JP7040390B2 - Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method - Google Patents

Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method Download PDF

Info

Publication number
JP7040390B2
JP7040390B2 JP2018187258A JP2018187258A JP7040390B2 JP 7040390 B2 JP7040390 B2 JP 7040390B2 JP 2018187258 A JP2018187258 A JP 2018187258A JP 2018187258 A JP2018187258 A JP 2018187258A JP 7040390 B2 JP7040390 B2 JP 7040390B2
Authority
JP
Japan
Prior art keywords
pulse
measured
optical fiber
mode
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018187258A
Other languages
Japanese (ja)
Other versions
JP2020056904A (en
Inventor
圭司 岡本
篤志 中村
博之 押田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2018187258A priority Critical patent/JP7040390B2/en
Priority to PCT/JP2019/036637 priority patent/WO2020071127A1/en
Priority to US17/280,971 priority patent/US11486791B2/en
Publication of JP2020056904A publication Critical patent/JP2020056904A/en
Application granted granted Critical
Publication of JP7040390B2 publication Critical patent/JP7040390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35361Sensor working in reflection using backscattering to detect the measured quantity using elastic backscattering to detect the measured quantity, e.g. using Rayleigh backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3127Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR using multiple or wavelength variable input source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3145Details of the optoelectronics or data analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/319Reflectometers using stimulated back-scatter, e.g. Raman or fibre amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0912Electronics or drivers for the pump source, i.e. details of drivers or circuitry specific for laser pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control

Description

本開示は、光ファイバの特性を検出するための光パルス試験における後方散乱光を増幅する後方散乱光増幅装置と後方散乱光増幅方法、及びそれを利用する光パルス試験装置と光パルス試験方法に関する。 The present disclosure relates to a backscattered light amplification device and a backscattered light amplification method for amplifying backscattered light in an optical pulse test for detecting the characteristics of an optical fiber, and an optical pulse test device and an optical pulse test method using the same. ..

光ファイバの試験技術として、光パルス試験方法(Optial Time Domain Reflectometer、以後OTDR)がよく知られている。OTDRは、パルス化された試験光を被測定光ファイバ(Fiber Under Test、以後FUT)に入射し、光ファイバ内を伝搬する試験光パルスに由来するレイリー散乱光の後方散乱光やフレネル反射光の強度とラウンドトリップ時間に基づき分布データ(OTDR波形)を取得する方法および装置である。この技術は、光ファイバの破断や損失増加などの異常箇所を検出し、その位置を特定するために用いることができる。 As a test technique for an optical fiber, an optical pulse test method (Optical Time Domain Reflectometer, hereinafter OTDR) is well known. In the OTDR, pulsed test light is incident on the optical fiber to be measured (Fiber Under Test, hereinafter FUT), and the backward scattered light or Frenel reflected light of Rayleigh scattered light derived from the test light pulse propagating in the optical fiber. A method and device for acquiring distribution data (OTDR waveform) based on intensity and round trip time. This technique can be used to detect and identify anomalous locations such as broken or increased losses in optical fibers.

非特許文献1では、一般的なシングルモードファイバ(Single-mode Fiber、以後SMF)が2モード動作する波長領域を利用し、後方散乱光の第一高次モード(LP11モード)を抽出することで、汎用的なOTDRよりも高感度に光ファイバ曲げを検知する技術(1μm帯モード検出OTDR)が開示されている。さらに、非特許文献2では、1μm帯モード検出OTDRにおいて後方散乱光の基本モード(LP01モード)およびLP11モードの双方を測定し、これらに生じる損失の比率を評価することで、光ファイバに生じる損失要因を識別する手法が開示されている。 In Non-Patent Document 1, a first higher-order mode (LP11 mode) of backscattered light is extracted by using a wavelength region in which a general single-mode fiber (hereinafter SMF) operates in two modes. , A technique for detecting optical fiber bending with higher sensitivity than a general-purpose OTDR (1 μm band mode detection OTDR) is disclosed. Further, in Non-Patent Document 2, the loss caused in the optical fiber is measured by measuring both the basic mode (LP01 mode) and the LP11 mode of the backscattered light in the 1 μm band mode detection OTDR and evaluating the ratio of the loss caused in these. Methods for identifying factors are disclosed.

A. Nakamura, K. Okamoto, Y. Koshikiya, T. Manabe, M. Oguma, T. Hashimoto and M. Itoh, “High-sensitivity detection of fiber bends: 1-μm-band mode-detection OTDR”, J. Lightw. Technol., vol. 33, no. 23, pp. 4862-4869, 2015.A. Nakamura, K.K. Okamoto, Y. Koshikiya, T.K. Manabe, M.M. Oguma, T.I. Hashimoto and M. Itoh, “High-sensitivity detection of fiber bends: 1-μm-band mode-detection OTDR”, J. Mol. Lightw. Technol. , Vol. 33, no. 23, pp. 4862-4869, 2015. A.Nakamura, K. Okamoto, Y. Koshikiya, T. Manabe, M. Oguma, T. Hashimoto, and M. Itho, “Loss Cause Identification by Evaluating Backscattered Modal Loss Ratio Obtained With 1-μm-Band Mode-Detection OTDR”, J. Lightw. Technol., vol. 34, no. 15, pp. 3568-3576, 2016.A. Nakamura, K.K. Okamoto, Y. Koshikiya, T.K. Manabe, M.M. Oguma, T.I. Hashimoto, and M. Iso, "Loss Case Identity By Evaluating Backscattered Modal Loss Ratio Obtained With 1-μm-Band Mode-Destination OTDR", J. Mol. Lightw. Technol. , Vol. 34, no. 15, pp. 3568-3576, 2016. D. M. Spirit and L. C. Blank, “Raman-assisted long-distance optical time domain reflectometry,” Electron. Lett., vol. 25, pp. 1687-1689, Dec. 1989.D. M. Spirit and L. C. Blank, "Raman-assisted long-disstance optical time domain reflectometry," Electron. Let. , Vol. 25, pp. 1687-1689, Dec. 1989. Christensen EN, Koefoed JG, Friis SMM, Castaneda MAU, Rottwitt K. “Experimental characterization of Raman overlaps between mode-groups,” Scientific Reports. 2016;6:34693. doi:10.1038/srep34693.Christensen EN, Koefoed JG, Friis SMM, Castanda MAU, Rottwitt K.K. "Experimental characterization of Raman overlaps beween mode-groups," Scientific Reports. 2016; 6: 34693. doi: 10.1038 / rep34693.

非特許文献3では、OTDR測定における測定距離の拡大手法として、FUT中を伝搬するプローブパルスによって発生した後方散乱光をラマン周波数シフトだけ高い周波数(短い波長)のポンプ光を用いてFUT中で分布的に増幅させる手法が提案されている。 In Non-Patent Document 3, as a method for expanding the measurement distance in OTDR measurement, the backward scattered light generated by the probe pulse propagating in the FUT is distributed in the FUT by using the pump light having a higher frequency (short wavelength) by the Raman frequency shift. A method of amplifying the frequency has been proposed.

しかし、FUTが複数の伝搬モードが存在するフューモード光ファイバや一般的なSMFの2モード領域であった場合、誘導ラマン散乱による増幅利得は、相互作用する2つの光の伝播モードによって異なることが知られている(非特許文献4)。このため、フューモード光ファイバや一般的なSMFの2モード領域のOTDR測定において、後方散乱光の所望の伝搬モードを誘導ラマン散乱を介して所望の利得で増幅させる手法が不明であるという課題がある。 However, when the FUT is a fumode optical fiber having multiple propagation modes or a general SMF two-mode region, the amplification gain due to induced Raman scattering may differ depending on the propagation modes of the two interacting lights. It is known (Non-Patent Document 4). Therefore, in OTDR measurement of a fumode optical fiber or a general SMF in a two-mode region, there is a problem that a method for amplifying a desired propagation mode of backscattered light with a desired gain via induced Raman scattering is unknown. be.

そこで、本発明は、従来技術の上記課題を解決すべく、複数の伝搬モードが存在する被測定光ファイバにおいて、後方レイリー散乱光の所望の伝搬モードを誘導ラマン散乱によって所望の利得で増幅させる後方散乱光増幅装置、光パルス試験装置、後方散乱光増幅方法、及び光パルス試験方法を提供することを目的とする。 Therefore, in order to solve the above-mentioned problems of the prior art, the present invention amplifies a desired propagation mode of backward Rayleigh scattered light with a desired gain by induced Raman scattering in a measured optical fiber having a plurality of propagation modes. It is an object of the present invention to provide a scattered light amplification device, an optical pulse test device, a backward scattered light amplification method, and an optical pulse test method.

上記目的を達成するために、本発明に係る後方散乱光増幅装置は、被測定光ファイバにプローブパルスを任意の伝搬モードで入力した後、複数の伝搬モードでポンプパルスを入射するときに、伝搬モード毎にポンプパルスのパワー、入射タイミング、およびパルス幅を個別に制御することとした。 In order to achieve the above object, the backscattered light amplification device according to the present invention propagates when a probe pulse is input to the optical fiber to be measured in an arbitrary propagation mode and then a pump pulse is incident in a plurality of propagation modes. It was decided to individually control the power, incident timing, and pulse width of the pump pulse for each mode.

具体的には、本発明に係る後方散乱光増幅装置は、
プローブパルスを所望の伝搬モードで被測定光ファイバの一端に入射するプローブパルス入射手段と、
前記プローブパルス入射手段が前記プローブパルスを前記被測定光ファイバに入射した後、前記プローブパルスの光周波数を含む光周波数範囲にラマン利得スペクトルを発生させるポンプパルスを複数の伝搬モードで前記被測定光ファイバの前記一端に入射するポンプパルス入射手段と、
前記被測定光ファイバを伝搬する前記プローブパルスで発生した複数の伝搬モードの後方散乱光のうち、前記被測定光ファイバの所望の地点より遠方で発生した所望の伝搬モードの後方散乱光に所望のラマン増幅利得を与えるように、伝搬モード間の前記ポンプパルスのパワー比、各伝搬モードの前記ポンプパルスの長さ、及び前記被測定光ファイバに入射する前記プローブパルスと各伝搬モードの前記ポンプパルスとの相対的時間差を設定する制御手段と、
を備える。
Specifically, the backscattered light amplification device according to the present invention is
A probe pulse incident means for incident the probe pulse on one end of the optical fiber to be measured in a desired propagation mode,
After the probe pulse incident means incidents the probe pulse on the optical fiber to be measured, a pump pulse that generates a Raman gain spectrum in an optical frequency range including the optical frequency of the probe pulse is generated in a plurality of propagation modes. A pump pulse incident means incident on the one end of the fiber,
Of the plurality of propagation mode backward scattered light generated by the probe pulse propagating in the measured optical fiber, the desired propagation mode backward scattered light generated farther from a desired point of the measured optical fiber is desired. The power ratio of the pump pulse between the propagation modes, the length of the pump pulse in each propagation mode, and the probe pulse incident on the optical fiber to be measured and the pump pulse in each propagation mode so as to give Raman amplification gain. Control means for setting the relative time difference with
To prepare for.

また、本発明に係る後方散乱光増幅方法は、
プローブパルスを所望の伝搬モードで被測定光ファイバの一端に入射するプローブパルス入射手順と、
前記プローブパルス入射手順で前記プローブパルスを前記被測定光ファイバに入射した後、前記プローブパルスの光周波数を含む光周波数範囲にラマン利得スペクトルを発生させるポンプパルスを複数の伝搬モードで前記被測定光ファイバの前記一端に入射するポンプパルス入射手順と、
前記ポンプパルス入射手順において、前記被測定光ファイバを伝搬する前記プローブパルスで発生した複数の伝搬モードの後方散乱光のうち、前記被測定光ファイバの所望の地点より遠方で発生した所望の伝搬モードの後方散乱光に所望のラマン増幅利得を与えるように、伝搬モード間の前記ポンプパルスのパワー比、各伝搬モードの前記ポンプパルスの長さ、及び前記被測定光ファイバに入射する前記プローブパルスと各伝搬モードの前記ポンプパルスとの相対的時間差を設定する制御手順と、
を行う。
Further, the backscattered light amplification method according to the present invention is
The procedure for injecting the probe pulse into one end of the optical fiber to be measured in the desired propagation mode, and the procedure for injecting the probe pulse.
After the probe pulse is incident on the optical fiber to be measured in the probe pulse incident procedure, a pump pulse that generates a Raman gain spectrum in an optical frequency range including the optical frequency of the probe pulse is generated in a plurality of propagation modes. The procedure for injecting a pump pulse incident on the one end of the fiber,
In the pump pulse incident procedure, among the backward scattered light of the plurality of propagation modes generated by the probe pulse propagating in the optical fiber to be measured, the desired propagation mode generated farther from the desired point of the optical fiber to be measured. With the power ratio of the pump pulse between propagation modes, the length of the pump pulse in each propagation mode, and the probe pulse incident on the optical fiber to be measured so as to give the desired Raman amplification gain to the backscattered light of. A control procedure for setting the relative time difference between the pump pulse and the pump pulse in each propagation mode, and
I do.

伝搬モード毎にポンプパルスのパワー、入射タイミング、およびパルス幅を個別に制御することで、プローブパルスにより発生した後方散乱光の所望の伝搬モードに対して任意のラマン増幅利得を任意の地点(被測定光ファイバの長手方向の地点)から与えることができる。 By individually controlling the power, incident timing, and pulse width of the pump pulse for each propagation mode, any Raman amplification gain can be obtained at any point (subject) for the desired propagation mode of backscattered light generated by the probe pulse. It can be given from a point in the longitudinal direction of the measurement optical fiber).

従って、本発明は、複数の伝搬モードが存在する被測定光ファイバにおいて、後方レイリー散乱光の所望の伝搬モードを誘導ラマン散乱によって所望の利得で増幅させる後方散乱光増幅装置、及び後方散乱光増幅方法を提供することができる。 Therefore, the present invention is a backward scattered light amplification device that amplifies a desired propagation mode of rear Rayleigh scattered light with a desired gain by induced Raman scattering in an optical fiber to be measured in which a plurality of propagation modes exist, and a backward scattered light amplification device. A method can be provided.

本発明に係る後方散乱光増幅装置は、前記被測定光ファイバの前記一端に戻ってきた前記後方散乱光を伝搬モード毎に分離するモード分波手段をさらに備える。
また、本発明に係る後方散乱光増幅方法は、前記被測定光ファイバの前記一端に戻ってきた前記後方散乱光を伝搬モード毎に分離するモード分波手順をさらに行う。
The backscattered light amplification device according to the present invention further includes a mode demultiplexing means for separating the backscattered light returned to the one end of the measured optical fiber for each propagation mode.
Further, the backscattered light amplification method according to the present invention further performs a mode demultiplexing procedure for separating the backscattered light returned to the one end of the measured optical fiber for each propagation mode.

本発明に係る光パルス試験装置は、前記後方散乱光増幅装置と、
前記被測定光ファイバの前記一端に戻る後方散乱光から前記被測定光ファイバの長さ方向の光強度分布を伝搬モード毎に取得する演算処理装置と、
を備える光パルス試験装置であって、
前記演算処理装置は、
前記後方散乱光増幅装置を動作させて、前記プローブパルスと前記ポンプパルスを前記被測定光ファイバに入射したときの第1光強度分布を取得し、
前記後方散乱光増幅装置の前記ポンプパルス入射手段及び前記モード分波手段を動作させて、前記ポンプパルスのみを前記被測定光ファイバに入射したときの第2光強度分布を取得し、
伝搬モード毎に、第1光強度分布から第2光強度分布を減算し、前記プローブパルスのみを前記被測定光ファイバに入射したときに発生するであろう第3光強度分布を取得することを特徴とする。
The optical pulse test device according to the present invention includes the backscattered light amplification device and the backscattered light amplification device.
An arithmetic processing device that acquires the light intensity distribution in the length direction of the measured optical fiber from the backscattered light returning to the one end of the measured optical fiber for each propagation mode.
It is an optical pulse test device equipped with
The arithmetic processing unit is
By operating the backscattered light amplification device, the first light intensity distribution when the probe pulse and the pump pulse are incident on the optical fiber to be measured is acquired.
By operating the pump pulse incident means and the mode demultiplexing means of the backscattered light amplification device, the second light intensity distribution when only the pump pulse is incident on the optical fiber to be measured is acquired.
For each propagation mode, the second light intensity distribution is subtracted from the first light intensity distribution to obtain the third light intensity distribution that would occur when only the probe pulse is incident on the optical fiber to be measured. It is a feature.

本発明に係る光パルス試験方法は、前記後方散乱光増幅方法と、
前記被測定光ファイバの前記一端に戻る後方散乱光から前記被測定光ファイバの長さ方向の光強度分布を伝搬モード毎に取得する演算処理方法と、
を行う光パルス試験方法であって、
前記後方散乱光増幅方法と前記演算処理方法とで、前記プローブパルスと前記ポンプパルスを前記被測定光ファイバに入射したときの第1光強度分布を取得し、
前記後方散乱光増幅方法の前記ポンプパルス入射手順及び前記モード分波手順と前記演算処理方法とで、前記ポンプパルスのみを前記被測定光ファイバに入射したときの第2光強度分布を取得し、
伝搬モード毎に、第1光強度分布から第2光強度分布を減算し、前記プローブパルスのみを前記被測定光ファイバに入射したときに発生するであろう第3光強度分布を取得することを特徴とする。
The optical pulse test method according to the present invention includes the backscattered light amplification method and the method.
An arithmetic processing method for acquiring the light intensity distribution in the length direction of the optical fiber to be measured from the backscattered light returning to the one end of the optical fiber to be measured for each propagation mode.
Is an optical pulse test method
By the backscattered light amplification method and the arithmetic processing method, the first light intensity distribution when the probe pulse and the pump pulse are incident on the optical fiber to be measured is acquired.
The second light intensity distribution when only the pump pulse is incident on the optical fiber to be measured is acquired by the pump pulse incident procedure, the mode demultiplexing procedure, and the arithmetic processing method of the backscattered light amplification method.
For each propagation mode, the second light intensity distribution is subtracted from the first light intensity distribution to obtain the third light intensity distribution that would occur when only the probe pulse is incident on the optical fiber to be measured. It is a feature.

本後方散乱光増幅装置及びその方法は、ノイズ成分となるポンプパルスの後方散乱光の成分を除外し、所望の伝搬モードの後方散乱光を観測することができる。 This backscattered light amplification device and its method can exclude the backscattered light component of the pump pulse, which is a noise component, and observe the backscattered light in a desired propagation mode.

なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.

本発明は、複数の伝搬モードが存在する被測定光ファイバにおいて、後方レイリー散乱光の所望の伝搬モードを誘導ラマン散乱によって所望の利得で増幅させる後方散乱光増幅装置、光パルス試験装置、後方散乱光増幅方法、及び光パルス試験方法を提供することができる。 The present invention is a backward scattering light amplification device, an optical pulse test device, and a backward scattering device that amplify a desired propagation mode of rear Rayleigh scattered light with a desired gain by induced Raman scattering in a measured optical fiber having a plurality of propagation modes. An optical amplification method and an optical pulse test method can be provided.

本発明に係る光パルス試験装置の構成を説明する図である。It is a figure explaining the structure of the optical pulse test apparatus which concerns on this invention. 本発明に係る光パルス試験装置が備えるモード合分波器を説明する図である。It is a figure explaining the mode combiner / demultiplexer provided in the optical pulse test apparatus which concerns on this invention. 本発明に係る後方散乱光増幅装置による誘導ラマン増幅を説明する図である。It is a figure explaining the induction Raman amplification by the backscattered light amplification apparatus which concerns on this invention. 本発明に係る後方散乱光増幅装置による誘導ラマン増幅を説明する図である。It is a figure explaining the induction Raman amplification by the backscattered light amplification apparatus which concerns on this invention. 本発明に係る後方散乱光増幅装置による各光の光周波数配置を説明する図である。It is a figure explaining the optical frequency arrangement of each light by the backscattered light amplification apparatus which concerns on this invention. 本発明に係る光パルス試験方法を説明する図である。It is a figure explaining the optical pulse test method which concerns on this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 An embodiment of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and the drawings, the components having the same reference numerals indicate the same components.

図1は、本実施形態の光パルス試験装置を説明する図である。なお、本実施形態では、被測定光ファイバが基本モードと第一高次モードの2つの伝搬モードのみを伝搬し、かつ伝搬する光は単一偏波状態であるとして説明する。本光パルス試験装置は、後方散乱光増幅装置10と、被測定光ファイバFUTの一端に戻る後方散乱光から被測定光ファイバFUTの長さ方向の光強度分布を伝搬モード毎に取得する演算処理装置20と、を備える。 FIG. 1 is a diagram illustrating an optical pulse test apparatus of the present embodiment. In this embodiment, it is assumed that the optical fiber to be measured propagates only in two propagation modes, the basic mode and the first higher-order mode, and the propagating light is in a unipolar state. This optical pulse test device acquires the light intensity distribution in the length direction of the measured optical fiber FUT from the backscattered light amplification device 10 and the backscattered light returning to one end of the measured optical fiber FUT for each propagation mode. The device 20 is provided.

後方散乱光増幅装置10は、
プローブパルスP0を所望の伝搬モードで被測定光ファイバFUTの一端に入射するプローブパルス入射手段11と、
プローブパルス入射手段11がプローブパルスP0を被測定光ファイバFUTに入射した後、プローブパルスP0の光周波数を含む光周波数範囲にラマン利得スペクトルを発生させるポンプパルス(P1、P2)を複数の伝搬モードで被測定光ファイバFUTの前記一端に入射するポンプパルス入射手段12と、
被測定光ファイバFUTを伝搬するプローブパルスP0で発生した複数の伝搬モードの後方散乱光のうち、被測定光ファイバFUTの所望の地点より遠方で発生した所望の伝搬モードの後方散乱光に所望のラマン増幅利得を与えるように、伝搬モード間のポンプパルスのパワー比、各伝搬モードのポンプパルスの長さ、及び被測定光ファイバFUTに入射するプローブパルスP0と各伝搬モードのポンプパルスとの相対的時間差(ΔT1、ΔT2)を設定する制御手段13と、
を備える。
The backscattered light amplification device 10 is
The probe pulse incident means 11 for incident the probe pulse P0 on one end of the optical fiber FUT to be measured in a desired propagation mode, and the probe pulse incident means 11.
After the probe pulse incident means 11 injects the probe pulse P0 into the optical fiber FUT to be measured, a plurality of propagation modes of pump pulses (P1, P2) that generate a Raman gain spectrum in the optical frequency range including the optical frequency of the probe pulse P0. With the pump pulse incident means 12 incident on the one end of the optical fiber FUT to be measured,
Of the multiple propagation mode rearscattered lights generated by the probe pulse P0 propagating in the measured optical fiber FUT, the desired propagating mode backward scattered light generated farther than the desired point of the measured optical fiber FUT is desired. The power ratio of the pump pulse between the propagation modes, the length of the pump pulse in each propagation mode, and the relative of the probe pulse P0 incident on the optical fiber FUT to be measured and the pump pulse in each propagation mode so as to give Raman amplification gain. The control means 13 for setting the target time difference (ΔT1, ΔT2) and
To prepare for.

後方散乱光増幅装置10は、被測定光ファイバFUTの前記一端に戻ってきた前記後方散乱光を伝搬モード毎に分離するモード分波手段(モード合分波器1-13)をさらに備える。 The backscattered light amplification device 10 further includes a mode demultiplexing means (mode combined demultiplexer 1-13) for separating the backscattered light returned to the one end of the optical fiber FUT to be measured for each propagation mode.

図1において、1-1は光周波数ν1の光を出射する第1の光源、1-2は第1の光源から出射された光をパルス化しプローブパルスを生成する第1の光パルス化器、1-3は光周波数ν2の光を出射する第2の光源、1-4は前記第2の光源から出射された光を所望の比率で分岐する可変光分岐器、1-5および1-6は前記可変光分岐器で分岐した光をパルス化し第1および第2のポンプパルスを生成する第2および第3の光パルス化器、1-7、1-8および1-9は第1、第2および第3の光パルス化器にて各々に入力された光を変調するための電気パルスを生成する電気パルス発生器、1-10はプローブパルスと第1のポンプパルスを合波する光合波器、1-11は後方散乱光の基本モード成分を分離する第1の光サーキュレータ、1-12は後方散乱光の第1高次モード成分を分離する第2の光サーキュレータ、1-13は多重化されたプローブパルスと第1のポンプパルス、および第2のポンプパルスをそれぞれ基本モードおよび第1高次モードで被測定光ファイバに入射し、かつ被測定光ファイバからの後方散乱光を基本モード成分と第1高次モード成分に分離するモード合分波器、1-14および1-15は後方散乱光の中から第1および第2のポンプパルスによって発生した後方散乱光を除去する光バンドパスフィルタ、1-16および1-17は光検出器、1-18および1-19はA/D変換器、1-20は演算処理器を表す。 In FIG. 1, 1-1 is a first light source that emits light having an optical frequency ν1, and 1-2 is a first optical pulser that pulses light emitted from a first light source to generate a probe pulse. 1-3 is a second light source that emits light with an optical frequency ν2, and 1-4 is a variable optical brancher that branches the light emitted from the second light source at a desired ratio, 1-5 and 1-6. Is a second and third optical pulser that pulses the light branched by the variable optical brancher to generate first and second pump pulses, and 1-7, 1-8 and 1-9 are the first. An electric pulse generator that generates an electric pulse to modulate the light input to each of the second and third optical pulsers, 1-10 is an optical combination that combines the probe pulse and the first pump pulse. The wave device, 1-11 is the first optical circulator that separates the basic mode component of the backward scattered light, 1-12 is the second optical circulator that separates the first higher-order mode component of the backward scattered light, and 1-13 is the second optical circulator. The multiplexed probe pulse, the first pump pulse, and the second pump pulse are incident on the measured optical fiber in the basic mode and the first higher-order mode, respectively, and the back-scattered light from the measured optical fiber is basically used. The mode combiner / demultiplexer, 1-14 and 1-15, which separates the mode component and the first higher-order mode component, is the light that removes the backward scattered light generated by the first and second pump pulses from the backward scattered light. Band path filters, 1-16 and 1-17 represent optical detectors, 1-18 and 1-19 represent A / D converters, and 1-20 represent arithmetic processors.

プローブパルス入射手段11は、第1の光源1-1、第1の光パルス化器1-2、電気パルス発生器1-7、光合波器1-10、第1の光サーキュレータ1-11、及びモード合分波器1-13である。
ポンプパルス入射手段12は、第2の光源1-3、可変光分岐器1-4、第2の光パルス化器1-5、第3の光パルス化器1-6、電気パルス発生器1-8、電気パルス発生器1-9、光合波器1-10、第1の光サーキュレータ1-11、第2の光サーキュレータ1-12、及びモード合分波器1-13である。
制御手段13は、可変光分岐器1-4、電気パルス発生器1-7、電気パルス発生器1-8、及び電気パルス発生器1-9を制御する。
演算処理装置20は、光バンドパスフィルタ(1-14、1-15)、光検出器(1-16、1-17)、A/D変換器(1-18、1-19)、及び演算処理器1-20である。
The probe pulse incident means 11 includes a first light source 1-1, a first optical pulser 1-2, an electric pulse generator 1-7, an optical combiner 1-10, and a first optical circulator 1-11. And mode combiner / demultiplexer 1-13.
The pump pulse incident means 12 includes a second light source 1-3, a variable optical brancher 1-4, a second optical pulser 1-5, a third optical pulser 1-6, and an electric pulse generator 1. -8, an electric pulse generator 1-9, an optical combiner 1-10, a first optical circulator 1-11, a second optical circulator 1-12, and a mode combiner / demultiplexer 1-13.
The control means 13 controls the variable optical turnout 1-4, the electric pulse generator 1-7, the electric pulse generator 1-8, and the electric pulse generator 1-9.
The arithmetic processing unit 20 includes an optical bandpass filter (1-14, 1-15), a photodetector (1-16, 1-17), an A / D converter (1-18, 1-19), and an arithmetic. It is a processor 1-20.

なお、誘導ラマン散乱による利得帯域幅は比較的広いことから、本光パルス試験装置では、プローブパルスの後方レイリー散乱光はスペクトル線幅が広くても十分な増幅利得を受けるため、プローブパルス光源である第1の光源1-1には汎用的なDFBレーザ等を用いることができる。この場合、ヘテロダイン検波は使用できないため、直接検波を使用することになる。 Since the gain bandwidth due to induced Raman scattering is relatively wide, in this optical pulse test device, the rear Rayleigh scattered light of the probe pulse receives sufficient amplification gain even if the spectral line width is wide, so the probe pulse light source is used. A general-purpose DFB laser or the like can be used as the first light source 1-1. In this case, heterodyne detection cannot be used, so direct detection will be used.

後方散乱光増幅装置10において、プローブパルスによって発生する後方散乱光の所望の伝搬モードに対して、第1および第2のポンプパルスによって発生する誘導ラマン散乱の利得を制御し増幅できることを理論的に説明する。 Theoretically, in the backscattered light amplification device 10, the gain of induced Raman scattering generated by the first and second pump pulses can be controlled and amplified with respect to the desired propagation mode of the backscattered light generated by the probe pulse. explain.

第1の光源1-1から出射された光周波数ν1を有する光は、電気パルス発生器1-7生成された電気信号をもとに光パルス化器1-2にてパルス化され、プローブパルスが生成される。一方、第2の光源1-3から出射された光周波数ν2を有する光は、可変光分岐器1-4によって所望の比率で分岐され、各々電気パルス発生器1-8および1-9で生成された電気信号をもとに光パルス化器1-5および1-6にてパルス化され、第1、第2のポンプパルスが生成される。プローブパルスの光周波数ν1と第1、第2ポンプパルスの光周波数ν2の周波数差Δν=ν2-ν1は、被測定光ファイバのラマン利得帯域に一致するように設定する。 The light having an optical frequency ν1 emitted from the first light source 1-1 is pulsed by an optical pulser 1-2 based on the electric signal generated by the electric pulse generator 1-7, and is a probe pulse. Is generated. On the other hand, the light having the optical frequency ν2 emitted from the second light source 1-3 is branched at a desired ratio by the variable optical branching device 1-4, and is generated by the electric pulse generators 1-8 and 1-9, respectively. Based on the generated electric signal, it is pulsed by optical pulsers 1-5 and 1-6 to generate first and second pump pulses. The frequency difference Δν = ν2-ν1 between the optical frequency ν1 of the probe pulse and the optical frequency ν2 of the first and second pump pulses is set so as to match the Raman gain band of the optical fiber to be measured.

第1のポンプパルスはプローブパルスと光合波器1-10で多重化され、第1の光サーキュレータ1-11を通り、モード合分波器1-13へと入力される。第2のポンプパルスは第2の光サーキュレータ1-12を通り、モード合分波器1-13へと入力される。 The first pump pulse is multiplexed by the probe pulse and the optical duplexer 1-10, passes through the first optical circulator 1-11, and is input to the mode duplexer 1-13. The second pump pulse passes through the second optical circulator 1-12 and is input to the mode duplexer 1-13.

モード合分波器1-13は、例えば、図2に示すように、ポート1に入力されたLP01モードをLP01モードのままポート3に出力し、ポート2に入力されたLP01モードをLP11モードに変換しポート3から出力する。また、ポート3に入力されたLP01モードとLP11モードを、LP01モードはLP01モードのままポート1に出力し、LP11モードはLP01モードに変換しポート2に出力する。このようなモード合分波器1-13を後方散乱光増幅装置10に用いた場合、ポート1に第1の光サーキュレータ1-11を接続し、ポート2に第2の光サーキュレータ1-12を接続することにより、前述のように、多重化されたプローブパルスと第1のポンプパルスはLP01モードで、第2のポンプパルスはLP11モードでそれぞれ被測定光ファイバFUTに入射することができる。また、ポート1に第2の光サーキュレータ1-12を接続し、ポート2に第1の光サーキュレータ1-11を接続することにより、前述とは逆に、多重化されたプローブパルスと第1のポンプパルスはLP11モードで、第2のポンプパルスはLP01モードでそれぞれ被測定光ファイバFUTに入射することができる。 As shown in FIG. 2, for example, the mode duplexer 1-13 outputs the LP01 mode input to the port 1 to the port 3 as the LP01 mode, and changes the LP01 mode input to the port 2 to the LP11 mode. Convert and output from port 3. Further, the LP01 mode and the LP11 mode input to the port 3 are output to the port 1 in the LP01 mode as the LP01 mode, and are converted into the LP01 mode in the LP11 mode and output to the port 2. When such a mode duplexer 1-13 is used for the backward scattered light amplification device 10, the first optical circulator 1-11 is connected to port 1 and the second optical circulator 1-12 is connected to port 2. By connecting, as described above, the multiplexed probe pulse and the first pump pulse can be incident on the optical fiber FUT to be measured in the LP01 mode and the second pump pulse in the LP11 mode. Further, by connecting the second optical circulator 1-12 to the port 1 and connecting the first optical circulator 1-11 to the port 2, contrary to the above, the multiplexed probe pulse and the first optical circulator are connected. The pump pulse can be incident on the optical fiber FUT to be measured in the LP11 mode and the second pump pulse can be incident on the optical fiber FUT in the LP01 mode.

多重化されたプローブパルスと第1のポンプパルス、および第2のポンプパルスを被測定光ファイバFUTの一端より入力する。プローブパルスが時間的に先に入射され、続いて時間遅延ΔT1が与えられた第1のポンプパルス、時間遅延ΔT2が与えられた第2のポンプパルスが入射される。プローブパルス、第1および第2ポンプパルスのパルス幅、プローブパルスと第1および第2ポンプパルスとの相対的な時間遅延ΔT1およびΔT2は電気パルス発生器1-7、1-8および1-9によって調整可能である。 The multiplexed probe pulse, the first pump pulse, and the second pump pulse are input from one end of the optical fiber FUT to be measured. The probe pulse is incident in time first, followed by a first pump pulse with a time delay ΔT1 and a second pump pulse with a time delay ΔT2. The probe pulse, the pulse width of the first and second pump pulses, the relative time delay between the probe pulse and the first and second pump pulses ΔT1 and ΔT2 are the electric pulse generators 1-7, 1-8 and 1-9. It can be adjusted by.

図3に示すように、被測定光ファイバFUTに上記プローブパルスと第1および第2のポンプパルスを入射すると、まず先行して入射されたプローブパルスにより後方散乱光が発生する。例えば、プローブパルスの波長が一般的なシングルモード光ファイバのカットオフ波長以下の2モード領域(基本モードと第1高次モードが伝搬可能)であった場合、後方散乱光は基本モードと第1高次モードに結合し被測定光ファイバFUTの入力端側へと伝搬される。なお、レイリー散乱は弾性散乱のため散乱過程による光周波数の変化は起こらず、発生した後方散乱光とプローブパルスは同じ光周波数ν1を持つ。 As shown in FIG. 3, when the probe pulse and the first and second pump pulses are incident on the optical fiber FUT to be measured, backscattered light is first generated by the previously incident probe pulse. For example, when the wavelength of the probe pulse is in a two-mode region (basic mode and first higher-order mode can propagate) below the cutoff wavelength of a general single-mode optical fiber, the backscattered light is in the basic mode and the first mode. It is coupled to a higher-order mode and propagated to the input end side of the optical fiber FUT to be measured. Since Rayleigh scattering is elastic scattering, the optical frequency does not change due to the scattering process, and the generated backscattered light and the probe pulse have the same optical frequency ν1.

続いて、プローブパルスを追いかける形で第1および第2のポンプパルスが被測定光ファイバFUTを伝搬する。プローブパルスにより発生した後方散乱光がポンプパルスと出会い、後方散乱光がポンプパルスによって発生するラマン増幅利得帯域内に存在する場合、ポンプパルスから後方散乱光に誘導ラマン増幅が起こり、後方散乱光は増幅される。 Subsequently, the first and second pump pulses propagate in the optical fiber FUT to be measured so as to follow the probe pulse. When the backscattered light generated by the probe pulse meets the pump pulse and the backscattered light is within the Raman amplification gain band generated by the pump pulse, induced Raman amplification occurs from the pump pulse to the backscattered light and the backscattered light is Amplified.

図4に示すように、被測定光ファイバFUTが複数の伝搬モードが存在する光ファイバ、もしくは各パルスが複数の伝搬モードが伝搬する波長領域である場合、後方散乱光の基本モードはLP01モードで入力されたポンプパルス(第1のポンプパルス)とLP11モードで入力されたポンプパルス(第2のポンプパルス)の両方から所定のラマン増幅利得を受ける。また、後方散乱光のLP11モードもLP01モードで入力されたポンプパルス(第1のポンプパルス)とLP11モードで入力されたポンプパルス(第2のポンプパルス)の両方から所定のラマン増幅利得を受けることになる。 As shown in FIG. 4, when the optical fiber FUT to be measured is an optical fiber having multiple propagation modes, or each pulse is in a wavelength region where multiple propagation modes propagate, the basic mode of backward scattered light is LP01 mode. It receives a predetermined Raman amplification gain from both the input pump pulse (first pump pulse) and the pump pulse input in LP11 mode (second pump pulse). In addition, the LP11 mode of backscattered light also receives a predetermined Raman amplification gain from both the pump pulse (first pump pulse) input in the LP01 mode and the pump pulse (second pump pulse) input in the LP11 mode. It will be.

被測定光ファイバFUTの入射端へと戻ってきた後方散乱光の基本モードと第1高次モードをモード合分波器1-13で分離した後、サーキュレータ1-11および1-12を介して後方散乱光を抽出し、光バンドパルスフィルタ1-14および1-15によって第1および第2のポンプパルスに発生した後方散乱光を除去した後、光検出器1-16および1-17により電気信号に変換され、A/D変換器1-18および1-19で数値化され、演算処理器1-20により解析される。 After separating the basic mode and the first higher-order mode of the backscattered light returning to the incident end of the optical fiber FUT to be measured by the mode duplexer 1-13, it is passed through the circulators 1-11 and 1-12. After the backscattered light is extracted and the backscattered light generated in the first and second pump pulses is removed by the optical band pulse filters 1-14 and 1-15, the light detectors 1-16 and 1-17 are used for electricity. It is converted into a signal, digitized by A / D converters 1-18 and 1-19, and analyzed by an arithmetic processor 1-20.

被測定光ファイバFUTの入力端(一端)をz=0としたとき、地点zにおけるプローブパルスによって発生した後方散乱光のLP01モードとLP11モードのパワーP01(z)及びP11(z)は、

Figure 0007040390000001
および
Figure 0007040390000002
で表される。ここで、P(0)はプローブパルスの入射端での光パワー、α01は被測定光ファイバFUTのLP01モードの損失係数、R01-01およびR01-11はプローブパルスのLP01モードが後方散乱光のLP01モードおよびLP11モードに結合する割合である。 When the input end (one end) of the optical fiber FUT to be measured is z = 0, the powers P 01 (z) and P 11 (z) of the backscattered light generated by the probe pulse at the point z are the powers P 01 (z) and P 11 (z) of the LP 11 mode. ,
Figure 0007040390000001
and
Figure 0007040390000002
It is represented by. Here, P 0 (0) is the optical power at the incident end of the probe pulse, α 01 is the loss coefficient of the LP01 mode of the optical fiber FUT to be measured, and R 01-01 and R 01-11 are the LP 01 mode of the probe pulse. The ratio of the backscattered light to the LP01 mode and the LP11 mode.

入力端へと戻ってくる後方散乱光のLP01モードは、第1(LP01モード)および第2(LP11モード)のポンプパルスより以下のようなラマン増幅G01を受ける。

Figure 0007040390000003
ここで、γ01-01およびγ11-01は後方散乱光のLP01モードが第1(LP01モード)および第2(LP11モード)のポンプパルスから誘導ラマン散乱により利得をうけるモード依存利得効率を表す。ηは可変光分岐器1-4の分岐比、すなわち第1および第2のポンプパルスのパワーの比率である。
Figure 0007040390000004
は地点z-Δz1における第1(LP01モード)のポンプパルスの光パワーであり、
Figure 0007040390000005
は地点z-Δz2における第2(LP11モード)のポンプパルスの光パワーである。
ΔL1およびΔL2はプローブパルスの後方散乱光が第1および第2のポンプパルスにより誘導ラマン増幅される相互作用長であり、ポンプパルスのパルス幅によって調整可能である。 The LP01 mode of the backscattered light returning to the input end receives the following Raman amplification G01 from the first (LP01 mode) and the second (LP11 mode) pump pulses.
Figure 0007040390000003
Here, γ01-01 and γ11-01 represent mode-dependent gain efficiencies in which the LP01 mode of backscattered light receives a gain from the first (LP01 mode) and the second (LP11 mode) pump pulses by induced Raman scattering. η is the branch ratio of the variable optical turnouts 1-4, that is, the ratio of the powers of the first and second pump pulses.
Figure 0007040390000004
Is the optical power of the first (LP01 mode) pump pulse at point z-Δz1.
Figure 0007040390000005
Is the optical power of the second (LP11 mode) pump pulse at point z−Δz2.
ΔL1 and ΔL2 are interaction lengths in which the backscattered light of the probe pulse is induced Raman amplified by the first and second pump pulses, and can be adjusted by the pulse width of the pump pulse.

また、後方散乱光のLP11モードは、第1(LP01モード)および第2(LP11モード)のポンプパルスより以下のようなラマン増幅G11を受ける。

Figure 0007040390000006
ここで、γ01-11およびγ11-11は後方散乱光のLP11モードが第1(LP01モード)および第2(LP11モード)のポンプパルスから誘導ラマン散乱により利得をうけるモード依存利得効率を表す。 Further, the LP11 mode of the backscattered light receives the following Raman amplification G11 from the first (LP01 mode) and the second (LP11 mode) pump pulses.
Figure 0007040390000006
Here, γ01-11 and γ11-11 represent mode-dependent gain efficiencies in which the LP11 mode of backscattered light receives gain from the first (LP01 mode) and second (LP11 mode) pump pulses by induced Raman scattering.

なお、モード依存利得効率、すなわち異なるモード間のラマン増幅効率は、モードnおよびmの断面強度分布Iの重なり積分となり、次式で表される。

Figure 0007040390000007
これは被測定光ファイバFUTの屈折率プロファイルによって一意に決定される。 The mode-dependent gain efficiency, that is, the Raman amplification efficiency between different modes is an overlap integral of the cross-sectional strength distributions I of the modes n and m, and is expressed by the following equation.
Figure 0007040390000007
This is uniquely determined by the refractive index profile of the optical fiber FUT to be measured.

プローブパルスの後方散乱光が発生した位置から第1および第2のポンプパルスと出会うそれぞれの位置までの距離(パルス間隔の1/2)Δz1およびΔz2は、時間遅延ΔT1およびΔT2を用いて次式で表される。

Figure 0007040390000008
および
Figure 0007040390000009
ここで、cは被測定光ファイバFUT中の光速度を表す。 The distances (1/2 of the pulse interval) Δz1 and Δz2 from the position where the backscattered light of the probe pulse is generated to the respective positions where the first and second pump pulses are met are calculated by the following equations using the time delays ΔT1 and ΔT2. It is represented by.
Figure 0007040390000008
and
Figure 0007040390000009
Here, c represents the speed of light in the optical fiber FUT to be measured.

プローブパルスとポンプパルスの時間間隔ΔT1およびΔT2を制御することで任意の地点からプローブ光の増幅が可能となる。なお、被測定光ファイバFUT中の光速度は伝搬モードによって僅かに変化するが、通常、ポンプパルスのパルス幅(後方散乱光との相互作用長)が10km以上であるのに対して、各モードの光速度の違いによって生じるΔz1およびΔz2の変化は10m未満であるため、モード毎の光速度の違いは無視して構わない。 By controlling the time intervals ΔT1 and ΔT2 between the probe pulse and the pump pulse, it is possible to amplify the probe light from an arbitrary point. The speed of light in the optical fiber FUT to be measured changes slightly depending on the propagation mode, but normally the pulse width (interaction length with backward scattered light) of the pump pulse is 10 km or more, whereas each mode Since the change in Δz1 and Δz2 caused by the difference in the speed of light is less than 10 m, the difference in the speed of light for each mode can be ignored.

時刻tに本装置の受信部(z=0)で観測されるプローブパルスによって発生した後方散乱光のLP01モードのパワーP01(t)は、以下のように表される。

Figure 0007040390000010
一方、後方散乱光のLP11モードのパワーP11(t)は、以下のように表される。
Figure 0007040390000011
ここで、α11は被測定光ファイバFUTのLP11モードの損失係数である。また、
Figure 0007040390000012
である。 The power P 01 (t) in the LP01 mode of the backscattered light generated by the probe pulse observed at the receiving unit (z = 0) of the present device at time t is expressed as follows.
Figure 0007040390000010
On the other hand, the power P11 (t) of the backscattered light in the LP11 mode is expressed as follows.
Figure 0007040390000011
Here, α 11 is the loss coefficient of the LP11 mode of the optical fiber FUT to be measured. again,
Figure 0007040390000012
Is.

式(8)、(9)に示すように、第1および第2のポンプパルスのパワー比η、プローブパルスと第1および第2のポンプパルスとの相互作用長ΔL1、ΔL2、プローブパルスと第1および第2のポンプパルスとの相対的な時間差ΔT1およびΔT2を制御することによって、プローブパルスの後方散乱光の任意のモードに対して、任意のラマン増幅利得を任意の地点から与えることができる。 As shown in equations (8) and (9), the power ratio η of the first and second pump pulses, the interaction length between the probe pulse and the first and second pump pulses ΔL1, ΔL2, the probe pulse and the second By controlling the time difference ΔT1 and ΔT2 relative to the first and second pump pulses, any Raman amplification gain can be given from any point to any mode of the backscattered light of the probe pulse. ..

図5に、プローブパルス、ポンプパルス、各々のパルスによって発生する後方散乱光、およびポンプパルスによって発生するラマン利得スペクトルの周波数配置関係を模式的に示す。 FIG. 5 schematically shows the frequency arrangement relationship between the probe pulse, the pump pulse, the backscattered light generated by each pulse, and the Raman gain spectrum generated by the pump pulse.

プローブパルスによって生じる後方レイリー散乱光はプローブパルスと同じ光周波数ν1を有する。光周波数ν2を有するポンプパルスに対して、ラマン利得スペクトルは被測定光ファイバFUTのラマン周波数シフトνrだけダウンシフトしたν2-νrを中心とする。プローブパルスの周波数ν1がラマン利得スペクトル内にあるとき、プローブパルスの後方散乱光は被測定光ファイバFUT中でラマン増幅される。 The backward Rayleigh scattered light generated by the probe pulse has the same optical frequency ν1 as the probe pulse. For a pump pulse having an optical frequency ν2, the Raman gain spectrum is centered on ν2-νr downshifted by the Raman frequency shift νr of the optical fiber FUT to be measured. When the frequency ν1 of the probe pulse is within the Raman gain spectrum, the backscattered light of the probe pulse is Raman amplified in the optical fiber FUT to be measured.

図6は、演算処理器1-20における波形解析手順を説明するフローチャートである。 FIG. 6 is a flowchart illustrating a waveform analysis procedure in the arithmetic processor 1-20.

まず、ステップS01において、プローブパルスおよび第1および第2のポンプパルスを入力した状態で後方散乱光のLP01モード波形b1およびLP11モード波形b2を取得する。このとき観測される波形b1及びb2をそれぞれF 01(z)およびF 11(z)とする。
次に、ステップS02において、第1および第2のポンプパルスのみを入力した状態でポンプパルスのみによって発生する誘導成分のない後方ラマン散乱光のLP01モード波形b3およびLP11モード波形b4を取得する。このとき観測される波形をそれぞれF 01(z)およびF 11(z)とする。
最後に、ステップS03において、これらの波形の差分b1-b3およびb2-b4をとることで、増幅されたプローブパルスの後方レイリー散乱光のLP01モード波形F 01(z)およびLP11モード波形F 11(z)を取得し、解析することができる。
なお、式(8)及び(9)を被測定光ファイバFUTの長さ方向zの関数としたものがそれぞれ波形F 01(z)及び波形F 11(z)である。
First, in step S01, the LP01 mode waveform b1 and the LP11 mode waveform b2 of the backscattered light are acquired with the probe pulse and the first and second pump pulses input. Let the waveforms b1 and b2 observed at this time be FG 01 (z) and FG 11 (z), respectively.
Next, in step S02, the LP01 mode waveform b3 and the LP11 mode waveform b4 of the rear Raman scattered light having no inductive component generated only by the pump pulse while only the first and second pump pulses are input are acquired. The waveforms observed at this time are FP 01 (z) and FP 11 (z), respectively.
Finally, in step S03, by taking the differences b1-b3 and b2-b4 of these waveforms, the LP01 mode waveform FR 01 (z) and the LP11 mode waveform FR of the rear Rayleigh scattered light of the amplified probe pulse are taken. 11 (z) can be acquired and analyzed.
The waveforms FR 01 (z) and the waveform FR 11 (z) are obtained by using the equations (8) and (9) as functions of the length direction z of the optical fiber FUT to be measured, respectively.

[付記]
以下は、本発明に係る光パルス試験装置を説明したものである。
(課題)
光ファイバ内を伝搬する複数の伝搬モードの後方散乱光を誘導ラマン散乱によって個別に増幅することを可能とすること。
[Additional Notes]
The following describes the optical pulse test apparatus according to the present invention.
(Task)
To enable the backscattered light of multiple propagation modes propagating in an optical fiber to be individually amplified by induced Raman scattering.

(手段)
上記課題を解決するために、本光パルス試験装置は、
被測定光ファイバFUTの基本モードと第1高次モードで伝搬可能な波長を持つプローブ光を出力する第1の光源と、
前記プローブ光をパルス化しプローブパルスを生成するパルス化器と、
前記プローブ光よりもラマン周波数シフトだけ短波長にシフトさせた波長を持つポンプ光を出力する第2の光源と、
前記ポンプ光を所望の分岐比で分岐する可変光分岐器と、
前記可変光分岐器で分岐されたポンプ光をパルス化し第1および第2のポンプパルスを生成する第2および第3のパルス化器と
前記第1、第2および第3のパルス化器を制御するための電気パルス列を生成する信号発生器と、
前記プローブパルスと第1のポンプパルスを合波する光合波器と、
被測定光ファイバFUTからの後方散乱光の基本モード成分を分離するための第1の光サーキュレータと、
被測定光ファイバFUTからの後方散乱光の第1高次モードを分離するための第2の光サーキュレータと、
前記合波されたプローブパルスと第1のポンプパルスを基本モードおよび第1高次モードのいずれか一方で、第2のポンプパルスを基本モードおよび第1高次モードのいずれか他方でそれぞれ被測定光ファイバFUTに入射し、かつ被測定光ファイバFUTからの後方散乱光を基本モードおよび第1高次モードに分離するモード合分波器と、
前記第1の光サーキュレータで分離された前記後方散乱光の基本モードからポンプパルスの後方散乱光を除去する第1の光バンドパスフィルタと、
前記第2の光サーキュレータで分離された前記後方散乱光の第1高次モードからポンプパルスの後方散乱光を除去する第2の光バンドパスフィルタと、
前記第1および第2の光バンドパスフィルタを通過した後方散乱光をそれぞれ光電変換する第1および第2の光検出器と、
前記第1および第2の光検出器から出力された光電流をそれぞれ電圧に変換する第1および第2のA/D変換器と、
前記被測定光ファイバFUTの距離に対する前記後方散乱光の基本モード成分の強度分布、及び前記被想定光ファイバの距離に対する前記戻り光の第1高次モード成分の強度分布を取得する演算処理部と、
を備える。
(means)
In order to solve the above problems, this optical pulse test device
A first light source that outputs probe light having a wavelength that can be propagated in the basic mode and the first higher-order mode of the optical fiber FUT to be measured, and
A pulser that pulses the probe light and generates a probe pulse,
A second light source that outputs pump light having a wavelength shifted to a shorter wavelength by the Raman frequency shift than the probe light, and a second light source.
A variable optical turnout that branches the pump light at a desired branch ratio,
Controls the second and third pulsers and the first, second and third pulsers that pulse the pump light branched by the variable optical turnout to generate the first and second pump pulses. With a signal generator that produces an electric pulse train for
An optical combiner that combines the probe pulse and the first pump pulse,
A first optical circulator for separating the basic mode component of the backscattered light from the optical fiber FUT to be measured, and
A second optical circulator for separating the first higher-order mode of the backscattered light from the optical fiber FUT to be measured, and
The combined probe pulse and the first pump pulse are measured in either the basic mode or the first higher-order mode, and the second pump pulse is measured in either the basic mode or the first higher-order mode, respectively. A mode duplexer that is incident on the optical fiber FUT and separates the backscattered light from the optical fiber FUT to be measured into the basic mode and the first higher-order mode.
A first optical bandpass filter that removes the backscattered light of the pump pulse from the basic mode of the backscattered light separated by the first optical circulator.
A second optical bandpass filter that removes the backscattered light of the pump pulse from the first higher-order mode of the backscattered light separated by the second optical circulator.
A first and second photodetector that photoelectrically converts backscattered light that has passed through the first and second optical bandpass filters, respectively.
A first and second A / D converter that converts the photocurrent output from the first and second photodetectors into a voltage, respectively.
An arithmetic processing unit that acquires the intensity distribution of the basic mode component of the backscattered light with respect to the distance of the optical fiber FUT to be measured and the intensity distribution of the first higher-order mode component of the return light with respect to the distance of the assumed optical fiber. ,
To prepare for.

前記ポンプ光はプローブパルスよりもラマン周波数シフトだけ短波長にシフトさせた波長を持っており、前記可変光分岐器、第2および第3のパルス化器およびモード合分波器によって、モード選択的に励振されるポンプパルスを任意の光パワー比率、パルス幅、プローブパルスとの相対時間遅延に制御し、被測定光ファイバFUTに先に入射されるプローブパルスの後方レイリー散乱光の基本モードおよび第1高次モードを所望の地点から所望の利得で増幅することを特徴とする。 The pump light has a wavelength shifted to a shorter wavelength by the Raman frequency shift than the probe pulse, and is mode-selective by the variable optical branching device, the second and third pulsers, and the mode combiner / demultiplexer. The pump pulse excited by is controlled to an arbitrary optical power ratio, pulse width, and relative time delay with the probe pulse, and the basic mode of the rear Rayleigh scattered light of the probe pulse previously incident on the optical fiber FUT to be measured and the second 1 It is characterized in that a higher-order mode is amplified from a desired point with a desired gain.

前記演算処理器は、第1の測定において、前記プローブパルスと前記第1および第2のポンプパルスが被測定光ファイバFUTに入射した状態で後方散乱光波形を取得し、
第2の測定において、前記プローブパルスを前記被測定光ファイバFUTに入射しない状態で前記第1および第2のポンプパルスの後方散乱光波形を取得し、
前記第1の測定において取得された波形と前記第2の測定において取得された波形との差分からプローブパルスの後方レイリー散乱光波形を算出することを特徴とする。
In the first measurement, the arithmetic processor acquires a backscattered light waveform with the probe pulse and the first and second pump pulses incident on the optical fiber FUT to be measured.
In the second measurement, the backscattered light waveforms of the first and second pump pulses are acquired in a state where the probe pulse is not incident on the optical fiber FUT to be measured.
It is characterized in that the rear Rayleigh scattered light waveform of the probe pulse is calculated from the difference between the waveform acquired in the first measurement and the waveform acquired in the second measurement.

(発明の効果)
本発明による光パルス試験装置および光パルス試験方法によれば、複数の伝搬モードが存在する光ファイバ、もしくは各パルスが複数の伝搬モードが伝搬する波長領域において、入力するポンプ光の条件(入力モード、入力パワー、入力タイミング、パルス幅)を制御することで、誘導ラマン散乱を用いて、後方レイリー散乱光の所望の伝搬モードを所望の利得で所望の地点より増幅させることができる。
なお、本実施形態では、被測定光ファイバが基本モードと第一高次モードの2つの伝搬モードのみを伝搬し、かつ伝搬する光は単一偏波状態であるとして説明したが、被測定光ファイバが3以上の伝搬モードを伝搬でき、かつ伝搬する光は単一偏波状態であっても、同様に入力するポンプ光の条件を制御することで後方レイリー散乱光の所望の伝搬モードを所望の利得で所望の地点より増幅させることができる。
(The invention's effect)
According to the optical pulse test apparatus and the optical pulse test method according to the present invention, the conditions (input mode) of the pump light to be input in the optical fiber having a plurality of propagation modes or in the wavelength region where each pulse propagates in a plurality of propagation modes. , Input power, input timing, pulse width), the induced Raman scattering can be used to amplify the desired propagation mode of the rear Rayleigh scattered light from the desired point with the desired gain.
In the present embodiment, it has been described that the optical fiber to be measured propagates only in two propagation modes, the basic mode and the first higher-order mode, and the propagating light is in a unipolar state. Even if the fiber can propagate in three or more propagation modes and the propagating light is in a single polarization state, the desired propagation mode of the rear Rayleigh scattered light is desired by controlling the conditions of the input pump light in the same manner. It can be amplified from a desired point with the gain of.

1-1: 第1の光源
1-2: 第1のパルス化器
1-3: 第2の光源
1-4: 可変光分岐器
1-5、1-6: 第2、第3のパルス化器
1-7~1-9: 電気パルス発生器
1-10: 光合波器
1-11、1-12: 光サーキュレータ
1-13: モード合分波器
1-14、1-15: 光バンドパルフィルタ
1-16、1-17: 光検出器
1-18、1-19: A/D変換器
1-20: 演算処理器第
10:後方散乱光増幅装置
11:プローブパルス入射手段
12:ポンプパルス入射手段
13:制御手段
20:演算処理装置
1-1: 1st light source 1-2: 1st pulser 1-3: 2nd light source 1-4: Variable optical brancher 1-5, 1-6: 2nd, 3rd pulse Instrument 1-7 to 1-9: Electric pulse generator 1-10: Optical duplexer 1-11, 1-12: Optical circulator 1-13: Mode duplexer 1-14, 1-15: Optical band pal Filters 1-16, 1-17: Optical detectors 1-18, 1-19: A / D converter 1-20: Arithmetic processor No. 10: Backscattered light amplification device 11: Probe pulse incident means 12: Pump pulse Incident means 13: Control means 20: Arithmetic processing device

Claims (6)

プローブパルスを所望の伝搬モードで被測定光ファイバの一端に入射するプローブパルス入射手段と、
前記プローブパルス入射手段が前記プローブパルスを前記被測定光ファイバに入射した後、前記プローブパルスの光周波数を含む光周波数範囲にラマン利得スペクトルを発生させるポンプパルスを複数の伝搬モードで前記被測定光ファイバの前記一端に入射するポンプパルス入射手段と、
前記被測定光ファイバを伝搬する前記プローブパルスで発生した複数の伝搬モードの後方散乱光のうち、前記被測定光ファイバの所望の地点より遠方で発生した所望の伝搬モードの後方散乱光に所望のラマン増幅利得を与えるように、伝搬モード間の前記ポンプパルスのパワー比、各伝搬モードの前記ポンプパルスの長さ、及び前記被測定光ファイバに入射する前記プローブパルスと各伝搬モードの前記ポンプパルスとの相対的時間差を設定する制御手段と、
を備える後方散乱光増幅装置。
A probe pulse incident means for incident the probe pulse on one end of the optical fiber to be measured in a desired propagation mode,
After the probe pulse incident means incidents the probe pulse on the optical fiber to be measured, a pump pulse that generates a Raman gain spectrum in an optical frequency range including the optical frequency of the probe pulse is generated in a plurality of propagation modes. A pump pulse incident means incident on the one end of the fiber,
Of the plurality of propagation mode backward scattered light generated by the probe pulse propagating in the measured optical fiber, the desired propagation mode backward scattered light generated farther from a desired point of the measured optical fiber is desired. The power ratio of the pump pulse between the propagation modes, the length of the pump pulse in each propagation mode, and the probe pulse incident on the optical fiber to be measured and the pump pulse in each propagation mode so as to give Raman amplification gain. Control means for setting the relative time difference with
A backscattered light amplifier equipped with.
前記被測定光ファイバの前記一端に戻ってきた前記後方散乱光を伝搬モード毎に分離するモード分波手段をさらに備えることを特徴とする請求項1に記載の後方散乱光増幅装置。 The backscattered light amplification device according to claim 1, further comprising a mode demultiplexing means for separating the backscattered light returned to the one end of the optical fiber to be measured for each propagation mode. 請求項2に記載の後方散乱光増幅装置と、
前記被測定光ファイバの前記一端に戻る後方散乱光から前記被測定光ファイバの長さ方向の光強度分布を伝搬モード毎に取得する演算処理装置と、
を備える光パルス試験装置であって、
前記演算処理装置は、
前記後方散乱光増幅装置を動作させて、前記プローブパルスと前記ポンプパルスを前記被測定光ファイバに入射したときの第1光強度分布を取得し、
前記後方散乱光増幅装置の前記ポンプパルス入射手段及び前記モード分波手段を動作させて、前記ポンプパルスのみを前記被測定光ファイバに入射したときの第2光強度分布を取得し、
伝搬モード毎に、第1光強度分布から第2光強度分布を減算し、前記プローブパルスのみを前記被測定光ファイバに入射したときに発生するであろう第3光強度分布を取得することを特徴とする光パルス試験装置。
The backscattered light amplification device according to claim 2,
An arithmetic processing device that acquires the light intensity distribution in the length direction of the measured optical fiber from the backscattered light returning to the one end of the measured optical fiber for each propagation mode.
It is an optical pulse test device equipped with
The arithmetic processing unit is
By operating the backscattered light amplification device, the first light intensity distribution when the probe pulse and the pump pulse are incident on the optical fiber to be measured is acquired.
By operating the pump pulse incident means and the mode demultiplexing means of the backscattered light amplification device, the second light intensity distribution when only the pump pulse is incident on the optical fiber to be measured is acquired.
For each propagation mode, the second light intensity distribution is subtracted from the first light intensity distribution to obtain the third light intensity distribution that would occur when only the probe pulse is incident on the optical fiber to be measured. A featured optical pulse test device.
プローブパルスを所望の伝搬モードで被測定光ファイバの一端に入射するプローブパルス入射手順と、
前記プローブパルス入射手順で前記プローブパルスを前記被測定光ファイバに入射した後、前記プローブパルスの光周波数を含む光周波数範囲にラマン利得スペクトルを発生させるポンプパルスを複数の伝搬モードで前記被測定光ファイバの前記一端に入射するポンプパルス入射手順と、
前記ポンプパルス入射手順において、前記被測定光ファイバを伝搬する前記プローブパルスで発生した複数の伝搬モードの後方散乱光のうち、前記被測定光ファイバの所望の地点より遠方で発生した所望の伝搬モードの後方散乱光に所望のラマン増幅利得を与えるように、伝搬モード間の前記ポンプパルスのパワー比、各伝搬モードの前記ポンプパルスの長さ、及び前記被測定光ファイバに入射する前記プローブパルスと各伝搬モードの前記ポンプパルスとの相対的時間差を設定する制御手順と、
を行う後方散乱光増幅方法。
The procedure for injecting the probe pulse into one end of the optical fiber to be measured in the desired propagation mode, and the procedure for injecting the probe pulse.
After the probe pulse is incident on the optical fiber to be measured in the probe pulse incident procedure, a pump pulse that generates a Raman gain spectrum in an optical frequency range including the optical frequency of the probe pulse is generated in a plurality of propagation modes. The procedure for injecting a pump pulse incident on the one end of the fiber,
In the pump pulse incident procedure, among the backward scattered light of the plurality of propagation modes generated by the probe pulse propagating in the optical fiber to be measured, the desired propagation mode generated farther from the desired point of the optical fiber to be measured. With the power ratio of the pump pulse between propagation modes, the length of the pump pulse in each propagation mode, and the probe pulse incident on the optical fiber to be measured so as to give the desired Raman amplification gain to the backscattered light of. A control procedure for setting the relative time difference between the pump pulse and the pump pulse in each propagation mode, and
Backscattered light amplification method.
前記被測定光ファイバの前記一端に戻ってきた前記後方散乱光を伝搬モード毎に分離するモード分波手順をさらに行うことを特徴とする請求項4に記載の後方散乱光増幅方法。 The backscattered light amplification method according to claim 4, further comprising a mode demultiplexing procedure for separating the backscattered light returned to the one end of the optical fiber to be measured for each propagation mode. 請求項5に記載の後方散乱光増幅方法と、
前記被測定光ファイバの前記一端に戻る後方散乱光から前記被測定光ファイバの長さ方向の光強度分布を伝搬モード毎に取得する演算処理方法と、
を行う光パルス試験方法であって、
前記後方散乱光増幅方法と前記演算処理方法とで、前記プローブパルスと前記ポンプパルスを前記被測定光ファイバに入射したときの第1光強度分布を取得し、
前記後方散乱光増幅方法の前記ポンプパルス入射手順及び前記モード分波手順と前記演算処理方法とで、前記ポンプパルスのみを前記被測定光ファイバに入射したときの第2光強度分布を取得し、
伝搬モード毎に、第1光強度分布から第2光強度分布を減算し、前記プローブパルスのみを前記被測定光ファイバに入射したときに発生するであろう第3光強度分布を取得することを特徴とする光パルス試験方法。
The backscattered light amplification method according to claim 5,
An arithmetic processing method for acquiring the light intensity distribution in the length direction of the optical fiber to be measured from the backscattered light returning to the one end of the optical fiber to be measured for each propagation mode.
Is an optical pulse test method
By the backscattered light amplification method and the arithmetic processing method, the first light intensity distribution when the probe pulse and the pump pulse are incident on the optical fiber to be measured is acquired.
The second light intensity distribution when only the pump pulse is incident on the optical fiber to be measured is acquired by the pump pulse incident procedure, the mode demultiplexing procedure, and the arithmetic processing method of the backscattered light amplification method.
For each propagation mode, the second light intensity distribution is subtracted from the first light intensity distribution to obtain the third light intensity distribution that would occur when only the probe pulse is incident on the optical fiber to be measured. A characteristic optical pulse test method.
JP2018187258A 2018-10-02 2018-10-02 Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method Active JP7040390B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018187258A JP7040390B2 (en) 2018-10-02 2018-10-02 Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method
PCT/JP2019/036637 WO2020071127A1 (en) 2018-10-02 2019-09-18 Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method
US17/280,971 US11486791B2 (en) 2018-10-02 2019-09-18 Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187258A JP7040390B2 (en) 2018-10-02 2018-10-02 Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method

Publications (2)

Publication Number Publication Date
JP2020056904A JP2020056904A (en) 2020-04-09
JP7040390B2 true JP7040390B2 (en) 2022-03-23

Family

ID=70055207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187258A Active JP7040390B2 (en) 2018-10-02 2018-10-02 Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method

Country Status (3)

Country Link
US (1) US11486791B2 (en)
JP (1) JP7040390B2 (en)
WO (1) WO2020071127A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801918B2 (en) * 2018-03-09 2020-10-13 Viavi Solutions Inc. Mult-wavelength pulsed optical test instrument
JP7040391B2 (en) * 2018-10-02 2022-03-23 日本電信電話株式会社 Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method
WO2020084825A1 (en) * 2018-10-22 2020-04-30 日本電信電話株式会社 Optical pulse testing device and optical pulse testing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084041A (en) 2003-09-11 2005-03-31 Nippon Telegr & Teleph Corp <Ntt> Transmission loss measuring device of optical transmission system, and its method
JP2016080600A (en) 2014-10-20 2016-05-16 古河電気工業株式会社 Measurement method and measurement device for optical fiber
WO2017217334A1 (en) 2016-06-16 2017-12-21 日本電信電話株式会社 Optical fiber and optical transmission system
JP2018036167A (en) 2016-08-31 2018-03-08 株式会社フジクラ Method for measurement, measuring apparatus, and measurement program
JP2018063214A (en) 2016-10-14 2018-04-19 日本電信電話株式会社 Two-mode optical fiber characteristic analysis method and two-mode optical fiber characteristic analysis device
US20180136036A1 (en) 2014-12-23 2018-05-17 Eni S.P.A. Reflectometric vibration measurement system and relative method for monitoring multiphase flows

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936275B2 (en) * 2002-10-31 2007-06-27 日本電信電話株式会社 Optical transmission system and optical transmission method
JP4679455B2 (en) * 2006-07-13 2011-04-27 富士通株式会社 Optical amplification method, optical amplifier, and optical transmission system
KR100930342B1 (en) * 2007-06-29 2009-12-10 주식회사 싸이트로닉 Distribution fiber optic sensor system
JP2011059424A (en) * 2009-09-10 2011-03-24 Fujitsu Ltd Optical transmission device, optical transmission system, and optical transmission method
EP3324169A1 (en) * 2016-11-22 2018-05-23 Xieon Networks S.à r.l. Detection of gainers and exaggerated losses in unidirectional otdr traces
IL254803B2 (en) * 2017-09-29 2023-09-01 Prisma Photonics Ltd Tailor distributed amplification for fiber sensing
JP7006537B2 (en) * 2018-08-16 2022-02-10 日本電信電話株式会社 Raman gain efficiency distribution test method and Raman gain efficiency distribution test equipment
JP7040391B2 (en) * 2018-10-02 2022-03-23 日本電信電話株式会社 Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method
WO2020084825A1 (en) * 2018-10-22 2020-04-30 日本電信電話株式会社 Optical pulse testing device and optical pulse testing method
WO2021005800A1 (en) * 2019-07-11 2021-01-14 日本電信電話株式会社 Light intensity distribution measurement method and light intensity distribution measurement device
WO2021070319A1 (en) * 2019-10-10 2021-04-15 日本電信電話株式会社 Method for testing optical fiber and device for testing optical fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084041A (en) 2003-09-11 2005-03-31 Nippon Telegr & Teleph Corp <Ntt> Transmission loss measuring device of optical transmission system, and its method
JP2016080600A (en) 2014-10-20 2016-05-16 古河電気工業株式会社 Measurement method and measurement device for optical fiber
US20180136036A1 (en) 2014-12-23 2018-05-17 Eni S.P.A. Reflectometric vibration measurement system and relative method for monitoring multiphase flows
WO2017217334A1 (en) 2016-06-16 2017-12-21 日本電信電話株式会社 Optical fiber and optical transmission system
JP2018036167A (en) 2016-08-31 2018-03-08 株式会社フジクラ Method for measurement, measuring apparatus, and measurement program
JP2018063214A (en) 2016-10-14 2018-04-19 日本電信電話株式会社 Two-mode optical fiber characteristic analysis method and two-mode optical fiber characteristic analysis device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DU, Jiangbing et al.,High-Order Few-Mode-Fiber Raman Amplifier for Low Noise Mode-Division-Multiplexed Optical Communication,2017 16th International Conference on Optical Communications and Networks,IEEE,2017年,pp. 1 -4

Also Published As

Publication number Publication date
US20210356357A1 (en) 2021-11-18
JP2020056904A (en) 2020-04-09
US11486791B2 (en) 2022-11-01
WO2020071127A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP7040391B2 (en) Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method
JP6338153B2 (en) Mode coupling ratio distribution measuring method and mode coupling ratio distribution measuring apparatus
JP5122120B2 (en) Optical fiber characteristic measuring device
JP7040390B2 (en) Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method
JP5105302B2 (en) Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method
CN102639966A (en) Optical sensor and method of use
WO2020040019A1 (en) Optical fiber loss measurement device and optical fiber loss measurement method
JP2018048917A (en) Optical fiber test device and optical fiber test method
JP7156386B2 (en) Optical pulse test device and optical pulse test method
JP2007139482A (en) Optical fiber sensor device
WO2021005800A1 (en) Light intensity distribution measurement method and light intensity distribution measurement device
JP3094917B2 (en) Optical fiber strain measurement device
JP2020148606A (en) Multiple core optical fiber sensing system
CN112880866A (en) Long-distance high-spatial-resolution Raman fiber multi-parameter sensing system and method
US11463163B2 (en) Device for measuring optical frequency reflection and measurement method thereof
JP5941877B2 (en) Optical pulse test apparatus and optical pulse test method
JP6602689B2 (en) Optical line characteristic analyzer and signal processing method
JP2008185422A (en) Brillouin frequency shift measurement method and apparatus
JP6226854B2 (en) Optical pulse test apparatus and optical pulse test method
CA3035884A1 (en) Distributed fibre optic sensor
WO2023053250A1 (en) Device and method for measuring loss and crosstalk produced in optical fiber transmission line
JP4364780B2 (en) Optical fiber characteristic evaluation method and apparatus
JPH0331736A (en) Method and instrument for measuring curvature distribution of optical fiber
RU170943U1 (en) DISTRIBUTED FIBER OPTICAL SENSOR
JP5442357B2 (en) Raman optical amplification characteristic evaluation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7040390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150