JP7043172B2 - Irradiation device - Google Patents

Irradiation device Download PDF

Info

Publication number
JP7043172B2
JP7043172B2 JP2017017511A JP2017017511A JP7043172B2 JP 7043172 B2 JP7043172 B2 JP 7043172B2 JP 2017017511 A JP2017017511 A JP 2017017511A JP 2017017511 A JP2017017511 A JP 2017017511A JP 7043172 B2 JP7043172 B2 JP 7043172B2
Authority
JP
Japan
Prior art keywords
flow path
ultraviolet light
wall surface
irradiation device
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017017511A
Other languages
Japanese (ja)
Other versions
JP2018122262A (en
Inventor
睦 糀屋
文夫 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63109178&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7043172(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2017017511A priority Critical patent/JP7043172B2/en
Publication of JP2018122262A publication Critical patent/JP2018122262A/en
Priority to JP2022041168A priority patent/JP2022069596A/en
Application granted granted Critical
Publication of JP7043172B2 publication Critical patent/JP7043172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体に紫外光を照射するための照射装置に関する。 The present invention relates to an irradiation device for irradiating a fluid with ultraviolet light.

紫外光には殺菌能力があることが知られており、医療や食品加工の現場などでの殺菌処理に紫外光を照射する装置が用いられている。また、水などの流体に紫外光を照射することで、流体を連続的に殺菌する装置も用いられている。このような装置として、例えば、直管状の金属パイプで形成される流路の管端部内壁に紫外線LEDを配置した装置が挙げられる(例えば、特許文献1参照)。 It is known that ultraviolet light has a sterilizing ability, and a device that irradiates ultraviolet light is used for sterilizing treatment in medical and food processing sites. Further, a device for continuously sterilizing a fluid such as water by irradiating it with ultraviolet light is also used. Examples of such a device include a device in which an ultraviolet LED is arranged on the inner wall of a pipe end of a flow path formed of a straight tubular metal pipe (see, for example, Patent Document 1).

特開2011-16074号公報Japanese Unexamined Patent Publication No. 2011-16074

流路内を流れる流体に高効率で紫外光を照射するためには、流路内壁面での紫外光反射率が高い構造とすることが望ましい。しかし、流路内壁面には流体の状態によって気泡が生じたり消えたりすることがある。気泡が生じる場合には、流路内壁面の気泡により紫外光が散乱され、流路内の紫外光の強度分布が時間経過とともに変化する。そうすると、流体に作用する紫外光の量にばらつきが生じ、紫外光照射による殺菌効果や有機物分解効果にもばらつきが生じてしまう。 In order to irradiate the fluid flowing in the flow path with ultraviolet light with high efficiency, it is desirable to have a structure having a high ultraviolet light reflectance on the inner wall surface of the flow path. However, bubbles may be generated or disappeared on the inner wall surface of the flow path depending on the state of the fluid. When bubbles are generated, the ultraviolet light is scattered by the bubbles on the inner wall surface of the flow path, and the intensity distribution of the ultraviolet light in the flow path changes with the passage of time. Then, the amount of ultraviolet light acting on the fluid varies, and the bactericidal effect and the organic substance decomposition effect due to the ultraviolet light irradiation also vary.

本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、紫外光の照射効率を高めつつ、照射量のばらつきを低減した照射装置を提供することにある。 The present invention has been made in view of these problems, and one of its exemplary purposes is to provide an irradiation device that reduces variation in irradiation amount while increasing the irradiation efficiency of ultraviolet light.

本発明のある態様の照射装置は、算術平均粗さが2μm以下のフッ素系樹脂材料で流路内壁面の少なくとも一部が構成される流路構造と、流路構造の内部に向けて紫外光を照射する光源と、を備える。 The irradiation device of one embodiment of the present invention has a flow path structure in which at least a part of the inner wall surface of the flow path is made of a fluororesin material having an arithmetic mean roughness of 2 μm or less, and ultraviolet light toward the inside of the flow path structure. It is equipped with a light source that irradiates the light source.

この態様によると、流路内壁面にフッ素系樹脂材料を用いることにより、紫外光に対する耐久性が高い流路構造にするとともに、流路内壁面での紫外光反射率を高めて流体に効率的に紫外光を照射することができる。また、フッ素系樹脂材料の表面粗さを2μm以下にすることで、流路内壁面への気泡の付着を防ぎ、流路内の紫外光の照度分布の時間変化を軽減できる。これにより、流体に作用する紫外光量のばらつきを抑え、照射装置の照射性能を安定化させることができる。 According to this aspect, by using a fluororesin material for the inner wall surface of the flow path, the flow path structure has high durability against ultraviolet light, and the reflectance of ultraviolet light on the inner wall surface of the flow path is increased to be efficient for fluids. Can be irradiated with ultraviolet light. Further, by setting the surface roughness of the fluororesin material to 2 μm or less, it is possible to prevent bubbles from adhering to the inner wall surface of the flow path and reduce the time change of the illuminance distribution of the ultraviolet light in the flow path. As a result, it is possible to suppress variations in the amount of ultraviolet light acting on the fluid and stabilize the irradiation performance of the irradiation device.

フッ素系樹脂材料は、ポリテトラフルオロエチレン(PTFE)であってもよい。 The fluororesin material may be polytetrafluoroethylene (PTFE).

流路構造は、フッ素系樹脂材料で構成される直管を含んでもよい。光源は、直管の内部に向けて直管の軸方向に紫外光を照射するよう配置されてもよい。 The flow path structure may include a straight pipe made of a fluororesin material. The light source may be arranged to irradiate the inside of the straight tube with ultraviolet light in the axial direction of the straight tube.

光源は、波長が250nm~300nmの紫外光を出力してもよい。 The light source may output ultraviolet light having a wavelength of 250 nm to 300 nm.

本発明によれば、流路内での紫外光の照射効率を高めつつ、照射量のばらつきを低減できる。 According to the present invention, it is possible to reduce the variation in the irradiation amount while increasing the irradiation efficiency of ultraviolet light in the flow path.

実施の形態に係る照射装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the irradiation apparatus which concerns on embodiment. 比較例に係る流路内の照度分布を模式的に示すグラフである。It is a graph which shows typically the illuminance distribution in the flow path which concerns on a comparative example. 実施例に係る流路内の照度分布を模式的に示すグラフである。It is a graph which shows typically the illuminance distribution in the flow path which concerns on an Example. 実施の形態に係る浄化装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the purification apparatus which concerns on embodiment.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same elements are designated by the same reference numerals, and duplicate description will be omitted as appropriate.

図1は、実施の形態に係る照射装置10の構成を概略的に示す断面図である。照射装置10は、流路構造12と、光源14とを備える。流路構造12は、直管20と、流入管26と、流出管28と、照射窓30と、端部壁32とを備える。照射装置10は、直管20の内部を流れる水などの流体に紫外光を照射して殺菌処理や浄化処理を施すために用いられる。 FIG. 1 is a cross-sectional view schematically showing the configuration of the irradiation device 10 according to the embodiment. The irradiation device 10 includes a flow path structure 12 and a light source 14. The flow path structure 12 includes a straight pipe 20, an inflow pipe 26, an outflow pipe 28, an irradiation window 30, and an end wall 32. The irradiation device 10 is used to irradiate a fluid such as water flowing inside the straight tube 20 with ultraviolet light to perform a sterilization treatment or a purification treatment.

光源14は、流路構造12の内部に紫外光を照射するよう構成される。光源14は、直管20の第1端部22に配置され、照射窓30を介して直管20の内部に向けて直管20の軸方向に紫外光を照射する。光源14は、例えば、紫外光を発するLED(Light Emitting Diode)を含み、殺菌効率が高い波長である250nm~300nm付近の紫外光を出力する。光源14は、照射対象が水の場合、265nm~285nmの紫外光を出力するよう構成されることが好ましく、例えば、270nm、275nm、または、280nmの紫外光を出力する。光源14は、紫外光LEDから出力される紫外光の照射方向を整えるためのレンズやリフレクタといった光学素子を含んでもよい。 The light source 14 is configured to irradiate the inside of the flow path structure 12 with ultraviolet light. The light source 14 is arranged at the first end portion 22 of the straight tube 20, and irradiates ultraviolet light in the axial direction of the straight tube 20 toward the inside of the straight tube 20 through the irradiation window 30. The light source 14 includes, for example, an LED (Light Emitting Diode) that emits ultraviolet light, and outputs ultraviolet light in the vicinity of 250 nm to 300 nm, which is a wavelength having high sterilization efficiency. When the irradiation target is water, the light source 14 is preferably configured to output ultraviolet light of 265 nm to 285 nm, and outputs, for example, ultraviolet light of 270 nm, 275 nm, or 280 nm. The light source 14 may include an optical element such as a lens or a reflector for adjusting the irradiation direction of the ultraviolet light output from the ultraviolet light LED.

直管20は、第1端部22から第2端部24に向けて軸方向に延在する。直管20は、フッ素系樹脂材料で構成され、例えば、全フッ素化樹脂であるポリテトラフルオロエチレン(PTFE)で構成される。PTFEは、化学的に安定した材料であり、耐久性、耐熱性および耐薬品性に優れ、紫外光の反射率が高い材料である。直管20をPTFEなどのフッ素樹脂材料で構成することにより、光源14からの紫外光を内壁面18で反射させ、直管20の軸方向に紫外光を効率的に伝搬させることができる。 The straight pipe 20 extends axially from the first end 22 to the second end 24. The straight tube 20 is made of a fluororesin material, for example, polytetrafluoroethylene (PTFE) which is a total fluorinated resin. PTFE is a chemically stable material, excellent in durability, heat resistance and chemical resistance, and has a high reflectance of ultraviolet light. By forming the straight tube 20 with a fluororesin material such as PTFE, the ultraviolet light from the light source 14 can be reflected by the inner wall surface 18 and the ultraviolet light can be efficiently propagated in the axial direction of the straight tube 20.

なお、直管20は、その全体がPTFEで構成されている必要はなく、流体と接触する内壁面18がPTFEで構成されていればよい。例えば、他の樹脂材料もしくは金属材料で構成される管の内面にPTFEのライナを取り付けて直管20を構成してもよい。 The straight pipe 20 does not have to be entirely made of PTFE, and the inner wall surface 18 in contact with the fluid may be made of PTFE. For example, a PTFE liner may be attached to the inner surface of a pipe made of another resin material or metal material to form a straight pipe 20.

直管20の第1端部22には、光源14からの紫外光を透過させる照射窓30が設けられる。照射窓30は、石英(SiO)やサファイア(Al)、非晶質のフッ素系樹脂などの紫外光の透過率が高い部材で構成される。直管20の第2端部24には、端部壁32が設けられる。端部壁32は、直管20と同様にPTFEなどのフッ素系樹脂材料で構成される。端部壁32は、その全体がPTFEで構成されなくてもよく、少なくとも端部壁32の内面34がPTFEで構成されていればよい。 The first end 22 of the straight tube 20 is provided with an irradiation window 30 for transmitting ultraviolet light from the light source 14. The irradiation window 30 is made of a member having a high transmittance of ultraviolet light such as quartz (SiO 2 ), sapphire (Al 2 O 3 ), and an amorphous fluororesin. An end wall 32 is provided at the second end 24 of the straight pipe 20. The end wall 32 is made of a fluororesin material such as PTFE, like the straight pipe 20. The end wall 32 does not have to be entirely composed of PTFE, and at least the inner surface 34 of the end wall 32 may be composed of PTFE.

流入管26は、直管20の第1端部22付近に設けられ、直管20の軸方向と直交する径方向に延在する。流出管28は、直管20の第2端部24付近に設けられ、直管20の径方向に延在する。したがって、照射装置10は、光源14に近い位置から流体が流入され、光源14から離れる方向に直管20の内部を流れてから排出される。なお、流体の流れの方向が逆になるように構成されてもよく、流入管26が流出側、流出管28が流入側となるように構成してもよい。 The inflow pipe 26 is provided near the first end portion 22 of the straight pipe 20, and extends in the radial direction orthogonal to the axial direction of the straight pipe 20. The outflow pipe 28 is provided near the second end portion 24 of the straight pipe 20, and extends in the radial direction of the straight pipe 20. Therefore, in the irradiation device 10, the fluid flows in from a position close to the light source 14, flows inside the straight tube 20 in a direction away from the light source 14, and then is discharged. The inflow pipe 26 may be configured to be on the outflow side, and the outflow pipe 28 may be configured to be on the inflow side.

本実施の形態では、直管20の内壁面18の算術平均粗さRaが2μm以下となるように構成されている。内壁面18の表面粗さRaを2μm以下にするためには、例えば、内壁面18に切削加工を施して内壁面18の微小な凹凸を除去すればよい。その他、直管20を成形する金型として、内壁面18を形成する面が鏡面仕上げされた金型を用いることにより、内壁面18の表面粗さRaを2μm以下にできる。 In the present embodiment, the arithmetic average roughness Ra of the inner wall surface 18 of the straight pipe 20 is configured to be 2 μm or less. In order to reduce the surface roughness Ra of the inner wall surface 18 to 2 μm or less, for example, the inner wall surface 18 may be machined to remove minute irregularities on the inner wall surface 18. In addition, the surface roughness Ra of the inner wall surface 18 can be reduced to 2 μm or less by using a mold in which the surface forming the inner wall surface 18 is mirror-finished as the mold for forming the straight pipe 20.

直管20の内壁面18を構成するフッ素系樹脂材料は、表面エネルギーが高いために超撥水性を示す。そのため、内壁面18に微細な凹凸が存在していると、その凹凸に気泡が付着しやすく、気泡がいったんできると除去されにくい。本発明者らの知見によれば、PTFE表面の算術平均粗さRaが2μmを超えると、表面に気泡の付着が確認され、Raが9μm以上となると多数の気泡が付着することが分かっている。 The fluororesin material constituting the inner wall surface 18 of the straight pipe 20 exhibits superhydrophobicity due to its high surface energy. Therefore, if fine irregularities are present on the inner wall surface 18, bubbles are likely to adhere to the irregularities, and once the bubbles are formed, they are difficult to remove. According to the findings of the present inventors, it is known that when the arithmetic mean roughness Ra of the PTFE surface exceeds 2 μm, bubbles adhere to the surface, and when Ra exceeds 9 μm, a large number of bubbles adhere. ..

直管20の内壁面18に気泡が付着すると、流体と気泡の屈折率差により気泡表面で反射ないし散乱が生じ、直管20の内部の紫外光照度分布に影響を及ぼす。気泡の発生箇所は一定とは限らないため、気泡の発生数や発生場所等に応じて流路内の照度分布が変化し、流体に照射される紫外光量にばらつきが生じてしまう。また、フッ素系樹脂材料の表面では拡散反射が主体的であり、入射する紫外光が様々な方向に散乱されるのに対し、気泡表面では鏡面反射が主体的であり、入射する紫外光が特定の方向に強く反射されやすい。その結果、気泡が生じると流路内の照度分布が不均一になりやすい。本実施の形態では、気泡の発生による照射量のばらつきを低減するため、内壁面18の算術平均粗さRaを2μm以下としている。 When bubbles adhere to the inner wall surface 18 of the straight tube 20, reflection or scattering occurs on the surface of the bubbles due to the difference in refractive index between the fluid and the bubbles, which affects the ultraviolet light illuminance distribution inside the straight tube 20. Since the location where bubbles are generated is not always constant, the illuminance distribution in the flow path changes depending on the number and location of bubbles generated, and the amount of ultraviolet light irradiated to the fluid varies. In addition, diffuse reflection is predominant on the surface of the fluororesin material, and incident ultraviolet light is scattered in various directions, whereas specular reflection is predominant on the bubble surface, and incident ultraviolet light is specified. It is easily reflected strongly in the direction of. As a result, when bubbles are generated, the illuminance distribution in the flow path tends to be non-uniform. In the present embodiment, the arithmetic average roughness Ra of the inner wall surface 18 is set to 2 μm or less in order to reduce the variation in the irradiation amount due to the generation of bubbles.

図2は、比較例に係る流路内の照度分布を模式的に示すグラフであり、流路内の径方向の照度分布の時間変化を示している。本比較例では、内直径が40mm、流路内壁面の算術平均粗さRaが4μmのPTFE管を使用し、光源から150mm離れた位置で照度分布を計測した。PTFE管の内部は純水で満たされている。図2は、複数回のタイミングで計測した照度分布のグラフを示しており、光強度が最大となったときの強度値を1として規格化している。図示されるように、流路内壁面の表面粗さが大きい場合には光強度のばらつきが見られ、最大で約30%の強度変化が生じていることが分かる。 FIG. 2 is a graph schematically showing the illuminance distribution in the flow path according to the comparative example, and shows the time change of the illuminance distribution in the radial direction in the flow path. In this comparative example, a PTFE tube having an inner diameter of 40 mm and an arithmetic mean roughness Ra of the inner wall surface of the flow path of 4 μm was used, and the illuminance distribution was measured at a position 150 mm away from the light source. The inside of the PTFE tube is filled with pure water. FIG. 2 shows a graph of the illuminance distribution measured at a plurality of timings, and standardizes the intensity value when the light intensity is maximum as 1. As shown in the figure, when the surface roughness of the inner wall surface of the flow path is large, the light intensity varies, and it can be seen that the intensity changes by about 30% at the maximum.

図3は、実施例に係る流路内の照度分布を模式的に示すグラフであり、流路内壁面の算術平均粗さRaが1.8μmのPTFEを用いた場合の照度分布の時間変化を示している。本実施例においても、内直径が40mmのPTFE管を使用し、PTFE管の内部に純水を満たした状態で、光源から150mm離れた位置で照度分布を計測した。図3においても、複数回のタイミングで計測した照度分布のグラフを示しており、光強度が最大となったときの強度値を1として規格化している。本実施例では、流路内壁面の表面粗さが小さいために光強度のばらつきが小さく、最大で約5%の強度変化しか生じていない。このように、表面粗さを2μm以下とすることで流路内の照度分布の時間変化を小さくし、照射量のばらつきを低減することができる。 FIG. 3 is a graph schematically showing the illuminance distribution in the flow path according to the embodiment, and shows the time change of the illuminance distribution when using PTFE having an arithmetic mean roughness Ra of 1.8 μm on the inner wall surface of the flow path. Shows. Also in this embodiment, a PTFE tube having an inner diameter of 40 mm was used, and the illuminance distribution was measured at a position 150 mm away from the light source with the inside of the PTFE tube filled with pure water. FIG. 3 also shows a graph of the illuminance distribution measured at a plurality of timings, and standardizes the intensity value when the light intensity is maximum as 1. In this embodiment, since the surface roughness of the inner wall surface of the flow path is small, the variation in light intensity is small, and the intensity change is only about 5% at the maximum. In this way, by setting the surface roughness to 2 μm or less, it is possible to reduce the time change of the illuminance distribution in the flow path and reduce the variation in the irradiation amount.

図4は、実施の形態に係る浄化装置70の構成を模式的に示す図であり、上述の照射装置10の応用例を示す。浄化装置70は、照射装置10と、処理装置60とを備える。浄化装置70は、二段階の浄化処理をするための浄化システムであり、処理装置60にて前処理がなされた後、照射装置10にて後処理がなされる。 FIG. 4 is a diagram schematically showing the configuration of the purification device 70 according to the embodiment, and shows an application example of the above-mentioned irradiation device 10. The purification device 70 includes an irradiation device 10 and a processing device 60. The purification device 70 is a purification system for performing a two-step purification treatment, and after the pretreatment is performed by the treatment device 60, the post-treatment is performed by the irradiation device 10.

処理装置60は、処理槽62と、曝気装置64とを有する。処理装置60は、微生物を利用して浄化処理をするための装置である。処理槽62の内部には、好気性微生物が付着する接触材が設けられる。曝気装置64は、処理槽62の内部の流体に空気を供給し、好気性微生物の働きにより流入路71から供給される流体が浄化されるようにする。処理槽62にて処理された流体は、固形物が除去された後、接続路72を通じて照射装置10に供給される。 The processing device 60 includes a processing tank 62 and an aeration device 64. The treatment device 60 is a device for purifying treatment using microorganisms. Inside the treatment tank 62, a contact material to which aerobic microorganisms adhere is provided. The aeration device 64 supplies air to the fluid inside the treatment tank 62 so that the fluid supplied from the inflow path 71 is purified by the action of aerobic microorganisms. The fluid treated in the treatment tank 62 is supplied to the irradiation device 10 through the connecting path 72 after the solid matter is removed.

照射装置10は、処理装置60から接続路72を通じて供給される流体に紫外光を照射して浄化処理をし、処理後の流体を流出路73から排出する。処理装置60では曝気装置64を通じて空気が供給されるため、接続路72を通じて供給される流体は、溶存空気量が比較的高く、気泡が生じやすい。しかしながら、照射装置10では、流路内壁面の表面粗さが2μm以下に設定されているため、溶存空気量が高い流体が供給される場合であっても、流路内壁面への気泡の付着を好適に抑制できる。その結果、照射装置10において高効率に紫外光を照射するとともに、気泡による照射ムラの発生を抑えることができる。したがって、本実施の形態によれば、浄化装置70の処理能力を安定化できる。 The irradiation device 10 irradiates the fluid supplied from the processing device 60 through the connection path 72 with ultraviolet light to purify the fluid, and discharges the treated fluid from the outflow path 73. Since air is supplied through the aeration device 64 in the processing device 60, the fluid supplied through the connecting path 72 has a relatively high amount of dissolved air, and bubbles are likely to be generated. However, in the irradiation device 10, since the surface roughness of the inner wall surface of the flow path is set to 2 μm or less, bubbles adhere to the inner wall surface of the flow path even when a fluid having a high amount of dissolved air is supplied. Can be suitably suppressed. As a result, the irradiation device 10 can irradiate ultraviolet light with high efficiency and suppress the occurrence of irradiation unevenness due to bubbles. Therefore, according to the present embodiment, the processing capacity of the purification device 70 can be stabilized.

以上、本発明を実施の形態にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the embodiments. It is understood by those skilled in the art that the present invention is not limited to the above embodiment, various design changes are possible, various modifications are possible, and such modifications are also within the scope of the present invention. It is about to be.

上述の実施の形態では、直管形状の流路構造を用いる場合を示したが、流路構造の形状は特に限定されない。変形例においては、流路全体が直線状に構成されるのではなく、流路の少なくとも一部に屈曲部が設けられてもよい。また、流路の断面形状は円形であってもよいし、多角形であってもよい。 In the above-described embodiment, the case where a straight pipe-shaped flow path structure is used is shown, but the shape of the flow path structure is not particularly limited. In the modified example, the entire flow path is not formed in a linear shape, and a bent portion may be provided in at least a part of the flow path. Further, the cross-sectional shape of the flow path may be circular or polygonal.

上述の実施の形態では、流路内壁面の全体にフッ素系樹脂材料を用いる場合を示した。変形例においては、流路内壁面の一部にフッ素系樹脂材料が用いられてもよい。流路の配壁面の一部に用いられるフッ素系樹脂材料について表面粗さRaを2μm以下にすることにより、フッ素系樹脂表面の気泡の付着を抑制し、フッ素系樹脂表面での紫外光の反射特性を安定化させることができる。 In the above-described embodiment, a case where a fluororesin material is used for the entire inner wall surface of the flow path is shown. In the modified example, a fluororesin material may be used for a part of the inner wall surface of the flow path. By setting the surface roughness Ra of the fluorine-based resin material used for a part of the wall surface of the flow path to 2 μm or less, the adhesion of bubbles on the surface of the fluorine-based resin is suppressed, and the reflection of ultraviolet light on the surface of the fluorine-based resin. The characteristics can be stabilized.

上述の実施の形態では、光源14として紫外光LEDを用いる場合を示した。変形例においては、紫外線ランプを光源として用いてもよく、中心波長またはピーク波長が250nm~260nm、例えば254nmの紫外線ランプを用いてもよい。 In the above-described embodiment, a case where an ultraviolet LED is used as the light source 14 is shown. In the modified example, an ultraviolet lamp may be used as a light source, or an ultraviolet lamp having a center wavelength or a peak wavelength of 250 nm to 260 nm, for example, 254 nm may be used.

10…照射装置、12…流路構造、14…光源、18…内壁面、20…直管。 10 ... Irradiation device, 12 ... Channel structure, 14 ... Light source, 18 ... Inner wall surface, 20 ... Straight pipe.

Claims (4)

算術平均粗さが2μm以下のポリテトラフルオロエチレン(PTFE)で流路内壁面の少なくとも一部が構成される流路構造と、
前記流路構造の内部を流れる水に向けて紫外光を照射する光源と、を備えることを特徴とする照射装置。
A flow path structure in which at least a part of the inner wall surface of the flow path is made of polytetrafluoroethylene (PTFE) having an arithmetic mean roughness of 2 μm or less.
An irradiation device including a light source that irradiates ultraviolet light toward water flowing inside the flow path structure.
前記PTFEで構成される前記流路内壁面の少なくとも一部は、切削加工により形成されることを特徴とする請求項1に記載の照射装置。 The irradiation device according to claim 1, wherein at least a part of the inner wall surface of the flow path made of PTFE is formed by cutting. 前記流路構造は、前記PTFEで構成される直管を含み、
前記光源は、前記直管の内部を流れる水に向けて前記直管の軸方向に紫外光を照射するよう配置されることを特徴とする請求項1または2に記載の照射装置。
The flow path structure includes a straight pipe composed of the PTFE.
The irradiation device according to claim 1 or 2, wherein the light source is arranged so as to irradiate ultraviolet light in the axial direction of the straight tube toward water flowing inside the straight tube.
前記光源は、波長が250nm~300nmの紫外光を出力することを特徴とする請求項1から3のいずれか一項に記載の照射装置。 The irradiation device according to any one of claims 1 to 3, wherein the light source outputs ultraviolet light having a wavelength of 250 nm to 300 nm.
JP2017017511A 2017-02-02 2017-02-02 Irradiation device Active JP7043172B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017017511A JP7043172B2 (en) 2017-02-02 2017-02-02 Irradiation device
JP2022041168A JP2022069596A (en) 2017-02-02 2022-03-16 Irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017017511A JP7043172B2 (en) 2017-02-02 2017-02-02 Irradiation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022041168A Division JP2022069596A (en) 2017-02-02 2022-03-16 Irradiation device

Publications (2)

Publication Number Publication Date
JP2018122262A JP2018122262A (en) 2018-08-09
JP7043172B2 true JP7043172B2 (en) 2022-03-29

Family

ID=63109178

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017017511A Active JP7043172B2 (en) 2017-02-02 2017-02-02 Irradiation device
JP2022041168A Pending JP2022069596A (en) 2017-02-02 2022-03-16 Irradiation device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022041168A Pending JP2022069596A (en) 2017-02-02 2022-03-16 Irradiation device

Country Status (1)

Country Link
JP (2) JP7043172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316117B2 (en) * 2019-06-28 2023-07-27 旭化成株式会社 UV irradiation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224668A (en) 2001-01-31 2002-08-13 Mitsui Eng & Shipbuild Co Ltd Ultraviolet irradiation type water cleaning equipment and water cleaning method
JP2003285085A (en) 2002-03-28 2003-10-07 Mitsui Eng & Shipbuild Co Ltd Water cleaning apparatus and water cleaning method
JP2009093190A (en) 2008-11-18 2009-04-30 Takiron Co Ltd Backlight unit
US20100047137A1 (en) 2008-08-22 2010-02-25 Applied Materials, Inc. Uv assisted polymer modification and in situ exhaust cleaning
JP2010250037A (en) 2009-04-15 2010-11-04 Toppan Printing Co Ltd Optical component, backlight unit and display apparatus
JP2014085255A (en) 2012-10-24 2014-05-12 Asahi Organic Chemicals Industry Co Ltd Method of manufacturing ultrasonic flowmeter, ultrasonic flowmeter manufactured with the same, and liquid controller having the ultrasonic flowmeter
JP2016511138A (en) 2013-01-24 2016-04-14 アトランティウム テクノロジーズ リミテッド Method and apparatus for liquid disinfection with light emitted from light emitting diodes
JP2016209307A (en) 2015-05-08 2016-12-15 住友ゴム工業株式会社 Gasket for prefilled syringe and prefilled syringe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245723A (en) * 1995-03-14 1996-09-24 Toshiba Corp Water-repelling resin and its production
JP4233277B2 (en) * 2001-12-26 2009-03-04 ジャパンゴアテックス株式会社 Fluororesin tube
JP6478473B2 (en) * 2014-04-02 2019-03-06 東芝ライフスタイル株式会社 Disinfection purification device and washing machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224668A (en) 2001-01-31 2002-08-13 Mitsui Eng & Shipbuild Co Ltd Ultraviolet irradiation type water cleaning equipment and water cleaning method
JP2003285085A (en) 2002-03-28 2003-10-07 Mitsui Eng & Shipbuild Co Ltd Water cleaning apparatus and water cleaning method
US20100047137A1 (en) 2008-08-22 2010-02-25 Applied Materials, Inc. Uv assisted polymer modification and in situ exhaust cleaning
JP2009093190A (en) 2008-11-18 2009-04-30 Takiron Co Ltd Backlight unit
JP2010250037A (en) 2009-04-15 2010-11-04 Toppan Printing Co Ltd Optical component, backlight unit and display apparatus
JP2014085255A (en) 2012-10-24 2014-05-12 Asahi Organic Chemicals Industry Co Ltd Method of manufacturing ultrasonic flowmeter, ultrasonic flowmeter manufactured with the same, and liquid controller having the ultrasonic flowmeter
JP2016511138A (en) 2013-01-24 2016-04-14 アトランティウム テクノロジーズ リミテッド Method and apparatus for liquid disinfection with light emitted from light emitting diodes
JP2016209307A (en) 2015-05-08 2016-12-15 住友ゴム工業株式会社 Gasket for prefilled syringe and prefilled syringe

Also Published As

Publication number Publication date
JP2022069596A (en) 2022-05-11
JP2018122262A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US10301195B2 (en) Ultraviolet transparent enclosure
KR102186368B1 (en) Fluid sterilization device
CN108472396B (en) Fluid sterilizing device
JP7011931B2 (en) Fluid sterilizer
TWI626958B (en) Fluid sterilization device and fluid sterilization method
CN109952273B (en) Fluid sterilizing device
US20160185623A1 (en) Ultraviolet sterilization device
WO2015046014A1 (en) Ultraviolet sterilization device
CN111320229B (en) Fluid sterilization device
KR101683351B1 (en) Light curtain type LED irradiator
JP6963956B2 (en) UV sterilizer and UV irradiation device
CN111320230A (en) Device for disinfecting a fluid
JP2022069596A (en) Irradiation device
JP6771399B2 (en) Irradiation device
JP6654888B2 (en) Fluid sterilizer
WO2018037938A1 (en) Running water sterilization device and running water sterilization method
US10759679B2 (en) Fluid sterilization device
JP7132992B2 (en) Irradiation device
JP2019017496A (en) Fluid sterilizer
WO2019159984A1 (en) Ultraviolet sterilizer
JP7316117B2 (en) UV irradiation device
JP6236629B2 (en) UV sterilizer for fluid
JP2022503401A (en) Device assemblies for disinfecting fluids, manufacturing methods, disinfection devices, and devices for distributing disinfected fluids at the point of consumption.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220316

R150 Certificate of patent or registration of utility model

Ref document number: 7043172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150