JP7042707B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP7042707B2
JP7042707B2 JP2018122193A JP2018122193A JP7042707B2 JP 7042707 B2 JP7042707 B2 JP 7042707B2 JP 2018122193 A JP2018122193 A JP 2018122193A JP 2018122193 A JP2018122193 A JP 2018122193A JP 7042707 B2 JP7042707 B2 JP 7042707B2
Authority
JP
Japan
Prior art keywords
indoor unit
adjacent
temperature
control temperature
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018122193A
Other languages
Japanese (ja)
Other versions
JP2020003125A (en
Inventor
智子 富田
浩之 安田
義統 中島
洋介 海津
知晃 行田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno-Service Co Ltd
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno-Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Building Techno-Service Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2018122193A priority Critical patent/JP7042707B2/en
Publication of JP2020003125A publication Critical patent/JP2020003125A/en
Application granted granted Critical
Publication of JP7042707B2 publication Critical patent/JP7042707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空調空間に複数の室内機を配置した空調システムに関する。 The present invention relates to an air conditioning system in which a plurality of indoor units are arranged in an air conditioning space.

近年、空調空間に複数の室内機を配置した空調システムが多く用いられている。また、空調システムの消費電力の削減が要求されている。そこで、このような空調システムにおける消費電力を削減する様々な制御方法が提案されている。 In recent years, air-conditioning systems in which a plurality of indoor units are arranged in an air-conditioning space are often used. In addition, reduction of power consumption of air conditioning system is required. Therefore, various control methods for reducing power consumption in such an air conditioning system have been proposed.

例えば、空調空間に複数の室内機を配置した空調システムにおいて、負荷率の低い室内機を停止させ、隣接する室内機の風量を増加させることによって室内機全体の消費電力を低減する制御方法が提案されている(特許文献1参照)。 For example, in an air-conditioning system in which a plurality of indoor units are arranged in an air-conditioned space, a control method is proposed to reduce the power consumption of the entire indoor unit by stopping the indoor unit having a low load factor and increasing the air volume of the adjacent indoor unit. (See Patent Document 1).

また、連続した1つの空調空間を複数の空調設備で空調する場合、空調設備から吹き出した気流等が隣接する空調空間の空調環境に影響を与える場合がある。このため、空調空間について温熱環境シミュレーションを行って最適な温度分布と、各空調設備の空調空間の各位置に対する寄与率を求めておき、各空調設備の寄与率で重み付けを行いながら各空調設備の温度制御を行うことにより、空調の省エネを行う制御方法が提案されている(特許文献2参照)。 Further, when one continuous air-conditioned space is air-conditioned by a plurality of air-conditioned equipment, the airflow or the like blown out from the air-conditioning equipment may affect the air-conditioned environment of the adjacent air-conditioned space. For this reason, a thermal environment simulation is performed for the air-conditioned space to obtain the optimum temperature distribution and the contribution ratio of each air-conditioning equipment to each position of the air-conditioning space, and weighting is performed by the contribution ratio of each air-conditioning equipment. A control method for saving energy in air conditioning by controlling the temperature has been proposed (see Patent Document 2).

特開2013-134019号公報Japanese Unexamined Patent Publication No. 2013-134019 特開2000-171071号公報Japanese Unexamined Patent Publication No. 2000-171071

しかし、特許文献1に記載された従来技術の空調システムでは、消費電力を低減できるものの、空調空間の温度分布にばらつきができて空調環境が低下してしまうという問題がある。特許文献2に記載された従来技術の空調システムでは、正確なシミュレーションが制御のポイントとなるが、複雑な空間を正確にシミュレーションすることが難しい上、実際の温度分布は空調空間の周囲環境によって変動するため、実用が難しいという問題があった。 However, although the conventional air-conditioning system described in Patent Document 1 can reduce power consumption, there is a problem that the temperature distribution of the air-conditioning space is varied and the air-conditioning environment is deteriorated. In the conventional air conditioning system described in Patent Document 2, accurate simulation is the control point, but it is difficult to accurately simulate a complicated space, and the actual temperature distribution varies depending on the surrounding environment of the air conditioning space. Therefore, there was a problem that it was difficult to put it into practical use.

そこで、本発明は、実際の空調空間に応じて消費電力を削減可能な空調システムを提供することを目的とする。 Therefore, an object of the present invention is to provide an air conditioning system capable of reducing power consumption according to an actual air conditioning space.

本発明の空調システムは、一のエリアと、前記一のエリアに隣接する少なくとも1つの隣接エリアを含む連続した空調空間の空調を行う空調システムであって、前記一のエリアに配置されて前記一のエリアの室内温度が設定された制御温度となるように空調を行う一の室内機と、空気吹き出し口が前記一の室内機の空気吹き出し口と対向するように前記隣接エリアに配置され、前記隣接エリアの室内温度が設定された制御温度となるように空調を行う隣接室内機と、前記一の室内機の制御温度と前記隣接室内機の制御温度とを設定するコントローラと、を備え、前記コントローラは、前記隣接室内機の制御温度が前記一のエリアの室内温度に及ぼす影響度を表す隣接室内機影響度を室内機毎に算出する隣接室内機影響度算出部と、前記隣接室内機影響度算出部が算出した前記隣接室内機影響度に基づいて、各エリアの各室内温度とユーザが室内機毎に設定した各設定温度との差が小さくなるように各室内機の各制御温度を設定する空調設定部と、を有し、前記隣接室内機影響度算出部は、前記一の室内機の制御温度と前記隣接室内機の制御温度を代表する基本統計量との差分における、前記一の室内機の制御温度に対する前記一のエリアの室内温度を、前記一のエリアの前記隣接室内機影響度とすること、を特徴とする。 The air-conditioning system of the present invention is an air-conditioning system that air-conditions a continuous air-conditioning space including one area and at least one adjacent area adjacent to the one area, and is arranged in the one area. An indoor unit that air-conditions so that the indoor temperature of the area is set to a set control temperature, and an air outlet is arranged in the adjacent area so as to face the air outlet of the indoor unit. It is provided with an adjacent indoor unit that air-conditions so that the indoor temperature of the adjacent area becomes a set control temperature, and a controller that sets the control temperature of the one indoor unit and the control temperature of the adjacent indoor unit. The controller includes an adjacent indoor unit influence degree calculation unit that calculates the influence degree of the adjacent indoor unit that represents the influence of the control temperature of the adjacent indoor unit on the indoor temperature of the one area for each indoor unit, and the adjacent indoor unit influence. Based on the degree of influence of the adjacent indoor unit calculated by the degree calculation unit, each control temperature of each indoor unit is set so that the difference between each indoor temperature in each area and each set temperature set by the user for each indoor unit becomes small. It has an air conditioner setting unit to be set, and the adjacent indoor unit influence degree calculation unit has the above-mentioned one in the difference between the control temperature of the one indoor unit and the basic statistics representing the control temperature of the adjacent indoor unit. The indoor temperature of the one area with respect to the control temperature of the indoor unit is defined as the degree of influence of the adjacent indoor unit in the one area .

このように、隣接室内機の制御温度が一のエリアの室内温度に及ぼす影響度を表す隣接室内機影響度を室内機毎に算出し、隣接室内機影響度に基づいて、各エリアの各室内温度とユーザが室内機毎に設定した各設定温度との差が小さくなるように各室内機の各制御温度を設定するので、実際の空調空間に応じて過剰空調を抑制し、消費電力を削減することができる。 In this way, the degree of influence of the adjacent indoor unit, which indicates the degree of influence of the control temperature of the adjacent indoor unit on the indoor temperature of one area, is calculated for each indoor unit, and based on the degree of influence of the adjacent indoor unit, each room in each area. Since each control temperature of each indoor unit is set so that the difference between the temperature and each set temperature set by the user for each indoor unit becomes small, excessive air conditioning is suppressed according to the actual air conditioning space and power consumption is reduced. can do.

これにより、隣接室内機の影響度を簡便な数値で表すことができる。 As a result, the degree of influence of the adjacent indoor unit can be expressed by a simple numerical value.

本発明の空調システムにおいて、前記隣接室内機影響度算出部は、一の制御温度と前記隣接室内機の制御温度を代表する前記基本統計量との差分及び一の制御温度における前記一のエリアの前記隣接室内機影響度を算出した際に、算出した前記隣接室内機影響度に基づいて、他の制御温度と前記隣接室内機の制御温度を代表する前記基本統計量との差分及び他の制御温度における前記一のエリアの他の前記隣接室内機影響度を補正すること、としてもよい。 In the air-conditioning system of the present invention, the adjacent indoor unit influence degree calculation unit is the difference between the one control temperature and the basic statistic representing the control temperature of the adjacent indoor unit, and the one area in one control temperature. When the degree of influence of the adjacent indoor unit is calculated, the difference between the other control temperature and the basic statistic representing the control temperature of the adjacent indoor unit and other controls based on the calculated degree of influence of the adjacent indoor unit. It may be possible to correct the degree of influence of the adjacent indoor unit in the one area on the temperature.

これにより、少ない算出回数でも隣接室内機影響度を実際の空調空間に応じたものとできる。 As a result, the degree of influence of the adjacent indoor unit can be adjusted according to the actual air-conditioning space even with a small number of calculations.

本発明の空調システムにおいて、前記隣接室内機影響度算出部は、前記一の室内機の制御温度と前記隣接室内機の制御温度を代表する前記基本統計量との差分と、前記一の室内機の制御温度と、に対する前記隣接室内機影響度を記載した隣接室内機影響度テーブルを室内機毎に生成して隣接室内機影響度格納部に格納すること、としてもよい。また、本発明の空調システムにおいて、前記隣接室内機影響度算出部は、所定のタイミングで前記隣接室内機影響度テーブルを更新し、更新した前記隣接室内機影響度テーブルを前記隣接室内機影響度格納部に格納すること、としてもよい。更に、本発明の空調システムにおいて、前記コントローラは、前記一の室内機の制御温度と、前記隣接室内機の制御温度と、前記隣接室内機影響度格納部に格納した前記隣接室内機影響度テーブルとに基づいて、前記各エリアの推定室内温度をそれぞれ算出する室内温度推定部を有し、前記空調設定部は、前記ユーザが室内機毎に設定した各設定温度と各前記推定室内温度との差が小さくなるように前記各室内機の各制御温度を設定すること、としてもよい。 In the air-conditioning system of the present invention, the adjacent indoor unit influence degree calculation unit has the difference between the control temperature of the one indoor unit and the basic statistic representing the control temperature of the adjacent indoor unit, and the one indoor unit. An adjacent indoor unit influence degree table describing the control temperature of the adjacent indoor unit and the degree of influence on the adjacent indoor unit may be generated for each indoor unit and stored in the adjacent indoor unit influence degree storage unit. Further, in the air conditioning system of the present invention, the adjacent indoor unit influence degree calculation unit updates the adjacent indoor unit influence degree table at a predetermined timing, and the updated adjacent indoor unit influence degree table is used as the adjacent indoor unit influence degree. It may be stored in the storage unit. Further, in the air conditioning system of the present invention, the controller uses the control temperature of the one indoor unit, the control temperature of the adjacent indoor unit, and the influence table of the adjacent indoor unit stored in the influence storage unit of the adjacent indoor unit. It has an indoor temperature estimation unit that calculates the estimated indoor temperature of each area based on the above, and the air conditioner setting unit has each set temperature set by the user for each indoor unit and each estimated indoor temperature. Each control temperature of each indoor unit may be set so that the difference becomes small.

このように、隣接室内機影響度テーブルに基づいて、各エリアの各室内温度とユーザが室内機毎に設定した各設定温度との差が小さくなるように各室内機の各制御温度を設定するので、簡便に実際の空調空間に応じて過剰空調を抑制し、消費電力を削減することができる。また、所定のタイミングで隣接室内機影響度テーブルを更新するので、常に最新の空調空間に応じて過剰空調を抑制し、消費電力を削減することができる。 In this way, based on the adjacent indoor unit influence degree table, each control temperature of each indoor unit is set so that the difference between each indoor temperature in each area and each set temperature set by the user for each indoor unit becomes small. Therefore, it is possible to easily suppress excessive air conditioning according to the actual air conditioning space and reduce power consumption. Further, since the influence table of the adjacent indoor unit is updated at a predetermined timing, it is possible to suppress excessive air conditioning according to the latest air conditioning space and reduce power consumption.

本発明の空調システムにおいて、前記一の室内機と前記隣接室内機とに接続される少なくとも1つの室外機を含み、前記室外機は、前記一の室内機と前記隣接室内機と共に空調設備を構成し、前記コントローラは、前記空調設備の消費電力を算出する消費電力算出部を有し、前記空調設定部は、前記ユーザが室内機毎に設定した各設定温度と各前記推定室内温度との差が所定の範囲内で、且つ、消費電力算出部が算出した消費電力が最小となるように、前記各室内機の各制御温度を設定すること、としてもよい。 In the air conditioning system of the present invention, the one indoor unit and at least one outdoor unit connected to the adjacent indoor unit are included, and the outdoor unit constitutes an air conditioning facility together with the one indoor unit and the adjacent indoor unit. The controller has a power consumption calculation unit that calculates the power consumption of the air conditioner, and the air conditioner setting unit is the difference between each set temperature set by the user for each indoor unit and each estimated indoor temperature. The control temperature of each indoor unit may be set so that the power consumption calculated by the power consumption calculation unit is minimized within a predetermined range.

これにより、空調環境を許容範囲に保ちつつ、消費電力をより効果的に削減することができる。 As a result, power consumption can be reduced more effectively while keeping the air-conditioned environment within an allowable range.

本発明の空調システムにおいて、前記隣接室内機の制御温度を代表する前記基本統計量は、前記隣接室内機の制御温度の平均値、中央値、最大値、最小値、又は、最頻値としてもよい。 In the air conditioning system of the present invention, the basic statistic representing the control temperature of the adjacent indoor unit may be the average value, the median value, the maximum value, the minimum value, or the mode value of the control temperature of the adjacent indoor unit. good.

本発明の空調システムは、一のエリアと、前記一のエリアに隣接する少なくとも1つの隣接エリアを含む連続した空調空間の空調を行う空調システムであって、前記一のエリアに配置されて前記一のエリアの室内温度が設定された制御温度となるように空調を行う一の室内機と、空気吹き出し口が前記一の室内機の空気吹き出し口と対向するように前記隣接エリアに配置され、前記隣接エリアの室内温度が設定された制御温度となるように空調を行う隣接室内機と、前記各室内機の制御温度を設定するコントローラと、を備え、前記コントローラは、前記一の室内機の制御温度と前記隣接室内機の制御温度とが同一の場合、冷房運転時の前記一の室内機の制御温度をユーザが前記一の室内機に設定した設定温度よりも高く設定し、暖房運転時の前記一の室内機の制御温度をユーザが前記一の室内機に設定した設定温度よりも低く設定することを特徴とする。 The air-conditioning system of the present invention is an air-conditioning system that air-conditions a continuous air-conditioning space including one area and at least one adjacent area adjacent to the one area, and is arranged in the one area. An indoor unit that air-conditions so that the indoor temperature of the area is set to a set control temperature, and an air outlet is arranged in the adjacent area so as to face the air outlet of the indoor unit. An adjacent indoor unit that air-conditions so that the indoor temperature of the adjacent area becomes a set control temperature and a controller that sets the control temperature of each indoor unit are provided, and the controller controls the one indoor unit. When the temperature and the control temperature of the adjacent indoor unit are the same, the control temperature of the one indoor unit during the cooling operation is set higher than the set temperature set by the user for the one indoor unit, and during the heating operation. It is characterized in that the control temperature of the one indoor unit is set lower than the set temperature set by the user for the one indoor unit.

これにより、隣接室内機の影響により過剰空調となることを抑制できるので、効果的に消費電力を削減することができる。 As a result, it is possible to suppress excessive air conditioning due to the influence of the adjacent indoor unit, so that power consumption can be effectively reduced.

本発明は、実際の空調空間に応じて消費電力を削減可能な空調システムを提供できる。 The present invention can provide an air conditioning system capable of reducing power consumption according to an actual air conditioning space.

本発明の実施形態の空調システムの構成を示す系統図である。It is a system diagram which shows the structure of the air-conditioning system of embodiment of this invention. 本発明の空調システムの基本動作を示すフローチャートである。It is a flowchart which shows the basic operation of the air-conditioning system of this invention. 図2に示す隣接室内機影響度テーブル生成処理の際の室内機の動作を示すフローチャートである。It is a flowchart which shows the operation of the indoor unit at the time of the adjacent indoor unit influence degree table generation processing shown in FIG. 図2に示す隣接室内機影響度テーブル生成処理の際のコンテローラの動作を示すフローチャートである。It is a flowchart which shows the operation of the contour roller at the time of the adjacent indoor unit influence degree table generation processing shown in FIG. 図2に示す室内温度推定処理と制御温度設定処理の際のコントローラの動作を示すフローチャートである。It is a flowchart which shows the operation of the controller at the time of the room temperature estimation process and the control temperature setting process shown in FIG. 図2のステップS106における室内機の動作を示すフローチャートである。It is a flowchart which shows the operation of the indoor unit in step S106 of FIG. 隣接室内機影響度テーブルの例を示す図である。It is a figure which shows the example of the influence degree table of an adjacent indoor unit. 室内機Aの一時隣接室内機影響度テーブルを示す図である。It is a figure which shows the temporary adjacent indoor unit influence degree table of the indoor unit A. 隣接室内機影響度テーブルの更新を示す説明図である。It is explanatory drawing which shows the update of the influence degree table of an adjacent indoor unit. 隣接室内機影響度テーブルを用いて推定室内温度を算出する動作を説明する説明図である。It is explanatory drawing explaining the operation which calculates the estimated indoor temperature using the adjacent indoor unit influence degree table. 他の実施形態の空調システムの構成を示す系統図である。It is a system diagram which shows the structure of the air conditioning system of another embodiment. 他の実施形態の空調システムの動作を示すフローチャートである。It is a flowchart which shows the operation of the air-conditioning system of another embodiment. 他の実施形態の空調システムの構成を示す系統図である。It is a system diagram which shows the structure of the air conditioning system of another embodiment. 他の実施形態の空調システムの動作を示すフローチャートである。It is a flowchart which shows the operation of the air-conditioning system of another embodiment.

以下、図面を参照しながら、本実施形態の空調システム100について説明する。図1に示すように、空調システム100は、第1エリア11と、第1エリア11に隣接する2つの隣接エリアである第2エリア12、第3エリア13を含む連続した空調空間10の空調を行うものである。第1~第3エリア11~13は、それぞれ事務机14~16が配置されたオフィスエリアである。空調空間10は、例えば、オフィスの1つのフロアであってもよい。以下の説明では、第1エリア11、第2エリア12、第3エリア13をそれぞれエリアA、エリアB、エリアCという。なお、図1においても一点鎖線は、信号の流れを示す。 Hereinafter, the air conditioning system 100 of the present embodiment will be described with reference to the drawings. As shown in FIG. 1, the air conditioning system 100 air-conditions a first area 11 and a continuous air-conditioning space 10 including a second area 12 and a third area 13 which are two adjacent areas adjacent to the first area 11. It is something to do. The first to third areas 11 to 13 are office areas in which office desks 14 to 16 are arranged, respectively. The air-conditioned space 10 may be, for example, one floor of an office. In the following description, the first area 11, the second area 12, and the third area 13 are referred to as Area A, Area B, and Area C, respectively. Also in FIG. 1, the alternate long and short dash line indicates the signal flow.

エリアAの中央の天井には第1室内機20が取付けられている。また、エリアAに隣接するエリアB,Cの天井には、各空気吹き出し口33,43が第1室内機20の空気吹き出し口23と対向するように第2室内機30、第3室内機40が取付けられている。第1~第3室内機20,30,40は、冷水、或いは温水を供給する室外機60に接続されている。第1~第3室内機20,30,40と室外機60とは1つの空調設備65を構成する。以下の説明では、第1室内機20、第2室内機30、第3室内機40をそれぞれ室内機A、室内機B、室内機Cという。 The first indoor unit 20 is attached to the ceiling in the center of the area A. Further, on the ceilings of areas B and C adjacent to the area A, the second indoor unit 30 and the third indoor unit 40 are provided so that the air outlets 33 and 43 face the air outlet 23 of the first indoor unit 20. Is installed. The first to third indoor units 20, 30, and 40 are connected to an outdoor unit 60 that supplies cold water or hot water. The first to third indoor units 20, 30, 40 and the outdoor unit 60 constitute one air conditioning facility 65. In the following description, the first indoor unit 20, the second indoor unit 30, and the third indoor unit 40 are referred to as an indoor unit A, an indoor unit B, and an indoor unit C, respectively.

室内機Aには、制御用温度センサ21が取り付けられており、制御用温度センサ21で検出したエリアAの室内温度が設定された制御温度となるように空調を行う。同様に、室内機B,Cには、制御用温度センサ31,41が取り付けられており、制御用温度センサ31,41で検出したエリアB,Cの室内温度が設定された制御温度となるように空調を行う。室内機A~Cには、それぞれリモコン22,32,42が無線で接続されている。リモコン22,32,42は、ユーザによって操作され、室内機A~Cの制御温度を設定することができる。 A control temperature sensor 21 is attached to the indoor unit A, and air conditioning is performed so that the indoor temperature of the area A detected by the control temperature sensor 21 becomes the set control temperature. Similarly, the indoor units B and C are equipped with the control temperature sensors 31 and 41 so that the indoor temperature of the areas B and C detected by the control temperature sensors 31 and 41 becomes the set control temperature. Air-conditioning. Remote controllers 22, 32, and 42 are wirelessly connected to the indoor units A to C, respectively. The remote controllers 22, 32, and 42 can be operated by the user to set the control temperature of the indoor units A to C.

また、エリアA~Cには、エリアA~Cの各室内温度を検出するための温度センサ51,52,53が配置されている。各温度センサ51~53は各エリアA~Cに在室しているユーザが感じる室内温度にできるだけ近い室内温度を検出できるよう、例えば、事務机14~16の上に配置されてもよいし、各エリアA~Cの略中央の床から1.5m程度の高さに配置されていてもよい。 Further, in areas A to C, temperature sensors 51, 52, and 53 for detecting each room temperature in areas A to C are arranged. The temperature sensors 51 to 53 may be arranged on, for example, office desks 14 to 16 so as to detect the room temperature as close as possible to the room temperature felt by the users in the areas A to C. It may be arranged at a height of about 1.5 m from the floor substantially in the center of each area A to C.

室内機A~C、室外機60、リモコン22,32,42、温度センサ51~53はコントローラ70に接続されている。コントローラ70は、室内機A~Cの各制御温度を設定する。また、ユーザがリモコン22,32,42を操作して設定した設定温度、温度センサ51~53が検出したエリアA~Cの室内温度は、コントローラ70に入力される。 The indoor units A to C, the outdoor unit 60, the remote controllers 22, 32, 42, and the temperature sensors 51 to 53 are connected to the controller 70. The controller 70 sets each control temperature of the indoor units A to C. Further, the set temperature set by the user by operating the remote controllers 22, 32, 42 and the indoor temperature of the areas A to C detected by the temperature sensors 51 to 53 are input to the controller 70.

コントローラ70は、隣接室内機影響度算出部71、隣接室内機影響度格納部72、室内機配置記憶部73、室内温度推定部74、設定温度取得部75、室内温度取得部76、空調設定部77の各機能ブロックを含んでいる。コントローラ70は、内部にCPUと記憶部とを有するコンピュータであり、CPUと記憶部とが協働して動作することにより上記の各機能ブロックが構成される。室内機配置記憶部73には、室内機A~Cの配置情報が格納されている。また、隣接室内機影響度格納部72には、隣接室内機影響度算出部71が生成した隣接室内機影響度テーブルが格納されている。 The controller 70 includes an adjacent indoor unit influence degree calculation unit 71, an adjacent indoor unit influence degree storage unit 72, an indoor unit arrangement storage unit 73, an indoor temperature estimation unit 74, a set temperature acquisition unit 75, an indoor temperature acquisition unit 76, and an air conditioning setting unit. Each of 77 functional blocks is included. The controller 70 is a computer having a CPU and a storage unit inside, and each of the above functional blocks is configured by the CPU and the storage unit operating in cooperation with each other. The indoor unit arrangement storage unit 73 stores the arrangement information of the indoor units A to C. Further, the adjacent indoor unit influence degree storage unit 72 stores the adjacent indoor unit influence degree table generated by the adjacent indoor unit influence degree calculation unit 71.

次に図2から図10を参照しながら実施形態の空調システム100の動作について説明する。最初に図2を参照しながら空調システム100の基本動作について説明する。 Next, the operation of the air conditioning system 100 of the embodiment will be described with reference to FIGS. 2 to 10. First, the basic operation of the air conditioning system 100 will be described with reference to FIG.

図2のステップS101に示ように、ユーザが室内機A~Cに対応する各リモコン22,32,42を操作して設定温度を設定すると、その設定温度はコントローラ70の設定温度取得部75に入力され、コントローラ70の空調設定部77は、図2のステップS102に示すように、設定温度を室内機A~Cの制御温度に設定する。 As shown in step S101 of FIG. 2, when the user operates the remote controllers 22, 32, and 42 corresponding to the indoor units A to C to set the set temperature, the set temperature is sent to the set temperature acquisition unit 75 of the controller 70. Upon input, the air conditioner setting unit 77 of the controller 70 sets the set temperature to the control temperature of the indoor units A to C as shown in step S102 of FIG.

図2のステップS103に示すように、室内機A~Cは、制御用温度センサ21,31,41で検出した室内温度が各制御温度(=各設定温度)となるように空調制御を行う。この場合、隣接する室内機の影響により、エリアA~Cの温度センサ51~53で検出した室内温度が設定温度からずれて過空調の状態となる。コントローラ70の隣接室内機影響度算出部71は、図2のステップS104で、室内機A~Cの制御温度(ステップS104では設定温度と同一)と室内温度取得部76が温度センサ51~53から取得した室内温度とに基づいて、図7(a)から図7(c)に示すような隣接室内機影響度テーブルを生成する。 As shown in step S103 of FIG. 2, the indoor units A to C perform air conditioning control so that the indoor temperature detected by the control temperature sensors 21, 31, and 41 becomes each control temperature (= each set temperature). In this case, due to the influence of the adjacent indoor units, the indoor temperature detected by the temperature sensors 51 to 53 in the areas A to C deviates from the set temperature, resulting in a state of over-air conditioning. In step S104 of FIG. 2, the adjacent indoor unit influence degree calculation unit 71 of the controller 70 is the control temperature of the indoor units A to C (the same as the set temperature in step S104) and the indoor temperature acquisition unit 76 is from the temperature sensors 51 to 53. Based on the acquired indoor temperature, an adjacent indoor unit influence degree table as shown in FIGS. 7 (a) to 7 (c) is generated.

コントローラ70の室内温度推定部74は、図2のステップS105で、図9に示すように、図2のステップS104で生成した隣接室内機影響度テーブルを用いて、室内機A~Cを制御温度候補の組で動作させた場合に温度センサ51~53が検出するエリアA~Cの各室内温度を推定する。そして、コントローラ70の空調設定部77は、図2のステップS106で、推定した室内温度がユーザの設定した設定温度に近くなる制御温度候補の組を室内機A~Cの各制御温度に設定する。 As shown in FIG. 9, the indoor temperature estimation unit 74 of the controller 70 controls the indoor units A to C using the adjacent indoor unit influence degree table generated in step S104 of FIG. 2 in step S105 of FIG. Each room temperature of the areas A to C detected by the temperature sensors 51 to 53 when operated with the candidate set is estimated. Then, in step S106 of FIG. 2, the air conditioning setting unit 77 of the controller 70 sets a set of control temperature candidates whose estimated indoor temperature is close to the set temperature set by the user at each control temperature of the indoor units A to C. ..

室内機A~Cは、制御用温度センサ21,31,41で検出した室内温度がコントローラ70が設定した制御温度となるように空調制御を行う。この結果、温度センサ51~53が検出するエリアA~Cの各室内温度は、ユーザが設定した設定温度に近い温度となり、過空調が抑制される。 The indoor units A to C perform air conditioning control so that the indoor temperature detected by the control temperature sensors 21, 31, and 41 becomes the control temperature set by the controller 70. As a result, the indoor temperatures of the areas A to C detected by the temperature sensors 51 to 53 become close to the set temperature set by the user, and over-air conditioning is suppressed.

このように、本実施形態の空調システム100は、実際の空調空間10に応じて過剰な空調を抑制することにより消費電力を削減することが可能となる。 As described above, the air conditioning system 100 of the present embodiment can reduce power consumption by suppressing excessive air conditioning according to the actual air conditioning space 10.

以下、図3から図10を参照しながら詳細な動作について説明する。以下の説明では、隣接室内機の制御温度を代表する基本統計量として平均値を用いた場合について説明する。 Hereinafter, detailed operations will be described with reference to FIGS. 3 to 10. In the following description, the case where the average value is used as the basic statistic representing the control temperature of the adjacent indoor unit will be described.

図2のステップS101、図3のステップS201に示すように、ユーザが室内機A~Cに対応する各リモコン22,32,42を操作して設定温度を設定すると、その設定温度はコントローラ70に入力され、図2のステップS102に示すようにコントローラ70の空調設定部77が設定温度を室内機A~Cの制御温度に設定する信号を出力する。図3のステップS202に示すように、この信号を受けて、室内機A~Cの制御温度が設定温度に設定される。 As shown in step S101 of FIG. 2 and step S201 of FIG. 3, when the user operates the remote controllers 22, 32, and 42 corresponding to the indoor units A to C to set the set temperature, the set temperature is set to the controller 70. The input is input, and as shown in step S102 of FIG. 2, the air conditioning setting unit 77 of the controller 70 outputs a signal for setting the set temperature to the control temperature of the indoor units A to C. As shown in step S202 of FIG. 3, in response to this signal, the control temperature of the indoor units A to C is set to the set temperature.

室内機A~Cは空調運転を開始し、室内機A~Cの各制御用温度センサ21,31,41で検出した室内温度が制御温度(この場合は、設定温度)となるように空調制御を行う。そして、図3のステップS203に示すように、各制御用温度センサ21,31,41で検出した室内温度が制御温度(=設定温度)に達しない場合には、図3のステップS205に進んで空調運転を継続し、各制御用温度センサ21,31,41で検出した室内温度が制御温度(=設定温度)に達した場合には、図2のステップS204に進んで空調運転を停止し送風運転を行う動作を継続する。 The indoor units A to C start the air conditioning operation, and the air conditioning is controlled so that the indoor temperature detected by the control temperature sensors 21, 31, and 41 of the indoor units A to C becomes the control temperature (in this case, the set temperature). I do. Then, as shown in step S203 of FIG. 3, when the room temperature detected by the control temperature sensors 21, 31, and 41 does not reach the control temperature (= set temperature), the process proceeds to step S205 of FIG. If the air conditioning operation is continued and the room temperature detected by the control temperature sensors 21, 31, and 41 reaches the control temperature (= set temperature), the process proceeds to step S204 of FIG. 2, the air conditioning operation is stopped, and the air is blown. Continue the operation to drive.

先に説明したように、この状態では、隣接する室内機の影響により、エリアA~Cの温度センサ51~53で検出した室内温度は設定温度からずれた状態となっている。そこで、コントローラ70の隣接室内機影響度算出部71は、図4に示すような動作により、図7に示すような隣接室内機影響度テーブルを生成する(図2のステップS104に示す隣接室内機影響度テーブル生成処理)。ここで、隣接室内機影響度は、隣接室内機の制御温度が一のエリアの室内温度に及ぼす影響度を表すもので、「一の室内機の制御温度と隣接室内機の制御温度を代表する基本統計量との差分における、一の室内機の制御温度に対する一のエリアの室内温度」と定義される。隣接室内機の制御温度を代表する基本統計量として平均値を用いた場合に、上記定義は、一の室内機の制御温度と隣接室内機の制御温度の平均値との差分における、一の室内機の制御温度に対する一のエリアの室内温度」となり、室内機毎に異なる値となる。例えば、室内機Aの隣接室内機影響度は、「隣接する室内機B,Cの制御温度がエリアAの室内温度に及ぼす影響度を表すもので、室内機Aの制御温度と室内機B,Cの制御温度の平均値との差分における、室内機Aの制御温度に対するエリアAの室内温度」となる。エリアB(C)の場合、隣接する室内機は室内機Aしかないので、「隣接する室内機Aの制御温度がエリアB(C)の室内温度に及ぼす影響度を表すもので、室内機B(C)の制御温度と室内機Aの制御温度との差分における、室内機B(C)の制御温度に対するエリアB(C)の室内温度」となる。以下の説明では、図7(a)に示す室内機Aの隣接室内機影響度テーブルを生成する場合を例に説明する。室内機Aの隣接室内機影響度テーブルは、図8に示す室内機Aの一時隣接室内機影響度テーブルの各欄に必要な数字を入力して生成する。一時隣接室内機影響度テーブルは、室内機配置記憶部73に格納されている。室内機A~Cの配置情報に基づいて各入力欄が生成されたもので、隣接室内機影響度格納部72に格納されている。 As described above, in this state, the indoor temperature detected by the temperature sensors 51 to 53 in the areas A to C deviates from the set temperature due to the influence of the adjacent indoor units. Therefore, the adjacent indoor unit influence degree calculation unit 71 of the controller 70 generates the adjacent indoor unit influence degree table as shown in FIG. 7 by the operation as shown in FIG. 4 (adjacent indoor unit shown in step S104 of FIG. 2). Impact table generation process). Here, the degree of influence of the adjacent indoor unit represents the degree of influence that the control temperature of the adjacent indoor unit has on the indoor temperature of one area, and "represents the control temperature of one indoor unit and the control temperature of the adjacent indoor unit." It is defined as "the indoor temperature of one area with respect to the control temperature of one indoor unit in the difference from the basic statistics". When the average value is used as the basic statistic representing the control temperature of the adjacent indoor unit, the above definition is the difference between the control temperature of one indoor unit and the average value of the control temperature of the adjacent indoor unit. It is the indoor temperature of one area with respect to the control temperature of the machine, and it is a different value for each indoor unit. For example, the degree of influence of the adjacent indoor unit A of the indoor unit A indicates the degree of influence of the control temperature of the adjacent indoor units B and C on the indoor temperature of the area A, and the control temperature of the indoor unit A and the indoor unit B, It is the indoor temperature of the area A with respect to the controlled temperature of the indoor unit A in the difference from the average value of the controlled temperature of C. In the case of the area B (C), since the adjacent indoor unit is only the indoor unit A, "the degree of influence of the control temperature of the adjacent indoor unit A on the indoor temperature of the area B (C) is shown, and the indoor unit B is used. It is the indoor temperature of the area B (C) with respect to the controlled temperature of the indoor unit B (C) in the difference between the controlled temperature of the indoor unit A and the controlled temperature of the indoor unit A. In the following description, the case of generating the influence degree table of the adjacent indoor unit of the indoor unit A shown in FIG. 7A will be described as an example. The adjacent indoor unit influence degree table of the indoor unit A is generated by inputting necessary numbers in each column of the temporary adjacent indoor unit influence degree table of the indoor unit A shown in FIG. The temporary adjacent indoor unit influence degree table is stored in the indoor unit arrangement storage unit 73. Each input field is generated based on the arrangement information of the indoor units A to C, and is stored in the adjacent indoor unit influence degree storage unit 72.

図4のステップS301に示すように、コントローラ70の設定温度取得部75は、ユーザが室内機A~Cに対応する各リモコン22,32,42から室内機A~Cの設定温度を取得する。今、図7(a)に示す室内機Aの隣接室内機影響度テーブルを生成する場合、取得した室内機Aの設定温度を図8に示す室内機Aの一時隣接室内機影響度テーブルの「制御温度」の欄に入力する。例えば、設定温度が26.0℃の場合、制御温度の欄に26の数字を入力する。次に、室内機Aに隣接する室内機B,Cの設定温度の平均値と室内機Aの設定温度の差を計算する。例えば、室内機A~Cの設定温度が全て26.0℃の場合、室内機Aに隣接する室内機B,Cの設定温度の平均値と室内機Aの設定温度の差は0℃となる。この場合、図8の「室内機Aの制御温度と室内機B,Cの制御温度の平均値との差分」の欄に0を入力する。 As shown in step S301 of FIG. 4, the set temperature acquisition unit 75 of the controller 70 acquires the set temperature of the indoor units A to C from the remote controllers 22, 32, and 42 corresponding to the indoor units A to C by the user. Now, when the influence degree table of the adjacent indoor unit A of the indoor unit A shown in FIG. 7A is generated, the acquired set temperature of the indoor unit A is set to the "temporary adjacent indoor unit influence degree table of the indoor unit A shown in FIG. 8". Enter in the "Control temperature" field. For example, when the set temperature is 26.0 ° C., enter the number 26 in the control temperature field. Next, the difference between the average value of the set temperatures of the indoor units B and C adjacent to the indoor unit A and the set temperature of the indoor unit A is calculated. For example, when the set temperatures of the indoor units A to C are all 26.0 ° C., the difference between the average value of the set temperatures of the indoor units B and C adjacent to the indoor unit A and the set temperature of the indoor unit A is 0 ° C. .. In this case, 0 is input in the field of "difference between the control temperature of the indoor unit A and the average value of the control temperatures of the indoor units B and C" in FIG.

次にコントローラ70は、図4のステップS302に進み、室温は定常状態になっているかどうかを判断する。この判断は、例えば、室内温度取得部76が温度センサ51~53から取得した室内温度が5分間で0.1℃以上変化していない場合にYESと判断し、温度がそれ以上変化している場合にNOと判断するようにしてもよい。 Next, the controller 70 proceeds to step S302 in FIG. 4 to determine whether the room temperature is in a steady state. This determination is, for example, YES when the indoor temperature acquired from the temperature sensors 51 to 53 by the indoor temperature acquisition unit 76 has not changed by 0.1 ° C. or more in 5 minutes, and the temperature has changed further. In some cases, it may be determined as NO.

コントローラ70は、図4のステップS302でYESと判断した場合、図4のステップS303に進み、室内温度取得部76により温度センサ51~53からエリアA~Cの各室内温度を取得する。図7(a)に示す室内機Aの隣接室内機影響度テーブルを生成する場合には、図4のステップS304に示すように、室内温度取得部76により温度センサ51から取得した室内温度25.5℃を図8に示す室内機Aの一時隣接室内機影響度テーブルの制御温度が26.0℃、室内機Aの制御温度と室内機B,Cの制御温度の平均値との差分が0℃に対応する欄に入力する。 If the controller 70 determines YES in step S302 of FIG. 4, the controller 70 proceeds to step S303 of FIG. 4 and acquires the room temperature of each of the areas A to C from the temperature sensors 51 to 53 by the room temperature acquisition unit 76. When the influence table of the adjacent indoor unit A of the indoor unit A shown in FIG. 7A is generated, the indoor temperature 25. Acquired from the temperature sensor 51 by the indoor temperature acquisition unit 76 as shown in step S304 of FIG. 5 ° C is shown in FIG. 8 The control temperature of the temporary adjacent indoor unit influence table of the indoor unit A is 26.0 ° C, and the difference between the control temperature of the indoor unit A and the average value of the control temperatures of the indoor units B and C is 0. Enter in the field corresponding to ℃.

そして、コントローラ70は、図4のステップS305に進み、室内機Aの隣接室内機影響テーブルに既存値があるかどうかを判断する。最初に隣接室内機影響テーブルを作成する場合で既存値が無い場合には、コントローラ70は、図4のステップS305でNOと判断して、図4のステップS307に進み、図8に示す室内機Aの一時隣接室内機影響度テーブルの内容で隣接室内機影響テーブルの内容を更新する。 Then, the controller 70 proceeds to step S305 of FIG. 4 to determine whether or not there is an existing value in the adjacent indoor unit influence table of the indoor unit A. When the adjacent indoor unit influence table is first created and there is no existing value, the controller 70 determines NO in step S305 of FIG. 4, proceeds to step S307 of FIG. 4, and proceeds to the indoor unit shown in FIG. Update the contents of the adjacent indoor unit influence table with the contents of the temporary adjacent indoor unit influence table of A.

一方、コントローラ70の隣接室内機影響度算出部71は、図4のステップS305でYESと判断した場合には、図4のステップS306に進み、図9に示すように、既存値と今回、温度センサ51で検出した室内温度との平均値を隣接室内機影響度として室内機Aの隣接室内機影響度テーブルを更新する。そして、コントローラ70は、更新した室内機Aの隣接室内機影響度テーブルを隣接室内機影響度格納部72に格納する。 On the other hand, if the adjacent indoor unit influence degree calculation unit 71 of the controller 70 determines YES in step S305 of FIG. 4, the process proceeds to step S306 of FIG. 4, and as shown in FIG. 9, the existing value and the temperature this time. The adjacent indoor unit influence degree table of the indoor unit A is updated with the average value with the indoor temperature detected by the sensor 51 as the influence degree of the adjacent indoor unit. Then, the controller 70 stores the updated indoor unit influence degree table of the indoor unit A in the adjacent indoor unit influence degree storage unit 72.

コントローラ70は、所定の期間中、ユーザが室内機A~Cの設定温度を様々に変更する都度、図3、図4に示す動作を継続し、図8に示す室内機Aの隣接室内機影響度テーブルの各欄に数値を入力していく。また、コントローラ70が各リモコン22,32,42にアクセスして室内機A~Cの設定温度を様々に変更するようにしてもよい。そして、所定の期間が経過すると図7(a)に示すような室内機Aの隣接室内機影響度テーブルが生成される。また、コントローラ70は、例えば、30分等所定のタイミングで隣接室内機影響度テーブルの更新を行うようにしてもよい。 The controller 70 continues the operation shown in FIGS. 3 and 4 each time the user changes the set temperature of the indoor units A to C variously during a predetermined period, and the influence of the adjacent indoor unit of the indoor unit A shown in FIG. 8 Enter numerical values in each field of the degree table. Further, the controller 70 may access the remote controllers 22, 32, and 42 to change the set temperatures of the indoor units A to C in various ways. Then, when a predetermined period elapses, an influence degree table of the adjacent indoor unit A of the indoor unit A as shown in FIG. 7A is generated. Further, the controller 70 may update the adjacent indoor unit influence degree table at a predetermined timing such as 30 minutes.

図7(b)、図7(c)に示す室内機B,Cの隣接室内機影響度テーブルも上記と同様の方法で生成される。室内機A~Cの隣接室内機影響度テーブルの生成が終わったら、コントローラ70は、図2のステップS105に示す室内温度推定処理、ステップS106に示す制御温度設定処理を行う。 The adjacent indoor unit influence degree tables of the indoor units B and C shown in FIGS. 7 (b) and 7 (c) are also generated by the same method as described above. After the generation of the influence table of the adjacent indoor units of the indoor units A to C is completed, the controller 70 performs the indoor temperature estimation process shown in step S105 of FIG. 2 and the control temperature setting process shown in step S106.

図5のステップS401に示すように、コントローラ70の室内温度推定部74は、室内機A~Cの隣接室内機影響度テーブルを参照してエリアA~Cの各室内温度を推定する。 As shown in step S401 of FIG. 5, the indoor temperature estimation unit 74 of the controller 70 estimates the indoor temperature of each of the areas A to C with reference to the adjacent indoor unit influence degree tables of the indoor units A to C.

先に説明したように、室内機A~Cの制御温度は設定温度に設定されており、室内機A~Cは各制御用温度センサ21,31,41で検出した室内温度が制御温度(=設定温度)となるように空調制御を行っている。従って、室内機A~Cの設定温度を制御温度に読み替えて、図7(a)から図7(c)に示す室内機A~Cの隣接室内機影響度テーブルを参照することにより、温度センサ51~53によって検出するエリアA~Cの室内温度を推定することができる。 As described above, the control temperature of the indoor units A to C is set to the set temperature, and in the indoor units A to C, the indoor temperature detected by the control temperature sensors 21, 31, and 41 is the control temperature (=). Air conditioning is controlled so that the set temperature) is reached. Therefore, the temperature sensor is read by reading the set temperature of the indoor units A to C as the control temperature and referring to the adjacent indoor unit influence degree tables of the indoor units A to C shown in FIGS. 7 (a) to 7 (c). The room temperature of areas A to C detected by 51 to 53 can be estimated.

例えば、室内機A~Cの各設定温度が全て26.0℃の場合、室内機Aの制御温度(=設定温度=26.0℃)と室内機B,Cの制御温度の平均値(=設定温度=26.0℃)との差分は、0℃となる。従って、この場合のエリアAの温度センサ51が検出すると推定される推定室内温度は、図7(a)の室内機Aの隣接室内機影響度テーブルから25.5℃と算出される。同様に、エリアBの温度センサ52が検出すると推定される推定室内温度は、図7(b)の室内機Bの隣接室内機影響度テーブルで、制御温度=26.0℃、差分=0℃の場合の25.7℃と算出される。同様に、エリアCの温度センサ53が検出すると推定される推定室内温度は、図7(c)の室内機Cの隣接室内機影響度テーブルで、制御温度=26.0℃、差分=0℃の場合の25.7℃と算出される。 For example, when the set temperatures of the indoor units A to C are all 26.0 ° C, the average value (=) of the control temperature of the indoor unit A (= set temperature = 26.0 ° C) and the control temperatures of the indoor units B and C (=). The difference from the set temperature = 26.0 ° C.) is 0 ° C. Therefore, the estimated indoor temperature estimated to be detected by the temperature sensor 51 in the area A in this case is calculated to be 25.5 ° C. from the adjacent indoor unit influence degree table of the indoor unit A in FIG. 7 (a). Similarly, the estimated indoor temperature estimated to be detected by the temperature sensor 52 in the area B is the control temperature = 26.0 ° C. and the difference = 0 ° C. in the adjacent indoor unit influence degree table of the indoor unit B in FIG. 7 (b). It is calculated as 25.7 ° C. in the case of. Similarly, the estimated indoor temperature estimated to be detected by the temperature sensor 53 in Area C is the control temperature = 26.0 ° C. and the difference = 0 ° C. in the adjacent indoor unit influence degree table of the indoor unit C in FIG. 7 (c). It is calculated as 25.7 ° C. in the case of.

コントローラ70は、室内温度推定部74での推定室内温度の算出が終わったら、図5のステップS402に進み、空調設定部77において、エリアA~Cの設定温度と推定室内温度の差が許容範囲にあるかどうかを判断する。許容範囲は、いろいろに設定できるが、例えば、冷房の場合、各推定室内温度が設定温度よりも0℃から0.5℃高い範囲にある場合を許容範囲とし、各推定室内温度が設定値よりも低い場合には、過空調で許容範囲外としてもよい。また、各推定室内温度と設定温度との差が所定の閾値よりも小さい場合を許容範囲とし、所定の閾値よりも大きい場合を許容範囲外としてもよい。 After the calculation of the estimated indoor temperature by the indoor temperature estimation unit 74 is completed, the controller 70 proceeds to step S402 of FIG. 5, and the difference between the set temperature of the areas A to C and the estimated indoor temperature is within the allowable range in the air conditioning setting unit 77. Determine if it is in. The permissible range can be set in various ways. For example, in the case of cooling, the permissible range is when each estimated room temperature is in the range of 0 ° C to 0.5 ° C higher than the set temperature, and each estimated room temperature is higher than the set value. If it is low, it may be out of the allowable range by over-air conditioning. Further, the case where the difference between each estimated room temperature and the set temperature is smaller than the predetermined threshold value may be regarded as the allowable range, and the case where the difference is larger than the predetermined threshold value may be regarded as out of the allowable range.

先の例では、設定温度は、全て26.0℃であるが、推定室内温度は、25.5℃,25.7℃と設定温度を下回っているので、過剰に冷房されていると推定されるので、コントローラ70の空調設定部77は、図5のステップS402でNOと判断して図5のステップS404に進む。 In the previous example, the set temperatures are all 26.0 ° C, but the estimated room temperatures are 25.5 ° C and 25.7 ° C, which are lower than the set temperature, so it is estimated that the air conditioner is excessively cooled. Therefore, the air conditioning setting unit 77 of the controller 70 determines NO in step S402 of FIG. 5, and proceeds to step S404 of FIG.

コントローラ70の空調設定部77は、図5のステップS404で室内機A~Cの制御温度候補の組み合わせを作成する。先に説明したように、室内機A~Cの制御温度を全て設定温度の26.0℃に設定して運転すると、エリアA~Cの室内温度は26.0℃よりも低くなると推定される。従って、温度センサ51~53が検出する室内温度が26.0℃よりも少し高くなるようにするには、制御温度を26.0℃よりも少し高くすればよい。 The air conditioning setting unit 77 of the controller 70 creates a combination of control temperature candidates of the indoor units A to C in step S404 of FIG. As described above, if the control temperatures of the indoor units A to C are all set to the set temperature of 26.0 ° C. and the operation is performed, the indoor temperature of the areas A to C is estimated to be lower than 26.0 ° C. .. Therefore, in order to make the room temperature detected by the temperature sensors 51 to 53 slightly higher than 26.0 ° C., the control temperature may be slightly higher than 26.0 ° C.

そこで、コントローラ70の空調設定部77は、図10(b)に示すような制御温度候補の組を作成して室内温度推定部74に出力する。グループ1は、現在の設定温度と同様、制御温度を全て26.0℃としたもの。これは、後で制御温度を選ぶ場合のリファレンスとなる。グループ2は、室内機Aの制御温度を1℃高い27.0℃にし、室内機B,Cの制御温度は26.0℃のままとしたもの。グループ3は、室内機Aの制御温度を26.0℃のままとし、隣接する室内機B,Cの制御温度をそれぞれ27.0℃にしたもの。グループ4は、室内機Bの制御温度を26.0℃のままとし、室内機A,Cの制御温度を27.0℃にしたものである。 Therefore, the air conditioning setting unit 77 of the controller 70 creates a set of control temperature candidates as shown in FIG. 10B and outputs the set to the room temperature estimation unit 74. Group 1 has all control temperatures set to 26.0 ° C, similar to the currently set temperature. This will serve as a reference later when choosing a control temperature. In Group 2, the control temperature of the indoor unit A was raised by 1 ° C to 27.0 ° C, and the control temperature of the indoor units B and C remained at 26.0 ° C. In Group 3, the control temperature of the indoor unit A is kept at 26.0 ° C, and the control temperature of the adjacent indoor units B and C is set to 27.0 ° C, respectively. In Group 4, the control temperature of the indoor unit B is kept at 26.0 ° C., and the control temperature of the indoor units A and C is set to 27.0 ° C.

次にコントローラ70は、図5のステップS405に進んで、室内温度推定部74によって室内機A~Cの制御温度をグループ1の制御温度候補の組にした場合に温度センサ51~53が検出すると推定される推定室内温度を算出する。 Next, the controller 70 proceeds to step S405 of FIG. 5, and when the indoor temperature estimation unit 74 sets the control temperature of the indoor units A to C into a set of control temperature candidates of group 1, the temperature sensors 51 to 53 detect it. Calculate the estimated room temperature.

グループ1は、室内機A~Cの制御温度を全て26.0℃に設定した場合であるから、室内機B,Cの制御温度の平均値は26.0℃で室内機Aの制御温度と平均値との差分は0℃となる。そして、図10(c)の室内機Aの隣接室内機影響度テーブルの制御温度26.0℃、差分0℃の欄の記載から、エリアAの推定室内温度は、25.5℃となる。エリアB、Cについては、図10(e)に示す室内機Bの隣接室内機影響度テーブルの制御温度26.0℃、差分0℃の欄の記載、図10(f)に示す室内機Cの隣接室内機影響度テーブルの制御温度26.0℃、差分0℃の欄の記載から推定室内温度は、それぞれ25.7℃となる。 In Group 1, since the control temperatures of the indoor units A to C are all set to 26.0 ° C., the average value of the control temperatures of the indoor units B and C is 26.0 ° C., which is the same as the control temperature of the indoor unit A. The difference from the average value is 0 ° C. Then, from the description in the column of the control temperature 26.0 ° C. and the difference 0 ° C. in the adjacent indoor unit influence degree table of the indoor unit A in FIG. 10C, the estimated indoor temperature of the area A is 25.5 ° C. Regarding areas B and C, the description in the column of the control temperature 26.0 ° C. and the difference 0 ° C. in the adjacent indoor unit influence table of the indoor unit B shown in FIG. 10 (e), and the indoor unit C shown in FIG. 10 (f). The estimated indoor temperature is 25.7 ° C, respectively, from the description in the columns of the control temperature 26.0 ° C. and the difference 0 ° C. in the adjacent indoor unit influence degree table.

コントローラ70の室内温度推定部74は制御温度をグループ1の制御温度候補の組とした場合の推定室内温度の算出が終わったら、図5のステップS406に進んで、空調設定部77において、エリアA~Cの推定室内温度と設定温度との差が許容範囲内かどうかを判断する。許容範囲かどうかは、図5のステップS402と同様、例として、冷房の場合に各推定室内温度が設定温度よりも0℃から0.5℃高い範囲にある場合を許容範囲とし、各推定室内温度が設定値よりも低い場合には、過空調で許容範囲外とすると、グループ1は過空調で許容範囲外となるので、コントローラ70は、図5のステップS406でNOと判断して図5のステップS407に進む。 After the calculation of the estimated indoor temperature when the indoor temperature estimation unit 74 of the controller 70 is set as the control temperature candidate set of the group 1 is completed, the process proceeds to step S406 of FIG. It is determined whether or not the difference between the estimated room temperature of C and the set temperature is within the allowable range. As for step S402 in FIG. 5, the allowable range is, for example, the case where each estimated room temperature is in the range of 0 ° C to 0.5 ° C higher than the set temperature in the case of cooling, and each estimated room is in the allowable range. If the temperature is lower than the set value and the over-air conditioning is out of the permissible range, the group 1 is out of the permissible range due to over-air conditioning. Therefore, the controller 70 determines NO in step S406 of FIG. Step S407 of.

コントローラ70の室内温度推定部74は、図5のステップS407で制御温度を次のグループ2の制御温度候補の組とした場合のエリアA~Cの推定室内温度を算出する。グループ2の場合、室内機B,Cの制御温度の平均値は、26.0℃であるから、室内機Aの制御温度と平均値との差分は、-1.0℃となる。そして、図10(c)の室内機Aの隣接室内機影響度テーブルの制御温度27.0℃、差分-1.0の欄の記載から、エリアAの推定室内温度は、26.6℃となる。エリアBの室内機Bの制御温度は26.0℃、室内機Aの制御温度は27.0℃であるから、室内機Aの制御温度との差分は+1.0℃となる。そして、図10(e)に示す室内機Bの隣接室内機影響度テーブルの制御温度26.0℃、差分+1.0の欄の記載から、エリアBの推定室内温度は、25.9℃となる。同様に、図10(f)に示す室内機Cの隣接室内機影響度テーブルからエリアCの推定室温度は25.8℃となる。室内温度推定部74は制御温度をグループ2の制御温度候補の組とした場合の推定室内温度の算出が終わったら、その結果を空調設定部77に出力する。 The room temperature estimation unit 74 of the controller 70 calculates the estimated room temperature of the areas A to C when the control temperature is set as the next set of control temperature candidates of the group 2 in step S407 of FIG. In the case of Group 2, since the average value of the control temperatures of the indoor units B and C is 26.0 ° C., the difference between the control temperature of the indoor unit A and the average value is −1.0 ° C. Then, from the description in the column of the control temperature 27.0 ° C. and the difference −1.0 in the adjacent indoor unit influence degree table of the indoor unit A in FIG. 10 (c), the estimated indoor temperature of the area A is 26.6 ° C. Become. Since the control temperature of the indoor unit B in the area B is 26.0 ° C. and the control temperature of the indoor unit A is 27.0 ° C., the difference from the control temperature of the indoor unit A is + 1.0 ° C. Then, from the description in the column of the control temperature 26.0 ° C. and the difference +1.0 in the adjacent indoor unit influence table of the indoor unit B shown in FIG. 10 (e), the estimated indoor temperature of the area B is 25.9 ° C. Become. Similarly, the estimated room temperature in Area C from the adjacent indoor unit influence degree table of the indoor unit C shown in FIG. 10 (f) is 25.8 ° C. When the indoor temperature estimation unit 74 finishes calculating the estimated indoor temperature when the control temperature is a set of control temperature candidates of group 2, the result is output to the air conditioning setting unit 77.

制御温度をグループ2の制御温度候補の組とした場合、エリアB,Cが過空調となるのでコントローラ70の空調設定部77は、図5のステップS406でNOと判断して図5のステップS407に進む。 When the control temperature is a set of control temperature candidates of group 2, areas B and C are over-air-conditioned. Therefore, the air-conditioning setting unit 77 of the controller 70 determines NO in step S406 of FIG. 5, and steps S407 of FIG. Proceed to.

コントローラ70の室内温度推定部74は、図5のステップS407で制御温度を次のグループ3の制御温度候補の組とした場合のエリアA~Cの推定室内温度を算出する。グループ3の場合、室内機B,Cの制御温度の平均値は、27.0℃であるから、室内機Aの制御温度と平均値との差分は、+1.0℃となる。そして、図10(c)の室内機Aの隣接室内機影響度テーブルの制御温度26.0℃、差分+1.0の欄の記載から、エリアAの推定室内温度は、26.0℃となる。エリアBの室内機Bの制御温度は27.0℃、室内機Aの制御温度は26.0℃であるから、室内機Aの制御温度との差分は-1.0℃となる。そして、図10(e)に示す室内機Bの隣接室内機影響度テーブルの制御温度27.0℃、差分-1.0の欄の記載から、エリアBの推定室内温度は、26.3℃となる。同様に、図10(f)に示す室内機Cの隣接室内機影響度テーブルからエリアCの推定室温度は26.2℃となる。室内温度推定部74は制御温度をグループ3の制御温度候補の組とした場合の推定室内温度の算出が終わったら、その結果を空調設定部77に出力する。 The room temperature estimation unit 74 of the controller 70 calculates the estimated room temperature of the areas A to C when the control temperature is set as the next set of control temperature candidates of the group 3 in step S407 of FIG. In the case of Group 3, since the average value of the control temperatures of the indoor units B and C is 27.0 ° C., the difference between the control temperature of the indoor unit A and the average value is + 1.0 ° C. Then, from the description in the column of the control temperature 26.0 ° C. and the difference +1.0 in the adjacent indoor unit influence degree table of the indoor unit A in FIG. 10 (c), the estimated indoor temperature of the area A is 26.0 ° C. .. Since the control temperature of the indoor unit B in the area B is 27.0 ° C. and the control temperature of the indoor unit A is 26.0 ° C., the difference from the control temperature of the indoor unit A is −1.0 ° C. Then, from the description in the column of the control temperature 27.0 ° C. and the difference −1.0 of the adjacent indoor unit influence degree table of the indoor unit B shown in FIG. 10 (e), the estimated indoor temperature of the area B is 26.3 ° C. It becomes. Similarly, the estimated room temperature in Area C from the adjacent indoor unit influence degree table of the indoor unit C shown in FIG. 10 (f) is 26.2 ° C. When the indoor temperature estimation unit 74 finishes calculating the estimated indoor temperature when the control temperature is a set of control temperature candidates of group 3, the result is output to the air conditioning setting unit 77.

グループ3の場合、エリアA~Cの推定室内温度はいずれも設定温度よりも0℃から0.5℃高い範囲にあり、許容範囲に入っている。コントローラ70の空調設定部77は、図5のステップS406でYESと判断して図6のステップS408に進み、グループ3の制御温度候補の組を室内機A~Cの制御温度に設定する。 In the case of Group 3, the estimated room temperatures in areas A to C are all in the range of 0 ° C. to 0.5 ° C. higher than the set temperature, which is within the permissible range. The air conditioning setting unit 77 of the controller 70 determines YES in step S406 of FIG. 5, proceeds to step S408 of FIG. 6, and sets a set of control temperature candidates of group 3 to the control temperature of the indoor units A to C.

コントローラ70により制御温度の設定が終了したら、室内機A~Cは、図6に示すように空調を行う(図2のステップS107の空調制御)。 After the setting of the control temperature is completed by the controller 70, the indoor units A to C perform air conditioning as shown in FIG. 6 (air conditioning control in step S107 in FIG. 2).

図6のステップS501に示すように、コントローラ70の空調設定部77により室内機A~Cの制御温度がグループ3の制御温度候補の組のように、26.0℃、27.0℃、27.0℃にそれぞれ設定される。室内機Aは、制御用温度センサ21で検出した室内温度が設定された制御温度(=26.0℃)となるように空調制御を行う。また、室内機B,Cは、制御用温度センサ31,41で検出した室内温度が設定された制御温度(=27.0℃)となるように空調制御を行う。つまり、室内機Aでは、図6のステップS502からS504において、制御温度(=26.0℃)に達するまでは空調運転し、制御温度(=26.0℃)に達すると空調運転を停止して送風運転を行う。また、室内機B,Cでは、図6のステップS502からS504において、制御温度(=27.0℃)に達するまでは空調運転し、制御温度(=27.0℃)に達すると空調運転を停止して送風運転を行う。 As shown in step S501 of FIG. 6, the control temperature of the indoor units A to C by the air conditioning setting unit 77 of the controller 70 is 26.0 ° C., 27.0 ° C., 27 like a set of control temperature candidates of group 3. It is set to 0.0 ° C. The indoor unit A performs air conditioning control so that the indoor temperature detected by the control temperature sensor 21 becomes the set control temperature (= 26.0 ° C.). Further, the indoor units B and C perform air conditioning control so that the indoor temperature detected by the control temperature sensors 31 and 41 becomes the set control temperature (= 27.0 ° C.). That is, in the indoor unit A, in steps S502 to S504 of FIG. 6, the air conditioning operation is performed until the control temperature (= 26.0 ° C.) is reached, and the air conditioning operation is stopped when the control temperature (= 26.0 ° C.) is reached. And blow air. Further, in the indoor units B and C, in steps S502 to S504 of FIG. 6, the air conditioning operation is performed until the control temperature (= 27.0 ° C.) is reached, and the air conditioning operation is performed when the control temperature (= 27.0 ° C.) is reached. Stop and blow air.

これにより、エリアA~Cの温度センサ51~53の検出する室内温度が、26.0℃、26.3℃、26.2℃と設定温度の26.0℃よりも少し高い温度になり、過空調を抑制することができる。そして、このように過空調を抑制できるので、空調設備65の消費電力を低減することができる。 As a result, the indoor temperatures detected by the temperature sensors 51 to 53 in areas A to C become 26.0 ° C, 26.3 ° C, and 26.2 ° C, which are slightly higher than the set temperature of 26.0 ° C. Over-air conditioning can be suppressed. Since over-air conditioning can be suppressed in this way, the power consumption of the air-conditioning equipment 65 can be reduced.

なお、コントローラ70は、ユーザが設定した設定温度を制御温度に設定した場合に、エリアA~Cの推定室内温度はいずれも設定温度よりも0℃から0.5℃高い範囲になると算出された場合には、図5のステップS402でYESと判断して図5のステップS403に進む。コントローラ70の空調設定部77は、図5のステップS403で設定温度を制御温度に再設定する。この場合も、エリアA~Cの温度センサ51~53の検出する室内温度が設定温度の26.0℃よりも少し高い温度範囲になり過空調を抑制することができ、空調設備65の消費電力を低減することができる。 The controller 70 calculated that when the set temperature set by the user is set as the control temperature, the estimated indoor temperatures in areas A to C are all in the range of 0 ° C to 0.5 ° C higher than the set temperature. In that case, it is determined as YES in step S402 of FIG. 5, and the process proceeds to step S403 of FIG. The air conditioning setting unit 77 of the controller 70 resets the set temperature to the control temperature in step S403 of FIG. In this case as well, the room temperature detected by the temperature sensors 51 to 53 in areas A to C is in a temperature range slightly higher than the set temperature of 26.0 ° C., and over-air conditioning can be suppressed, and the power consumption of the air-conditioning equipment 65 can be suppressed. Can be reduced.

また、コントローラ70は、図2のステップS104の隣接室内機影響度テーブル生成処理において、一の制御温度と隣接室内機の制御温度の平均値との差分及び一の制御温度における一のエリアの隣接室内機影響度を算出した際に、算出した隣接室内機影響度に基づいて、他の制御温度と隣接室内機の制御温度の平均値との差分及び他の制御温度における一のエリアの他の隣接室内機影響度を補正することとしてもよい。 Further, in the process of generating the influence table of the adjacent indoor unit in step S104 of FIG. 2, the controller 70 has the difference between the average value of the control temperature of one control temperature and the control temperature of the adjacent indoor unit and the adjacency of one area in one control temperature. When calculating the degree of influence of the indoor unit, the difference between the other control temperature and the average value of the control temperature of the adjacent indoor unit and the other in one area at the other control temperature based on the calculated degree of influence of the adjacent indoor unit. The degree of influence of the adjacent indoor unit may be corrected.

例えば、図7(a)に示す室内機Aの隣接室内機影響度テーブルを生成する場合で、設定温度が26.0℃、室内機Aに隣接する室内機B,Cの設定温度の平均値と室内機Aの設定温度の差が0℃の場合、室内温度取得部76により温度センサ51から取得した室内温度25.5℃を図8に示す室内機Aの一時隣接室内機影響度テーブルの制御温度が26.0℃、室内機Aの制御温度と室内機B,Cの制御温度の平均値との差分が0℃に対応する欄に入力する。この際、既存値がある場合には既存値と取得した室内温度の平均値を隣接室内機影響度として隣接室内機影響度テーブルを更新するが、他の既存値についても、例えば、既存値と取得値との比率分だけ隣接室内機影響度を補正して隣接室内機影響度テーブルを更新する。これにより、短時間で精度のよい隣接室内機影響度テーブルを生成することができる。 For example, in the case of generating the influence degree table of the adjacent indoor unit A of the indoor unit A shown in FIG. 7A, the set temperature is 26.0 ° C., and the average value of the set temperatures of the indoor units B and C adjacent to the indoor unit A. When the difference between the set temperature of the indoor unit A and the set temperature of the indoor unit A is 0 ° C., the indoor temperature of 25.5 ° C. acquired from the temperature sensor 51 by the indoor temperature acquisition unit 76 is shown in FIG. Enter in the column where the control temperature is 26.0 ° C. and the difference between the control temperature of the indoor unit A and the average value of the control temperatures of the indoor units B and C is 0 ° C. At this time, if there is an existing value, the adjacent indoor unit influence degree table is updated with the existing value and the average value of the acquired indoor temperature as the adjacent indoor unit influence degree, but other existing values are also, for example, the existing value. The influence degree of the adjacent indoor unit is corrected by the ratio with the acquired value, and the influence degree table of the adjacent indoor unit is updated. As a result, it is possible to generate an accurate adjacent indoor unit influence degree table in a short time.

また、図5のステップS406で、各推定室内温度と設定温度との差が所定の閾値よりも小さい場合を許容範囲とし、所定の閾値よりも大きい場合を許容範囲外としてもよい。この場合、エリアA~Cの室内温度と設定温度との差がより小さくなり、ユーザの要求する空調環境により近い環境を提供できると共に、過剰空調を抑制して消費電力を低減することができる。 Further, in step S406 of FIG. 5, the case where the difference between each estimated room temperature and the set temperature is smaller than the predetermined threshold value may be set as the allowable range, and the case where the difference is larger than the predetermined threshold value may be set as out of the allowable range. In this case, the difference between the indoor temperature of the areas A to C and the set temperature becomes smaller, an environment closer to the air conditioning environment required by the user can be provided, and excessive air conditioning can be suppressed to reduce power consumption.

更に、本実施形態の空調システム100では、室内機A~Cに各制御用温度センサ21,31,41が取り付けられていることとして説明したが、これに限らず、室内機A~Cと離れた場所に設置されていてもよい。 Further, in the air conditioning system 100 of the present embodiment, it has been described that the control temperature sensors 21, 31 and 41 are attached to the indoor units A to C, but the present invention is not limited to this and is separated from the indoor units A to C. It may be installed in the same place.

以上の説明では、隣接室内機の制御温度を代表する基本統計量が平均値であるとしたが、基本統計量は、隣接室内機の制御温度を代表するものであれば、これに限らず、例えば、隣接室内機の制御温度の中央値、最大値、最小値、又は、最頻値としてもよい。 In the above explanation, the basic statistic representing the control temperature of the adjacent indoor unit is the average value, but the basic statistic is not limited to this as long as it represents the control temperature of the adjacent indoor unit. For example, it may be the median, maximum, minimum, or mode of the control temperature of the adjacent indoor unit.

次に図11、図12を参照しながら他の実施形態の空調システム200について説明する。先に図1から10を参照して説明した実施形態の空調システム100と同様の部位には、同様の符号を付して説明は省略する。 Next, the air conditioning system 200 of another embodiment will be described with reference to FIGS. 11 and 12. The same parts as those of the air conditioning system 100 of the embodiment described above with reference to FIGS. 1 to 10 are designated by the same reference numerals, and the description thereof will be omitted.

図11に示す空調システム200は、先に説明した空調システム100のコントローラ70が空調設備65の消費電力を算出する消費電力算出部78を備えるものである。また、図12は、空調システム200の動作を示すフローチャートであり、図4のフローチャートと同一のステップには、同一の符号を付して説明は省略する。 The air conditioning system 200 shown in FIG. 11 includes a power consumption calculation unit 78 in which the controller 70 of the air conditioning system 100 described above calculates the power consumption of the air conditioning equipment 65. Further, FIG. 12 is a flowchart showing the operation of the air conditioning system 200, and the same steps as those in the flowchart of FIG. 4 are designated by the same reference numerals and the description thereof will be omitted.

空調システム200は、図12のステップS406でYESと判断したら、図12のステップS410に進んで、図12のステップS406でYESと判断した制御温度候補の組を制御温度に設定した場合の空調設備65の消費電力を算出する。そして、図12のステップS411において、消費電力が図12のステップS406でYESと判断した制御温度候補の組のうちで最小になっているかどうか判断する。そして、図12のステップS411でYESと判断した場合、図4のステップS408に進んでステップS406でYESで、消費電力が最小となる制御温度候補の組を制御温度として設定する。 If the air conditioning system 200 determines YES in step S406 of FIG. 12, it proceeds to step S410 of FIG. 12 and sets the set of control temperature candidates determined to be YES in step S406 of FIG. 12 as the control temperature. Calculate the power consumption of 65. Then, in step S411 of FIG. 12, it is determined whether or not the power consumption is the minimum among the set of control temperature candidates determined to be YES in step S406 of FIG. If YES is determined in step S411 of FIG. 12, the process proceeds to step S408 of FIG. 4 and YES in step S406 to set the set of control temperature candidates that minimizes power consumption as the control temperature.

本実施形態の空調システム200は、空調環境を許容範囲に保ちつつ、消費電力をより効果的に削減することができる。 The air conditioning system 200 of the present embodiment can more effectively reduce power consumption while maintaining the air conditioning environment within an allowable range.

次の図13、図14を参照しながら本発明の他の実施形態である空調システム300について説明する。本実施形態の空調システム300のコントローラ70は、設定温度取得部75と室内温度取得部76と空調設定部77のみを含んでいる。 The air conditioning system 300, which is another embodiment of the present invention, will be described with reference to FIGS. 13 and 14 below. The controller 70 of the air conditioning system 300 of the present embodiment includes only the set temperature acquisition unit 75, the room temperature acquisition unit 76, and the air conditioning setting unit 77.

先に説明したように、室内機A~Cの各設定温度が全て同一の場合、隣接する室内機の影響により、冷房の場合、エリアA~Cの温度センサ51~53で検出する室内温度が設定温度よりも低くなる過剰冷房運転となってしまい、暖房の場合、エリアA~Cの温度センサ51~53で検出する室内温度が設定温度よりも高く過剰冷房運転となってしまう。 As described above, when the set temperatures of the indoor units A to C are all the same, the indoor temperature detected by the temperature sensors 51 to 53 in the areas A to C in the case of cooling is due to the influence of the adjacent indoor units. The excessive cooling operation will be lower than the set temperature, and in the case of heating, the indoor temperature detected by the temperature sensors 51 to 53 in the areas A to C will be higher than the set temperature, resulting in the excessive cooling operation.

そこで、本実施形態の空調システム300は、一の室内機の制御温度と隣接室内機の制御温度とが同一の場合、冷房運転時の一の室内機の制御温度をユーザが一の室内機に設定した設定温度よりも高く設定し、暖房運転時の一の室内機の制御温度をユーザが一の室内機に設定した設定温度よりも低く設定する。 Therefore, in the air conditioning system 300 of the present embodiment, when the control temperature of one indoor unit and the control temperature of the adjacent indoor unit are the same, the user can change the control temperature of one indoor unit during the cooling operation to one indoor unit. It is set higher than the set temperature, and the control temperature of one indoor unit during heating operation is set lower than the set temperature set by the user for one indoor unit.

図14に示すように、コントローラ70の空調設定部77は、図14のステップS601において、室内機A~Cの設定温度が全て同一かどうかを判断する。そして、同一の場合、図14のステップS602で冷房運転と判断した場合には、図14のステップS603に進み、室内機A~Cの制御温度をユーザが室内機A~Cに設定した設定温度よりも高く設定する。 As shown in FIG. 14, the air conditioning setting unit 77 of the controller 70 determines in step S601 of FIG. 14 whether the set temperatures of the indoor units A to C are all the same. In the same case, if it is determined in step S602 of FIG. 14 that the cooling operation is performed, the process proceeds to step S603 of FIG. 14, and the control temperature of the indoor units A to C is set by the user to the indoor units A to C. Set higher than.

また、図14のステップS602で冷房運転ではなく、図14のステップS604で暖房運転と判断した場合には、図14のステップS605に進み、室内機A~Cの制御温度をユーザが室内機A~Cに設定した設定温度よりも低く設定する。 Further, when it is determined in step S604 of FIG. 14 that the heating operation is performed instead of the cooling operation in step S602 of FIG. 14, the process proceeds to step S605 of FIG. Set it lower than the set temperature set in ~ C.

これにより、簡便な方法で、過空調を抑制して空調設備65の消費電力を低減することができる。 Thereby, it is possible to suppress over-air conditioning and reduce the power consumption of the air-conditioning equipment 65 by a simple method.

10 空調空間、11~13 エリア、20,30,40 室内機、21,31,41 制御用温度センサ、22,32,42 リモコン、23,33,43 空気吹き出し口 51,52,53 温度センサ、60 室外機、65 空調設備、70 コントローラ、71 隣接室内機影響度算出部、72 隣接室内機影響度格納部、73 室内機配置記憶部、74 室内温度推定部、75 設定温度取得部、76 室内温度取得部、77 空調設定部、78 消費電力算出部、100,200,300 空調システム。 10 Air-conditioned space, 11 to 13 areas, 20, 30, 40 Indoor unit, 21, 31, 41 Control temperature sensor, 22, 32, 42 remote controller, 23, 33, 43 Air outlet 51, 52, 53 Temperature sensor, 60 outdoor unit, 65 air conditioner, 70 controller, 71 adjacent indoor unit impact calculation unit, 72 adjacent indoor unit impact storage unit, 73 indoor unit layout storage unit, 74 indoor temperature estimation unit, 75 set temperature acquisition unit, 76 indoor unit Temperature acquisition unit, 77 air conditioning setting unit, 78 power consumption calculation unit, 100, 200, 300 air conditioning system.

Claims (8)

一のエリアと、前記一のエリアに隣接する少なくとも1つの隣接エリアを含む連続した空調空間の空調を行う空調システムであって、
前記一のエリアに配置されて前記一のエリアの室内温度が設定された制御温度となるように空調を行う一の室内機と、
空気吹き出し口が前記一の室内機の空気吹き出し口と対向するように前記隣接エリアに配置され、前記隣接エリアの室内温度が設定された制御温度となるように空調を行う隣接室内機と、
前記一の室内機の制御温度と前記隣接室内機の制御温度とを設定するコントローラと、
を備え、
前記コントローラは、
前記隣接室内機の制御温度が前記一のエリアの室内温度に及ぼす影響度を表す隣接室内機影響度を室内機毎に算出する隣接室内機影響度算出部と、
前記隣接室内機影響度算出部が算出した前記隣接室内機影響度に基づいて、各エリアの各室内温度とユーザが室内機毎に設定した各設定温度との差が小さくなるように各室内機の各制御温度を設定する空調設定部と、を有し、
前記隣接室内機影響度算出部は、
前記一の室内機の制御温度と前記隣接室内機の制御温度を代表する基本統計量との差分における、前記一の室内機の制御温度に対する前記一のエリアの室内温度を、前記一のエリアの前記隣接室内機影響度とすること、
を特徴とする空調システム。
An air conditioning system that air-conditions a continuous air-conditioned space including one area and at least one adjacent area adjacent to the one area.
One indoor unit that is arranged in the one area and air-conditions so that the indoor temperature of the one area becomes a set control temperature.
An adjacent indoor unit in which the air outlet is arranged in the adjacent area so as to face the air outlet of the one indoor unit and air-conditioning is performed so that the indoor temperature of the adjacent area becomes a set control temperature.
A controller that sets the control temperature of the one indoor unit and the control temperature of the adjacent indoor unit,
Equipped with
The controller
An adjacent indoor unit impact calculation unit that calculates the impact of the adjacent indoor unit, which represents the degree of influence of the control temperature of the adjacent indoor unit on the indoor temperature of the one area, for each indoor unit.
Based on the adjacent indoor unit influence degree calculated by the adjacent indoor unit influence degree calculation unit, each indoor unit so that the difference between each indoor temperature in each area and each set temperature set by the user for each indoor unit becomes small. Has an air conditioning setting unit, which sets each control temperature of
The adjacent indoor unit influence degree calculation unit is
The indoor temperature of the one area with respect to the control temperature of the one indoor unit in the difference between the control temperature of the one indoor unit and the basic statistic representing the control temperature of the adjacent indoor unit is set to the one area. The degree of influence of the adjacent indoor unit,
An air conditioning system featuring.
請求項に記載の空調システムであって、
前記隣接室内機影響度算出部は、
一の制御温度と前記隣接室内機の制御温度を代表する前記基本統計量との差分及び一の制御温度における前記一のエリアの前記隣接室内機影響度を算出した際に、算出した前記隣接室内機影響度に基づいて、他の制御温度と前記隣接室内機の制御温度を代表する前記基本統計量との差分及び他の制御温度における前記一のエリアの他の前記隣接室内機影響度を補正すること、
を特徴とする空調システム。
The air conditioning system according to claim 1 .
The adjacent indoor unit impact calculation unit
The adjacent room calculated when the difference between one control temperature and the basic statistic representing the control temperature of the adjacent indoor unit and the degree of influence of the adjacent indoor unit in the one area at one control temperature were calculated. Based on the machine influence degree, the difference between the other control temperature and the basic statistic representing the control temperature of the adjacent indoor unit and the influence degree of the other adjacent indoor unit in the one area at the other control temperature are corrected. To do,
An air conditioning system featuring.
請求項またはに記載の空調システムであって、
前記隣接室内機影響度算出部は、
前記一の室内機の制御温度と前記隣接室内機の制御温度を代表する前記基本統計量との差分と、前記一の室内機の制御温度と、に対する前記隣接室内機影響度を記載した隣接室内機影響度テーブルを室内機毎に生成して隣接室内機影響度格納部に格納すること、
を特徴とする空調システム。
The air conditioning system according to claim 1 or 2 .
The adjacent indoor unit influence degree calculation unit is
The degree of influence of the adjacent indoor unit on the difference between the control temperature of the one indoor unit and the basic statistic representing the control temperature of the adjacent indoor unit and the control temperature of the one indoor unit is described. Creating a machine impact table for each indoor unit and storing it in the adjacent indoor unit impact storage unit,
An air conditioning system featuring.
請求項に記載の空調システムであって
前記隣接室内機影響度算出部は、
所定のタイミングで前記隣接室内機影響度テーブルを更新し、更新した前記隣接室内機影響度テーブルを前記隣接室内機影響度格納部に格納すること、
を特徴とする空調システム。
The air conditioning system according to claim 3 .
The adjacent indoor unit influence degree calculation unit is
The adjacent indoor unit impact table is updated at a predetermined timing, and the updated adjacent indoor unit impact table is stored in the adjacent indoor unit impact storage unit.
An air conditioning system featuring.
請求項またはに記載の空調システムであって、
前記コントローラは、
前記一の室内機の制御温度と、前記隣接室内機の制御温度と、前記隣接室内機影響度格納部に格納した前記隣接室内機影響度テーブルとに基づいて、前記各エリアの推定室内温度をそれぞれ算出する室内温度推定部を有し、
前記空調設定部は、前記ユーザが室内機毎に設定した各設定温度と各前記推定室内温度との差が小さくなるように前記各室内機の各制御温度を設定すること、
を特徴とする空調システム。
The air conditioning system according to claim 3 or 4 .
The controller
Based on the control temperature of the one indoor unit, the control temperature of the adjacent indoor unit, and the influence degree table of the adjacent indoor unit stored in the influence degree storage unit of the adjacent indoor unit, the estimated indoor temperature of each area is determined. Each has an indoor temperature estimation unit that calculates
The air conditioning setting unit sets each control temperature of each indoor unit so that the difference between each set temperature set by the user for each indoor unit and each estimated indoor temperature becomes small.
An air conditioning system featuring.
請求項に記載の空調システムであって、
前記一の室内機と前記隣接室内機とに接続される少なくとも1つの室外機を含み、
前記室外機は、前記一の室内機と前記隣接室内機と共に空調設備を構成し、
前記コントローラは、
前記空調設備の消費電力を算出する消費電力算出部を有し、
前記空調設定部は、前記ユーザが室内機毎に設定した各設定温度と各前記推定室内温度との差が所定の範囲内で、且つ、消費電力算出部が算出した消費電力が最小となるように、前記各室内機の各制御温度を設定すること、
を特徴とする空調システム。
The air conditioning system according to claim 5 .
Including at least one outdoor unit connected to the one indoor unit and the adjacent indoor unit.
The outdoor unit constitutes an air conditioning facility together with the one indoor unit and the adjacent indoor unit.
The controller
It has a power consumption calculation unit that calculates the power consumption of the air conditioning equipment.
In the air conditioner setting unit, the difference between each set temperature set by the user for each indoor unit and each estimated indoor temperature is within a predetermined range, and the power consumption calculated by the power consumption calculation unit is minimized. To set each control temperature of each indoor unit,
An air conditioning system featuring.
請求項からのいずれか1項に記載の空調システムであって、
前記隣接室内機の制御温度を代表する前記基本統計量は、前記隣接室内機の制御温度の平均値、中央値、最大値、最小値、又は、最頻値であること、
を特徴とする空調システム。
The air conditioning system according to any one of claims 1 to 6 .
The basic statistic representing the control temperature of the adjacent indoor unit is an average value, a median value, a maximum value, a minimum value, or a mode value of the control temperature of the adjacent indoor unit.
An air conditioning system featuring.
一のエリアと、前記一のエリアに隣接する少なくとも1つの隣接エリアを含む連続した空調空間の空調を行う空調システムであって、
前記一のエリアに配置されて前記一のエリアの室内温度が設定された制御温度となるように空調を行う一の室内機と、
空気吹き出し口が前記一の室内機の空気吹き出し口と対向するように前記隣接エリアに配置され、前記隣接エリアの室内温度が設定された制御温度となるように空調を行う隣接室内機と、
前記各室内機の制御温度を設定するコントローラと、
を備え、
前記コントローラは、
前記一の室内機の制御温度と前記隣接室内機の制御温度とが同一の場合、冷房運転時の前記一の室内機の制御温度をユーザが前記一の室内機に設定した設定温度よりも高く設定し、暖房運転時の前記一の室内機の制御温度をユーザが前記一の室内機に設定した設定温度よりも低く設定すること、
を特徴とする空調システム。
An air conditioning system that air-conditions a continuous air-conditioned space including one area and at least one adjacent area adjacent to the one area.
One indoor unit that is arranged in the one area and air-conditions so that the indoor temperature of the one area becomes a set control temperature.
An adjacent indoor unit in which the air outlet is arranged in the adjacent area so as to face the air outlet of the one indoor unit and air-conditioning is performed so that the indoor temperature of the adjacent area becomes a set control temperature.
A controller that sets the control temperature of each indoor unit,
Equipped with
The controller
When the control temperature of the one indoor unit and the control temperature of the adjacent indoor unit are the same, the control temperature of the one indoor unit during the cooling operation is higher than the set temperature set by the user for the one indoor unit. To set and set the control temperature of the one indoor unit during the heating operation to be lower than the set temperature set by the user for the one indoor unit.
An air conditioning system featuring.
JP2018122193A 2018-06-27 2018-06-27 Air conditioning system Active JP7042707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018122193A JP7042707B2 (en) 2018-06-27 2018-06-27 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018122193A JP7042707B2 (en) 2018-06-27 2018-06-27 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2020003125A JP2020003125A (en) 2020-01-09
JP7042707B2 true JP7042707B2 (en) 2022-03-28

Family

ID=69099322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018122193A Active JP7042707B2 (en) 2018-06-27 2018-06-27 Air conditioning system

Country Status (1)

Country Link
JP (1) JP7042707B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662104B2 (en) 2021-03-26 2023-05-30 First Co. Independent temperature control for rooms

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120022703A1 (en) 2010-07-23 2012-01-26 Yeo Jongseob Air conditioner and method for controlling the same
JP2012037159A (en) 2010-08-09 2012-02-23 Mitsubishi Electric Corp Control device for air conditioner and control device for freezer
JP2013068415A (en) 2012-12-13 2013-04-18 Mitsubishi Electric Corp Air conditioning system and remote monitoring device
JP6052466B1 (en) 2015-06-16 2016-12-27 三菱電機株式会社 Air conditioning control system
JP2017026161A (en) 2015-07-15 2017-02-02 株式会社東芝 Air conditioning control device, air conditioning control system, air conditioning control method and air conditioning control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120022703A1 (en) 2010-07-23 2012-01-26 Yeo Jongseob Air conditioner and method for controlling the same
JP2012037159A (en) 2010-08-09 2012-02-23 Mitsubishi Electric Corp Control device for air conditioner and control device for freezer
JP2013068415A (en) 2012-12-13 2013-04-18 Mitsubishi Electric Corp Air conditioning system and remote monitoring device
JP6052466B1 (en) 2015-06-16 2016-12-27 三菱電機株式会社 Air conditioning control system
JP2017026161A (en) 2015-07-15 2017-02-02 株式会社東芝 Air conditioning control device, air conditioning control system, air conditioning control method and air conditioning control program

Also Published As

Publication number Publication date
JP2020003125A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US8255087B2 (en) Constant air volume HVAC system with a dehumidification function and discharge air temperature control, an HVAC controller therefor and a method of operation thereof
JP5535320B2 (en) Air conditioning control device, air conditioning control method and program
JP5897111B2 (en) Air conditioner control device and air conditioner control program
WO2015174176A1 (en) Ventilation controller and method for controlling ventilation
JP7246488B2 (en) Air conditioning system and system controller
JP2012037177A (en) Air conditioning controlling device and method
JP5695492B2 (en) Air conditioning control apparatus and method
JP6396542B2 (en) Air conditioning control device, method, and program
CN108644968B (en) Control method for air conditioning system
JP6058036B2 (en) Control device, control system, control method, and program
JP2010145070A (en) Air conditioning management device
JP5411063B2 (en) Working area temperature control system
JP2013124833A (en) Air conditioning device
JP6173784B2 (en) Air conditioning energy management system, method, and program
CN108592353B (en) Control method for air conditioning system
CN108826599B (en) Control method for air conditioning system
JP7042707B2 (en) Air conditioning system
JP2018109459A (en) Controller for air conditioning system, and air conditioning system
JP5469850B2 (en) Air conditioner control device and air conditioner control method
JP2021103019A (en) Air conditioning system, method for controlling the same and program
JP6652339B2 (en) Air conditioning control device, air conditioning control system, air conditioning control method, and air conditioning control program
JP6188662B2 (en) Control device, control method and program
JP5476245B2 (en) Working area temperature control system
JP6698959B2 (en) Controller, radiation air conditioning equipment, control method and control program
JP5910322B2 (en) Air conditioning control device and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7042707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350