JP7043130B2 - Treatment method of biomass material under pressure environment - Google Patents

Treatment method of biomass material under pressure environment Download PDF

Info

Publication number
JP7043130B2
JP7043130B2 JP2018045032A JP2018045032A JP7043130B2 JP 7043130 B2 JP7043130 B2 JP 7043130B2 JP 2018045032 A JP2018045032 A JP 2018045032A JP 2018045032 A JP2018045032 A JP 2018045032A JP 7043130 B2 JP7043130 B2 JP 7043130B2
Authority
JP
Japan
Prior art keywords
temperature
biomass material
biomass
oxygen
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018045032A
Other languages
Japanese (ja)
Other versions
JP2019155272A (en
Inventor
克守 谷黒
和則 岩渕
貴則 伊藤
Original Assignee
克守 谷黒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 克守 谷黒 filed Critical 克守 谷黒
Priority to JP2018045032A priority Critical patent/JP7043130B2/en
Publication of JP2019155272A publication Critical patent/JP2019155272A/en
Application granted granted Critical
Publication of JP7043130B2 publication Critical patent/JP7043130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、バイオマス材料の加圧環境下での処理方法に関し、さらに詳しくは、食品廃棄物、家畜排泄物、農産廃棄物、水産廃棄物、林産廃棄物等のバイオマス材料の減量化及び半炭化を低消費エネルギー量にて行うことができる、バイオマス材料の加圧環境下での処理方法に関する。 The present invention relates to a method for treating a biomass material in a pressurized environment, and more specifically, to reduce the amount of biomass material such as food waste, livestock excrement, agricultural waste, marine waste, and forest waste, and to semi-carbonize the biomass material. The present invention relates to a method for treating a biomass material in a pressurized environment, which can be carried out with a low energy consumption.

生物資源の循環利用への意識の高まりとともに、近年、廃棄系バイオマス材料の多くが堆肥化され、資源として土壌還元されるようになった。そのなかで、最も堆肥化・資源化が期待される畜産排泄物である家畜ふんや生ゴミ等の食品廃棄物(以下、これらを総称するときは「家畜ふん等」という。)は、発生時点では高水分でいわゆる泥濘状となっている場合が多い。そうした家畜ふん等は、泥濘状になっているために内部に空気(酸素)を取り込みにくく、通常の微生物分解による生化学反応が起きにくく堆肥化しにくいという難点がある。そのため、従来は、含水率を下げ、内部に酸素を取り込み易くする方法が採られている。 With the growing awareness of the recycling of biological resources, in recent years, most of the waste biomass materials have been composted and returned to the soil as resources. Among them, food waste such as livestock manure and swill (hereinafter, collectively referred to as "livestock manure"), which are the livestock excrement most expected to be composted and recycled, are at the time of occurrence. In many cases, it is highly moist and has a so-called muddy shape. Since such livestock manure is muddy, it is difficult to take in air (oxygen) inside, and it is difficult for biochemical reactions due to normal microbial decomposition to occur and it is difficult to compost. Therefore, conventionally, a method of lowering the water content and facilitating the uptake of oxygen into the inside has been adopted.

含水率を下げる一つの手段として、バイオマス材料に熱エネルギーや送風等を与えて含水率を下げる方法があるが、コストの点で問題があり、現実的ではない。また、他の手段として、畜産排泄物である家畜ふんの場合のように、オガクズ、稲藁、籾殻等の農業副産物をバイオマス材料と混合して水分を下げ、その結果として空気を通り易くして微生物分解による生化学反応を促進する方法がある。しかし、この場合には、前記農業副産物を調達しにくい地域があったり、たとえ調達できたとしても農業副産物の加工作業が加わってコスト増大になったり、また、そうした農業副産物の混合はかえって総処理量が増してコスト増大になったりするという難点がある。 As one means of lowering the water content, there is a method of giving heat energy, ventilation, etc. to the biomass material to reduce the water content, but there is a problem in terms of cost and it is not realistic. Also, as another means, as in the case of livestock manure, which is livestock excrement, agricultural by-products such as ogakuzu, rice straw, and rice husks are mixed with biomass materials to reduce the water content, and as a result, make it easier for air to pass through. There are ways to promote biochemical reactions by microbial degradation. However, in this case, there are areas where it is difficult to procure the agricultural by-products, and even if they can be procured, the cost increases due to the processing work of the agricultural by-products, and the mixing of such agricultural by-products is rather total treatment. There is a drawback that the amount increases and the cost increases.

廃棄系バイオマスを堆肥化・資源化せず、減量化して自然界に戻すことも考えられるが、その場合にも、泥濘状のバイオマスは含水率を下げなければならず、上記と同様の問題が起こる。また、泥濘状のバイオマスの含水率を単に下げて乾燥しただけでは微生物分解による堆肥化反応が起こっておらず、乾燥したバイオマスを自然界に再び戻すと元の泥濘状のバイオマスに戻ってしまう。また、人間排泄物と同様の下水処理を行うほどのコストもかけられない。 It is conceivable to reduce the amount of waste biomass and return it to the natural world without composting or recycling it, but even in that case, the water content of the muddy biomass must be reduced, and the same problem as above occurs. .. In addition, simply lowering the water content of the muddy biomass and drying it does not cause a composting reaction due to microbial decomposition, and when the dried biomass is returned to the natural world, it returns to the original muddy biomass. Moreover, it is not costly enough to treat sewage like human excrement.

廃棄系バイオマスの資源化・エネルギー化方法の一つとして炭化が挙げられ、バイオマスを原料として造られた炭はバイオ炭と呼ばれる。一般に炭化は、無酸素又は貧酸素環境下でバイオマスを500℃以上の温度域で熱分解し、バイオマス中に含まれる水素や酸素を取り除き相対的に炭素含有率の高い固形物(バイオ炭)を得る熱化学的プロセスである。しかしながら、バイオ炭製造には外部からの熱源が必要不可欠である。このような状況を受け、エネルギー及び固形物収率の向上を目指し、より低い温度域で炭化を行う半炭化技術も提案されている。 Carbonization is one of the methods for recycling and energizing waste biomass, and charcoal made from biomass is called biochar. In general, carbonization thermally decomposes biomass in an oxygen-free or oxygen-poor environment at a temperature range of 500 ° C or higher, removes hydrogen and oxygen contained in the biomass, and removes solid matter (biochar) having a relatively high carbon content. It is a thermochemical process to obtain. However, an external heat source is indispensable for biochar production. In response to this situation, a semi-carbonization technique for carbonizing in a lower temperature range has been proposed with the aim of improving energy and solid yield.

特許文献1には、生ゴミを含有する廃棄物を水蒸気釜で加圧及び加熱(150~200℃)して廃棄物を炭化、減量化する廃棄物処理方法が提案されている。また、特許文献2では、乾燥装置内部の被乾燥物と接触している雰囲気ガスに含まれる一酸化炭素濃度を測定して、前記一酸化炭素の濃度を10ppm以上100ppm以下の所定の値に維持する有機物等の乾燥方法が記載されている。また、特許文献3には、厨芥を擂潰し下水と混合してスラリ原水をつくり、これを高圧ポンプで加圧すると共に酸素を含む高圧ガス又は高圧空気を圧入し、湿式酸化温度まで加熱した後、湿式酸化処理する厨芥の混合処理方法が提案されている。また、特許文献4には、畜産物等の廃棄物を、反応容器と加熱手段と加圧手段とを備えた亜臨界水分解装置を用いて、130~374℃の反応温度、反応温度の飽和水蒸気圧以上の反応圧力で亜臨界水分解処理する方法が提案されている。 Patent Document 1 proposes a waste treatment method for carbonizing and reducing the amount of waste by pressurizing and heating (150 to 200 ° C.) the waste containing swill in a steam kettle. Further, in Patent Document 2, the concentration of carbon monoxide contained in the atmospheric gas in contact with the object to be dried inside the drying apparatus is measured, and the concentration of the carbon monoxide is maintained at a predetermined value of 10 ppm or more and 100 ppm or less. A method for drying organic substances and the like is described. Further, in Patent Document 3, the kitchen is crushed and mixed with sewage to make slurry raw water, which is pressurized by a high-pressure pump, and high-pressure gas containing oxygen or high-pressure air is press-fitted to heat it to a wet oxidation temperature. A mixed treatment method for kitchen waste to be wet-oxidized has been proposed. Further, in Patent Document 4, wastes such as livestock products are subjected to a reaction temperature of 130 to 374 ° C. and saturation of the reaction temperature by using a sub-critical water decomposition apparatus provided with a reaction vessel, a heating means and a pressurizing means. A method of sub-critical water decomposition treatment at a reaction pressure higher than the water vapor pressure has been proposed.

しかしながら、上記特許文献1~4のいずれでも、外部からの熱源によってその処理温度を高温にする必要があり、処理コストが高いという問題がある。具体的には、特許文献1では150~200℃という高温とすることが必要であり、特許文献2でも350~600℃の高温とすることが必要であり、特許文献3でも100~300℃の高温とすることが必要であり、特許文献4でも130~374℃の高温とすることが必要である。 However, in any of the above-mentioned Patent Documents 1 to 4, there is a problem that the processing temperature needs to be raised to a high temperature by a heat source from the outside, and the processing cost is high. Specifically, Patent Document 1 needs to have a high temperature of 150 to 200 ° C., Patent Document 2 also needs to have a high temperature of 350 to 600 ° C., and Patent Document 3 also needs to have a high temperature of 100 to 300 ° C. It is necessary to have a high temperature, and Patent Document 4 also needs to have a high temperature of 130 to 374 ° C.

このような状況下にあって、本発明者は、先に、含水率の高い泥濘状の有機性廃棄物であってもその内部に酸素を効果的に共有すれば、微生物分解による生化学反応が促進して堆肥化を実現できることを見出し、さらに、驚くべきことに、微生物分解による自己発熱が終了する温度(約70℃前後)を超え、100℃、200℃と温度が上昇する現象を見出し、有機性廃棄物を加圧可能な密閉容器内に入れ、大気圧を超え15気圧以下の加圧環境下で前記有機性廃棄物の内部に酸素を強制的に供給し、酸素が供給された前記有機性廃棄物の内部温度を該有機性廃棄物内に存在する微生物の有機物分解反応によって少なくとも55℃まで上昇させる第1反応段階と、第1反応段階により少なくとも55℃以上となった有機性廃棄物を密閉した前記容器内で、酸素と、前記第1反応段階後の有機性廃棄物を発生源とする100ppm以上の一酸化炭素の存在下に保持して100℃以上の温度にまで上昇させる第2反応段階と、を有することを特徴とする、又は、前記有機性廃棄物を配管及び弁を有する密閉可能な容器内に入れ、前記有機性廃棄物の内部にチューブを用いて酸素を直接注入して供給し、酸素が供給された前記有機性廃棄物の内部温度を該有機性廃棄物内に存在する微生物の有機物分解反応によって少なくとも55℃まで上昇させる第1反応段階と、第1反応段階により少なくとも55℃以上となった有機性廃棄物を密閉した前記容器内で、酸素と、前記第1反応段階後の有機性廃棄物を発生源とする100ppm以上の一酸化炭素の存在下に保持して100℃以上の温度にまで上昇させる第2反応段階と、を有することを特徴とする、有機性廃棄物の処理方法を提案した(特許文献5)。 Under such circumstances, the present inventor can first obtain a biochemical reaction by microbial decomposition if oxygen is effectively shared inside the muddy organic waste having a high water content. And, surprisingly, we found that the temperature rises to 100 ° C and 200 ° C beyond the temperature at which self-heating due to microbial decomposition ends (around 70 ° C). , The organic waste was placed in a closed container that can be pressurized, and oxygen was forcibly supplied to the inside of the organic waste under a pressurized environment exceeding atmospheric pressure and 15 atm or less, and oxygen was supplied. The first reaction step in which the internal temperature of the organic waste is raised to at least 55 ° C. by the organic matter decomposition reaction of the microorganisms present in the organic waste, and the organicity in which the temperature is at least 55 ° C. or higher by the first reaction step. In the container in which the waste is sealed, the temperature rises to 100 ° C. or higher while being maintained in the presence of oxygen and 100 ppm or more of carbon monoxide originating from the organic waste after the first reaction stage. The organic waste is characterized by having a second reaction step, or the organic waste is placed in a hermetically sealed container with pipes and valves, and oxygen is introduced into the organic waste using a tube. The first reaction step, in which the internal temperature of the organic waste directly injected and supplied and supplied with oxygen is raised to at least 55 ° C. by the organic decomposition reaction of the microorganisms present in the organic waste, and the first reaction stage. In the container in which the organic waste whose temperature has reached at least 55 ° C. in the reaction step is sealed, in the presence of oxygen and 100 ppm or more of carbon monoxide originating from the organic waste after the first reaction step. We have proposed a method for treating organic waste, which comprises a second reaction step in which the waste is maintained at 100 ° C. or higher and raised to a temperature of 100 ° C. or higher (Patent Document 5).

さらに、本発明者は、検討を進め、前記と同様の温度上昇は、含水率が低い他のバイオマス材料であっても、初期において特定の条件下に置くことにより自然に温度上昇が起こり、従来のような高温加熱を行わなくてもバイオマス材料の減量化又は炭化を行うことができることを見出し、バイオマス材料を容器内に入れた後、該容器内を(a)酸素含有雰囲気、(b)55℃~80℃、(c)大気圧超~15気圧、及び(d)一酸化炭素濃度が100ppm以上、の全てを満たす初期環境とすることによって、前記バイオマス材料を80℃を超える温度に上昇させ、前記80℃を超えた後は、前記容器内を(ア)酸素含有雰囲気、(イ)大気圧超~15気圧、及び(ウ)一酸化炭素濃度が100ppm以上、の全てを満たす継続環境とすることによって、前記バイオマス材料を少なくとも150℃を超える温度に自然上昇させて、該バイオマス材料を減量化又は炭化することを特徴とするバイオマス材料の処理方法を提案した(特許文献6)。 Furthermore, the present inventor has proceeded with the study, and the same temperature rise as described above naturally causes a temperature rise even in other biomass materials having a low water content when placed under specific conditions at the initial stage. It was found that the biomass material can be reduced in weight or carbonized without high-temperature heating as in the above, and after the biomass material is placed in a container, the inside of the container is (a) an oxygen-containing atmosphere, (b) 55. The biomass material is raised to a temperature exceeding 80 ° C. by creating an initial environment that satisfies all of (c) over atmospheric pressure to 15 atmospheric pressure, and (d) carbon monoxide concentration of 100 ppm or more. After the temperature exceeds 80 ° C., the inside of the container is in a continuous environment that satisfies all of (a) oxygen-containing atmosphere, (b) above-atmospheric pressure to 15 atm, and (c) carbon monoxide concentration of 100 ppm or more. (Patent Document 6) has proposed a method for treating a biomass material, which comprises naturally raising the biomass material to a temperature exceeding at least 150 ° C. to reduce or carbonize the biomass material (Patent Document 6).

特許文献5,6の処理方法によれば、静置した状態では酸素が内部に浸透しにくく微生物による生化学反応が起きにくい泥濘状の有機性廃棄物であっても、その内部に酸素を強制的に供給することにより、バイオマスの酸化による自己昇温反応を促進させ且つ継続させることができ、有機性廃棄物の堆肥化・資源化を実現できるものであった。 According to the treatment methods of Patent Documents 5 and 6, oxygen is forced into the muddy organic waste even if it is a muddy organic waste in which oxygen does not easily permeate into the inside and a biochemical reaction by microorganisms does not easily occur in a stationary state. By supplying oxygen in a positive manner, it was possible to promote and continue the self-heating reaction due to the oxidation of biomass, and it was possible to realize composting and recycling of organic waste.

しかしながら、このような特許文献5,6の処理方法でも、従来方法よりは消費エネルギー量の低下は望めるものの、その方式上、乾燥が進みにくいことに加え、減圧操作等により乾燥を進めようとするとバイオマスの自己昇温反応が阻害されることが懸念されており、バイオマスの乾燥と炭化を同時に行う省エネルギーな処理方法の開発が望まれるところであった。 However, even with such treatment methods of Patent Documents 5 and 6, although a reduction in energy consumption can be expected as compared with the conventional method, in addition to the fact that drying is difficult to proceed due to the method, drying is to proceed by a decompression operation or the like. There is concern that the self-heating reaction of biomass will be hindered, and it has been desired to develop an energy-saving treatment method that simultaneously dries and carbonizes biomass.

特開2001-137806号公報Japanese Unexamined Patent Publication No. 2001-137806 特開2000-46472号公報Japanese Unexamined Patent Publication No. 2000-46472 特開平1-310799号公報Japanese Unexamined Patent Publication No. 1-310799 WO2005/077514(国際公開パンフレット)WO2005 / 077514 (International Pamphlet) 特開2009-249240号公報Japanese Unexamined Patent Publication No. 2009-249240 特開2011-98330号公報Japanese Unexamined Patent Publication No. 2011-98330

本発明は、上記問題を解決するためになされたものであって、その目的は、食品廃棄物、家畜排泄物、農産廃棄物、水産廃棄物、林産廃棄物等のバイオマス材料を極めて低コストで減量化及び炭化させることができる、バイオマス材料の処理方法を提供することにある。 The present invention has been made to solve the above problems, and an object thereof is to produce biomass materials such as food waste, livestock waste, agricultural waste, marine waste, and forest waste at extremely low cost. It is an object of the present invention to provide a method for treating a biomass material which can be reduced in weight and carbonized.

本発明者は、上記課題を解決するために、バイオマスの自己昇温反応を用いた新たな半炭化システムについて検討した。酸化反応によってバイオマスの自己昇温反応を促し、任意の温度まで昇温させることでバイオマスの乾燥と分解を行う。このシステムではバイオマスの自己昇温反応がより低い温度域で始まるほど、炭化に要するエネルギー量は少なくなると予想された。 In order to solve the above problems, the present inventor has investigated a new semi-carbonization system using a self-heating reaction of biomass. The self-heating reaction of biomass is promoted by the oxidation reaction, and the temperature is raised to an arbitrary temperature to dry and decompose the biomass. In this system, it was expected that the lower the temperature range where the self-heating reaction of biomass started, the less energy was required for carbonization.

このような理由から、バイオマスの自己昇温反応を引き起こすため、低温酸化反応(low temperature oxidation、LTO)に着目した。低温酸化反応は100℃以下で進み、石炭の自己昇温及び自然発火の主な熱源であることが知られている(Wang H, Dlugogorski BZ, Kennedy EM. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism andkinetic modelling. Prog Energy Combust Sci 2003;29:487-513. doi:10.1016/S0360-1285(03)00042-X.)。低温での酸化反応は比較的遅く、かつ水分量の影響を大きく受ける。適切な水分量であれば、水自身が触媒や反応場としての役割を担うことで、バイオマスと酸素の反応を促進するのに対し、過剰な水分量は反応を阻害する(Petit JC. A comprehensive study of the water vapour/coal system: application to the role of water in the weathering of coal. Fuel 1991;70:1053-8. doi:10.1016/0016-2361(91)90259-D.; 上記Wang et al., 2003; Yu J, Tahmasebi A, Han Y, Yin F, Li X. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization. Fuel Process Technol 2013;106:9-20. doi:10.1016/j.fuproc.2012.09.051.)。 For this reason, we focused on the low temperature oxidation reaction (LTO) in order to cause a self-heating reaction of biomass. The low-temperature oxidation reaction proceeds below 100 ° C. and is known to be the main heat source for self-heating and spontaneous combustion of coal (Wang H, Drugogorski BZ, Kennedy EM. Oxidations, reaction mechanism andkinetic modeling. Prog Energy Combust Sci 2003; 29: 487-513. Doi: 10.016 / S0360-1285 (03) 00042-X.). The oxidation reaction at low temperature is relatively slow and is greatly affected by the amount of water. If the amount of water is appropriate, the water itself plays a role as a catalyst or a reaction field to promote the reaction between biomass and oxygen, whereas an excessive amount of water inhibits the reaction (Petit JC. A comprehensive). study of the water catalyst / coal system: application to the role of water in the weathering of catalyst 1991; 70: 1053-8. Doi: 10.1016 / -2. al., 2003; Yu J, Tahmasebi A, Han Y, Yin F, Li X. A review on water on low rank coals: The examination, catalyst reaction. -20. Doi: 10.016 / j.fuproc. 2012.09.051.).

これはつまり、たとえ高水分バイオマスであっても、安定した酸素供給が行われれば低温酸化反応及びバイオマスの自己昇温反応が達成されることを示唆している。溶存酸素量は雰囲気圧力が上昇するにつれて増加すると考えられる。このことから、バイオマスを高圧環境に置き、安定した酸素環境を実現することで、低温酸化反応とそれに続くバイオマスの自己昇温反応が促進されると予想した。 This suggests that even with high-moisture biomass, a low-temperature oxidation reaction and a self-heating reaction of biomass can be achieved if a stable oxygen supply is performed. The amount of dissolved oxygen is considered to increase as the atmospheric pressure rises. From this, it was expected that the low-temperature oxidation reaction and the subsequent self-heating reaction of the biomass would be promoted by placing the biomass in a high-pressure environment and realizing a stable oxygen environment.

そこで、ゲージ圧力0.9MPa、比較的高い一定酸素供給量のもと、バイオマスの低温酸化反応及び自己昇温反応が誘発される温度域で研究を進めた。その結果、バイオマスの自己昇温はこの雰囲気で85℃以上の温度域で開始することが確認された。バイオマスは酸化的分解と自身の発熱のみでの300℃までの昇温と乾燥プロセスを経ることで、バイオ炭へと変換された。以上のことから、高圧環境下におけるバイオマスの自己昇温反応を用いた酸化的半炭化の実現性が示され、本発明に至ったものである。 Therefore, under a gauge pressure of 0.9 MPa and a relatively high constant oxygen supply, we proceeded with the research in the temperature range where the low-temperature oxidation reaction and self-heating reaction of biomass are induced. As a result, it was confirmed that the self-heating of the biomass started in the temperature range of 85 ° C. or higher in this atmosphere. Biomass was converted to biochar by undergoing oxidative decomposition, heating to 300 ° C. and drying process only by its own heat generation. From the above, the feasibility of oxidative semi-carbonization using the self-heating reaction of biomass under a high pressure environment was shown, and the present invention was reached.

すなわち、上記課題を解決する本発明のバイオマス材料の処理方法は、バイオマス材料を容器内に入れた後、該容器内に、(a)酸素含有ガスを酸素供給量換算で3.4~33.6g-O-1kg-AFS-1で供給すると共に、(b)容器内をゲージ圧力で0.5~1.5MPaに保持し、(c)初期温度を85~160℃に設定して、外部より加熱してバイオマス材料の処理を開始し、バイオマス材料の温度がバイオマスの自己発熱により前記初期温度を上回ったら、前記酸素含有ガスの供給及び前記容器内のゲージ圧力は維持しつつ、加熱条件を、(i)外部からの加熱を停止する、又は、(ii)加熱をバイオマス材料の温度と前記容器の囲繞空間の温度との温度差が1.5℃以内になるように制御するのみに抑える、のいずれかとして、反応を継続させることによって、前記バイオマス材料を少なくとも160℃を超える温度に自然上昇させて、該バイオマス材料を減量化及び炭化することを特徴とする。
That is, in the method for treating a biomass material of the present invention, which solves the above-mentioned problems, after the biomass material is placed in a container, (a) an oxygen-containing gas is placed in the container in terms of oxygen supply amount of 3.4 to 33. While supplying with 6 g-O 2 h -1 kg-AFS- 1 , (b) keep the inside of the container at 0.5 to 1.5 MPa with a gauge pressure, and (c) set the initial temperature to 85 to 160 ° C. Then, when the processing of the biomass material is started by heating from the outside and the temperature of the biomass material exceeds the initial temperature due to the self-heating of the biomass, the supply of the oxygen-containing gas and the gauge pressure in the container are maintained. The heating conditions are controlled so that (i) the heating from the outside is stopped, or (ii) the heating is controlled so that the temperature difference between the temperature of the biomass material and the temperature of the surrounding space of the container is within 1.5 ° C. It is characterized in that, by continuing the reaction, the biomass material is naturally raised to a temperature exceeding at least 160 ° C., and the biomass material is reduced in weight and carbonized.

本発明に係るバイオマス材料の処理方法において、前記バイオマス材料が少なくとも160℃を超える温度に自然上昇した後に、適当な温度に達したら、酸素含有ガスの供給を途中で止め、燃焼反応を止めることによって処理を終了させる。 In the method for treating a biomass material according to the present invention, when the biomass material naturally rises to a temperature exceeding at least 160 ° C. and then reaches an appropriate temperature, the supply of oxygen-containing gas is stopped halfway and the combustion reaction is stopped. End the process.

本発明に係るバイオマス材料の処理方法において、(a)酸素含有ガスを酸素供給量換算で13.9~30.4g-O-1kg-AFS-1、で供給すると共に、(b)容器内をゲージ圧力で0.9~1.0MPaに保持し、(c)初期温度を85~130℃に設定することが好ましい。 In the method for treating a biomass material according to the present invention, (a) oxygen-containing gas is supplied by 13.9 to 30.4 g-O 2 h -1 kg-AFS -1 in terms of oxygen supply amount, and (b). It is preferable to keep the inside of the container at 0.9 to 1.0 MPa with a gauge pressure and (c) set the initial temperature to 85 to 130 ° C.

本発明に係るバイオマス材料の処理方法において、前記バイオマス材料を少なくとも160~300℃の温度に自然上昇させた後、減圧し、窒素ガスを供給しながら環境温度(25℃±10℃)まで冷却することが好ましい。 In the method for treating a biomass material according to the present invention, the biomass material is naturally raised to a temperature of at least 160 to 300 ° C., then depressurized and cooled to an environmental temperature (25 ° C. ± 10 ° C.) while supplying nitrogen gas. Is preferable.

本発明に係るバイオマス材料の処理方法において、前記バイオマス材料として、含水率40~80%の家畜ふんを用いることが好ましい。 In the method for treating a biomass material according to the present invention, it is preferable to use livestock manure having a water content of 40 to 80% as the biomass material.

本発明に係るバイオマス材料の処理方法によれば、バイオマス材料を容器内に入れた後にその容器内を比較的高加圧条件で高酸素供給条件下で所定温度まで加熱することで、バイオマス材料に低温酸化反応及び自己昇温反応を誘発させることができる。さらに、その温度上昇が開始した後は、先の加圧条件及び酸素供給条件を維持することによって、バイオマス材料を高温にまで自然上昇させてバイオマス材料を減量化及び炭化することができる。その結果、従来のような高温加熱を行わなくてもよく、極めて低コストでバイオマス材料の減量化及び炭化を実現できる。また、反応系に供給するガスは、空気に代表される酸素含有ガスのみでよいため、その制御の上でも、コスト的な上でも特に有利な方法となる。 According to the method for treating a biomass material according to the present invention, after the biomass material is placed in a container, the inside of the container is heated to a predetermined temperature under high pressure conditions and high oxygen supply conditions to obtain a biomass material. It is possible to induce a low temperature oxidation reaction and a self-heating reaction. Further, after the temperature rise starts, the biomass material can be naturally raised to a high temperature to reduce the amount and carbonize the biomass material by maintaining the above-mentioned pressurizing condition and oxygen supply condition. As a result, it is not necessary to perform high-temperature heating as in the conventional case, and it is possible to realize weight reduction and carbonization of the biomass material at an extremely low cost. Further, since the gas supplied to the reaction system may be only an oxygen-containing gas typified by air, it is a particularly advantageous method in terms of control and cost.

本発明に係るバイオマス材料の処理方法を実施するのに用いられる装置の一例を示す構成図である。It is a block diagram which shows an example of the apparatus used to carry out the process of treating the biomass material which concerns on this invention. ゲージ圧力0.9MPaに加圧下でバイオマスの初期温度80℃~100℃に設定した場合の、バイオマスの自己昇温反応による温度の経時的変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature by the self-heating reaction of the biomass when the initial temperature of the biomass is set to 80 degreeC to 100 degreeC under the pressure of the gauge pressure of 0.9MPa. 本発明に係るバイオマス材料の処理方法の一実施例でのバイオマスの処理における、(a)酸素供給速度と酸素消費温度と、(b)CO、CO発生速度の、バイオマス温度との関係を示すグラフである。The relationship between (a) oxygen supply rate and oxygen consumption temperature, and (b) CO and CO 2 generation rates in the biomass treatment in one embodiment of the biomass material treatment method according to the present invention is shown. It is a graph.

本発明に係るバイオマス材料の処理方法についてその実施形態に基づき詳細に説明する。なお、以下の実施形態は、本発明の好ましい例であって、その実施形態に限定解釈されるものではない。 The method for treating a biomass material according to the present invention will be described in detail based on the embodiment. It should be noted that the following embodiments are preferable examples of the present invention and are not limited to the embodiments thereof.

[バイオマス材料の加圧環境下での処理方法]
本発明に係るバイオマス材料の処理方法は、比較的高い加圧条件下で比較的高い酸素ガス供給を行って所定の初期温度までバイオマス材料を加熱することで、バイオマス材料の低温酸化反応とその後の自己昇温反応を促し、これによってバイオマス自身の発熱のみで乾燥と炭化を行うものである。
[Processing method of biomass material under pressurized environment]
The method for treating a biomass material according to the present invention is to supply a relatively high oxygen gas under relatively high pressure conditions to heat the biomass material to a predetermined initial temperature, thereby performing a low temperature oxidation reaction of the biomass material and subsequent reaction. It promotes a self-heating reaction, thereby drying and carbonizing only by the heat generated by the biomass itself.

そして、その特徴は、バイオマス材料を容器内に入れた後、該容器内に、(a)酸素含有ガスを酸素供給量換算で3.4~33.6g-O-1kg-AFS-1で供給すると共に、(b)容器内をゲージ圧力で0.5~1.5MPaに保持し、(c)初期温度を80~160℃に設定して、外部より加熱してバイオマス材料の処理を開始し、バイオマス材料の温度がバイオマスの自己発熱により前記初期温度を上回ったら、前記酸素含有ガスの供給及び前記容器内圧力は維持しつつ、外部からの加熱を停止する、又は、加熱をバイオマス材料の温度と前記容器体の囲繞空間の温度との温度差が1.5℃以内になるように制御するのみに抑えて、反応を継続させることによって、前記バイオマス材料を少なくとも160℃を超える温度に自然上昇させて、該バイオマス材料を減量化及び炭化することを特徴とするバイオマス材料の処理方法である。 The characteristics are that after the biomass material is placed in a container, (a) oxygen-containing gas is placed in the container in terms of oxygen supply amount of 3.4 to 33.6 g-O 2 h -1 kg - AFS-. While supplying in 1 , (b) keep the inside of the container at 0.5 to 1.5 MPa with a gauge pressure, (c) set the initial temperature to 80 to 160 ° C, and heat from the outside to process the biomass material. When the temperature of the biomass material exceeds the initial temperature due to the self-heating of the biomass, the heating from the outside is stopped or the heating is performed while maintaining the supply of the oxygen-containing gas and the pressure inside the container. By controlling the temperature difference between the temperature of the material and the temperature of the surrounding space of the container body to be within 1.5 ° C. and continuing the reaction, the temperature of the biomass material exceeds at least 160 ° C. It is a method for treating a biomass material, which is characterized in that the biomass material is naturally increased to reduce the amount and carbonize the biomass material.

以下、本発明の構成について詳しく説明する。なお、以下において、特に断らない限り「%」は「重量%(質量%)」である。 Hereinafter, the configuration of the present invention will be described in detail. In the following, "%" is "% by weight (mass%)" unless otherwise specified.

(バイオマス材料)
バイオマス材料は、食品廃棄物、家畜排泄物、農産廃棄物、水産廃棄物及び林産廃棄物から選ばれる1種又は2種以上の廃棄物である。具体的には、生ゴミ等の食品廃棄物(食品残滓)、牛、豚、馬等の家畜排泄物(糞尿)、余剰生産品、選別排除品、加工副産物(米ぬか等)等の農産廃棄物、過剰水揚品、加工ゴミ等の水産廃棄物、木くず、木材チップ、加工ゴミ等の林産廃棄物等を挙げることができる。これらは、それぞれ単独であってもよいし、複数の種類を混合したものであってもよい。
(Biomass material)
Biomass material is one or more kinds of waste selected from food waste, livestock excrement, agricultural waste, marine waste and forest waste. Specifically, food waste such as garbage (food residue), livestock excrement such as cows, pigs, and horses (manure), surplus products, sorting-excluded products, and agricultural waste such as processed by-products (rice bran, etc.). , Excessive landed products, marine waste such as processed waste, wood waste, wood chips, forest waste such as processed waste, and the like. These may be individual or a mixture of a plurality of types.

バイオマス材料は、その含水率は関係なく、泥濘体であっても乾燥体であってもよいし、また、既に堆肥化されたものであってもなくてもよい。一例としては、含水率が高く、静置した状態では酸素が内部に浸透しにくく微生物による生化学反応が起きにくいバイオマス材料;全体として又は局部的に泥濘化して通気性が悪いバイオマス材料;含水率が低い(0%も含む。)乳牛ふん、木材チップ、玄米等のような炭素を基質に持つドライ系のバイオマス材料;既に堆肥化されたバイオマス材料;等を適用できる。 The biomass material may be muddy or dry, and may or may not be already composted, regardless of its water content. As an example, a biomass material having a high water content, which makes it difficult for oxygen to permeate into the inside and a biochemical reaction by microorganisms to occur in a stationary state; a biomass material that becomes muddy as a whole or locally and has poor air permeability; Dry biomass materials having carbon as a substrate, such as dairy cow manure, wood chips, brown rice, etc.; already composted biomass materials; etc. can be applied.

堆肥化されたバイオマス材料とは、酸素に接触して起こる微生物の有機物分解反応によって少なくとも55℃まで上昇して堆肥化されたものである。このバイオマス材料は、堆肥化(コンポスト化)された後に本発明の処理方法に適用されて減量化又は炭化されることになるので、その後の埋め立て等により再び自然界に戻すことができる。 The composted biomass material is one that has risen to at least 55 ° C. and composted by the organic matter decomposition reaction of microorganisms that occurs in contact with oxygen. Since this biomass material is composted (composted) and then applied to the treatment method of the present invention to reduce or carbonize the biomass material, it can be returned to the natural world by landfill or the like thereafter.

バイオマス材料の含水率が家畜排泄物(糞尿)や農産廃棄物等のように全体として80%以上であるか、全体では多くないが局部的に80%以上であるものは、泥濘状になっているが、本発明の処理方法では寧泥状のバイオマス材料でも問題なく使用できる。 If the water content of the biomass material is 80% or more as a whole, such as livestock excrement (manure) and agricultural waste, or if it is not large as a whole but locally 80% or more, it becomes muddy. However, in the treatment method of the present invention, even a muddy biomass material can be used without any problem.

バイオマス材料が生ゴミ等の食品廃棄物である場合は、その含水率は、そのバイオマス材料全体として40%以上であるか、全体では多くないが局部的に40%以上である。上記した家畜排泄物(糞尿)や農産廃棄物等のように繊維質を多く含むものである場合は、全体又は局部的な含水率が80%以上で泥濘化する。一方、繊維質をそれほど多く含まない生ゴミ等では、80%未満でも泥濘化し、通常40%以上で泥濘化する傾向がある。こうした食品廃棄物でも、上記同様、本発明の処理方法では問題なく使用できる。含水率が「全体として」とは、バイオマス材料に水分が均等に又は比較的均等に含まれている場合における割合を指している。一方、含水率が「局部的に」とは、バイオマス材料全体としては80%未満(例えば畜産排泄物等の場合)又は40%未満(例えば生ゴミ等の食品廃棄物の場合)であっても、部分的に見れば80%以上又は40%以上の泥濘状になっている部分がある場合を指している。 When the biomass material is food waste such as swill, the water content of the biomass material as a whole is 40% or more, or 40% or more locally, although it is not large as a whole. In the case of those containing a large amount of fiber such as the above-mentioned livestock excrement (manure) and agricultural waste, the total or local water content becomes muddy when the water content is 80% or more. On the other hand, swill that does not contain so much fiber tends to become muddy even if it is less than 80%, and usually becomes muddy even if it is 40% or more. Similar to the above, such food waste can be used without any problem by the treatment method of the present invention. The water content "as a whole" refers to the ratio when the biomass material contains water evenly or relatively evenly. On the other hand, the water content "locally" means that the biomass material as a whole is less than 80% (for example, in the case of livestock excrement) or less than 40% (for example, in the case of food waste such as swill). , It refers to the case where there is a muddy part of 80% or more or 40% or more when viewed partially.

バイオマス材料全体の含水率の測定は、ある程度の量のバイオマス材料を試料として採取し、その試料の乾燥前後の質量測定で評価できる。一方、バイオマス材料の局部的な含水率は、局部的に少量の試料を採取し、その乾燥前後の質量測定により評価できる。特に限定されるわけではないが、本発明のバイオマス材料の処理方法における、被処理体としては、含水率40~80%の家畜ふんが望ましい。 The water content of the entire biomass material can be measured by collecting a certain amount of biomass material as a sample and measuring the mass of the sample before and after drying. On the other hand, the local moisture content of the biomass material can be evaluated by locally collecting a small amount of sample and measuring the mass before and after drying. Although not particularly limited, livestock manure having a water content of 40 to 80% is desirable as the object to be treated in the method for treating a biomass material of the present invention.

こうしたバイオマス材料とともに、他の廃棄物を混入させてもよい。他の廃棄物としては、例えば家庭からの生ゴミと一緒に廃棄されやすいプラスチック材料(バラン、ヒトツバ、ボトルキャップ、ストロー、輪ゴム、包装材等)、紙製品、木製品(割り箸、爪楊枝等)等が挙げられる。なお、プラスチック材料は種類によって耐熱性が異なるので、ここでは、ガラス転移温度が200℃以下のプラスチック材料、特に150℃以下のプラスチック材料、例えばポリエチレンナフタレート(ガラス転移温度:120℃)、ポリブチレンテレフタレート(75℃)、ポリエチレンテレフタレート(75℃)、ポリフェニレンサルファイド(90℃)、ポリエーテルエーテルケトン(143℃)、ポリカーボネート(145℃)からなるものを挙げることができる。これらの廃棄物をバイオマス材料とともに混入することにより、少なくとも150℃を超える温度に上昇するバイオマス材料と共に減量化又は炭化することができる。 Other wastes may be mixed with such biomass materials. Other wastes include, for example, plastic materials (baluns, human brims, bottle caps, straws, rubber bands, packaging materials, etc.), paper products, wood products (disposable chopsticks, toothpicks, etc.) that are easily disposed of together with household garbage. Can be mentioned. Since the heat resistance of the plastic material differs depending on the type, here, a plastic material having a glass transition temperature of 200 ° C. or less, particularly a plastic material having a glass transition temperature of 150 ° C. or less, for example, polyethylene naphthalate (glass transition temperature: 120 ° C.), polybutylene. Examples thereof include terephthalate (75 ° C.), polyethylene terephthalate (75 ° C.), polyphenylene sulfide (90 ° C.), polyetheretherketone (143 ° C.), and polycarbonate (145 ° C.). By mixing these wastes with the biomass material, it can be reduced or carbonized with the biomass material that rises to a temperature above at least 150 ° C.

(処理容器)
図1は、本発明に係るバイオマス材料の処理方法で用いられ得る装置の一例を示す構成図である。バイオマス材料90を収納し、加温及び加圧条件下で反応場を提供する反応容器100としては、このような所定の加温及び加圧条件に耐えて実質的な密封空間を形成できるものであれば、その形状等は特に限定されるものではない。
(Processing container)
FIG. 1 is a block diagram showing an example of an apparatus that can be used in the method for treating a biomass material according to the present invention. The reaction vessel 100 that stores the biomass material 90 and provides a reaction field under heating and pressurizing conditions can withstand such predetermined heating and pressurizing conditions to form a substantially sealed space. If so, the shape and the like are not particularly limited.

容器100の材質は特に限定されないが、バイオマス材料90に対して耐腐食性があり、また、耐熱性のある材質からなるものであればよく、例えばステンレス鋼等を例示できる。また、内部に収納されるバイオマス材料90の断熱性を保つための保温構造を有するものであることが望ましく、例えば、容器100の壁面は空気によって隔たれた二重構造としたり、断熱材を配したもの等とすることが好ましい。 The material of the container 100 is not particularly limited, but may be any material as long as it is corrosion-resistant to the biomass material 90 and has heat resistance, and examples thereof include stainless steel. Further, it is desirable that the biomass material 90 stored inside has a heat insulating structure for maintaining the heat insulating property. For example, the wall surface of the container 100 has a double structure separated by air or is provided with a heat insulating material. It is preferable to use a thing or the like.

容器100内の加圧の方法は、容器100内を上記所定の加圧条件に保持できるものであれば特に限定されることはない。所定の圧力値を担うのは、通常、圧縮酸素又は圧縮空気、或いは、圧縮ポンプ又はコンプレッサー等の圧力印加手段が適用される。一方で、容器100内へは、上記所定の供給量で、酸素含有ガスが供給される。 The method of pressurizing the inside of the container 100 is not particularly limited as long as the inside of the container 100 can be maintained under the above-mentioned predetermined pressurizing conditions. Usually, compressed oxygen or compressed air, or a pressure applying means such as a compression pump or a compressor is applied to bear a predetermined pressure value. On the other hand, the oxygen-containing gas is supplied into the container 100 in the above-mentioned predetermined supply amount.

酸素含有ガスは、純酸素や高濃度酸素を用いることも可能ではあるが、コスト的な観点から空気(酸素含有率約21%)を用いることが望ましい。もちろん、必要に応じて、空気と、純酸素又は高濃度酸素といった2種又はそれ以上のものを組み合わせて用いることもできる。 Although it is possible to use pure oxygen or high-concentration oxygen as the oxygen-containing gas, it is desirable to use air (oxygen content of about 21%) from the viewpoint of cost. Of course, if necessary, air and two or more kinds such as pure oxygen or high-concentration oxygen can be used in combination.

容器100内の加圧と、容器100内への酸素含有ガスの供給とは、独立した機構とすることは可能であるが、その効率的にも機構的にも、1つの系統とすることが簡便なものであり好ましい。例えば、図1に示す例のように、圧縮空気(空気ボンベ10)とマスフローコントローラ30を用いて容器100底部から所定酸素供給量で供給し、容器上部からの排気ライン上の背圧レギュレータ120で容器内部圧力を所定値に調整するものである。なお、容器100には、図1に示すように大気圧~2.0MPa程度の圧力を測定できる圧力計110が設けられている。圧力計としては、市販のものを適用でき特に限定されない。 The pressurization in the container 100 and the supply of the oxygen-containing gas into the container 100 can be independent mechanisms, but the efficiency and mechanism can be one system. It is simple and preferable. For example, as in the example shown in FIG. 1, compressed air (air cylinder 10) and a mass flow controller 30 are used to supply a predetermined amount of oxygen from the bottom of the container 100, and the back pressure regulator 120 on the exhaust line from the top of the container. The pressure inside the container is adjusted to a predetermined value. As shown in FIG. 1, the container 100 is provided with a pressure gauge 110 capable of measuring a pressure of about atmospheric pressure to 2.0 MPa. As the pressure gauge, a commercially available one can be applied and is not particularly limited.

容器100の加温手段も特に限定されるものではなく、例えば、容器壁面外部に巻装された電熱ヒータ、又は図1に示すように、ヒータ60とファン50とを備えた熱風式オーブン130、その他、赤外線、高周波誘導等による加熱等を用いることが可能であるが、上記した80℃~160℃という所定の初期温度を制御性よく保持する上では、図1に示すようなオーブン130を用い、その内部に反応容器100を収納する構成を採ることが好ましい。オーブン130の壁面はまた断熱材で覆われていることが望ましい。 The heating means of the container 100 is also not particularly limited, and for example, an electric heater wound around the outer wall surface of the container, or a hot air oven 130 provided with a heater 60 and a fan 50 as shown in FIG. In addition, heating by infrared rays, high frequency induction, etc. can be used, but in order to maintain the predetermined initial temperature of 80 ° C. to 160 ° C. described above with good controllability, an oven 130 as shown in FIG. 1 is used. It is preferable to adopt a structure in which the reaction vessel 100 is housed inside. It is desirable that the walls of the oven 130 are also covered with insulation.

容器100には、耐熱被覆された熱電対等の温度計80が設けられている。その温度計80は容器内に設けられ、好ましくはバイオマス材料90が充填される部位に設けられていることが好ましく、容器内でのバイオマス材料90の温度を正確に測定することができる。 The container 100 is provided with a thermometer 80 such as a thermoelectric pair coated with heat resistance. The thermometer 80 is preferably provided in a container, preferably at a portion where the biomass material 90 is filled, and can accurately measure the temperature of the biomass material 90 in the container.

オーブン130内にも耐熱被覆された熱電対等の温度計70が設けられている。その温度計70はオーブン130内に設けられ、オーブン130内、すなわち、容器100を外部より加熱する囲繞空間の温度を正確に測定することができるようになっている。 A thermometer 70 such as a thermoelectric pair coated with heat resistance is also provided in the oven 130. The thermometer 70 is provided in the oven 130 so that the temperature in the oven 130, that is, the surrounding space for heating the container 100 from the outside can be accurately measured.

図1に示す例では、それぞれの温度計80及び90で計測されたバイオマス材料の温度データと、オーブン内部の温度データとは、マイクロコンピューター等の自動演算処理装置40へと送られ、そこで両データのその差分から、プログラムによって、オーブン130のヒータ60の発熱量及びファン50の回転数を制御し、所定の温度に保持できるように構成されている。 In the example shown in FIG. 1, the temperature data of the biomass material measured by the thermometers 80 and 90 and the temperature data inside the oven are sent to an automatic arithmetic processing device 40 such as a microcomputer, where both data are sent. From the difference between the two, the calorific value of the heater 60 of the oven 130 and the rotation speed of the fan 50 are controlled by a program so that the temperature can be maintained at a predetermined temperature.

図1では、容器からの排気ライン上に背圧レギュレータ120の後方に順に、液体捕集装置140、ガスサンプリング口150、アンモニア捕集装置160、脱臭装置(シリカゲル)170及び酸素センサ180が設けられている。背圧レギュレータは容器内圧力を調整するためのものであり、それと同様の働きを有する機器又は装置構成であればこれに限定されない。その他の装置はいずれも反応排ガスの処理、分析等の目的で設けられているものであって、いずれも本発明の方法の実施で必須の構成ではなく、また、その配置順序に関しても特に限定されるものではない。 In FIG. 1, a liquid collecting device 140, a gas sampling port 150, an ammonia collecting device 160, a deodorizing device (silica gel) 170, and an oxygen sensor 180 are provided in order on the exhaust line from the container behind the back pressure regulator 120. ing. The back pressure regulator is for adjusting the pressure inside the container, and is not limited to this as long as it is a device or device configuration having a similar function. All of the other devices are provided for the purpose of treating and analyzing the reacted exhaust gas, and none of them is essential for the implementation of the method of the present invention, and the arrangement order thereof is also particularly limited. It's not something.

(初期環境)
本発明に係る処理方法では、バイオマス材料90を容器100内に入れた後、その容器内を、(a)酸素含有ガスを酸素供給量換算で3.4~33.6g-O-1kg-AFS-1、より好ましくは、13.9~30.4g-O-1kg-AFS-1で供給すると共に、(b)容器内をゲージ圧力で0.5~1.5MPa、より好ましくは、0.9~1.0MPaに保持し、(c)初期温度を80~160℃、より好ましくは85~130℃に設定して、外部より加熱する。
(Initial environment)
In the treatment method according to the present invention, after the biomass material 90 is placed in the container 100, (a) the oxygen-containing gas is placed in the container 100 in terms of oxygen supply amount of 3.4 to 33.6 g-O 2 h -1 . It is supplied in kg-AFS -1 , more preferably 13.9 to 30.4 g-O 2 h -1 kg-AFS -1 , and (b) the inside of the container is charged with a gauge pressure of 0.5 to 1.5 MPa. More preferably, it is kept at 0.9 to 1.0 MPa, and (c) the initial temperature is set to 80 to 160 ° C., more preferably 85 to 130 ° C., and the mixture is heated from the outside.

本発明では、前記したように、たとえ高水分バイオマスであっても、安定した酸素供給が行われれば低温酸化反応及びバイオマスの自己昇温反応が達成されるとの考え、また溶存酸素量は雰囲気圧力が上昇するにつれて増加するとの考えから、バイオマスを比較的高圧環境に置き、比較的高い酸素供給量を与えるものである。 In the present invention, as described above, it is considered that the low-temperature oxidation reaction and the self-heating reaction of the biomass can be achieved if a stable oxygen supply is performed even if the biomass is high in water content, and the dissolved oxygen amount is an atmosphere. Since the biomass is expected to increase as the pressure rises, the biomass is placed in a relatively high-pressure environment to provide a relatively high oxygen supply.

処理されるバイオマス材料の含水率、及び容器内の設定圧力によってもある程度影響されるが、酸素含有ガスを酸素供給量換算で3.4~33.6g-O-1kg-AFS-1で供給すれば、上記所定の初期温度で、バイオマスの低温酸化反応及び自己昇温反応を誘発することが可能である。なお、酸素含有ガスとして空気を用いる場合には、上記酸素供給量とするために、概略換算値で、空気の通気量を0.2~2.0Lmin-1kg-AFS-1程度とすればよい。このようにして供給された酸素は、必須の雰囲気ガスとして容器内に含まれ、バイオマス材料90の炭素と反応して発熱反応に寄与する。 Although it is affected to some extent by the water content of the biomass material to be treated and the set pressure in the container, the oxygen-containing gas is 3.4 to 33.6 g in terms of oxygen supply amount-O 2 h -1 kg-AFS -1 . It is possible to induce a low-temperature oxidation reaction and a self-heating reaction of biomass at the above-mentioned predetermined initial temperature. When air is used as the oxygen-containing gas, the air aeration amount should be about 0.2 to 2.0 Lmin -1 kg-AFS -1 in a roughly converted value in order to obtain the above oxygen supply amount. good. The oxygen supplied in this way is contained in the container as an essential atmospheric gas and reacts with the carbon of the biomass material 90 to contribute to the exothermic reaction.

容器内をゲージ圧力で0.5~1.5MPaとすることは、容器内における溶存酸素量高める上から必要である。高圧環境は高い水分状態であっても、バイオマスと酸素の反応を助け、さらには低温酸化反応及びバイオマスの自己昇温を引き起こしている可能性が極めて高いこと。また、高圧化に伴う沸点上昇が100℃付近で起きる水分蒸発による熱損失を抑えている効果もある。容器内のゲージ圧力が0.5MPa未満では、高い酸素供給量を与え、初期温度として所定の温度に設定しても、バイオマスの自己昇温反応を誘発することができない。100℃付近での熱発生速度は小さいため、例えば、大気圧環境のもとでは水分蒸発による熱損失速度が大きいため自己昇温にはつながらない。一方、ゲージ圧力で1.5MPaを超える圧力は、耐圧のための設備構成等が大がかりなものとなり、経済的な観点から、また作業安全性の上からもあまり望ましいものではない。容器内の圧力は、常に一定になるように制御されていてもよいし、上記所定の圧力範囲内であれば任意に変動するものであってもよい。 It is necessary to set the gauge pressure in the container to 0.5 to 1.5 MPa in order to increase the amount of dissolved oxygen in the container. It is highly possible that the high-pressure environment assists the reaction between biomass and oxygen even in high moisture conditions, and also causes a low-temperature oxidation reaction and self-heating of biomass. It also has the effect of suppressing heat loss due to water evaporation that occurs at around 100 ° C when the boiling point rises due to high pressure. When the gauge pressure in the container is less than 0.5 MPa, even if a high oxygen supply amount is given and the initial temperature is set to a predetermined temperature, the self-heating reaction of biomass cannot be induced. Since the heat generation rate at around 100 ° C. is small, for example, in an atmospheric pressure environment, the heat loss rate due to water evaporation is high, which does not lead to self-heating. On the other hand, a pressure exceeding 1.5 MPa in gauge pressure is not very desirable from the economical point of view and from the viewpoint of work safety because the equipment configuration for withstand voltage becomes large. The pressure in the container may be controlled so as to be constant at all times, or may be arbitrarily fluctuated as long as it is within the above-mentioned predetermined pressure range.

容器内の温度は、80~160℃に設定される。温度をこの範囲にすることによって、バイオマス材料90に低温酸化反応及び自己昇温反応を生じさせることができ、300℃程度までの温度に上昇させることができる。温度が85℃未満では、反応による熱発生速度が通気による熱損失速度よりも小さくなり顕著な温度変化は生じないおそれがある。一方、160℃を超える温度に設定することは、消費エネルギーの削減という本来の目的から逸脱することとなるために好ましくない。なお、この温度は初期環境での範囲であるので、容器内のバイオマス材料90の温度がバイオマス材料の自己昇温反応によって、当該初期温度を超えて後述する「昇温環境」に移行した後では、外部からの加熱を停止する、又は、加熱をバイオマス材料の温度と前記容器体の囲繞空間の温度との温度差が1.5℃以内になるように制御するのみに抑えてよい。 The temperature inside the container is set to 80 to 160 ° C. By setting the temperature in this range, the biomass material 90 can undergo a low-temperature oxidation reaction and a self-heating reaction, and can be raised to a temperature of up to about 300 ° C. If the temperature is less than 85 ° C., the heat generation rate due to the reaction becomes smaller than the heat loss rate due to aeration, and there is a possibility that a remarkable temperature change does not occur. On the other hand, setting the temperature to exceed 160 ° C. is not preferable because it deviates from the original purpose of reducing energy consumption. Since this temperature is within the range of the initial environment, after the temperature of the biomass material 90 in the container exceeds the initial temperature due to the self-heating reaction of the biomass material and shifts to the "heating environment" described later. , The heating from the outside may be stopped, or the heating may be suppressed only by controlling the temperature difference between the temperature of the biomass material and the temperature of the surrounding space of the container body within 1.5 ° C.

以上、特定の初期環境とすることによって、バイオマス材料の低温酸化反応及び自己発熱反応を誘発して、バイオマス材料の温度を前記初期温度を超える温度に上昇させることができる。 As described above, by setting a specific initial environment, it is possible to induce a low temperature oxidation reaction and a self-exothermic reaction of the biomass material to raise the temperature of the biomass material to a temperature exceeding the initial temperature.

(昇温環境)
本発明に係る処理方法では、バイオマス材料の温度がバイオマスの自己発熱により前記初期温度を上回ったら、前記酸素含有ガスの供給及び前記容器内圧力は維持しつつ、外部からの加熱を停止する、又は、加熱をバイオマス材料の温度と前記容器体の囲繞空間の温度との温度差が1.5℃以内になるように制御するのみに抑えて、反応を継続させることによって、前記バイオマス材料を少なくとも160℃を超える温度に自然上昇させ、該バイオマス材料を減量化及び炭化することができる。なお、この昇温環境は、温度要件及びそのための加熱要件除いて前記した初期環境とほぼ同じである。
(High temperature environment)
In the treatment method according to the present invention, when the temperature of the biomass material exceeds the initial temperature due to the self-heating of the biomass, the external heating is stopped or the heating from the outside is stopped while maintaining the supply of the oxygen-containing gas and the pressure inside the container. By limiting the heating so that the temperature difference between the temperature of the biomass material and the temperature of the surrounding space of the container is within 1.5 ° C. and continuing the reaction, the biomass material is heated to at least 160. The biomass material can be reduced and carbonized by spontaneously raising it to a temperature above ° C. The temperature rise environment is almost the same as the above-mentioned initial environment except for the temperature requirement and the heating requirement for that purpose.

酸素含有ガスを酸素供給量換算で3.4~33.6g-O-1kg-AFS-1で供給することは、昇温環境に移行しても継続される。 Supplying the oxygen-containing gas in terms of oxygen supply amount of 3.4 to 33.6 g-O 2 h -1 kg-AFS -1 will continue even if the temperature rise environment is changed.

容器内の圧力も上記した初期環境と同様にゲージ圧力0.5~1.5MPaに保持する。この範囲の圧力とすることにより、上述した酸素をバイオマス材料内に容易に注入し、バイオマス材料の炭化を進行させることができる。 The pressure inside the container is also maintained at a gauge pressure of 0.5 to 1.5 MPa in the same manner as in the initial environment described above. By setting the pressure in this range, the above-mentioned oxygen can be easily injected into the biomass material and carbonization of the biomass material can proceed.

なお、本発明に係る処理方法では、昇温環境を継続させると、バイオマス温度は300℃を超えてそれ以上の温度まで昇温させることが可能である。しかし、バイオマス材料90の半炭化という観点からは、300℃を超えての加熱処理は、バイオマス材料に過酷な条件となる。そうしたことから、170℃以上でかつ300℃以下、より好ましくは230℃以上でかつ280℃以下で反応を停止させ、バイオマス材料の炭化物を得ることが望ましい。 In the treatment method according to the present invention, if the temperature rising environment is continued, the biomass temperature can be raised to a temperature higher than 300 ° C. However, from the viewpoint of semi-carbonization of the biomass material 90, heat treatment above 300 ° C. is a harsh condition for the biomass material. Therefore, it is desirable to terminate the reaction at 170 ° C. or higher and 300 ° C. or lower, more preferably 230 ° C. or higher and 280 ° C. or lower to obtain carbides of the biomass material.

反応の停止は、酸素供給(通気)を止め、適当な燃焼温度で反応を燃焼を止めることにより容易に行うことができる。また、得られたバイオマス材料の炭化物のさらなる分解を防ぐ上では、反応停止後、減圧し、窒素ガスを供給しながら環境温度(25℃±10℃)まで冷却することが好ましい。 The reaction can be easily stopped by stopping the oxygen supply (ventilation) and stopping the reaction at an appropriate combustion temperature. Further, in order to prevent further decomposition of the carbides of the obtained biomass material, it is preferable to reduce the pressure after the reaction is stopped and cool the obtained biomass material to the environmental temperature (25 ° C ± 10 ° C) while supplying nitrogen gas.

次に、具体的な実験例を示して本発明に係るバイオマス材料の処理方法についてさらに詳しく説明する。 Next, a specific experimental example will be shown and the method for treating the biomass material according to the present invention will be described in more detail.

[実験1]
実験試料として、乳牛ふんが用いられた。実験に先立ち、湿った試料を105℃で24時間乾燥させ、次いで600℃で3時間焼却することで水分と灰分を測定した。有機物(揮発成分及び固定炭素)の総量は、乾燥固形分から灰分を差し引いて決定された、灰分フリー固形分(ash-free-solid、AFS)と表された。試料(200±1g、含水率63±2% wet basis (wb))を、各実験おいて反応容器中に入れた。
[Experiment 1]
Milk cow manure was used as an experimental sample. Prior to the experiment, the moist sample was dried at 105 ° C. for 24 hours and then incinerated at 600 ° C. for 3 hours to measure the water content and ash content. The total amount of organic matter (volatile components and fixed carbon) was expressed as ash-free solids (AFS), which was determined by subtracting ash from the dry solids. Samples (200 ± 1 g, moisture content 63 ± 2% wet bases (wb)) were placed in reaction vessels in each experiment.

実験システムの概略図を図1に示す。反応容器100としては、容積約1 Lのステンレス製耐圧容器を使用した。実験試料90の断熱性を保つため、容器の壁面は空気によって隔たれた二重構造となっている。反応容器100をオーブン130内に設置し、空気ボンベ10とマスフローコントローラ30(F-201CV Series、Bronkhorst社製)を用いて容器100底部から通気した。通気量は0.83±0.02L min-1kg-AFS-1(酸素供給量:13.9±0.4g-O-1kg-AFS-1に相当)に設定した。容器100内の圧力は背圧レギュレータ120(BP-3 Series、Go Regulator社製)にて1.0MPa(=ゲージ圧力:0.9MPa)になるよう調整した。排気中に含まれるガス種の濃度(O、CO、CO)はそれぞれ、酸素センサ180及びガスクロマトグラフ(GC-4000、GL Science、Inc.製)にて測定した。各種ガス濃度はサルデスら(Saludes et al.)の方法に従い消費速度又は発生速度へと変換した(Saludes RB、 Iwabuchi K、 Kayanuma A、 Shiga T. Composting of dairy cattle manure using a thermophilic-mesophilic sequence. Biosyst Eng 2007;98:198-205. doi:10.1016/j.biosystemseng.2007.07.003.)。 A schematic diagram of the experimental system is shown in FIG. As the reaction vessel 100, a stainless steel pressure-resistant vessel having a volume of about 1 L was used. In order to maintain the heat insulating property of the experimental sample 90, the wall surface of the container has a double structure separated by air. The reaction vessel 100 was placed in the oven 130 and ventilated from the bottom of the vessel 100 using an air cylinder 10 and a mass flow controller 30 (F-201CV Series, manufactured by Bronkhorst). The air volume was set to 0.83 ± 0.02 L min -1 kg-AFS -1 (corresponding to oxygen supply amount: 13.9 ± 0.4 g-O 2 h -1 kg-AFS -1 ). The pressure in the container 100 was adjusted to 1.0 MPa (= gauge pressure: 0.9 MPa) with a back pressure regulator 120 (BP-3 Series, manufactured by Go Regulator). The concentrations of gas species (O 2 , CO, CO 2 ) contained in the exhaust gas were measured by an oxygen sensor 180 and a gas chromatograph (GC-4000, GL Science, Inc.), respectively. Various gas concentrations were converted to consumption rate or generation rate according to the method of Sarudes et al. (Saludes RB, Iwabuchi K, Kayanuma A, Shiga T. Composting of dairy cattle manure using a thermophilic-mesophilic sequence. Biosyst. Eng 2007; 98: 198-205. Doi: 10.1016 / j.biosystemseng.2007.07.003.).

バイオマスの低温酸化反応及び自己発熱が開始する温度域を調べるため、初期温度を4水準(80、85、90、100℃)に設定した。バイオマスの自己発熱により、材料温度が初期温度を上回ったのち、オーブン内の温度と試料の温度が1.5℃以内になるように制御した。バイオマスの温度が300℃に達したのち、実験を終了した。実験終了後のバイオマス分解を防ぐため、減圧したのち、窒素ガスを供給しながら環境温度(25℃±10℃)まで冷却した。試料温度が300℃から200℃まで下がるのは20分程度であった。比較のため、大気圧(0.1MPa)のもと開始温度100℃で実験を行なった。 The initial temperature was set to 4 levels (80, 85, 90, 100 ° C.) in order to investigate the temperature range in which the low temperature oxidation reaction of biomass and self-heating started. After the material temperature exceeded the initial temperature due to the self-heating of the biomass, the temperature in the oven and the temperature of the sample were controlled to be within 1.5 ° C. The experiment was terminated after the temperature of the biomass reached 300 ° C. In order to prevent biomass decomposition after the end of the experiment, the pressure was reduced and then cooled to the environmental temperature (25 ° C ± 10 ° C) while supplying nitrogen gas. It took about 20 minutes for the sample temperature to drop from 300 ° C to 200 ° C. For comparison, the experiment was conducted under atmospheric pressure (0.1 MPa) at a starting temperature of 100 ° C.

試料の元素分析は元素分析装置(CE-440、Exeter Analytical、Inc.製)を用いてCHN含有量を測定した。なお酸素量は差分(O=100-C-H-N-Ash)にて求めた。各元素の重量減少率はチェンら(Chen et al.)の方法に則って算出した(Chen W-H、 Kuo P-C. Torrefaction and co-torrefaction characterization of hemicellulose、 cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 2011;36:803-11. doi:10.1016/j.energy.2010.12.036.)。高位発熱量(HHV)はボンベ式熱量計(O.S.K200、小川サンプリング株式会社製) にて測定した。測定されたHHVと固形物収率によって求められる、エネルギー収率はルゥら(Lu et al.)の計算式に従い求めた(Lu K-M、 Lee W-J、 Chen W-H、 Liu S-H、 Lin T-C. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol 2012;123:98-105. doi:10.1016/j.biortech.2012.07.096.)。 For elemental analysis of the sample, the CHN content was measured using an elemental analyzer (CE-440, Exeter Analytical, Inc.). The amount of oxygen was determined by the difference (O = 100-CHN-Ash). The weight loss rate of each element was calculated according to the method of Chen et al. (Chen WH, Kuo PC. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic biomass in biomass. Energy 2011; 36: 803-11. doi: 10.1016 / j.energy.2010.12.036.). The high calorific value (HHV) was measured with a cylinder type calorimeter (OSK200, manufactured by Ogawa Sampling Co., Ltd.). The energy yield determined by the measured HHV and solid yield was determined according to the formula of Lu et al. (Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC. Torrefaction and low). temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol 2012; 123: 98-105. Doi: 10.1016 / j.biortech.2012.07.096.).

[結果]
反応中の試料温度を図2に示す。オーブンの初期温度を85℃以上に設定した場合、バイオマスの自己昇温反応が進み、300℃までの昇温が確認された。昇温中、乾燥プロセスにより160~170℃付近で24時間程度の温度停滞が観察された(水の沸点はゲージ圧力0.9MPaで約180℃)。一方、初期温度80℃ではわずかな昇温は起きたものの、バイオマスの自己昇温反応に至ることはなかった。
[result]
The sample temperature during the reaction is shown in FIG. When the initial temperature of the oven was set to 85 ° C. or higher, the self-heating reaction of the biomass proceeded, and it was confirmed that the temperature was raised to 300 ° C. During the temperature rise, a temperature stagnation of about 24 hours was observed around 160 to 170 ° C. due to the drying process (the boiling point of water is about 180 ° C. at a gauge pressure of 0.9 MPa). On the other hand, although a slight increase in temperature occurred at the initial temperature of 80 ° C., the self-heating reaction of biomass did not occur.

酸素消費及びCO、COの発生速度を図3に示す。酸素消費速度は、温度の上昇に伴い増加した。140℃以上の温度域では、消費速度は一定(13.6g-O-1kg-AFS-1)となり、おおよそ供給速度と同じであった。CO発生速度も酸素消費速度と同様の傾向を示した。CO発生速度は100℃から140℃の間で急激に増加し、140℃以上ではおよそ15.0g-CO-1kg-AFS-1であった。それに対し、CO発生速度は指数関数的に増加し、300℃のとき0.8g-COh-1kg-AFS-1であった。 The oxygen consumption and the generation rates of CO and CO 2 are shown in FIG. Oxygen consumption rate increased with increasing temperature. In the temperature range of 140 ° C. or higher, the consumption rate was constant (13.6 g-O 2 h -1 kg-AFS -1 ), which was approximately the same as the supply rate. The CO 2 generation rate showed the same tendency as the oxygen consumption rate. The CO 2 generation rate increased sharply between 100 ° C and 140 ° C, and above 140 ° C, it was approximately 15.0 g-CO 2 h -1 kg-AFS- 1 . On the other hand, the CO generation rate increased exponentially, and was 0.8 g-COh -1 kg-AFS -1 at 300 ° C.

原料と作製されたバイオ炭の性質を表1に示す。バイオ炭の含水率が1.0%以下であり、乾燥は十分に行われていた。プロセスを経ることでバイオ炭の炭素、水素、酸素量は減少した。各元素の重量減少率は、炭素で62.5%、水素で88.5%、そして酸素で80.3%であった。バイオ炭のHHVは灰分率が高かったため、原料よりも低くなった。固形物及びエネルギー収率はそれぞれ乾物基準で47.1%と34.9%であった。 Table 1 shows the properties of the raw material and the produced biochar. The water content of the biochar was 1.0% or less, and the biochar was sufficiently dried. Through the process, the amount of carbon, hydrogen and oxygen in biochar was reduced. The weight loss rate of each element was 62.5% for carbon, 88.5% for hydrogen, and 80.3% for oxygen. The HHV of biochar was lower than the raw material due to its high ash content. The solid and energy yields were 47.1% and 34.9% on a dry matter basis, respectively.

Figure 0007043130000001
Figure 0007043130000001

バイオマスの低温酸化反応及び自己昇温は、ゲージ圧力0.9MPaの雰囲気で初期温度85℃以上で起こり、300℃まで昇温することが確認された。 It was confirmed that the low-temperature oxidation reaction and self-heating of biomass occurred at an initial temperature of 85 ° C. or higher in an atmosphere with a gauge pressure of 0.9 MPa, and the temperature was raised to 300 ° C.

初期温度は反応速度、特に低い温度域における反応速度とプロセス全体の期間に影響を及ぼすことがわかった。初期温度85℃及び90℃で始めた場合、100℃と比べて、300℃に到達するまで20時間以上の差があった。したがって、より短期間でプロセスを終えるには初期温度100℃以上で行うことが適していると言える。本実験で、初期温度80℃は低温酸化反応を誘発したように思われたが、反応による熱発生速度が通気による熱損失速度よりも小さかったため顕著な温度変化は見られなかった。 It was found that the initial temperature affects the reaction rate, especially in the lower temperature range and the duration of the whole process. When starting at the initial temperatures of 85 ° C. and 90 ° C., there was a difference of 20 hours or more until reaching 300 ° C. as compared with 100 ° C. Therefore, in order to complete the process in a shorter period of time, it can be said that it is suitable to carry out the process at an initial temperature of 100 ° C. or higher. In this experiment, the initial temperature of 80 ° C. seemed to induce a low temperature oxidation reaction, but no significant temperature change was observed because the heat generation rate due to the reaction was smaller than the heat loss rate due to aeration.

高圧環境は反応プロセスの促進に大きく貢献している。大気圧環境下で、低温酸化反応の最大反応速度は限界含水率である7~17%(乾燥基準(db))であり(Chen XD, Stott JB. The effect of moisture content on the oxidation rate of coal during near-equilibrium drying and wetting at 50℃. Fuel 1993;72:787-92. doi:10.1016/0016-2361(93)90081-C.)、これ以上の水分状態では反応が阻害されることが予想される。一方で、本実験のように高圧環境下では、含水率63%wb(≒170%db)の乳牛ふんを用いた場合であっても、低温酸化反応及びその後のバイオマスの自己昇温が観察された。すなわち、高圧環境は高い水分状態であっても、バイオマスと酸素の反応を助け、さらには低温酸化反応及びバイオマスの自己昇温を引き起こしている可能性が極めて高いことが示された。また、高圧化に伴う沸点上昇が100℃付近で起きる水分蒸発による熱損失を抑えている効果もある。すでに述べたとおり、100℃付近での熱発生速度は小さいため、大気圧(0.1MPa=ゲージ圧力(0.0MPa))環境のもとでは水分蒸発による熱損失速度が大きいため自己昇温にはつながらない。このように高圧環境は確かに低温酸化反応及びバイオマスの自己昇温反応を促進する。 The high pressure environment contributes significantly to the promotion of the reaction process. Under atmospheric pressure, the maximum reaction rate of the low temperature oxidation reaction is the critical moisture content of 7 to 17% (drying standard (db)) (Chen XD, Stott JB. The effect of moisture content on the oxidation rate of coal). during near-equilibrium drying and wetting at 50 ℃. Fuel 1993; 72: 787-92. Doi: 10.1016 / 0016-2361 (93) 90081-C.), It is expected that the reaction will be inhibited in higher water conditions. Will be done. On the other hand, in a high-pressure environment as in this experiment, even when dairy cow manure with a water content of 63% wb (≈170% db) was used, a low-temperature oxidation reaction and subsequent self-heating of biomass were observed. rice field. That is, it was shown that it is highly possible that the high-pressure environment assists the reaction between biomass and oxygen even in a high water state, and further causes a low-temperature oxidation reaction and self-heating of biomass. It also has the effect of suppressing heat loss due to water evaporation that occurs at around 100 ° C when the boiling point rises due to high pressure. As already mentioned, since the heat generation rate near 100 ° C is small, the heat loss rate due to water evaporation is high in an atmospheric pressure (0.1 MPa = gauge pressure (0.0 MPa)) environment, so self-heating is possible. It doesn't connect. Thus, the high pressure environment certainly promotes the low temperature oxidation reaction and the self-heating reaction of the biomass.

一般に炭化プロセスでは、バイオマス中の酸素量が減少するのに対し相対的に炭素含有量が増加する。しかし、元素分析の結果、反応中の酸化反応により水素、酸素の減少とともに炭素損失も進んでいたことが確認された。一方で各元素の重量減少率を見ると、水素と酸素の減少率の方が炭素減少率よりも大きかった。このことから、牛ふんは炭へと変換されていることが示された。 Generally, in the carbonization process, the amount of oxygen in the biomass decreases, but the carbon content increases relatively. However, as a result of elemental analysis, it was confirmed that the oxidation reaction during the reaction led to a decrease in hydrogen and oxygen and an increase in carbon loss. On the other hand, looking at the weight reduction rate of each element, the reduction rate of hydrogen and oxygen was larger than the carbon reduction rate. From this, it was shown that cow dung was converted to charcoal.

元素及び発熱量の分析結果から、300℃までの昇温反応はバイオ固形燃料を作製するという視点では過酷な条件であったと言える。半炭化は温度域(230℃、260℃、300℃)によってその激しさが3段階に分類される(Chen W-H, Kuo P-C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 2011;36:803-11. doi:10.1016/j.energy.2010.12.036.)。本実験は300℃に到達した時点で反応を終了させており、牛ふんは激しい半炭化を経たと言える。さらに、酸化的半炭化はバイオマスの熱的分解温度を下げ、分解速度を増大させることが報告されている(Calvo LF, Otero M, Jenkins BM, Moran A, Garcia AI. Heating process characteristics and kinetics of rice straw in different atmospheres. Fuel Process Technol 2004;85:279-91. doi:10.1016/S0378-3820(03)00202-9; From the analysis results of the elements and the calorific value, it can be said that the temperature rise reaction up to 300 ° C. was a harsh condition from the viewpoint of producing a bio-solid fuel. Semi-carbonization is classified into three stages according to the temperature range (230 ° C, 260 ° C, 300 ° C) (Chen WH, Kuo PC. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 2011; 36: 803-11. doi: 10.1016 / j.energy.2010.12.036.). In this experiment, the reaction was terminated when the temperature reached 300 ° C, and it can be said that the bovine manure underwent intense semi-carbonization. In addition, oxidative semi-carbonization has been reported to lower the thermal decomposition temperature of biomass and increase the rate of decomposition (Calvo LF, Otero M, Jenkins BM, Moran A, Garcia AI. Heating process characteristics and kinetics of rice. straw in different atmospheres. Fuel Process Technol 2004; 85: 279-91. doi: 10.1016 / S0378-3820 (03) 00202-9;

Chiang W-F, Fang H-Y, Wu C-H, Chang C-Y, Chang Y-M, Shie J-L. Pyrolysis Kinetics of Rice Husk in Different Oxygen Concentrations. J Environ Eng 2008;134:316-25. doi:10.1061/(ASCE)0733-9372(2008)134:4(316); Chiang WF, Fang HY, Wu CH, Chang CY, Chang YM, Shie JL. Pyrolysis Kinetics of Rice Husk in Different Oxygen Concentrations. J Environ Eng 2008; 134: 316-25. 2008) 134: 4 (316);

Fang MX, Shen DK, Li YX, Yu CJ, Luo ZY, Cen KF. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. J Anal Appl Pyrolysis 2006;77:22-7. doi:10.1016/j.jaap.2005.12.010; Fang MX, Shen DK, Li YX, Yu CJ, Luo ZY, Cen KF. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. J Anal Appl Pyrolysis 2006; 77: 22-7. Doi 10.1016 / j.jaap.2005.12.010;

Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ, et al. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol 2013;127:318-25. doi:10.1016/j.biortech.2012.09.092.)。このようなことから、本発明において、炭化の最適条件は300℃よりも低い温度域であると示唆された。 Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ, et al. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol 2013; 127: 318-25. doi: 10.1016 / j. biortech.2012.09.092.). From these facts, it was suggested that the optimum condition for carbonization in the present invention is a temperature range lower than 300 ° C.

上記のように、ゲージ圧力0.9MPaの雰囲気下で、バイオマスの低温酸化反応及び自己昇温反応が開始する温度域で調べた結果、バイオマスの自己昇温は85℃以上の温度域で開始することが確認された。プロセスの途中、酸素不足が起きたものの300℃までの昇温が確認され、バイオマスは酸化的分解と乾燥プロセスを経ることで、バイオ炭へと変換された。以上のことから、高圧環境下における、バイオマスの自己昇温反応を用いた酸化的半炭化の実現可能性が示された。

As described above, as a result of the investigation in the temperature range where the low temperature oxidation reaction and the self-heating reaction of the biomass start in the atmosphere of the gauge pressure of 0.9 MPa, the self-heating of the biomass starts in the temperature range of 85 ° C. or higher. It was confirmed that. During the process, although oxygen deficiency occurred, the temperature was confirmed to rise to 300 ° C, and the biomass was converted to biochar by undergoing oxidative decomposition and drying processes. From the above, the feasibility of oxidative semi-carbonization using the self-heating reaction of biomass in a high pressure environment was shown.

Claims (5)

バイオマス材料を容器内に入れた後、該容器内に、(a)酸素含有ガスを酸素供給量換算で3.4~33.6g-O-1kg-AFS-1、で供給すると共に、(b)容器内をゲージ圧力で0.5~1.5MPaに保持し、(c)容器内の初期温度を85~160℃に設定して、外部より加熱してバイオマス材料の処理を開始し、バイオマス材料の温度がバイオマスの自己発熱により前記初期温度を上回ったら、前記酸素含有ガスの供給及び前記容器内のゲージ圧力は維持しつつ、加熱条件を(i)外部からの加熱を停止する、又は、(ii)加熱をバイオマス材料の温度と前記容器の囲繞空間の温度との温度差が1.5℃以内になるように制御するのみに抑える、のいずれかとして、反応を継続させることによって、前記バイオマス材料を少なくとも160℃を超える温度に自然上昇させて、該バイオマス材料を減量化及び炭化する、ことを特徴とするバイオマス材料の処理方法。 After putting the biomass material in the container, (a) oxygen-containing gas is supplied in the container with 3.4 to 33.6 g-O 2 h -1 kg-AFS -1 in terms of oxygen supply amount. , (B) Keep the inside of the container at 0.5 to 1.5 MPa with a gauge pressure , (c) Set the initial temperature inside the container to 85 to 160 ° C, and heat from the outside to start processing the biomass material. Then, when the temperature of the biomass material exceeds the initial temperature due to the self-heating of the biomass, the heating conditions are changed (i) from the outside while maintaining the supply of the oxygen-containing gas and the gauge pressure in the container . Either stop or (ii) limit heating to only control the temperature difference between the temperature of the biomass material and the temperature of the surrounding space of the container to be within 1.5 ° C. A method for treating a biomass material, which comprises spontaneously raising the biomass material to a temperature exceeding at least 160 ° C. by continuing the reaction to reduce and carbonize the biomass material. 前記バイオマス材料が少なくとも160℃を超える温度に自然上昇した後に、適当な温度に達したら、酸素含有ガスの供給を途中で止め、燃焼反応を止めることによって処理を終了させる、請求項1に記載のバイオマス材料の処理方法。 The first aspect of the present invention, wherein when the biomass material naturally rises to a temperature exceeding at least 160 ° C. and then reaches an appropriate temperature, the supply of the oxygen-containing gas is stopped halfway and the combustion reaction is stopped to terminate the treatment. Biomass material processing method. (a)酸素含有ガスを酸素供給量換算で13.9~30.4g-O-1kg-AFS-1、で供給すると共に、(b)容器内を0.9~1.0MPaに保持し、(c)初期温度を85~130℃に設定する、請求項1に記載のバイオマス材料の処理方法。 (A) Oxygen-containing gas is supplied at 13.9 to 30.4 g-O 2 h -1 kg-AFS -1 in terms of oxygen supply amount, and (b) the inside of the container is 0.9 to 1.0 MPa. The method for treating a biomass material according to claim 1, wherein the method is maintained and (c) the initial temperature is set to 85 to 130 ° C. 前記バイオマス材料を少なくとも160~300℃の温度に自然上昇させた後、減圧し、窒素ガスを供給しながら環境温度(25℃±10℃)まで冷却する、請求項1に記載のバイオマス材料の処理方法。 The treatment of the biomass material according to claim 1, wherein the biomass material is naturally raised to a temperature of at least 160 to 300 ° C., then depressurized and cooled to an environmental temperature (25 ° C. ± 10 ° C.) while supplying nitrogen gas. Method. 前記バイオマス材料として、含水率40~80%の家畜ふんを用いる、請求項1に記載のバイオマス材料の処理方法。
The method for treating a biomass material according to claim 1, wherein livestock manure having a water content of 40 to 80% is used as the biomass material.
JP2018045032A 2018-03-13 2018-03-13 Treatment method of biomass material under pressure environment Active JP7043130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045032A JP7043130B2 (en) 2018-03-13 2018-03-13 Treatment method of biomass material under pressure environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045032A JP7043130B2 (en) 2018-03-13 2018-03-13 Treatment method of biomass material under pressure environment

Publications (2)

Publication Number Publication Date
JP2019155272A JP2019155272A (en) 2019-09-19
JP7043130B2 true JP7043130B2 (en) 2022-03-29

Family

ID=67993811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045032A Active JP7043130B2 (en) 2018-03-13 2018-03-13 Treatment method of biomass material under pressure environment

Country Status (1)

Country Link
JP (1) JP7043130B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7120682B1 (en) 2021-08-23 2022-08-17 智昭 雨谷 Dried feces production method and production system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194501A (en) 2009-02-27 2010-09-09 Hitachi Zosen Corp Method for removing and agent for removing acidic gas in exhaust gas
JP2011098330A (en) 2009-10-07 2011-05-19 Katsumori Taniguro Method for treating biomass material and method for using heat energy
WO2017195407A1 (en) 2016-05-11 2017-11-16 克守 谷黒 Method for ultra-low-temperature carbonization treatment of biomass material, and method for producing carbide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194501A (en) 2009-02-27 2010-09-09 Hitachi Zosen Corp Method for removing and agent for removing acidic gas in exhaust gas
JP2011098330A (en) 2009-10-07 2011-05-19 Katsumori Taniguro Method for treating biomass material and method for using heat energy
WO2017195407A1 (en) 2016-05-11 2017-11-16 克守 谷黒 Method for ultra-low-temperature carbonization treatment of biomass material, and method for producing carbide

Also Published As

Publication number Publication date
JP2019155272A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
KR101712229B1 (en) Method for Treating Biomass Material and Method for Using Heat Energy
Zubairu et al. Production and characterization of briquette charcoal by carbonization of agro-waste
Menardo et al. Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion
US20110179701A1 (en) Torrefaction of ligno-cellulosic biomasses and mixtures
US20120324785A1 (en) Pyrolysis of Biomass
JP3898918B2 (en) Fertilizer manufacturing method
EA024805B1 (en) Method for the manufacture of fuel pellets and other products from lignocellulosic biomass
KR20140035186A (en) Method for producing biomass fuel and biomass fuel produced thereof
KR20150096349A (en) Bio-char production system
Itoh et al. A new torrefaction system employing spontaneous self-heating of livestock manure under elevated pressure
Huang et al. Product distribution and heating performance of lignocellulosic biomass pyrolysis using microwave heating
Nsubuga et al. Potential of jackfruit waste for biogas, briquettes and as a carbondioxide sink-a review
JP7043130B2 (en) Treatment method of biomass material under pressure environment
Zawadzka et al. Autothermal biodrying of municipal solid waste with high moisture content
JP6374632B2 (en) Method for carbonizing biomass material and method for producing carbide
Premchand et al. Study on the effects of carbon dioxide atmosphere on the production of biochar derived from slow pyrolysis of organic agro-urban waste
US10428288B2 (en) Process for converting a biomass into at least one biochar
Murni et al. The effect of pyrolysis temperature on charcoal briquettes from biomass waste
KR20130125279A (en) Method for manufacturing the solidity coal using livestock excrement and the solidity coal made thereby
JP2009007563A (en) Organic waste fuel and manufacturing method for it
KR20230095212A (en) Manufacturing method of bio-oil using food waste
Maemoku et al. Effects of pressure on the torrefaction process using self-heating of dairy manure
Karelius et al. The Prediction of Optimal Torrefaction Condition Palm Kernel Shell based on Elemental Composition
JP4056842B2 (en) Method for removing fermentation odor
Huu et al. Investigational analysis of torrefied corncob and its application in the production of coal-like fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7043130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150