sensitive adhesive layer 40, a second polarizing element 60, and a third protective layer 61 from the viewing side. Included in this order. In another embodiment, as shown in FIG. 2, the back-side polarizing plate 51 includes a second pressure-sensitive adhesive layer 40, a second polarizing element 60, and a reflective polarizing element 70 from the viewing side. Include in order.

B.視認側偏光板
上記のとおり、視認側偏光板10は、代表的には、視認側から、第1の保護層21と、第1の偏光子20と、第2の保護層22と、第1の粘着剤層30とをこの順に含む。この場合、視認側偏光板10は、第1の粘着剤層30を介して液晶セルに貼り合わされ得る。視認側偏光板10を構成する各層またはフィルムは、任意の適切な接着層(接着剤層または粘着剤層)を介して積層され得る。
B. Viewing-side polarizing plate As described above, the viewing-side polarizing plate 10 is typically a first protective layer 21, a first polarizing element 20, a second protective layer 22, and a first protective layer from the visual side. The pressure-sensitive adhesive layer 30 of the above is included in this order. In this case, the viewing-side polarizing plate 10 may be attached to the liquid crystal cell via the first pressure-sensitive adhesive layer 30. Each layer or film constituting the viewing-side polarizing plate 10 can be laminated via any suitable adhesive layer (adhesive layer or adhesive layer).

視認側偏光板の厚みdfは、好ましくは40μm~200μmであり、より好ましくは80μm~180μmであり、さらに好ましくは100μm~160μmである。 The thickness df of the viewing-side polarizing plate is preferably 40 μm to 200 μm, more preferably 80 μm to 180 μm, and further preferably 100 μm to 160 μm.

B-1.第1の偏光子
第1の偏光子としては、任意の適切な偏光子が採用され得る。上記偏光子は、代表的には、二層以上の積層体を用いて作製され得る。
B-1. First Polarizer As the first splitter, any suitable polarizing element may be adopted. The above-mentioned polarizing element can be typically produced by using a laminated body having two or more layers.

積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizing element obtained by using the laminated body include a polarizing element obtained by using a laminated body of a resin base material and a PVA-based resin layer coated and formed on the resin base material. The polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer a stator. obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. The obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. Details of the method for producing such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.

第1の偏光子の厚みdpfは、好ましくは3μm~5μmである。 The thickness dpf of the first substituent is preferably 3 μm to 5 μm.

B-2.第1および第2の保護層
第1および第2の保護層は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、ポリメタクリル酸メチル(PMMA)などの(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
B-2. First and Second Protective Layers The first and second protective layers are formed of any suitable film that can be used as a protective layer for the stator. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based. , Polyester-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like. Further, thermosetting resins such as (meth) acrylics such as polymethyl methacrylate (PMMA), urethanes, (meth) acrylic urethanes, epoxies and silicones, and ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition.

第1および第2の保護層の厚みは、代表的には300μm以下であり、好ましくは100μm以下であり、より好ましくは5μm~80μmである。第1および第2の保護層の構成材料および/または厚みは同じでもよいし、異なっていてもよい。なお、第1および第2の保護層のうちのいずれかは省略されてもよい。 The thickness of the first and second protective layers is typically 300 μm or less, preferably 100 μm or less, and more preferably 5 μm to 80 μm. The constituent materials and / or thicknesses of the first and second protective layers may be the same or different. In addition, any one of the first and second protective layers may be omitted.

1つの実施形態においては、第2の保護層は、任意の適切な位相差値を有する位相差層である。位相差層としては、正面位相差(面内位相差)が40nm以上および/または、厚み方向位相差が80nm以上の位相差を有する位相差フィルムを用いることができる。正面位相差は、通常、40nm~200nmの範囲に、厚み方向位相差は、通常、80nm~300nmの範囲に制御される。位相差フィルムとしては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差フィルムの厚さは特に制限されないが、一般的には20μm~150μm程度である。 In one embodiment, the second protective layer is a retardation layer with any suitable retardation value. As the retardation layer, a retardation film having a frontal retardation (in-plane retardation) of 40 nm or more and / or a thickness direction retardation of 80 nm or more can be used. The frontal phase difference is usually controlled in the range of 40 nm to 200 nm, and the thickness direction phase difference is usually controlled in the range of 80 nm to 300 nm. Examples of the retardation film include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an alignment film of a liquid crystal polymer, and a film in which an alignment layer of a liquid crystal polymer is supported by a film. The thickness of the retardation film is not particularly limited, but is generally about 20 μm to 150 μm.

B-3.第1の粘着剤層
第1の粘着剤層を構成する粘着剤としては、任意の適切な粘着剤を用いることができる。このような粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などが挙げられる。これら粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく使用される。このような特徴を示すものとしてアクリル系粘着剤が好ましく使用される。
B-3. First Adhesive Layer As the adhesive constituting the first adhesive layer, any suitable adhesive can be used. Examples of such adhesives include rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, vinyl alkyl ether adhesives, polyvinyl alcohol adhesives, polyvinylpyrrolidone adhesives, and polyacrylamide adhesives. Examples thereof include adhesives and cellulose-based adhesives. Among these pressure-sensitive adhesives, those having excellent optical transparency, appropriate wettability, cohesiveness and adhesiveness, and excellent weather resistance and heat resistance are preferably used. Acrylic adhesives are preferably used to exhibit such characteristics.

上記粘着剤は、必要に応じて、任意の適切な添加物を含み得る。上記添加剤としては、例えば、導電剤、粘着付与樹脂、架橋剤等が挙げられる。 The pressure-sensitive adhesive may optionally contain any suitable additive. Examples of the additive include a conductive agent, a tackifier resin, a cross-linking agent and the like.

導電剤としては、本発明の効果を損なわない範囲で、任意の適切な導電剤を採用し得る。導電剤は、好ましくは、無機カチオン塩を含む。無機カチオン塩は、具体的には、無機カチオン-アニオン塩である。無機カチオン塩のカチオン部を構成するカチオンとしては、代表的には、アルカリ金属イオンが挙げられ、好ましくは、リチウムイオンである。無機カチオン塩のアニオン部を構成するアニオンとしては、好ましくはフッ素含有イミドアニオンであり、フッ素含有イミドアニオンは、好ましくは(CFSOで表わされるビス(トリフルオロメタンスルホニル)イミドである。したがって、好ましい無機カチオン塩は、リチウムビス(トリフルオロメタンスルホニル)イミドである。また、導電剤として、任意の適切な導電性フィラーを採用し得る。このような導電性フィラーとしては、例えば、ニッケル、鉄、クロム、コバルト、アルミニウム、アンチモン、モリブデン、銅、銀、白金、金などの金属、これらの合金もしくは酸化物、カーボンブラックなどのカーボンなどからなるフィラー;これらをポリマービーズ、樹脂、ガラス、セラミックなどに被覆したフィラー;などが挙げられる。これらの中でも、好ましくは、金属フィラーおよび/または金属被覆フィラーであり、特に好ましくは、ニッケル粉である。As the conductive agent, any suitable conductive agent can be adopted as long as the effect of the present invention is not impaired. The conductive agent preferably contains an inorganic cationic salt. The inorganic cation salt is specifically an inorganic cation-anion salt. Typical examples of the cation constituting the cation portion of the inorganic cation salt include alkali metal ions, preferably lithium ions. The anion constituting the anion portion of the inorganic cation salt is preferably a fluorine-containing imide anion, and the fluorine - containing imide anion is preferably a bis (trifluoromethanesulfonyl) imide represented by (CF 3 SO 2 ) 2N . be. Therefore, a preferred inorganic cationic salt is lithium bis (trifluoromethanesulfonyl) imide. Further, any suitable conductive filler may be adopted as the conductive agent. Examples of such a conductive filler include metals such as nickel, iron, chromium, cobalt, aluminum, antimony, molybdenum, copper, silver, platinum, and gold, alloys or oxides thereof, and carbon such as carbon black. Filler; a filler obtained by coating these with polymer beads, resin, glass, ceramic, or the like; Among these, a metal filler and / or a metal-coated filler is preferable, and nickel powder is particularly preferable.

第1の粘着剤層の厚みは、好ましくは7μm~30μmであり、より好ましくは10μm~25μmである。 The thickness of the first pressure-sensitive adhesive layer is preferably 7 μm to 30 μm, more preferably 10 μm to 25 μm.

C.背面側偏光板
上記のとおり、1つの実施形態においては、背面側偏光板50は、視認側から、第2の粘着剤層40と、第2の偏光子60と、第3の保護層61とをこの順に含み、別の実施形態においては、背面側偏光板51は、視認側から、第2の粘着剤層40と、第2の偏光子60と、反射型偏光子70とをこの順に含む。これらの実施形態においては、背面側偏光板は、第2の粘着剤層40を介して液晶セルに貼り合わされ得る。背面側偏光板を構成する各層またはフィルムは、任意の適切な接着層(接着剤層または粘着剤層)を介して積層され得る。背面側偏光板を構成する各層またはフィルムが粘着剤層を介して積層される場合、該粘着剤層の厚みは、背面側偏光板に含まれる全ての粘着剤層の厚みの合計darに含まれるものとする。darは、上記のとおり、背面側偏光板の厚みdrの20%~60%を占め、好ましくはdrの25%~55%を占め、より好ましくはdrの30%~50%を占める。
C. Backside polarizing plate As described above, in one embodiment, the backside polarizing plate 50 includes a second pressure-sensitive adhesive layer 40, a second polarizing element 60, and a third protective layer 61 from the viewing side. In this order, in another embodiment, the back-side polarizing plate 51 includes the second pressure-sensitive adhesive layer 40, the second polarizing element 60, and the reflective polarizing element 70 in this order from the viewing side. .. In these embodiments, the backside polarizing plate can be attached to the liquid crystal cell via the second pressure-sensitive adhesive layer 40. Each layer or film constituting the backside polarizing plate may be laminated via any suitable adhesive layer (adhesive layer or adhesive layer). When each layer or film constituting the back side polarizing plate is laminated via the pressure-sensitive adhesive layer, the thickness of the pressure-sensitive adhesive layer is included in the total thickness of all the pressure-sensitive adhesive layers contained in the back-side polarizing plate. It shall be. As described above, the dar occupies 20% to 60% of the thickness dr of the back side polarizing plate, preferably 25% to 55% of the dr, and more preferably 30% to 50% of the dr.

図示を省略するが、背面側偏光板は、第2の偏光子の視認側(第2の偏光子と第2の粘着剤層の間)に配置される第4の保護層を有していてもよい。 Although not shown, the backside polarizing plate has a fourth protective layer arranged on the visible side of the second polarizing element (between the second polarizing element and the second pressure-sensitive adhesive layer). May be good.

背面側偏光板の厚みdrは、好ましくは30μm~150μmであり、より好ましくは40μm~130μmである。 The thickness dr of the back-side polarizing plate is preferably 30 μm to 150 μm, and more preferably 40 μm to 130 μm.

C-1.第2の偏光子
第2の偏光子としては、任意の適切な偏光子が採用され得、例えば、第1の偏光子について上記B-1項で説明した偏光子を用いることができる。第2の偏光子の厚みは、好ましくは0.5μm~5μmであり、より好ましくは0.5μm~3μmであり、さらに好ましくは0.5μm~1.5μmである。
C-1. Second Polarizer As the second splitter, any suitable splitter can be adopted, and for example, the splitter described in Section B-1 above can be used for the first splitter. The thickness of the second polarizing element is preferably 0.5 μm to 5 μm, more preferably 0.5 μm to 3 μm, and even more preferably 0.5 μm to 1.5 μm.

C-2.第3および第4の保護層
第3および第4の保護層は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、任意の適切なフィルムが採用され得、例えば、第1および第2の保護層について上記B-2項で説明したフィルムを用いることができる。第3および第4の保護層の厚みは、代表的には300μm以下であり、好ましくは100μm以下であり、より好ましくは5μm~80μmである。
C-2. Third and Fourth Protective Layers The third and fourth protective layers are formed of any suitable film that can be used as a protective layer for the stator. As a specific example of the material that is the main component of the film, any suitable film can be adopted, and for example, the film described in Section B-2 above can be used for the first and second protective layers. The thickness of the third and fourth protective layers is typically 300 μm or less, preferably 100 μm or less, and more preferably 5 μm to 80 μm.

C-3.第2の粘着剤層
第2の粘着剤層を構成する粘着剤としては、任意の適切な粘着剤を用いることができ、例えば、第1の粘着剤層について上記B-3項で説明した粘着剤を用いることができる。第2の粘着剤層の厚みは、好ましくは7μm~30μmであり、より好ましくは10μm~25μmである。第2の粘着剤層の厚みは第1の粘着剤層の厚みと同じであってもよいし、異なっていてもよい。
C-3. The second pressure-sensitive adhesive layer As the pressure-sensitive adhesive constituting the second pressure-sensitive adhesive layer, any suitable pressure-sensitive adhesive can be used. For example, the first pressure-sensitive adhesive layer is described in the above section B-3. An agent can be used. The thickness of the second pressure-sensitive adhesive layer is preferably 7 μm to 30 μm, more preferably 10 μm to 25 μm. The thickness of the second pressure-sensitive adhesive layer may be the same as or different from the thickness of the first pressure-sensitive adhesive layer.

C-4.反射型偏光子
反射型偏光子は、特定の偏光状態(偏光方向)の偏光を透過し、それ以外の偏光状態の光を反射する機能を有する。反射型偏光子21は、直線偏光分離型であってもよく、円偏光分離型であってもよい。以下、一例として、直線偏光分離型の反射型偏光子について説明する。
C-4. Reflective splitter The reflective splitter has a function of transmitting polarization in a specific polarization state (polarization direction) and reflecting light in other polarization states. The reflection type polarizing element 21 may be a linear polarization separation type or a circular polarization separation type. Hereinafter, as an example, a linearly polarized light separation type reflective classifier will be described.

図3は、反射型偏光子の一例の概略斜視図である。反射型偏光子は、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとが交互に積層された多層積層体である。例えば、このような多層積層体の層の総数は、50~1000であり得る。図示例では、A層のx軸方向の屈折率nxがy軸方向の屈折率nyより大きく、B層のx軸方向の屈折率nxとy軸方向の屈折率nyとは実質的に同一である。したがって、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となる。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。なお、x軸方向は、後述する製造方法における反射型偏光子の延伸方向に対応する。 FIG. 3 is a schematic perspective view of an example of a reflective polarizing element. The reflective polarizing element is a multi-layered laminate in which a layer A having birefringence and a layer B having substantially no birefringence are alternately laminated. For example, the total number of layers of such a multi-layer laminate can be 50-1000. In the illustrated example, the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction of the B layer and the refractive index ny in the y-axis direction are substantially the same. be. Therefore, the difference in refractive index between the A layer and the B layer is large in the x-axis direction and substantially zero in the y-axis direction. As a result, the x-axis direction becomes the reflection axis, and the y-axis direction becomes the transmission axis. The difference in refractive index between the A layer and the B layer in the x-axis direction is preferably 0.2 to 0.3. The x-axis direction corresponds to the stretching direction of the reflective polarizing element in the manufacturing method described later.

上記A層は、好ましくは、延伸により複屈折性を発現する材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。ポリエチレンナフタレートが好ましい。上記B層は、好ましくは、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。 The layer A is preferably made of a material that exhibits birefringence by stretching. Representative examples of such materials include polyester naphthalenedicarboxylate (eg, polyethylene naphthalate), polycarbonate and acrylic resins (eg, polymethylmethacrylate). Polyethylene naphthalate is preferred. The B layer is preferably made of a material that does not substantially exhibit birefringence even when stretched. A typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.

反射型偏光子は、A層とB層との界面において、第1の偏光方向を有する光(例えば、p波)を透過し、第1の偏光方向とは直交する第2の偏光方向を有する光(例えば、s波)を反射する。反射した光は、A層とB層との界面において、一部が第1の偏光方向を有する光として透過し、一部が第2の偏光方向を有する光として反射する。反射型偏光子の内部において、このような反射および透過が多数繰り返されることにより、光の利用効率を高めることができる。 The reflective polarizing element transmits light having a first polarization direction (for example, a p wave) at the interface between the A layer and the B layer, and has a second polarization direction orthogonal to the first polarization direction. Reflects light (eg, s wave). At the interface between the A layer and the B layer, the reflected light is partially transmitted as light having a first polarization direction and partially reflected as light having a second polarization direction. By repeating such reflection and transmission in large numbers inside the reflective polarizing element, it is possible to improve the efficiency of light utilization.

1つの実施形態においては、反射型偏光子は、図3に示すように、偏光子と反対側の最外層として反射層Rを含んでいてもよい。反射層Rを設けることにより、最終的に利用されずに反射型偏光子の最外部に戻ってきた光をさらに利用することができるので、光の利用効率をさらに高めることができる。反射層Rは、代表的には、ポリエステル樹脂層の多層構造により反射機能を発現する。 In one embodiment, the reflective polarizing element may include a reflective layer R as the outermost layer on the opposite side of the polarizing element, as shown in FIG. By providing the reflective layer R, it is possible to further utilize the light that has returned to the outermost side of the reflective polarizing element without being finally utilized, so that the efficiency of light utilization can be further improved. The reflective layer R typically exhibits a reflective function due to the multilayer structure of the polyester resin layer.

反射型偏光子の全体厚みは、目的、反射型偏光子に含まれる層の合計数等に応じて適切に設定され得る。反射型偏光子の全体厚みは、好ましくは10μm~150μmである。 The total thickness of the reflective polarizing element can be appropriately set according to the purpose, the total number of layers included in the reflective polarizing element, and the like. The total thickness of the reflective polarizing element is preferably 10 μm to 150 μm.

1つの実施形態においては、背面側偏光板において、反射型偏光子は、偏光子の透過軸に平行な偏光方向の光を透過するようにして配置される。すなわち、反射型偏光子は、好ましくは、その反射軸が偏光子の吸収軸と略平行方向(上記反射軸と上記吸収軸とのなす角度が、例えば-5°~5°)となるようにして配置される。このような構成とすることにより、偏光板のセットを画像表示装置に用いた場合に、偏光板に吸収されてしまう光を再利用することができ、利用効率をさらに高めることができ、また、輝度も向上できる。 In one embodiment, in the backside polarizing plate, the reflective polarizing element is arranged so as to transmit light in the polarization direction parallel to the transmission axis of the polarizing element. That is, the reflective polarizing element is preferably oriented so that its reflecting axis is substantially parallel to the absorption axis of the polarizing element (the angle formed by the reflection axis and the absorption axis is, for example, −5 ° to 5 °). Is placed. With such a configuration, when the set of polarizing plates is used in an image display device, the light absorbed by the polarizing plates can be reused, the utilization efficiency can be further improved, and the utilization efficiency can be further improved. Brightness can also be improved.

反射型偏光子は、代表的には、共押出と横延伸とを組み合わせて作製され得る。共押出は、任意の適切な方式で行われ得る。例えば、フィードブロック方式であってもよく、マルチマニホールド方式であってもよい。例えば、フィードブロック中でA層を構成する材料とB層を構成する材料とを押出し、次いで、マルチプライヤーを用いて多層化する。なお、このような多層化装置は当業者に公知である。次いで、得られた長尺状の多層積層体を代表的には搬送方向に直交する方向(TD)に延伸する。A層を構成する材料(例えば、ポリエチレンナフタレート)は、当該横延伸により延伸方向においてのみ屈折率が増大し、結果として複屈折性を発現する。B層を構成する材料(例えば、ナフタレンジカルボン酸とテレフタル酸とのコポリエステル)は、当該横延伸によってもいずれの方向にも屈折率は増大しない。結果として、延伸方向(TD)に反射軸を有し、搬送方向(MD)に透過軸を有する反射型偏光子が得られ得る(TDが図3のx軸方向に対応し、MDがy軸方向に対応する)。なお、延伸操作は、任意の適切な装置を用いて行われ得る。 Reflective deflectors can typically be made by combining coextrusion and transverse stretching. Coextrusion can be done in any suitable manner. For example, it may be a feed block system or a multi-manifold system. For example, the material constituting the A layer and the material constituting the B layer are extruded in the feed block, and then multi-layered using a multiplier. It should be noted that such a multilayer device is known to those skilled in the art. Next, the obtained elongated multilayer laminate is typically stretched in a direction orthogonal to the transport direction (TD). The material constituting the layer A (for example, polyethylene naphthalate) has an increased refractive index only in the stretching direction due to the lateral stretching, and as a result, exhibits birefringence. The material constituting the B layer (for example, copolyester of naphthalene dicarboxylic acid and terephthalic acid) does not increase the refractive index in any direction by the transverse stretching. As a result, a reflective polarizing element having a reflection axis in the stretching direction (TD) and a transmission axis in the transport direction (MD) can be obtained (TD corresponds to the x-axis direction in FIG. 3 and MD corresponds to the y-axis. Corresponds to the direction). The stretching operation can be performed using any suitable device.

反射型偏光子としては、例えば、特表平9-507308号公報に記載のものが使用され得る。反射型偏光子は、市販品をそのまま用いてもよく、市販品を2次加工(例えば、延伸)して用いてもよい。市販品としては、例えば、3M社製の商品名DBEF、3M社製の商品名APFが挙げられる。 As the reflective polarizing element, for example, those described in Japanese Patent Publication No. 9-507308 may be used. As the reflective polarizing element, a commercially available product may be used as it is, or the commercially available product may be used by secondary processing (for example, stretching). Examples of the commercially available product include the product name DBEF manufactured by 3M and the product name APF manufactured by 3M.

D.液晶表示パネル
図4は、本発明の1つの実施形態による液晶表示パネルの概略断面図である。液晶表示パネル200は、上記A項で説明した偏光板のセット100(または偏光板のセット101)と、液晶セル90とを備えている。上記B項で説明した視認側偏光板10が液晶セル90の視認側に貼り合わせられ、上記C項で説明した背面側偏光板50が液晶セル90の背面側に貼り合わせられる。
D. Liquid Crystal Display Panel FIG. 4 is a schematic cross-sectional view of a liquid crystal display panel according to one embodiment of the present invention. The liquid crystal display panel 200 includes the polarizing plate set 100 (or the polarizing plate set 101) described in the above section A, and the liquid crystal cell 90. The visible side polarizing plate 10 described in the above item B is attached to the visible side of the liquid crystal cell 90, and the back side polarizing plate 50 described in the above item C is attached to the back surface side of the liquid crystal cell 90.

視認側偏光板10および背面側偏光板50を液晶セル90に貼り合わせたとき、液晶セルと第1の偏光子20との間の距離dcf’は、上記A項で説明した距離dcfと等しくなり、液晶セルと第2の偏光子60との間の距離dcr’は、上記A項で説明した距離dcrと等しくなる。これにより、視認側偏光板10および背面側偏光板50に用いられる偏光子の厚みが非常に薄いにもかかわらず、液晶表示パネルの反りおよび割れが抑制され得る。 When the viewing side polarizing plate 10 and the back side polarizing plate 50 are attached to the liquid crystal cell 90, the distance dcf'between the liquid crystal cell and the first polarizing element 20 becomes equal to the distance dcf'described in the above item A. , The distance dcr'between the liquid crystal cell and the second polarizing element 60 is equal to the distance dcr' described in Section A above. As a result, warpage and cracking of the liquid crystal display panel can be suppressed even though the thickness of the polarizing element used for the viewing side polarizing plate 10 and the back surface side polarizing plate 50 is very thin.

図5は、本発明の1つの実施形態による液晶表示パネルを有する画像表示装置の概略断面図である。図5(a)に示すように、画像表示装置300は、液晶表示パネル200と、液晶表示パネル200の背面側に配置される光源210(バックライト)と、液晶表示パネル200と光源210とを支持するベゼル220と、を有する。ベゼル220は、液晶表示パネル200の両端を固定する。図5(b)に示すように、液晶表示パネル200Aは、視認側に凸となるように反りが生じ、その結果、全体的に輝度ムラが生じる場合がある。これに対して、本実施形態による液晶表示パネル200は、上記のとおり、第1の偏光子20(視認側)の厚みが第2の偏光子60(背面側)と同じ厚みか、または第1の偏光子20の厚みが第2の偏光子の厚みよりも厚く設計されていることにより、液晶表示パネル200の視認側に凸となる反りを抑制し得る。また、第1の偏光子20の厚みが第2の偏光子60の厚みよりも厚く設計されていることにより、図5(c)に示すように、液晶表示パネル200の背面側に凸となる反りが生じた場合であっても、液晶表示パネル200の背面側には光源210が配置され、液晶表示パネル200の両端がベゼル220で固定されていることにより、背面側に凸となる反りは制限され得る。これにより、本実施形態による液晶表示パネル200は、反りによる輝度ムラの発生を抑制し得る。 FIG. 5 is a schematic cross-sectional view of an image display device having a liquid crystal display panel according to one embodiment of the present invention. As shown in FIG. 5A, the image display device 300 includes a liquid crystal display panel 200, a light source 210 (backlight) arranged on the back side of the liquid crystal display panel 200, and a liquid crystal display panel 200 and a light source 210. It has a bezel 220 and a support. The bezel 220 fixes both ends of the liquid crystal display panel 200. As shown in FIG. 5B, the liquid crystal display panel 200A may be warped so as to be convex toward the viewing side, and as a result, uneven brightness may occur as a whole. On the other hand, in the liquid crystal display panel 200 according to the present embodiment, as described above, the thickness of the first polarizing element 20 (visual recognition side) is the same as that of the second polarizing element 60 (rear surface side), or the first. Since the thickness of the polarizing element 20 is designed to be thicker than the thickness of the second polarizing element, it is possible to suppress the warp that is convex toward the visual recognition side of the liquid crystal display panel 200. Further, since the thickness of the first polarizing element 20 is designed to be thicker than the thickness of the second polarizing element 60, as shown in FIG. 5 (c), the thickness of the liquid crystal display panel 200 is convex toward the back surface side. Even if warpage occurs, the light source 210 is arranged on the back side of the liquid crystal display panel 200, and both ends of the liquid crystal display panel 200 are fixed by the bezel 220, so that the warp that becomes convex on the back side is generated. Can be limited. As a result, the liquid crystal display panel 200 according to the present embodiment can suppress the occurrence of luminance unevenness due to warpage.

D-1.液晶セル
液晶セルは、一対の基板と、当該基板間に挟持された表示媒体としての液晶層とを有する。上記一対の基板は、代表的にはガラスである。一般的な構成においては、一方の基板に、カラーフィルターおよびブラックマトリクスが設けられており、他方の基板に、液晶の電気光学特性を制御するスイッチング素子と、このスイッチング素子にゲート信号を与える走査線およびソース信号を与える信号線と、画素電極および対向電極とが設けられている。上記基板の間隔(セルギャップ)は、スペーサー等によって制御できる。上記基板の液晶層と接する側には、例えば、ポリイミドからなる配向膜等を設けることができる。液晶層の駆動モードの代表例としては、バーティカル・アライメント(VA)モード、インプレーンスイッチング(IPS)モード、フリンジフィールドスイッチング(FFS)モード等が挙げられる。
D-1. Liquid crystal cell A liquid crystal cell has a pair of substrates and a liquid crystal layer as a display medium sandwiched between the substrates. The pair of substrates is typically glass. In a general configuration, one substrate is provided with a color filter and a black matrix, and the other substrate has a switching element for controlling the electro-optical characteristics of the liquid crystal and a scanning line for giving a gate signal to the switching element. A signal line for giving a source signal and a pixel electrode and a counter electrode are provided. The spacing (cell gap) between the substrates can be controlled by a spacer or the like. For example, an alignment film made of polyimide can be provided on the side of the substrate in contact with the liquid crystal layer. Typical examples of the drive mode of the liquid crystal layer include a vertical alignment (VA) mode, an inplane switching (IPS) mode, a fringe field switching (FFS) mode, and the like.

液晶セルの厚みは、例えば0.3mm~0.5mmであり、上記基板の厚みは、例えば0.15mm~0.5mmである。このように薄型の液晶セルを有する液晶表示パネルに上記偏光板のセットを用いた場合、本発明による効果が顕著である。 The thickness of the liquid crystal cell is, for example, 0.3 mm to 0.5 mm, and the thickness of the substrate is, for example, 0.15 mm to 0.5 mm. When the set of the polarizing plates is used for a liquid crystal display panel having such a thin liquid crystal cell, the effect of the present invention is remarkable.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法および評価方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
ダイヤルゲージ(PEACOCK社製、製品名「DG-205」、ダイヤルゲージスタンド(製品名「pds-2」))を用いて測定した。
(2)加熱による液晶表示パネルの反り量
実施例および比較例の偏光板のセットを備える液晶表示パネルの加熱による反り量を、以下の手順で評価した。
視認側偏光板および背面側偏光板を245mm×420mmのサイズにカットした。なお、視認側偏光板は偏光子の吸収軸が長辺方向となるようにカットし、背面側偏光板は偏光子の吸収軸が短辺方向となるようにカットした。
次いで、液晶セルを模擬した245mm×420mmのガラス板(厚み:0.55mm)を用意し、カットした視認側偏光板および背面側偏光板のセパレータ付き導電性粘着剤層のセパレータを除去し、上記ガラス板の一方の面に粘着剤層を介して視認側偏光板を貼り合わせ、上記ガラス板の他方の面に粘着剤層を介して背面側偏光板を貼り合わせることにより(視認側の偏光子と背面側の偏光子とはクロスニコルの関係になる)、評価用のサンプルを作製した。
上記サンプルを70℃240時間の加熱条件で加熱した後、24℃50%RHの環境下で1時間放置した。その後、サンプルの反り量(たわみ量)を測定した。反り量はガラスの自重の影響を無視できるようガラスの長辺方向を作業台に接地するように立てて測定した。なお、サンプルの面内法線方向における中央部の変位量(mm)を上記反り量(たわみ量)とした。
○:5mm未満
△:5mm以上7mm未満
×:7mm以上10mm未満
××:10mm以上
(3)液晶表示パネルの耐割れ性
実施例および比較例の偏光板のセットを備える液晶表示パネルの耐割れ性を、以下の手順で評価した。
アルカリガラス(12.5mm×19.5mm、厚みが0.4mm(平岡特殊硝子社製))に、サンプルのサイズが12.5mm×19.5mmとなるようにカットしたものを貼り付け、各実施例および各比較例の偏光板のセットにつき、3つの評価用のサンプルを用意した。
厚み10mm以上のガラス板の上に、上記サンプルを、背面側偏光板が上になるように置き、金属球(重さ230g、直径38.1mm、材質SUS304)を50mmの高さから上記サンプルの中央に自然落下させ、厚み0.4mmのガラス板の状態を確認した。ガラス板に割れが生じていない場合、さらに50mm高い位置(100mmの高さ)から金属球を落下させ、厚み0.4mmのガラス板の状態を確認した。この操作を、厚み0.4mmのガラス板が割れるか、または落下高さが500mmとなるまで繰り返し、ガラス板が割れたときの金属球の落下高さを求めた。3つのサンプルにおける上記落下高さの平均値から、以下の基準で耐割れ性を評価した。
◎・・・落下高さ500mm以上
○・・・落下高さ400mm以上500mm未満
△・・・落下高さ250mm以上400mm未満
×・・・落下高さ250mm未満
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method and evaluation method for each characteristic are as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1) Thickness Measured using a dial gauge (manufactured by PEACOCK, product name "DG-205", dial gauge stand (product name "pds-2")).
(2) Amount of Warpage of Liquid Crystal Display Panel by Heating The amount of warpage of a liquid crystal display panel provided with a set of polarizing plates of Examples and Comparative Examples was evaluated by the following procedure.
The viewing side polarizing plate and the back side polarizing plate were cut into a size of 245 mm × 420 mm. The polarizing plate on the visible side was cut so that the absorption axis of the polarizing element was in the long side direction, and the polarizing plate on the back side was cut so that the absorption axis of the polarizing element was in the short side direction.
Next, a 245 mm × 420 mm glass plate (thickness: 0.55 mm) simulating a liquid crystal cell was prepared, and the separator of the conductive pressure-sensitive adhesive layer with a separator for the cut viewing side polarizing plate and the back side polarizing plate was removed. By attaching the viewing side polarizing plate to one surface of the glass plate via the pressure-sensitive adhesive layer and attaching the back-side polarizing plate to the other surface of the glass plate via the pressure-sensitive adhesive layer (the polarizing element on the viewing side). And the polarizing element on the back side have a cross Nicol relationship), and a sample for evaluation was prepared.
The sample was heated at 70 ° C. for 240 hours and then left at 24 ° C. for 50% RH for 1 hour. Then, the amount of warpage (amount of deflection) of the sample was measured. The amount of warpage was measured by standing the long side of the glass so as to touch the workbench so that the influence of the weight of the glass could be ignored. The displacement amount (mm) of the central portion in the in-plane normal direction of the sample was defined as the warp amount (deflection amount).
◯: Less than 5 mm Δ: 5 mm or more and less than 7 mm ×: 7 mm or more and less than 10 mm × ×: 10 mm or more (3) Crack resistance of the liquid crystal display panel The crack resistance of the liquid crystal display panel provided with the set of polarizing plates of Examples and Comparative Examples. Was evaluated by the following procedure.
Alkaline glass (12.5 mm x 19.5 mm, thickness 0.4 mm (manufactured by Hiraoka Special Glass Co., Ltd.)) is pasted with a sample cut to a size of 12.5 mm x 19.5 mm. Three evaluation samples were prepared for each set of polarizing plates of the example and each comparative example.
Place the sample on a glass plate with a thickness of 10 mm or more so that the backside polarizing plate faces up, and place a metal ball (weight 230 g, diameter 38.1 mm, material SUS304) from a height of 50 mm to the sample. It was naturally dropped in the center, and the condition of the glass plate with a thickness of 0.4 mm was confirmed. When the glass plate was not cracked, a metal ball was dropped from a position 50 mm higher (height of 100 mm), and the state of the glass plate having a thickness of 0.4 mm was confirmed. This operation was repeated until the glass plate having a thickness of 0.4 mm was broken or the drop height was 500 mm, and the drop height of the metal ball when the glass plate was broken was obtained. From the average value of the drop heights of the three samples, the crack resistance was evaluated according to the following criteria.
◎ ・ ・ ・ Drop height 500 mm or more ○ ・ ・ ・ Drop height 400 mm or more and less than 500 mm △ ・ ・ ・ Drop height 250 mm or more and less than 400 mm × ・ ・ ・ Drop height less than 250 mm

(製造例1:紫外線硬化型接着剤の調製)
N-ヒドロキシエチルアクリルアミド(HEAA)40重量部とアクリロイルモルホリン(ACMO)60重量部と光開始剤「IRGACURE 819」(BASF社製)3重量部を混合し、紫外線硬化型接着剤を調製した。
(Manufacturing Example 1: Preparation of UV Curable Adhesive)
An ultraviolet curable adhesive was prepared by mixing 40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloyl morpholine (ACMO), and 3 parts by weight of the photoinitiator "IRGACURE 819" (manufactured by BASF).

(製造例2:導電性粘着剤層Aの作製)
攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート99部およびアクリル酸4-ヒドロキシブチル1部を含有するモノマー混合物を仕込んだ。さらに、上記モノマー混合物(固形分)100部に対して、重合開始剤として2,2´-アゾビスイソブチロニトリル0.1部を酢酸エチルと共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を60℃付近に保って7時間重合反応を行った。その後、得られた反応液に、酢酸エチルを加えて固形分濃度を30%に調整した。このようにして、重量平均分子量140万のアクリル系ポリマー(A-1)(ベースポリマー)の溶液を調製した。
上記アクリル系ポリマー(A-1)溶液の固形分100部に対して、導電剤としてリチウムビス(トリフルオロメタンスルホニル)イミド(三菱マテリアル電子化成社製)1.0部およびエチルメチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド(東京化成工業製)0.7部、架橋剤としてトリメチロールプロパンキシリレンジイソシアネート(三井化学社製:タケネートD110N)0.095部およびジベンゾイルパーオキサイド0.3部、シランカップリング剤としてオルガノシラン(綜研化学社製:A100)0.2部およびチオール基含有シランカップリング剤(信越化学工業社製:X41-1810)0.2部、リワーク向上剤(カネカ社製、サイリルSAT10)0.03部、ならびに酸化防止剤(BASF社製、Irganox1010)0.3部を配合して、粘着剤組成物(溶液)を調製した。
得られた粘着剤組成物を、形成される粘着剤層の厚みが20μmとなるように、離型処理されたポリエチレンテレフタレート基材上に塗布し、120℃の乾燥機で3分間乾燥させることにより、セパレータ付き導電性粘着剤層Aを作製した。
(Manufacturing Example 2: Fabrication of Conductive Adhesive Layer A)
A four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler was charged with a monomer mixture containing 99 parts of butyl acrylate and 1 part of 4-hydroxybutyl acrylate. Further, with respect to 100 parts of the above-mentioned monomer mixture (solid content), 0.1 part of 2,2'-azobisisobutyronitrile was charged together with ethyl acetate as a polymerization initiator, and nitrogen gas was introduced while gently stirring. After substituting with nitrogen, the liquid temperature in the flask was maintained at around 60 ° C. and the polymerization reaction was carried out for 7 hours. Then, ethyl acetate was added to the obtained reaction solution to adjust the solid content concentration to 30%. In this way, a solution of an acrylic polymer (A-1) (base polymer) having a weight average molecular weight of 1.4 million was prepared.
For 100 parts of the solid content of the acrylic polymer (A-1) solution, 1.0 part of lithium bis (trifluoromethanesulfonyl) imide (manufactured by Mitsubishi Materials Denshi Kasei Co., Ltd.) and ethylmethylpyrrolidinium bis (manufactured by Mitsubishi Materials Electronics Co., Ltd.) as conductive agents. Trifluoromethanesulfonyl) imide (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 0.7 parts, trimethylolpropanexylylene diisocyanate (manufactured by Mitsui Chemicals Co., Ltd .: Takenate D110N) 0.095 parts and dibenzoyl peroxide 0.3 parts, silane cup 0.2 parts of organosilane (manufactured by Soken Kagaku Co., Ltd .: A100) and 0.2 parts of thiol group-containing silane coupling agent (manufactured by Shinetsu Kagaku Kogyo Co., Ltd .: X41-1810) as ring agents, rework improver (manufactured by Kaneka Corporation, Cyril) A pressure-sensitive adhesive composition (solution) was prepared by blending 0.03 part of SAT10) and 0.3 part of an antioxidant (Irganox1010 manufactured by BASF).
The obtained pressure-sensitive adhesive composition was applied onto a mold-released polyethylene terephthalate substrate so that the thickness of the pressure-sensitive adhesive layer to be formed was 20 μm, and dried in a dryer at 120 ° C. for 3 minutes. , A conductive pressure-sensitive adhesive layer A with a separator was produced.

(製造例3:導電性粘着剤層Bの作製)
製造例2と同様にして、形成される粘着剤層の厚みが5μmとなるように、粘着剤組成物をポリエチレンテレフタレート基材上に塗布して乾燥させることにより、セパレータ付き導電性粘着剤層Bを作製した。
(Manufacturing Example 3: Fabrication of Conductive Adhesive Layer B)
In the same manner as in Production Example 2, the pressure-sensitive adhesive composition is applied onto a polyethylene terephthalate substrate and dried so that the thickness of the pressure-sensitive adhesive layer formed is 5 μm, whereby the conductive pressure-sensitive adhesive layer B with a separator is formed. Was produced.

(製造例4:導電性粘着剤層Cの作製)
製造例2と同様にして、形成される粘着剤層の厚みが45μmとなるように、粘着剤組成物をポリエチレンテレフタレート基材上に塗布して乾燥させることにより、セパレータ付き導電性粘着剤層Cを作製した。
(Manufacturing Example 4: Fabrication of Conductive Adhesive Layer C)
In the same manner as in Production Example 2, the pressure-sensitive adhesive composition is applied onto a polyethylene terephthalate substrate and dried so that the thickness of the pressure-sensitive adhesive layer formed is 45 μm, whereby the conductive pressure-sensitive adhesive layer C with a separator is formed. Was produced.

(製造例5:偏光子Aの作製)
吸水率0.75%、Tg75℃の非晶質のIPA共重合PETフィルム(厚み:100μm)基材の片面にコロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を塗布して60℃で乾燥することにより、基材上に厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴に、最終的に得られる偏光子の単体透過率が42%となるように染色液(ヨウ素:ヨウ化カリウム=1:7重量部)濃度、浸漬時間を調整しながら浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
これにより、基材と厚み5μmの偏光子Aとの積層体(偏光子積層体A)を作製した。
(Manufacturing Example 5: Fabrication of Polarizer A)
An amorphous IPA copolymerized PET film (thickness: 100 μm) having a water absorption rate of 0.75% and a Tg of 75 ° C. was subjected to corona treatment on one side, and polyvinyl alcohol (polymerization degree 4200, degree of saponification) was applied to this corona-treated surface. 99.2 mol%) and acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl modification degree 4.6%, saponification degree 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z200" ) Was applied at a ratio of 9: 1 and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm on the substrate, and a laminate was prepared.
The obtained laminate was stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C., the concentration of the dyeing solution (iodine: potassium iodide = 1: 7 parts by weight) and the immersion time were adjusted so that the single transmittance of the finally obtained polarizing element was 42%. It was immersed while being immersed (dyeing treatment).
Then, it was immersed in a cross-linked bath having a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4.0% by weight) having a liquid temperature of 70 ° C., the total draw ratio is 5.5 in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. The uniaxial stretching was performed so as to be doubled (underwater stretching treatment).
Then, the laminate was immersed in a washing bath having a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
As a result, a laminate (polarizer laminate A) of the substrate and the polarizing element A having a thickness of 5 μm was produced.

(製造例6:偏光子Bの作製)
PVA系樹脂層の厚みを7.5μmとしたこと以外は製造例5と同様にして積層体を作製した。
得られた積層体を、同時二軸延伸機を用いて、140℃で、長手方向に40%収縮させると同時に、幅方向に5.0倍に乾式延伸した(横延伸処理)。
次いで、液温30℃の染色浴に、最終的に得られる偏光子の単体透過率が42%となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた(染色処理)。
次いで、積層体を、60℃のホウ酸水溶液(ホウ酸濃度:5重量%、ヨウ化カリウム濃度:5重量%)に60秒間浸漬させた(架橋処理)。
その後、積層体を、25℃のヨウ化カリウム水溶液(ヨウ化カリウム濃度:5重量%)に5秒間浸漬させた(洗浄処理)。
このようにして、基材と厚み2.5μmの偏光子Bとの積層体(偏光子積層体B)を作製した。
(Manufacturing Example 6: Fabrication of Polarizer B)
A laminate was produced in the same manner as in Production Example 5 except that the thickness of the PVA-based resin layer was 7.5 μm.
The obtained laminate was contracted by 40% in the longitudinal direction at 140 ° C. using a simultaneous biaxial stretching machine, and at the same time, was dry-stretched 5.0 times in the width direction (transverse stretching treatment).
Then, it was immersed in a dyeing bath having a liquid temperature of 30 ° C. while adjusting the iodine concentration and the immersion time so that the single transmittance of the finally obtained polarizing element was 42% (dyeing treatment).
Next, the laminate was immersed in a boric acid aqueous solution (boric acid concentration: 5% by weight, potassium iodide concentration: 5% by weight) at 60 ° C. for 60 seconds (crosslinking treatment).
Then, the laminate was immersed in a potassium iodide aqueous solution (potassium iodide concentration: 5% by weight) at 25 ° C. for 5 seconds (cleaning treatment).
In this way, a laminate (polarizer laminate B) of the substrate and the polarizing element B having a thickness of 2.5 μm was produced.

(製造例7:偏光子Cの作製)
基材上に形成するPVA系樹脂層の厚みを3.5μmとしたこと以外は製造例6と同様にして、基材と厚み1.2μmの偏光子Cとの積層体(偏光子積層体C)を作製した。
(Manufacturing Example 7: Fabrication of Polarizer C)
The same as in Production Example 6 except that the thickness of the PVA-based resin layer formed on the substrate is 3.5 μm, the laminate of the substrate and the polarizing element C having a thickness of 1.2 μm (polarizer laminate C). ) Was produced.

(製造例8:偏光子Dの作製)
厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施した。
具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。
次いで、染色処理は得られる偏光子の単体透過率が42.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。
次いで、1段階目の架橋処理は液温40℃の架橋浴(水100重量部に対してホウ酸を5重量部、ヨウ化カリウムを3重量部配合して得られた水溶液)に浸漬しながら1.2倍に延伸した。2段階目の架橋処理は液温65℃の架橋浴(水100重量部に対してホウ酸を4重量部、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬しながら1.6倍に延伸した。
次いで、洗浄処理は、液温20℃の洗浄浴(水100重量部に対してヨウ化カリウム4重量部配合して得られた水溶液)で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させた。
このようにして、厚み12μmの偏光子Dを作製した。
(Manufacturing Example 8: Fabrication of Polarizer D)
At the same time, a long roll of a polyvinyl alcohol (PVA) resin film (manufactured by Kuraray, product name "PE3000") having a thickness of 30 μm is uniaxially stretched in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretching machine. It was swollen, stained, crosslinked, washed, and finally dried.
Specifically, the swelling treatment was carried out by stretching 2.2 times while treating with pure water at 20 ° C.
Next, the dyeing treatment was carried out in an aqueous solution at 30 ° C. in which the weight ratio of iodine and potassium iodide was adjusted so that the simple substance transmittance of the obtained polarizing element was 42.0% and the weight ratio was 1: 7. However, it was stretched 1.4 times.
Next, the first step of the cross-linking treatment is carried out while immersing in a cross-linking bath having a liquid temperature of 40 ° C. (an aqueous solution obtained by blending 5 parts by weight of boric acid and 3 parts by weight of potassium iodide with respect to 100 parts by weight of water). It was stretched 1.2 times. The second step of the cross-linking treatment is carried out while immersing in a cross-linking bath having a liquid temperature of 65 ° C. (an aqueous solution obtained by blending 4 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water). It was stretched 6 times.
Next, the washing treatment was carried out in a washing bath having a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water). The potassium iodide content of the aqueous solution of the washing treatment was set to 2.6% by weight. Finally, the drying process was carried out at 70 ° C. for 5 minutes.
In this way, a splitter D having a thickness of 12 μm was produced.

[実施例1]
1.視認側偏光板の作製
偏光子積層体Aの偏光子側の面に、製造例1の紫外線硬化型接着剤を硬化後の厚みが1μmとなるように塗布し、ラクトン環構造を有する(メタ)アクリル樹脂フィルムA(厚み40μm)を、コロナ処理を施した面に貼り合わせ、紫外線硬化型接着剤を硬化させた。
次いで、偏光子積層体AからA-PETフィルムを剥離し、剥離面に、製造例1の紫外線硬化型接着剤を硬化後の厚みが1μmとなるように塗布し、シクロオレフィン系樹脂を主成分とする保護フィルムB(日本ゼオン社製、厚み60μm)を貼り合わせ、紫外線硬化型接着剤を硬化させた。
次いで、厚み60μmの保護フィルムの表面に、セパレータ付き導電性粘着剤層Aの導電性粘着剤層(20μm)の面を貼り合わせることにより、視認側偏光板1を作製した。
視認側偏光板1は、保護層(40)/接着剤層(1)/偏光子(5)/接着剤層(1)/保護層(60)/粘着剤層(20)の積層構成を有する(カッコ内の数値は層の厚みを示し、単位はμmである。以下同様である。)。
2.背面側偏光板の作製
偏光子積層体Aの偏光子側の面に、製造例1の紫外線硬化型接着剤を硬化後の厚みが1μmとなるように塗布し、(メタ)アクリル樹脂を主成分とする保護フィルムA(厚み40μm)を貼り合わせ、紫外線硬化型接着剤を硬化させた。
次いで、偏光子積層体AからA-PETフィルムを剥離し、剥離面に、セパレータ付き導電性粘着剤層Aの導電性粘着剤層(20μm)の面を貼り合わせることにより、背面側偏光板1を作製した。
背面側偏光板1は、粘着剤層(20)/偏光子(5)/接着剤層(1)/保護層(40)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板1とを、実施例1の偏光板のセットとした。
[Example 1]
1. 1. Fabrication of Visible Polarizing Plate The UV-curable adhesive of Production Example 1 is applied to the surface of the polarizing element laminate A on the polarizing element side so that the cured thickness is 1 μm, and has a lactone ring structure (meth). Acrylic resin film A (thickness 40 μm) was attached to the surface treated with corona, and the ultraviolet curable adhesive was cured.
Next, the A-PET film is peeled off from the polarizing element laminate A, and the ultraviolet curable adhesive of Production Example 1 is applied to the peeled surface so that the cured thickness is 1 μm, and the cycloolefin resin is the main component. A protective film B (manufactured by Nippon Zeon Corporation, thickness 60 μm) was attached to cure the ultraviolet curable adhesive.
Next, the surface of the conductive pressure-sensitive adhesive layer (20 μm) of the conductive pressure-sensitive adhesive layer A with a separator was bonded to the surface of a protective film having a thickness of 60 μm to prepare a viewing-side polarizing plate 1.
The viewing-side polarizing plate 1 has a laminated structure of a protective layer (40) / adhesive layer (1) / polarizing element (5) / adhesive layer (1) / protective layer (60) / adhesive layer (20). (The numerical value in parentheses indicates the thickness of the layer, and the unit is μm. The same applies hereinafter.)
2. 2. Fabrication of Backside Polarizing Plate The UV curable adhesive of Production Example 1 is applied to the surface of the polarizing element laminate A on the polarizing element side so that the cured thickness is 1 μm, and the main component is (meth) acrylic resin. A protective film A (thickness 40 μm) was attached to cure the ultraviolet curable adhesive.
Next, the A-PET film is peeled off from the polarizing element laminate A, and the surface of the conductive pressure-sensitive adhesive layer (20 μm) of the conductive pressure-sensitive adhesive layer A with a separator is attached to the peeled surface, whereby the back side polarizing plate 1 is attached. Was produced.
The back-side polarizing plate 1 has a laminated structure of an adhesive layer (20) / a polarizing element (5) / an adhesive layer (1) / a protective layer (40).
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 1 were used as a set of polarizing plates of Example 1.

[実施例2]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体AのA-PETフィルム剥離面に、製造例1の紫外線硬化型接着剤を介してラクトン環を有する(メタ)アクリル樹脂フィルム(厚み20μm)を貼り合わせ、上記(メタ)アクリル樹脂フィルムの上にセパレータ付き導電性粘着剤層Aの導電性粘着剤層(20μm)の面を貼り合わせたこと以外は実施例1と同様にして、背面側偏光板2を作製した。
背面側偏光板2は、粘着剤層(20)/保護層(20)/接着剤層(1)/偏光子(5)/接着剤層(1)/保護層(40)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板2とを、実施例2の偏光板のセットとした。
[Example 2]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Fabrication of Backside Platelet A (meth) acrylic resin film (thickness 20 μm) having a lactone ring is bonded to the A-PET film peeling surface of the polarizing element laminate A via the ultraviolet curable adhesive of Production Example 1. The back side polarizing plate 2 is provided in the same manner as in Example 1 except that the surface of the conductive pressure-sensitive adhesive layer (20 μm) of the conductive pressure-sensitive adhesive layer A with a separator is bonded onto the (meth) acrylic resin film. Made.
The back-side polarizing plate 2 has a laminated structure of an adhesive layer (20) / a protective layer (20) / an adhesive layer (1) / a polarizing element (5) / an adhesive layer (1) / a protective layer (40). ..
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 2 were used as a set of polarizing plates of Example 2.

[実施例3]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体Aの偏光子側の面に、厚み20μmの粘着剤を介して、反射型偏光子(3M社製、製品名「APF V3」、厚み:26μm)を貼り合わせたこと以外は実施例2と同様にして、背面側偏光板3を作製した。
背面側偏光板3は、粘着剤層(20)/保護層(20)/接着剤層(1)/偏光子(5)/粘着剤層(20)/反射型偏光子(26)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板3とを、実施例3の偏光板のセットとした。
[Example 3]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Fabrication of backside polarizing plate A reflective polarizing element (manufactured by 3M, product name "APF V3", thickness: 26 μm) is attached to the surface of the polarizing element laminate A on the polarizing element side via an adhesive having a thickness of 20 μm. The back side polarizing plate 3 was produced in the same manner as in Example 2 except that they were combined.
The back-side polarizing plate 3 has a laminated structure of an adhesive layer (20) / protective layer (20) / adhesive layer (1) / polarizing element (5) / adhesive layer (20) / reflective polarizing element (26). Has.
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 3 were used as a set of polarizing plates of Example 3.

[実施例4]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体Aの偏光子側の面に、厚み20μmの粘着剤を介して、反射型偏光子(3M社製、製品名「APF V3」、厚み:26μm)を貼り合わせたこと以外は実施例1と同様にして、背面側偏光板4を作製した。
背面側偏光板4は、粘着剤層(20)/偏光子(5)/粘着剤層(20)/反射型偏光子(26)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板4とを、実施例4の偏光板のセットとした。
[Example 4]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Fabrication of backside polarizing plate A reflective polarizing element (manufactured by 3M, product name "APF V3", thickness: 26 μm) is attached to the surface of the polarizing element laminate A on the polarizing element side via an adhesive having a thickness of 20 μm. The back side polarizing plate 4 was produced in the same manner as in Example 1 except that they were combined.
The back-side polarizing plate 4 has a laminated structure of a pressure-sensitive adhesive layer (20) / a polarizing element (5) / a pressure-sensitive adhesive layer (20) / a reflective polarizing element (26).
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 4 were used as a set of polarizing plates of Example 4.

[実施例5]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体Aの偏光子側の面に、保護フィルムAに代えて反射型偏光子(3M社製、製品名「APF V3」、厚み:26μm)を貼り合わせたこと以外は実施例1と同様にして、背面側偏光板5を作製した。
背面側偏光板5は、粘着剤層(20)/偏光子(5)/接着剤層(1)/反射型偏光子(26)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板5とを、実施例5の偏光板のセットとした。
[Example 5]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Fabrication of backside polarizing plate A reflective polarizing element (manufactured by 3M, product name "APF V3", thickness: 26 μm) was attached to the surface of the polarizing element laminate A on the polarizing element side instead of the protective film A. The back side polarizing plate 5 was produced in the same manner as in Example 1 except for the above.
The back-side polarizing plate 5 has a laminated structure of an adhesive layer (20) / a polarizing element (5) / an adhesive layer (1) / a reflective polarizing element (26).
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 5 were used as a set of polarizing plates of Example 5.

[実施例6]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体Aに代えて偏光子積層体Bを用いたこと以外は実施例1と同様にして、背面側偏光板6を作製した。
背面側偏光板6は、粘着剤層(20)/偏光子(2.5)/接着剤層(1)/保護層(40)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板6とを、実施例6の偏光板のセットとした。
[Example 6]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Preparation of Backside Polarizing Plate A backside polarizing plate 6 was produced in the same manner as in Example 1 except that the polarizing element laminate B was used instead of the polarizing element laminate A.
The back-side polarizing plate 6 has a laminated structure of an adhesive layer (20) / a polarizing element (2.5) / an adhesive layer (1) / a protective layer (40).
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 6 were used as a set of polarizing plates of Example 6.

[実施例7]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体Aに代えて偏光子積層体Bを用いたこと以外は実施例4と同様にして、背面側偏光板7を作製した。
背面側偏光板7は、粘着剤層(20)/偏光子(2.5)/粘着剤層(20)/反射型偏光子(26)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板7とを、実施例7の偏光板のセットとした。
[Example 7]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Fabrication of Backside Polarizing Plate The backside polarizing plate 7 was produced in the same manner as in Example 4 except that the polarizing element laminate B was used instead of the polarizing element laminate A.
The back-side polarizing plate 7 has a laminated structure of a pressure-sensitive adhesive layer (20) / a polarizing element (2.5) / a pressure-sensitive adhesive layer (20) / a reflective polarizing element (26).
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 7 were used as a set of polarizing plates of Example 7.

[実施例8]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体Aに代えて偏光子積層体Bを用いたこと以外は実施例5と同様にして、背面側偏光板8を作製した。
背面側偏光板8は、粘着剤層(20)/偏光子(2.5)/接着剤層(1)/反射型偏光子(26)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板8とを、実施例8の偏光板のセットとした。
[Example 8]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Preparation of Back Side Polarizing Plate The back side polarizing plate 8 was produced in the same manner as in Example 5 except that the polarizing element laminate B was used instead of the polarizing element laminate A.
The back-side polarizing plate 8 has a laminated structure of an adhesive layer (20) / a polarizing element (2.5) / an adhesive layer (1) / a reflective polarizing element (26).
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 8 were used as a set of polarizing plates of Example 8.

[実施例9]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体Aに代えて偏光子積層体Cを用いたこと以外は実施例1と同様にして、背面側偏光板9を作製した。
背面側偏光板9は、粘着剤層(20)/偏光子(1.2)/接着剤層(1)/保護層(40)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板9とを、実施例9の偏光板のセットとした。
[Example 9]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Fabrication of Backside Polarizing Plate The backside polarizing plate 9 was produced in the same manner as in Example 1 except that the polarizing element laminate C was used instead of the polarizing element laminate A.
The back-side polarizing plate 9 has a laminated structure of an adhesive layer (20) / a polarizing element (1.2) / an adhesive layer (1) / a protective layer (40).
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 9 were used as a set of polarizing plates of Example 9.

[実施例10]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体Aに代えて偏光子積層体Cを用いたこと以外は実施例2と同様にして、背面側偏光板10を作製した。
背面側偏光板10は、粘着剤層(20)/保護層(20)/接着剤層(1)/偏光子(1.2)/接着剤層(1)/保護層(40)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板10とを、実施例10の偏光板のセットとした。
[Example 10]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Fabrication of Backside Polarizing Plate The backside polarizing plate 10 was produced in the same manner as in Example 2 except that the polarizing element laminate C was used instead of the polarizing element laminate A.
The back-side polarizing plate 10 has a laminated structure of an adhesive layer (20) / a protective layer (20) / an adhesive layer (1) / a polarizing element (1.2) / an adhesive layer (1) / a protective layer (40). Has.
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 10 were used as a set of polarizing plates of Example 10.

[実施例11]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体Aに代えて偏光子積層体Cを用いたこと以外は実施例4と同様にして、背面側偏光板11を作製した。
背面側偏光板11は、粘着剤層(20)/偏光子(1.2)/粘着剤層(20)/反射型偏光子(26)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板11とを、実施例11の偏光板のセットとした。
[Example 11]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Fabrication of Backside Polarizing Plate The backside polarizing plate 11 was produced in the same manner as in Example 4 except that the polarizing element laminate C was used instead of the polarizing element laminate A.
The back-side polarizing plate 11 has a laminated structure of a pressure-sensitive adhesive layer (20) / a polarizing element (1.2) / a pressure-sensitive adhesive layer (20) / a reflective polarizing element (26).
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 11 were used as a set of polarizing plates of Example 11.

[実施例12]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子積層体Aに代えて偏光子積層体Cを用いたこと以外は実施例5と同様にして、背面側偏光板12を作製した。
背面側偏光板12は、粘着剤層(20)/偏光子(1.2)/接着剤層(1)/反射型偏光子(26)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板12とを、実施例12の偏光板のセットとした。
[Example 12]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Preparation of Back Side Polarizing Plate The back side polarizing plate 12 was produced in the same manner as in Example 5 except that the polarizing element laminate C was used instead of the polarizing element laminate A.
The back-side polarizing plate 12 has a laminated structure of an adhesive layer (20) / a polarizing element (1.2) / an adhesive layer (1) / a reflective polarizing element (26).
3. 3. Setting of Polarizing Plate The visible polarizing plate 1 and the back surface polarizing plate 12 were used as a set of polarizing plates of Example 12.

[実施例13]
1.視認側偏光板の作製
偏光子AのA-PETフィルム剥離面に、保護フィルムBを貼り合わせることなく、セパレータ付き導電性粘着剤層Aを貼り合わせたこと以外は実施例1と同様にして、視認側偏光板2を作製した。
視認側偏光板2は、保護層(40)/接着剤層(1)/偏光子(5)/粘着剤層(20)の積層構成を有する。
2.背面側偏光板の作製
実施例12と同様にして、背面側偏光板12を作製した。
3.偏光板のセット
上記視認側偏光板2と、上記背面側偏光板12とを、実施例13の偏光板のセットとした。
[Example 13]
1. 1. Fabrication of Visible Polarizing Plate The same as in Example 1 except that the conductive pressure-sensitive adhesive layer A with a separator was bonded to the A-PET film peeling surface of the polarizing element A without bonding the protective film B. The visual recognition side polarizing plate 2 was manufactured.
The viewing-side polarizing plate 2 has a laminated structure of a protective layer (40) / adhesive layer (1) / polarizing element (5) / adhesive layer (20).
2. 2. Preparation of Backside Polarizing Plate The backside polarizing plate 12 was manufactured in the same manner as in Example 12.
3. 3. Setting of Polarizing Plate The visible polarizing plate 2 and the back surface polarizing plate 12 were used as a set of polarizing plates of Example 13.

[比較例1]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
セパレータ付き導電性粘着剤層Aに代えてセパレータ付き導電性粘着剤層Bを用いたこと以外は実施例12と同様にして、背面側偏光板13を作製した。
背面側偏光板13は、粘着剤層(5)/偏光子(1.2)/接着剤層(1)/反射型偏光子(26)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板13とを、比較例1の偏光板のセットとした。
[Comparative Example 1]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Preparation of Backside Polarizing Plate The backside polarizing plate 13 was produced in the same manner as in Example 12 except that the conductive pressure-sensitive adhesive layer B with a separator was used instead of the conductive pressure-sensitive adhesive layer A with a separator.
The back-side polarizing plate 13 has a laminated structure of an adhesive layer (5) / a polarizing element (1.2) / an adhesive layer (1) / a reflective polarizing element (26).
3. 3. Set of polarizing plate The visible polarizing plate 1 and the back surface polarizing plate 13 were used as a set of polarizing plates of Comparative Example 1.

[比較例2]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
セパレータ付き導電性粘着剤層Aに代えてセパレータ付き導電性粘着剤層Cを用いたこと以外は実施例12と同様にして、背面側偏光板14を作製した。
背面側偏光板14は、粘着剤層(45)/偏光子(1.2)/接着剤層(1)/反射型偏光子(26)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板14とを、比較例2の偏光板のセットとした。
[Comparative Example 2]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Preparation of Backside Polarizing Plate The backside polarizing plate 14 was prepared in the same manner as in Example 12 except that the conductive pressure-sensitive adhesive layer C with a separator was used instead of the conductive pressure-sensitive adhesive layer A with a separator.
The back-side polarizing plate 14 has a laminated structure of an adhesive layer (45) / a polarizing element (1.2) / an adhesive layer (1) / a reflective polarizing element (26).
3. 3. Set of polarizing plate The visible polarizing plate 1 and the back surface polarizing plate 14 were used as a set of polarizing plates of Comparative Example 2.

[比較例3]
1.視認側偏光板の作製
偏光子Aに代えて偏光子Dを用い、偏光子Dの一方の面に紫外線硬化型接着剤を介して保護フィルムAを貼り合わせ、偏光子Dの他方の面に紫外線硬化型接着剤を介して保護フィルムBを貼り合わせたこと以外は実施例1と同様にして、視認側偏光板3を作製した。
視認側偏光板3は、保護層(40)/接着剤層(1)/偏光子(12)/接着剤層(1)/保護層(60)/粘着剤層(20)の積層構成を有する。
2.背面側偏光板の作製
実施例12と同様にして、背面側偏光板12を作製した。
3.偏光板のセット
上記視認側偏光板3と、上記背面側偏光板12とを、比較例3の偏光板のセットとした。
[Comparative Example 3]
1. 1. Fabrication of visual-viewing side polarizing plate A polarizing element D is used instead of the polarizing element A, a protective film A is attached to one surface of the polarizing element D via an ultraviolet curable adhesive, and ultraviolet rays are applied to the other surface of the polarizing element D. The visual recognition side polarizing plate 3 was produced in the same manner as in Example 1 except that the protective film B was bonded via the curable adhesive.
The viewing-side polarizing plate 3 has a laminated structure of a protective layer (40) / adhesive layer (1) / polarizing element (12) / adhesive layer (1) / protective layer (60) / adhesive layer (20). ..
2. 2. Preparation of Backside Polarizing Plate The backside polarizing plate 12 was manufactured in the same manner as in Example 12.
3. 3. Set of polarizing plate The visible polarizing plate 3 and the back surface polarizing plate 12 were used as a set of polarizing plates of Comparative Example 3.

[比較例4]
1.視認側偏光板の作製
実施例1と同様にして、視認側偏光板1を作製した。
2.背面側偏光板の作製
偏光子Aに代えて偏光子Dを用い、偏光子Dの一方の面に紫外線硬化型接着剤を介して反射型偏光子を貼り合わせ、偏光子Dの他方の面にセパレータ付き導電性粘着剤層Aの導電性粘着剤層(20μm)の面を貼り合わせたこと以外は実施例5と同様にして、背面側偏光板15を作製した。
背面側偏光板15は、粘着剤層(20)/偏光子(12)/接着剤層(1)/反射型偏光子(26)の積層構成を有する。
3.偏光板のセット
上記視認側偏光板1と、上記背面側偏光板15とを、比較例4の偏光板のセットとした。
[Comparative Example 4]
1. 1. Fabrication of Visible Polarizing Plate 1 Visible polarizing plate 1 was produced in the same manner as in Example 1.
2. 2. Fabrication of backside polarizing plate A polarizing element D is used instead of the polarizing element A, a reflective polarizing element is attached to one surface of the polarizing element D via an ultraviolet curable adhesive, and the reflecting type polarizing element is attached to the other surface of the polarizing element D. The back side polarizing plate 15 was produced in the same manner as in Example 5 except that the surfaces of the conductive pressure-sensitive adhesive layer (20 μm) of the conductive pressure-sensitive adhesive layer A with a separator were bonded together.
The back-side polarizing plate 15 has a laminated structure of an adhesive layer (20) / a polarizing element (12) / an adhesive layer (1) / a reflective polarizing element (26).
3. 3. Set of polarizing plate The visible polarizing plate 1 and the back surface polarizing plate 15 were used as a set of polarizing plates of Comparative Example 4.

[比較例5]
1.視認側偏光板の作製
セパレータ付き導電性粘着剤層Aに代えてセパレータ付き導電性粘着剤層Bを用いたこと以外は実施例13と同様にして、視認側偏光板4を作製した。
視認側偏光板4は、保護層(40)/接着剤層(1)/偏光子(5)/粘着剤層(5)の積層構成を有する。
2.背面側偏光板の作製
比較例2と同様にして、背面側偏光板14を作製した。
3.偏光板のセット
上記視認側偏光板4と、上記背面側偏光板14とを、比較例5の偏光板のセットとした。
[Comparative Example 5]
1. 1. Preparation of Visible Polarizing Plate The viewing side polarizing plate 4 was produced in the same manner as in Example 13 except that the conductive pressure-sensitive adhesive layer B with a separator was used instead of the conductive pressure-sensitive adhesive layer A with a separator.
The viewing-side polarizing plate 4 has a laminated structure of a protective layer (40) / an adhesive layer (1) / a polarizing element (5) / an adhesive layer (5).
2. 2. Preparation of Backside Polarizing Plate 14 The backside polarizing plate 14 was manufactured in the same manner as in Comparative Example 2.
3. 3. Set of polarizing plate The visible polarizing plate 4 and the back surface polarizing plate 14 were used as a set of polarizing plates of Comparative Example 5.

実施例および比較例の偏光板のセットについて、液晶表示パネルの加熱による反り量および耐割れ性の評価に供した。結果を表1に示す。 The set of polarizing plates of Examples and Comparative Examples was subjected to evaluation of the amount of warpage and crack resistance of the liquid crystal display panel due to heating. The results are shown in Table 1.

Figure 0007043521000001
Figure 0007043521000001

比較例の偏光板のセットは、液晶表示パネルに用いた場合に、液晶表示パネルの加熱による反り量が大きいか、または耐割れ性が低いものであった。なお、反り量について、比較例2、3および5の偏光板のセットでは背面側に凸となる反りを生じ、比較例4の偏光板のセットでは視認側に凸となる反りを生じた。これに対して、実施例の偏光板のセットは、液晶表示パネルに用いた場合に、液晶表示パネルの加熱による反り量が小さく、かつ、耐割れ性が高いものであった。 When the set of polarizing plates of the comparative example was used for the liquid crystal display panel, the amount of warpage due to heating of the liquid crystal display panel was large or the crack resistance was low. Regarding the amount of warpage, the set of the polarizing plates of Comparative Examples 2, 3 and 5 produced a warp that was convex on the back surface side, and the set of the polarizing plates of Comparative Example 4 produced a warp that was convex on the visual recognition side. On the other hand, when the set of the polarizing plates of the examples was used for the liquid crystal display panel, the amount of warpage due to heating of the liquid crystal display panel was small and the crack resistance was high.

本発明の偏光板のセットは、液晶表示装置の液晶表示パネルに好適に用いられる。 The set of polarizing plates of the present invention is suitably used for a liquid crystal display panel of a liquid crystal display device.

10 視認側偏光板
20 第1の偏光子
21 第1の保護層
22 第2の保護層
30 第1の粘着剤層
40 第2の粘着剤層
50 背面側偏光板
51 背面側偏光板
60 第2の偏光子
61 第3の保護層
70 反射型偏光子
90 液晶セル
100 偏光板のセット
101 偏光板のセット
200 液晶表示パネル
10 Visualizing side polarizing plate 20 First polarizing element 21 First protective layer 22 Second protective layer 30 First pressure-sensitive adhesive layer 40 Second pressure-sensitive adhesive layer 50 Back-side polarizing plate 51 Back-side polarizing plate 60 Second Polarizer 61 Third protective layer 70 Reflective polarizing element 90 Liquid crystal cell 100 Polarizing plate set 101 Polarizing plate set 200 Liquid crystal display panel

Claims (7)

液晶セルの視認側に貼り合わされる視認側偏光板と、液晶セルの背面側に貼り合わされる背面側偏光板とを含む偏光板のセットであって、
前記視認側偏光板は、第1の偏光子と、少なくとも1つの粘着剤層と、を含み、
前記背面側偏光板は、第2の偏光子と、少なくとも1つの粘着剤層と、を含み、
前記第1の偏光子の厚みdpf7μm以下であり、前記第2の偏光子の厚みdprが0.5μm~1.5μmであり、かつ、0μm≦dpf-dpr≦5μmを満たし、
前記背面側偏光板の厚みdr、前記視認側偏光板に含まれる全ての前記粘着剤層の厚みの合計daf、および、前記背面側偏光板に含まれる全ての前記粘着剤層の厚みの合計darが、daf≧20μm、dar≧20μm、および、dr×0.25<dar<dr×0.55を満たし、
視認側偏光板の厚みdfが80μm~180μmである、偏光板のセット。
A set of polarizing plates including a viewing-side polarizing plate bonded to the viewing side of a liquid crystal cell and a back-side polarizing plate bonded to the back surface side of the liquid crystal cell.
The viewing-side polarizing plate includes a first polarizing element and at least one pressure-sensitive adhesive layer.
The back-side polarizing plate includes a second polarizing element and at least one pressure-sensitive adhesive layer.
The thickness dpf of the first substituent is 7 μm or less, the thickness dpr of the second particulate is 0.5 μm to 1.5 μm, and 0 μm ≦ dpf-dpr ≦ 5 μm is satisfied.
The thickness dr of the back side polarizing plate, the total thickness daf of all the pressure-sensitive adhesive layers contained in the viewing-side polarizing plate, and the total thickness dar of all the pressure-sensitive adhesive layers contained in the back-side polarizing plate. Satisfies daf ≧ 20 μm, dar ≧ 20 μm, and dr × 0.25 <dar <dr × 0.55 .
A set of polarizing plates having a thickness df of the viewing-side polarizing plate of 80 μm to 180 μm .
前記視認側偏光板の背面と前記第1の偏光子との間の距離dcfが20μm以上であり、前記背面側偏光板の視認側の面と前記第2の偏光子との間の距離dcrが45μm未満である、請求項1に記載の偏光板のセット。 The distance dcf between the back surface of the viewing-side polarizing plate and the first polarizing element is 20 μm or more, and the distance dcr between the viewing-side surface of the rear-viewing polarizing plate and the second polarizing element is The set of polarizing plates according to claim 1, which is less than 45 μm. 前記第1の偏光子の厚みdpfが5μm以下である、請求項1または2に記載の偏光板のセット。 The set of polarizing plates according to claim 1 or 2, wherein the thickness dp f of the first polarizing element is 5 μm or less. 前記視認側偏光板は、視認側から、第1の保護層と、前記第1の偏光子と、第2の保護層と、第1の粘着剤層とをこの順に含む、請求項1からのいずれかに記載の偏光板のセット。 The viewing side polarizing plate includes the first protective layer, the first polarizing element, the second protective layer, and the first pressure-sensitive adhesive layer in this order from the viewing side, claims 1 to 3 . A set of polarizing plates according to any one of. 前記背面側偏光板は、視認側から、第2の粘着剤層と、前記第2の偏光子と、第3の保護層とをこの順に含む、請求項1からのいずれかに記載の偏光板のセット。 The polarization according to any one of claims 1 to 4 , wherein the back-side polarizing plate includes a second pressure-sensitive adhesive layer, the second polarizing element, and a third protective layer in this order from the visual side. A set of boards. 前記背面側偏光板は、視認側から、第2の粘着剤層と、前記第2の偏光子と、反射型偏光子とをこの順に含む、請求項1からのいずれかに記載の偏光板のセット。 The polarizing plate according to any one of claims 1 to 4 , wherein the back-side polarizing plate includes a second pressure-sensitive adhesive layer, the second polarizing element, and a reflective polarizing element in this order from the visual recognition side. Set of. 請求項1からのいずれかに記載の偏光板のセットと、液晶セルとを備える、液晶表示パネル。
A liquid crystal display panel comprising the set of the polarizing plate according to any one of claims 1 to 6 and a liquid crystal cell.
JP2019563001A 2017-12-28 2018-12-14 Polarizing plate set and liquid crystal display panel Active JP7043521B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017253910 2017-12-28
JP2017253910 2017-12-28
PCT/JP2018/046115 WO2019131220A1 (en) 2017-12-28 2018-12-14 Polarization plate set and liquid crystal display panel

Publications (2)

Publication Number Publication Date
JPWO2019131220A1 JPWO2019131220A1 (en) 2020-12-17
JP7043521B2 true JP7043521B2 (en) 2022-03-29

Family

ID=67067097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019563001A Active JP7043521B2 (en) 2017-12-28 2018-12-14 Polarizing plate set and liquid crystal display panel

Country Status (5)

Country Link
JP (1) JP7043521B2 (en)
KR (1) KR102672674B1 (en)
CN (1) CN111512198B (en)
TW (1) TWI779144B (en)
WO (1) WO2019131220A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065075A1 (en) * 2019-09-30 2021-04-08 日東電工株式会社 Set of polarizing plates, and image display device including said set

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092926A1 (en) 2009-02-13 2010-08-19 日東電工株式会社 Laminate optical body, optical film, liquid crystal display device using said optical film, and method for manufacturing laminate optical body
US20100270518A1 (en) 2009-04-27 2010-10-28 Industrial Technology Research Institute Polyvinyl alcohol film composition, and polarizing plate employing the same
JP2014156535A (en) 2013-02-15 2014-08-28 Nitto Denko Corp Adhesive composition for acrylic or cyclo-olefinic polarization film, adhesive layer, acrylic or cyclo-olefinic polarization film having adhesive layer and image formation apparatus
JP2015075684A (en) 2013-10-10 2015-04-20 住友化学株式会社 Polarizing plate set and front plate-integrated liquid crystal display panel
JP2016200806A (en) 2015-04-10 2016-12-01 日東電工株式会社 Polarizing film set with pressure-sensitive adhesive layer, liquid crystal panel and liquid crystal display device
JP2017191339A (en) 2017-07-04 2017-10-19 住友化学株式会社 Polarizing plate and liquid crystal display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194486B2 (en) * 2007-02-28 2013-05-08 住友化学株式会社 Liquid crystal display
TWI453123B (en) * 2007-12-03 2014-09-21 Sumitomo Chemical Co A set of polarizer, and a liquid crystal panel and an apparatus of liquid crystal display used thereof
TWI448748B (en) * 2007-12-11 2014-08-11 Sumitomo Chemical Co A set of polarizer, and a liquid crystal panel and a liquid crystal display apparatus using the set of polarizer
JP5812444B2 (en) * 2012-04-13 2015-11-11 日東電工株式会社 Optical member, polarizing plate set and liquid crystal display device
JP2016118761A (en) * 2014-12-22 2016-06-30 住友化学株式会社 Polarizing plate and manufacturing method of the same, and set of polarizing plates, liquid crystal panel, and liquid crystal display device
KR20160121431A (en) * 2015-04-10 2016-10-19 닛토덴코 가부시키가이샤 Pressure-sensitive adhesive layer attached polarizing film set, liquid crystal panel, and liquid crystal display device
JP6741477B2 (en) * 2016-05-23 2020-08-19 日東電工株式会社 Polarizing film, polarizing film with adhesive layer, and image display device
JP2017083857A (en) 2016-12-02 2017-05-18 住友化学株式会社 Front plate integrated liquid crystal display panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092926A1 (en) 2009-02-13 2010-08-19 日東電工株式会社 Laminate optical body, optical film, liquid crystal display device using said optical film, and method for manufacturing laminate optical body
US20100270518A1 (en) 2009-04-27 2010-10-28 Industrial Technology Research Institute Polyvinyl alcohol film composition, and polarizing plate employing the same
JP2014156535A (en) 2013-02-15 2014-08-28 Nitto Denko Corp Adhesive composition for acrylic or cyclo-olefinic polarization film, adhesive layer, acrylic or cyclo-olefinic polarization film having adhesive layer and image formation apparatus
JP2015075684A (en) 2013-10-10 2015-04-20 住友化学株式会社 Polarizing plate set and front plate-integrated liquid crystal display panel
JP2016200806A (en) 2015-04-10 2016-12-01 日東電工株式会社 Polarizing film set with pressure-sensitive adhesive layer, liquid crystal panel and liquid crystal display device
JP2017191339A (en) 2017-07-04 2017-10-19 住友化学株式会社 Polarizing plate and liquid crystal display device

Also Published As

Publication number Publication date
CN111512198B (en) 2022-07-05
WO2019131220A1 (en) 2019-07-04
CN111512198A (en) 2020-08-07
TW201930933A (en) 2019-08-01
JPWO2019131220A1 (en) 2020-12-17
KR102672674B1 (en) 2024-06-07
TWI779144B (en) 2022-10-01
KR20200100645A (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP6664866B2 (en) Set of polarizing plate and front panel integrated liquid crystal display panel
KR101727871B1 (en) Set of polarizing plates and front plate-integrated liquid crystal display panel
JP6294043B2 (en) Set of polarizing plates
WO2018021190A1 (en) Polarizing plate with phase difference layers, and organic el display device
KR101727870B1 (en) Set of polarizing plates and front plate-integrated liquid crystal display panel
JP2009109993A (en) Set of polarizing plate, liquid crystal panel using the same, and liquid crystal display device
JP7533719B2 (en) Polarizing plate
JP2017083857A (en) Front plate integrated liquid crystal display panel
JP7043521B2 (en) Polarizing plate set and liquid crystal display panel
WO2021065075A1 (en) Set of polarizing plates, and image display device including said set
JP2023057094A (en) Set of polarizing plates and image display device including the same
JP7385380B2 (en) Manufacturing method of polarizing plate with retardation layer and hard coat layer
TWI736968B (en) Optical film group and optical laminate
JP6759715B2 (en) Set of polarizing plate for IPS mode
JP6759665B2 (en) A set of polarizing plates and an IPS mode liquid crystal display device using the same
JP2019204111A (en) Polarizing plate with retardation layer and organic EL display device
JP2019219433A (en) Polarizing plate set and IPS mode liquid crystal display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220316

R150 Certificate of patent or registration of utility model

Ref document number: 7043521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150